JP3789164B2 - Catalyst for nitrile compound production - Google Patents
Catalyst for nitrile compound production Download PDFInfo
- Publication number
- JP3789164B2 JP3789164B2 JP11818296A JP11818296A JP3789164B2 JP 3789164 B2 JP3789164 B2 JP 3789164B2 JP 11818296 A JP11818296 A JP 11818296A JP 11818296 A JP11818296 A JP 11818296A JP 3789164 B2 JP3789164 B2 JP 3789164B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- oxide
- alkane
- producing
- ammonia
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
【0001】
【発明の属する技術分野】
本発明はプロパン、イソブタン等のアルカンを原料にしてニトリル類を製造する際に用いるアンモ酸化用触媒及そこれを用いたニトリル類の製造方法に関するものである。アクリロニトリル、メタクリロニトリル等のニトリル類は、繊維、合成樹脂、合成ゴム等の製造において重要な中間体として工業的に製造されている。又、副生する青酸、アセトニトリル等のニトリル成分も工業原料や溶剤などに用いられている。
【0002】
【従来の技術】
アクリロニトリル、メタクリロニトリル等の不飽和ニトリル類は、多様な工業製品の重要な中間体として大量に製造されている。従来、その製造方法としては、アルケン類すなわちプロピレン、イソブテン等を原料とし、触媒の存在下で分子状酸素とアンモニアとで気相接触アンモ酸化する方法が一般的である。一方、近年アルケン類とアルカン類との価格差から、従来アルケン類を原料としてきた多くの誘導体をより安価なアルカン類を原料とする方法の開発に注力している。例えば、プロパン又はイソブタンを出発原料としてアンモ酸化によりアクリロニトリルやメタクリロニトリルを製造するために用いられる触媒系のうち、ハロゲン化物等のプロモーターを用いているものとしてはMo−Ce系酸化物触媒(USP3,746,737号明細書)、Mo−Ce−Te系酸化物触媒(USP3,833,638号明細書)、Mo−Ce−Bi系、Mo−Ce−Te系酸化物触媒(特開昭47−13313号公報)、Sb−U系酸化物触媒(特公昭50−17046号公報)等が提案されている。
【0003】
プロパン等の分圧を高めているものとしてはSb−Sn系、As−Sn系、Mo−Sn系、V−Cr系酸化物触媒(以上特公昭50−28940号公報)、V−Sb系酸化物触媒(特開昭47−33783号公報、特公昭50−23016号公報)、V−Sb−W系酸化物触媒(特開平2−261544号公報)、V−Sn−Sb−Cu−Bi系、V−Sn−Sb−Cu−Te系酸化物触媒(以上特開平4−275266号公報)、Mo−Bi−Fe−Al系酸化物触媒(特開平3−157356号公報)、Mo−Cr−Te系酸化物触媒(USP5,171,876号明細書)、Mo−V−Te−Nb系酸化物触媒(特開平4−235153号公報)等が提案されている。
【0004】
その他のものとしてはMo−La系等の酸化物触媒(特公平6−92354号公報)、Mo−Sb−W系酸化物触媒(特開平7−157462号公報)、Mo−Ce−Bi系、Mo−Ce−Te系酸化物触媒(特開昭47−13313号公報、USP3,833,638号公報)等が提案されている。
【0005】
【発明が解決しようとする課題】
しかしながら、これらの触媒系のうち、反応系にプロモーターとして少量のハロゲン化物等を添加している系では、反応装置の腐食等の問題があり好ましくない。又、プロパンの分圧を高めている系では、未反応プロパンのリサイクルが必要な為、エネルギー消費型のプロセスとなり好ましい方法とはいえない。又、Teの様な非常に揮発逃散しやすく毒性も強い元素を主成分とする系では、プロセスの運転性や点検修理時の安全性に問題があり好ましいとはいえない。本発明はこのような欠点を解決するためになされたものであり、アルカン類をアンモ酸化してニトリル類を製造するための触媒としてモリブデンとアンチモンとを含有し、更にランタン、セリウム、プラセオジム、ネオジム、サマリウム、ガドリニウム、イットリウムから選ばれる少なくとも1種を必須成分とした触媒を提供するものである。
