JP3952515B2 - 磁気抵抗効果素子、磁気記録装置及び磁気抵抗効果素子の製造方法 - Google Patents
磁気抵抗効果素子、磁気記録装置及び磁気抵抗効果素子の製造方法 Download PDFInfo
- Publication number
- JP3952515B2 JP3952515B2 JP08670295A JP8670295A JP3952515B2 JP 3952515 B2 JP3952515 B2 JP 3952515B2 JP 08670295 A JP08670295 A JP 08670295A JP 8670295 A JP8670295 A JP 8670295A JP 3952515 B2 JP3952515 B2 JP 3952515B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- nonmagnetic metal
- metal layer
- film thickness
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000005291 magnetic effect Effects 0.000 title claims description 139
- 238000004519 manufacturing process Methods 0.000 title claims description 24
- 239000010410 layer Substances 0.000 claims description 195
- 229910052751 metal Inorganic materials 0.000 claims description 92
- 239000002184 metal Substances 0.000 claims description 92
- 230000000694 effects Effects 0.000 claims description 71
- 239000000758 substrate Substances 0.000 claims description 60
- 239000010949 copper Substances 0.000 claims description 58
- 229910052802 copper Inorganic materials 0.000 claims description 42
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 41
- 238000009792 diffusion process Methods 0.000 claims description 29
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 15
- 229910052709 silver Inorganic materials 0.000 claims description 15
- 239000004332 silver Substances 0.000 claims description 15
- 230000015572 biosynthetic process Effects 0.000 claims description 13
- 230000008859 change Effects 0.000 claims description 13
- 230000004888 barrier function Effects 0.000 claims description 11
- 229910001316 Ag alloy Inorganic materials 0.000 claims description 6
- YCKOAAUKSGOOJH-UHFFFAOYSA-N copper silver Chemical compound [Cu].[Ag].[Ag] YCKOAAUKSGOOJH-UHFFFAOYSA-N 0.000 claims description 6
- 230000005415 magnetization Effects 0.000 claims description 5
- 230000002265 prevention Effects 0.000 claims description 4
- 238000010030 laminating Methods 0.000 claims description 3
- 239000002356 single layer Substances 0.000 claims description 2
- 150000001879 copper Chemical class 0.000 claims 1
- 230000005389 magnetism Effects 0.000 claims 1
- 238000000034 method Methods 0.000 claims 1
- 239000011241 protective layer Substances 0.000 description 15
- 229910045601 alloy Inorganic materials 0.000 description 14