また、この触媒を用いて高い収率でアクリロニトリル、メタクリロニトリル、青酸及びアセトニトリル等のニトリル化合物を製造する方法を提供するものである。
【0006】
【課題を解決するための手段】
本発明者らはアルカン類を原料とするニトリル類の製造方法について種々の検討を行った結果、ハロゲン化物等のプロモーターを使用することなく、又アルカンの分圧を高めることなく、これまで見いだされなかった新しい触媒組成でニトリル類及び他の有効ニトリル成分を製造し得る方法を見い出し本発明を完成したものである。
【0007】
即ち、本発明の要旨は、アルカン類を触媒の存在下アンモ酸化しニトリル類を製造する方法において、触媒としてモリブデンとアンチモンとを含有し、更にランタン、セリウム、プラセオジム、ネオジム、サマリウム、ガドリニウム、イットリウムから選ばれる少なくとも1種の元素を必須成分とする複合酸化物を用いることを特徴とするニトリル化合物の製造方法である。
【0008】
以下に本発明を詳細に説明する。
本発明の骨子は、モリブデンとアンチモンとを含有し、更にランタン、セリウム、プラセオジム、ネオジム、サマリウム、ガドリニウム、イットリウムから選ばれる少なくとも1種を必須成分とする複合酸化物固体触媒を使用することにある。
【0009】
この触媒系は下記の式(1)により表される。
Mo1 Sba Xb Zc On ・・・(1)
(式中、XはLa、Ce、Pr、Nd、Sm、Gd、Yから選ばれた少なくとも1種の元素を表し、Zはアルカリ金属、アルカリ土類金属、Tl、Ti、Ni、Cu、Nb、Ru、Rh、Pd、Ag、Cd、Ta、Re、Ir、Pt、B、Al、In、Sn、Pb、P、Biから選ばれる少なくとも1種以上の元素を表し、a、b、cは各々Sb、X、Zの原子数を表し、Moの原子数を1とした場合、
0.01≦a≦50
0.01≦b≦50
0≦c≦50
であり、又、nは存在元素の原子価により決定される値である。)
【0010】
式(1)の係数に関して、好ましくはa=0.01〜25、b=0.01〜25の範囲である。
又、本発明に用いる触媒として前記式(1)で表される複合酸化物を更にシリカ、アルミナ、シリカアルミナ、マグネシア、酸化チタン、酸化ニオブ、又はこれらの混合物に担持させることによって、触媒の比表面積を高めたり、物理強度を高めたりすることも可能である。
【0011】
複合酸化物触媒の調製方法は例えば次のような方法である。
複合酸化物がMo1 Sba Ceb On の場合、所定量のヘプタモリブデン酸アンモニウム水溶液に硝酸セリウム水溶液を加え、更に三酸化アンチモンを懸濁させたスラリーを加える。十分に加熱攪拌混合した後、噴霧乾燥法、蒸発乾固法、真空乾燥法等の方法で乾燥させ、固体物を得る。これを400〜1000℃で焼成して目的物を得る。焼成は一般には大気中で行われるが、高酸素濃度下、低酸素濃度下でも行うことができるし、窒素やヘリウム等の不活性ガス中や真空中でも行うことができる。焼成方法についても固定焼成炉、流動焼成炉、回転焼成炉、バンド焼成炉等で実施することができる。
【0012】
本発明で使用する触媒原料には特に制限はない。モリブデンはヘプタモリブデン酸アンモニウムの他、三酸化モリブデン、三塩化モリブデン、リンモリブデン酸等を用いる事ができる。アンチモンは三酸化アンチモンの他、四酸化アンチモン、五酸化アンチモン、アンチモン酸、三塩化アンチモン、五塩化アンチモン等を用いることができる。セリウムは硝酸塩の他、酸化第一セリウム、塩化第一セリウム等を用いることができる。その他のものについても硝酸塩、酸化物、塩化物、有機酸塩等を使用することができる。又、担体としてシリカ、アルミナ、シリカアルミナ、マグネシア、酸化チタン、酸化ニオブを使用する場合の原料にも制約はなく、成形体、酸化物、水酸化物の粉末やゾル、ゲル等を使い分けることができる。
【0013】
これらの触媒の形状については特に限定されない。乾燥後又は焼成後に打錠機、押し出し成型機、造粒機等で成形し使用することができる。噴霧乾燥法で調製した場合は特に成形せずにそのまま使用することができる。
本発明におけるアンモ酸化の原料ガスとしては、通常アルカン、アンモニア、酸素及び不活性ガスを用いる。使用するアルカンについては特に限定されないが、得られるニトリルの有用性を考えるとプロパン、n−ブタン、イソブタンを用いるのが好ましい。アルカン中に少量のアルケンが含有されていても何ら問題はない。酸素は特に高い純度が要求されているものではなく、空気中の酸素を用いることができ、その方が経済的でもある。使用するアルカンはアンモニア及び酸素含有ガスと混合して供給しても良いし、又それぞれ別に供給しても良い。
【0014】
反応に供給される分子状酸素のモル比はアルカンに対して0.2〜5倍量程度が好ましく、アンモニアモル比は0.2〜3倍量程度が好ましい。又、不活性ガスとしてはヘリウム、窒素等の不活性ガスや水蒸気を用いることができる。
本発明におけるアンモ酸化反応は、前記の触媒存在下、反応温度は300〜600℃、原料ガスと触媒との接触時間は0.1〜30秒で行うのが好ましい。反応圧力は常圧はもちろん減圧下、加圧下でも行うことができる。反応方式についても固定床式、流動床式、移動床式等が可能である。
【0015】
【実施例】
以下に本発明をアルカンとしてプロパンを用いた場合の実施例を用いて更に詳細に説明するが、本発明はその要旨を越えない限りこれら実施例により何ら限定されるものではない。
なお、以下の実施例におけるアルカンの転化率(%)、生成化合物の選択率(%)、単流収率(%)は各々次式で計算される。
アルカンの転化率(%)=〔(反応したアルカンのモル数)/(供給したアルカンのモル数)〕×100
生成化合物の選択率(%)=〔(生成化合物のモル数)/(反応したアルカンのモル数)〕×〔(生成化合物の炭素数)/(原料アルカンの炭素数)〕×100
単流収率(%)=〔(生成化合物のモル数)/(供給したアルカンのモル数)〕×〔(生成化合物の炭素数)/(原料アルカンの炭素数)〕×100
【0016】
(実施例1)
温水150mlにヘプタモリブデン酸アンモニウム71.9gを溶解させる。これに温水200mlに溶解させた硝酸セリウム58.7gを添加した。続けて温水200mlに分散させた三酸化アンチモンを19.8g加え、液温約80℃とし液量を一定に保ったまま4時間攪拌を行った。更に液温を上げ水分の蒸発を行いつつ攪拌を継続した。得られたペーストを150℃で15時間乾燥後、10〜24メッシュに造粒した。その後300℃で2時間、更に600℃で2時間焼成を行った。得られた触媒の組成はMo1 Sb0.33Ce0.33On であった。
この触媒の1mlを通常の流通式反応装置に充填し、反応を行った。原料ガス組成はプロパン/アンモニア/酸素/ヘリウム/水=1/3/2/8/1(モル比)とし、触媒との接触時間5秒、反応温度520℃であった。結果を表1に示す。
【0017】
(実施例2)
温水150mlにヘプタモリブデン酸アンモニウム71.0gを溶解させる。これに温水200mlに溶解させた硝酸セリウム58.0g及び硝酸カリウム2.71gを添加した。続けて温水200mlに分散させた三酸化アンチモンを19.6g加え、液温約80℃とし液量を一定に保ったまま4時間攪拌を行った。更に液温を上げ水分の蒸発を行いつつ攪拌を継続した。得られたペーストを150℃で15時間乾燥後、10〜24メッシュに造粒した。その後300℃で2時間、更に600℃で2時間焼成を行った。得られた触媒の組成はMo1 Sb0.33Ce0.33K0.067 On であった。
この触媒の1mlを通常の流通式反応装置に充填し、反応を行った。原料ガス組成はプロパン/アンモニア/酸素/ヘリウム/水=1/3/2/8/1(モル比)とし、触媒との接触時間5秒、反応温度520℃であった。結果を表1に示す。
【0018】
【表1】
【0019】
【発明の効果】
本発明によればモリブデンとアンチモンを含有し、更にランタン、セリウム、プラセオジム、ネオジム、サマリウム、ガドリニウム、イットリウムから選ばれる少なくとも1種の元素を必須とした触媒を用いることにより、反応系にハロゲン化物等のプロモーターを必要とする事なしに、又アルカン分圧を高めることなしに高い収率でニトリル類を製造することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a catalyst for ammoxidation used in the production of nitriles using alkanes such as propane and isobutane as raw materials, and a method for producing nitriles using the same. Nitriles such as acrylonitrile and methacrylonitrile are industrially produced as important intermediates in the production of fibers, synthetic resins, synthetic rubbers and the like. In addition, nitrile components such as by-product cyanide and acetonitrile are also used as industrial raw materials and solvents.