- 239000000956 alloy Substances 0.000 description 14
- 230000004907 flux Effects 0.000 description 11
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 230000005290 antiferromagnetic effect Effects 0.000 description 7
- 239000010931 gold Substances 0.000 description 5
- 238000011835 investigation Methods 0.000 description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 5
- 229910015136 FeMn Inorganic materials 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- NEIHULKJZQTQKJ-UHFFFAOYSA-N [Cu].[Ag] Chemical compound [Cu].[Ag] NEIHULKJZQTQKJ-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/33—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
- G11B5/39—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
- G11B5/3903—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y25/00—Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/33—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
- G11B5/39—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
- G11B5/3903—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
- G11B5/3967—Composite structural arrangements of transducers, e.g. inductive write and magnetoresistive read
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/324—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
- H01F10/325—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being noble metal
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/33—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
- G11B5/39—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
- G11B2005/3996—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects large or giant magnetoresistive effects [GMR], e.g. as generated in spin-valve [SV] devices
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/012—Recording on, or reproducing or erasing from, magnetic disks
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/31—Structure or manufacture of heads, e.g. inductive using thin films
- G11B5/3163—Fabrication methods or processes specially adapted for a particular head structure, e.g. using base layers for electroplating, using functional layers for masking, using energy or particle beams for shaping the structure or modifying the properties of the basic layers
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Power Engineering (AREA)
- Magnetic Heads (AREA)
- Hall/Mr Elements (AREA)