[0002]
[Prior art]
Unsaturated nitriles such as acrylonitrile and methacrylonitrile are produced in large quantities as important intermediates for various industrial products. Conventionally, as a production method thereof, a method in which vapor-phase catalytic ammoxidation is performed with molecular oxygen and ammonia in the presence of a catalyst using an alkene, that is, propylene, isobutene, or the like as a raw material is common. On the other hand, in recent years, due to the price difference between alkenes and alkanes, we have been focusing on the development of methods that use cheaper alkanes as raw materials for many derivatives that have been made from alkenes as raw materials. For example, among catalyst systems used to produce acrylonitrile and methacrylonitrile by ammoxidation using propane or isobutane as a starting material, those using a promoter such as a halide may be a Mo-Ce oxide catalyst (USP3 , 746,737), Mo-Ce-Te-based oxide catalyst (USP 3,833,638), Mo-Ce-Bi-based, Mo-Ce-Te-based oxide catalyst (JP-A-47). No. 13313), Sb-U oxide catalysts (Japanese Patent Publication No. 50-17046), and the like have been proposed.
[0003]
Examples of propane and other components whose partial pressure is increased include Sb—Sn, As—Sn, Mo—Sn, V—Cr oxide catalysts (Japanese Patent Publication No. 50-28940), V—Sb oxidation. Product catalyst (Japanese Patent Laid-Open No. 47-33783, Japanese Patent Publication No. 50-23016), V-Sb-W-based oxide catalyst (Japanese Patent Laid-Open No. 2-261544), V-Sn-Sb-Cu-Bi-based V-Sn-Sb-Cu-Te-based oxide catalyst (JP-A-4-275266), Mo-Bi-Fe-Al-based oxide catalyst (JP-A-3-157356), Mo-Cr- Te-based oxide catalysts (USP 5,171,876 specification), Mo-V-Te-Nb-based oxide catalysts (Japanese Patent Laid-Open No. 4-235153), and the like have been proposed.
[0004]
Others include oxide catalysts such as Mo-La series (Japanese Patent Publication No. 6-92354), Mo-Sb-W series oxide catalysts (JP-A-7-157462), Mo-Ce-Bi series, Mo-Ce-Te oxide catalysts (Japanese Patent Laid-Open No. 47-13313, USP 3,833,638) and the like have been proposed.
[0005]
[Problems to be solved by the invention]
However, among these catalyst systems, a system in which a small amount of halide or the like is added as a promoter to the reaction system is not preferable because of problems such as corrosion of the reactor. Further, in a system in which the partial pressure of propane is increased, since it is necessary to recycle unreacted propane, it is an energy consuming process and is not a preferable method. Further, a system mainly composed of an element that is highly volatile and toxic and has high toxicity such as Te is not preferable because of problems in process operability and safety during inspection and repair. The present invention has been made to solve such drawbacks, and contains molybdenum and antimony as a catalyst for ammoxidation of alkanes to produce nitriles, and further lanthanum, cerium, praseodymium, neodymium. , Samarium, gadolinium, yttrium at least one catalyst selected as an essential component is provided.
The present invention also provides a method for producing nitrile compounds such as acrylonitrile, methacrylonitrile, hydrocyanic acid and acetonitrile with high yield using this catalyst.
[0006]
[Means for Solving the Problems]
As a result of various studies on the production method of nitriles using alkanes as a raw material, the present inventors have so far found without using a promoter such as a halide and without increasing the partial pressure of alkanes. The present invention has been completed by finding a method capable of producing nitriles and other effective nitrile components with a new catalyst composition which has not been obtained.
[0007]
That is, the gist of the present invention is a method for producing nitriles by ammoxidizing alkanes in the presence of a catalyst, which contains molybdenum and antimony as catalysts, and further lanthanum, cerium, praseodymium, neodymium, samarium, gadolinium, yttrium. A method for producing a nitrile compound comprising using a composite oxide containing at least one element selected from the above as an essential component.
[0008]
The present invention is described in detail below.
The gist of the present invention is to use a composite oxide solid catalyst containing molybdenum and antimony and further containing at least one selected from lanthanum, cerium, praseodymium, neodymium, samarium, gadolinium and yttrium as essential components. .
[0009]
This catalyst system is represented by the following formula (1).
Mo 1 Sb a X b Z c O n ··· (1)
(In the formula, X represents at least one element selected from La, Ce, Pr, Nd, Sm, Gd, and Y, and Z represents an alkali metal, an alkaline earth metal, Tl, Ti, Ni, Cu, and Nb. , Ru, Rh, Pd, Ag, Cd, Ta, Re, Ir, Pt, B, Al, In, Sn, Pb, P, Bi represents at least one element, a, b, c are When each represents the number of atoms of Sb, X, and Z and the number of atoms of Mo is 1,
0.01 ≦ a ≦ 50
0.01 ≦ b ≦ 50
0 ≦ c ≦ 50
And n is a value determined by the valence of the existing element. )
[0010]
Regarding the coefficient of Formula (1), it is preferable that a = 0.01 to 25 and b = 0.01 to 25.
In addition, the composite oxide represented by the above formula (1) as a catalyst used in the present invention is further supported on silica, alumina, silica alumina, magnesia, titanium oxide, niobium oxide, or a mixture thereof, whereby the ratio of the catalyst is increased. It is also possible to increase the surface area and physical strength.
[0011]
The method for preparing the composite oxide catalyst is, for example, the following method.
If composite oxide of Mo 1 Sb a Ce b O n , a cerium nitrate solution was added to a predetermined amount of ammonium heptamolybdate solution, added it was further suspended antimony trioxide slurry. After sufficiently stirring and mixing, the mixture is dried by a method such as spray drying, evaporation to dryness, or vacuum drying to obtain a solid product. This is fired at 400 to 1000 ° C. to obtain the target product. Firing is generally performed in the air, but can be performed under high oxygen concentration or low oxygen concentration, or in an inert gas such as nitrogen or helium or in vacuum. The firing method can also be carried out in a fixed firing furnace, a fluid firing furnace, a rotary firing furnace, a band firing furnace or the like.
[0012]
There is no particular limitation on the catalyst raw material used in the present invention. In addition to ammonium heptamolybdate, molybdenum trioxide, molybdenum trichloride, phosphomolybdic acid, or the like can be used as molybdenum. As antimony, antimony trioxide, antimony tetraoxide, antimony pentoxide, antimonic acid, antimony trichloride, antimony pentachloride, and the like can be used. Cerium may be nitrate, cerium oxide, cerium chloride or the like. For other substances, nitrates, oxides, chlorides, organic acid salts and the like can be used. In addition, there are no restrictions on the raw materials when silica, alumina, silica alumina, magnesia, titanium oxide, niobium oxide is used as a carrier, and it is possible to use a compact, oxide, hydroxide powder, sol, gel, etc. it can.
[0013]
The shape of these catalysts is not particularly limited. It can be molded and used with a tableting machine, an extrusion molding machine, a granulating machine or the like after drying or baking. When prepared by the spray drying method, it can be used as it is without being molded.
As the source gas for ammoxidation in the present invention, alkane, ammonia, oxygen and inert gas are usually used. The alkane used is not particularly limited, but propane, n-butane, and isobutane are preferably used in view of the usefulness of the resulting nitrile. There is no problem even if a small amount of alkene is contained in the alkane. Oxygen is not particularly required to have high purity, and oxygen in the air can be used, which is more economical. The alkane used may be supplied in a mixture with ammonia and an oxygen-containing gas, or may be supplied separately.
[0014]
The molar ratio of molecular oxygen supplied to the reaction is preferably about 0.2 to 5 times the amount of alkane, and the ammonia molar ratio is preferably about 0.2 to 3 times. As the inert gas, an inert gas such as helium or nitrogen or water vapor can be used.