- Thin Magnetic Films (AREA)
Description
【産業上の利用分野】
本発明は、磁気抵抗効果素子、磁気記録装置及び磁気抵抗効果素子の製造方法に関し、より詳しくは、磁性層と銀膜を含む非磁性金属層とが積層されて磁場の変化を素子の抵抗率の変化に変換する磁気抵抗効果素子、磁気記録装置及び磁気抵抗効果素子の製造方法に関する。
【0002】
磁気抵抗効果素子、例えばスピンバルブ磁気抵抗効果素子またはジャイアント磁気抵抗効果素子は、磁気センサや磁気ヘッド等に使用され、特に磁気ディスク装置の小型化及び大容量化に適応するものとして期待されている。
【0003】
【従来の技術】
図1(a),(b)は、スピンバルブ磁気抵抗効果素子の側面図及びその斜視図である。
この磁気抵抗効果素子は、基板11上に、下地層12と、第1の磁性層13aと、非磁性金属層14と、第2の磁性層13bと、反強磁性層(バイアス磁性層)15と、保護層16とが順に積層され、端子17a及び17bが保護層16の両端部に接触されてなる。なお、スピンバルブ磁気抵抗効果素子の基本的な構成、作用については特開平4−358310号公報に開示されている。
【0004】
スピンバルブ磁気抵抗効果は、磁場の影響によって第1及び第2の磁性層13a,13bの磁化方向のなす角度が変化し、その角度の変化によってスピンバルブ膜の電気抵抗が変化する現象である。この電気抵抗の変化は、端子17a,17b間に一定電流を供給することにより、端子17a,17b間の電圧の変化として検出される。
【0005】
また、スピンバルブ磁気抵抗効果の大きさは、非磁性金属層14の膜厚に依存し、非磁性金属層14を薄くすると大きくなり、非磁性金属層14を厚くすると小さくなる。即ち、非磁性金属層14を厚くすると、非磁性金属層14に流れる電流が大きくなり、結果として生じる磁気抵抗効果は、従来の異方性磁気抵抗効果によって得られる磁気抵抗効果と同じとなる。従って、スピンバルブ磁気抵抗効果(一般に従来の異方性磁気抵抗効果より十分大きい)を得るためには、非磁性金属層14を薄くする必要があり、約16〜40Åの範囲が望ましい。
【0006】
【発明が解決しようとする課題】
従来、非磁性金属層14として銅(Cu)を用いているが、Cuは磁性層として用いられるNi,Fe,Co及びこれらの合金と固溶関係があるため、加熱による拡散により磁性層中に混入し、基板上のスピンバルブ磁気抵抗効果が小さくなるという問題があった。
【0007】
一方、非磁性金属層14にAgを用いた場合、Agは磁性層として用いられるNi,Fe,Co及びこれらの合金と非固溶関係があるため、非磁性金属層14にCuを用いた従来のスピンバルブ膜より高い耐熱性を持つと考えられる。
しかし、非磁性金属層14にAgを用い、スピンバルブ磁気抵抗効果を得るためにAg膜の膜厚を薄くすると、逆にスピンバルブ磁気抵抗効果が起こらなくなる現象が生じる。従って、Ag膜を用いる場合、その膜厚をある程度厚くする必要があり、耐熱性は高くなるが、十分なスピンバルブ磁気抵抗効果が得られなくなるジレンマを生じる。
【0008】
本発明は、上記の従来例の問題点に鑑みて創作されたものであり、耐熱性が高く、大きな磁気抵抗効果を有する磁気抵抗効果素子とその製造方法及び磁気記録装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記課題を解決するため、第1の発明は、磁気抵抗効果素子の製造方法に係り、磁気抵抗変化を検出するセンス領域全体にわたって形成されている、非磁性金属層と該非磁性金属層と接する磁性層とを有する積層構造を基板上に備え、かつ、前記非磁性金属層は銀膜又は銅銀合金膜の単層からなり、前記非磁性金属層の膜厚t(Å)を
8≦t≦40
の範囲で設定し、該膜厚tの範囲で前記非磁性金属層にピンホールが生じない成膜温度の範囲を規定する
A≦(t−52.5)×2
A:基板の温度(℃)
の温度範囲に前記基板の温度を保持した状態で前記非磁性金属層を形成する磁気抵抗効果素子の製造方法であって、前記基板の温度Aを設定し、前記非磁性金属層にピンホールが生じない膜厚範囲の下限付近の膜厚に前記非磁性金属層の膜厚を設定することを特徴とし、
第2の発明は、第1の発明の磁気抵抗効果素子の製造方法に係り、前記積層構造は、前記磁性層と前記非磁性金属層とを交互に複数積層したものであることを特徴とし、
第3の発明は、第1又は第2の発明の何れか一の磁気抵抗効果素子の製造方法に係り、前記積層構造は、各層間に非磁性金属層を挟んで配置される複数の磁性層と、最下部又は最上部の前記磁性層と隣接し、その磁性層に一定方向の磁化を付与するバイアス磁性層とを積層したものであることを特徴とし、
第4の発明は、第1乃至第3の発明の何れか一の磁気抵抗効果素子の製造方法に係り、前記非磁性金属層は、平坦な下地の上に形成されていることを特徴とし、
第5の発明は、第1乃至第4の発明の何れか一の磁気抵抗効果素子の製造方法に係り、前記基板の温度Aを設定し、前記非磁性金属層にピンホールが生じない膜厚範囲の下限の膜厚に前記非磁性金属層の膜厚を設定することを特徴とし、
第6の発明は、磁気抵抗効果素子の製造方法に係り、磁気抵抗変化を検出するセンス領域全体にわたって形成されている、非磁性金属層と該非磁性金属層と接する磁性層とを有する積層構造を基板上に備え、かつ、前記非磁性金属層は、銅膜と、該銅膜と前記磁性層との間に介在する銅拡散阻止膜とで構成された多層からなり、前記非磁性金属層のうち前記磁性層と接する銅拡散阻止膜が銀膜又は銅銀合金膜であり、前記銅拡散阻止膜の膜厚t(Å)を