In the present invention, the ammoxidation reaction is preferably carried out in the presence of the above-mentioned catalyst at a reaction temperature of 300 to 600 ° C. and a contact time between the raw material gas and the catalyst of 0.1 to 30 seconds. The reaction pressure can be carried out under normal pressure as well as under reduced pressure. As the reaction method, a fixed bed type, a fluidized bed type, a moving bed type, and the like are possible.
[0015]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples in which propane is used as an alkane. However, the present invention is not limited to these examples unless it exceeds the gist.
In the following examples, alkane conversion (%), product compound selectivity (%), and single stream yield (%) are calculated by the following equations.
Alkane conversion rate (%) = [(number of moles of reacted alkane) / (number of moles of supplied alkane)] × 100
Selectivity of product compound (%) = [(mole number of product compound) / (mole number of reacted alkane)] × [(carbon number of product compound) / (carbon number of raw material alkane)] × 100
Single stream yield (%) = [(moles of product compound) / (moles of supplied alkane)] × [(carbon number of product compound) / (carbon number of raw material alkane)] × 100
[0016]
Example 1
71.9 g of ammonium heptamolybdate is dissolved in 150 ml of warm water. To this was added 58.7 g of cerium nitrate dissolved in 200 ml of warm water. Subsequently, 19.8 g of antimony trioxide dispersed in 200 ml of warm water was added, the liquid temperature was about 80 ° C., and the liquid volume was kept constant, and the mixture was stirred for 4 hours. Further, the liquid temperature was raised and stirring was continued while evaporating water. The obtained paste was dried at 150 ° C. for 15 hours and then granulated to 10 to 24 mesh. Thereafter, baking was performed at 300 ° C. for 2 hours and further at 600 ° C. for 2 hours. The composition of the resulting catalyst was Mo 1 Sb 0.33 Ce 0.33 O n .
1 ml of this catalyst was charged into a normal flow reactor and the reaction was carried out. The raw material gas composition was propane / ammonia / oxygen / helium / water = 1/3/2/8/1 (molar ratio), the contact time with the catalyst was 5 seconds, and the reaction temperature was 520 ° C. The results are shown in Table 1.
[0017]
(Example 2)
Dissolve 71.0 g of ammonium heptamolybdate in 150 ml of warm water. To this was added 58.0 g of cerium nitrate and 2.71 g of potassium nitrate dissolved in 200 ml of warm water. Subsequently, 19.6 g of antimony trioxide dispersed in 200 ml of warm water was added, the liquid temperature was about 80 ° C., and the liquid volume was kept constant and stirred for 4 hours. Further, the liquid temperature was raised and stirring was continued while evaporating water. The obtained paste was dried at 150 ° C. for 15 hours and then granulated to 10 to 24 mesh. Thereafter, baking was performed at 300 ° C. for 2 hours and further at 600 ° C. for 2 hours. The composition of the resulting catalyst was Mo 1 Sb 0.33 Ce 0.33 K 0.067 O n.
1 ml of this catalyst was charged into a normal flow reactor and the reaction was carried out. The raw material gas composition was propane / ammonia / oxygen / helium / water = 1/3/2/8/1 (molar ratio), the contact time with the catalyst was 5 seconds, and the reaction temperature was 520 ° C. The results are shown in Table 1.
[0018]
[Table 1]
[0019]
【The invention's effect】
According to the present invention, by using a catalyst containing molybdenum and antimony and further comprising at least one element selected from lanthanum, cerium, praseodymium, neodymium, samarium, gadolinium, and yttrium, a halide and the like are used in the reaction system. Nitriles can be produced in high yields without the need for such a promoter and without increasing the alkane partial pressure.
Claims (3)
Mo1 Sba Xb Zc On ・・・(1)
(式中、XはLa、Ce、Pr、Nd、Sm、Gd、Yから選ばれた少なくとも1種の元素を表し、Zはアルカリ金属、アルカリ土類金属、Tl、Ti、Ni、Cu、Nb、Ru、Rh、Pd、Ag、Cd、Ta、Re、Ir、Pt、B、Al、In、Sn、Pb、Pから選ばれる少なくとも1種以上の元素を表し、a、b、cは各々Sb、X、Zの原子数を表し、Moの原子数を1とした場合、
0.01≦a≦50
0.01≦b≦50
0≦c≦50
であり、又、nは存在元素の原子価により決定される値である。)A catalyst for ammoxidation for producing nitriles by reacting alkanes with molecular oxygen and ammonia, which comprises a composite oxide represented by the following formula (1).
Mo 1 Sb a X b Z c O n ··· (1)
(In the formula, X represents at least one element selected from La, Ce, Pr, Nd, Sm, Gd, and Y, and Z represents an alkali metal, an alkaline earth metal, Tl, Ti, Ni, Cu, and Nb. represents Ru, Rh, Pd, Ag, Cd, Ta, Re, Ir, Pt, B, Al, in, Sn, Pb, the P or al least one element selected, a, b, c are each When the number of atoms of Sb, X, Z is represented and the number of atoms of Mo is 1,
0.01 ≦ a ≦ 50
0.01 ≦ b ≦ 50
0 ≦ c ≦ 50
And n is a value determined by the valence of the existing element. )
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11818296A JP3789164B2 (en) | 1996-04-17 | 1996-04-17 | Catalyst for nitrile compound production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11818296A JP3789164B2 (en) | 1996-04-17 | 1996-04-17 | Catalyst for nitrile compound production |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09276695A JPH09276695A (en) | 1997-10-28 |
JP3789164B2 true JP3789164B2 (en) | 2006-06-21 |
Family
ID=14730179
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11818296A Expired - Lifetime JP3789164B2 (en) | 1996-04-17 | 1996-04-17 | Catalyst for nitrile compound production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3789164B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008089398A1 (en) * | 2007-01-19 | 2008-07-24 | Evernu Technology Llc | Selective oxidation of alkanes and/or alkenes to valuable oxygenates |
-
1996
- 1996-04-17 JP JP11818296A patent/JP3789164B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH09276695A (en) | 1997-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5231214A (en) | Process for producing nitriles | |
US6461996B2 (en) | Halogen promoted multi-metal oxide catalyst | |
US6734136B2 (en) | IR and/or SM promoted multi-metal oxide catalyst | |
JP2002177784A (en) | Mixed metal oxide catalyst | |
JP2608768B2 (en) | Nitrile manufacturing method | |
JPH0813332B2 (en) | Preparation of catalysts for the production of methacrolein and methacrylic acid | |
JP2003181294A (en) | Method of improving characteristic of catalyst | |
JP4081824B2 (en) | Acrylic acid production method | |
JPH1057813A (en) | Manufacture of mixed metal oxide catalyst and acrylic acid production using thereof | |
JP3331629B2 (en) | Catalyst for the production of nitriles from alkanes | |
JPH11169716A (en) | Catalyst for preparing unsaturated nitrile and/or unsaturated carboxylic acid | |
JP3789164B2 (en) | Catalyst for nitrile compound production | |
JP3982869B2 (en) | Catalyst for nitrile compound production | |
JP3966573B2 (en) | Catalyst for nitrile compound production | |
JP3789165B2 (en) | Catalyst for nitrile compound production | |
JP3117265B2 (en) | Method for producing α, β-unsaturated nitrile | |
JP3966588B2 (en) | Ammoxidation catalyst composition and method for producing nitrile compound using the same | |
JP3818697B2 (en) | Ammoxidation catalyst and method for producing nitrile using the same | |
JP3209960B2 (en) | Production method of unsaturated nitrile | |
JP4273565B2 (en) | Process for the preparation of complex oxide catalysts for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids | |
JP3768289B2 (en) | Ammoxidation catalyst and method for producing nitrile using the same | |
JPH10180107A (en) | Catalyst composition for ammoxidation of alkane and production of nitrile compound using thereof | |
JP2000001464A (en) | Production of nitrile from alkane | |
JP2000117103A (en) | Catalyst for oxidation of alkane | |
JPH07215926A (en) | Production of nitrile |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050905 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050920 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051114 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060328 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060328 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090407 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090407 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090407 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100407 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110407 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110407 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120407 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120407 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130407 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130407 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140407 Year of fee payment: 8 |
|
EXPY | Cancellation because of completion of term |