t≦40
の範囲で設定し、該膜厚tの範囲で前記銅拡散阻止膜にピンホールが生じない成膜温度の範囲を規定する
A≦(t−52.5)×2
A:基板の温度(℃)
の温度範囲に前記基板の温度を保持した状態で前記銅拡散阻止膜を形成する磁気抵抗効果素子の製造方法であって、前記基板の温度Aを設定し、前記銅拡散阻止膜にピンホールが生じない膜厚範囲の下限付近の膜厚に前記銅拡散阻止膜の膜厚を設定することを特徴とし、
第7の発明は、第6の発明の磁気抵抗効果素子の製造方法に係り、前記基板の温度Aを設定し、前記銅拡散阻止膜にピンホールが生じない膜厚範囲の下限の膜厚に前記銅拡散阻止膜の膜厚を設定することを特徴としている。
【0010】
【作用】
本発明の磁気抵抗効果素子によれば、磁性層に隣接する非磁性金属層として、銅銀合金膜や、銅膜とこの銅膜と磁性層の間に介在する銅拡散阻止膜とからなる多層膜を用いている。
銅銀合金膜は銀の作用により銅膜のみの場合と比較して、加熱による銅の拡散が起こりにくい。また、銅膜と磁性層の間に介在する銅拡散阻止膜、例えば銀膜や白金膜や金膜又はこれらの金属のいずれかを含む合金膜により、銅膜中の銅が磁性層中に拡散しにくい。
【0011】
従って、磁気抵抗効果素子の製造中に加熱処理が加わっても、磁性層への銅の混入が抑制され、磁性層の磁気特性が劣化するのを防止することができる。
また、磁性層間に挟まれる非磁性金属層の膜厚が薄いほどスピンバルブ磁気抵抗効果が顕著になるため、非磁性金属層の膜厚を出来るだけ薄くする方が好ましいが、非磁性金属層は、成膜時の基板温度が高いと凝集し易く、連続膜になりにくいため、非磁性金属層の膜厚を薄くすると、連続膜とならず、ピンホール等が発生すると考えられる。ピンホール等が発生すると、非磁性金属層を挟む磁性層同士に磁性的な結合が生じ、磁性層の磁化方向のなす角度が常に0°となり、磁気抵抗効果が起こらなくなるものと考えられる。
【0012】
従って、ピンホールが形成されないような成膜条件で非磁性金属層を形成する必要がある。実験によれば、非磁性金属層にピンホールが生じず、連続膜となるような成膜温度の上限が存在する。
本発明の磁気抵抗効果素子の製造方法においては、成膜すべき非磁性金属層の膜厚を設定し、その非磁性金属層にピンホールが生じない成膜温度の上限以下の温度範囲に基板の温度を保持した状態で非磁性金属層を形成している。
【0013】
これにより、非磁性金属層から磁性層への銅の拡散を抑制するとともに、大きい磁気抵抗効果を有する磁気抵抗効果素子を作成することができる。
非磁性金属層として、或いは、非磁性金属層中の銅膜に隣接する銅拡散阻止膜として銀膜を用いた場合、成膜すべき銀膜の膜厚をt(Å)としたとき、銀膜を成膜するときの基板の温度Aを、ピンホールが生じない成膜温度の上限以下の温度範囲、即ちA≦(t−52.5)×2に保持することにより、銀膜の膜厚を薄くしても、磁性層同士の接触を防止し、或いは、磁性層への銅の拡散を抑制して十分な磁気抵抗効果を得ることができる。特に、基板の温度Aが決まっている場合、上記条件式を膜厚tの式に書き換えた条件式、t≧A/2+52.5にしたがって膜厚範囲の下限付近の膜厚に銀膜の膜厚tを設定することがMR比の特性上好ましい。
【0014】
また、銀膜の膜厚tを8〜40Åとし、且つ、A=(t−52.5)×2に従って、基板の温度Aを−89〜−25℃とすることにより、更に十分な磁気抵抗効果を得ることが出来る。
【0015】
【実施例】
(1)本発明の第1の実施例に係るスピンバルブ磁気抵抗効果素子の説明
図1(a),(b)は、本発明の第1の実施例に係るスピンバルブ磁気抵抗効果素子の側面図及びその斜視図である。
この磁気抵抗効果素子(以下、MR素子と称する。))は、基板1上に、下地層2と、第1の磁性層3aと、非磁性金属層4と、第2の磁性層3bと、反強磁性層(バイアス磁性層)5と、保護層6とが順に積層され、センス領域SAを挟んで保護層6の両端部に接触する端子7a及び7bが形成されてなる。第1及び第2の磁性層3a及び3bは、軟磁性材よりなる強磁性体が用いられ、例えば、スパッタにより成膜される際、30Oe程度の磁場が印加され、それぞれに互いに直交する方向の磁化が付与される。更に、下地層2から保護層6までは、約3×150μmの矩形状を有している。
【0016】
(成膜条件とMR比の関係についての調査)
図3は、基板温度+15℃、−35℃、−55℃で成膜したときの、銀膜(Ag膜)の膜厚と磁気抵抗比(MR比)の関係を示す特性図である。縦軸は線形目盛りで表したMR比(%)を示し、横軸は線形目盛りで表したAg膜の膜厚(Å)を示す。なお、MR比は、磁束が飽和したときの電気抵抗Rに対する、電気抵抗の変化分ΔRの比である。
【0017】
まず、成膜条件を説明する。MR素子は図1(a),(b)の層構成を有し、Si基板からなる基板1上に、膜厚50Åのタンタル膜(Ta膜)からなる下地層2と、膜厚90ÅのNiFe膜からなる第1の磁性層3aと、膜厚tÅのAg膜からなる非磁性金属層4と、膜厚40ÅのNiFe膜からなる第2の磁性層3bと、膜厚200ÅのFeMn膜からなる反強磁性層5と、膜厚50ÅのTa膜からなる保護層6とを積層した。
【0018】
その後、例えば全ての層を同時にパターニングして矩形状にした後、中央部のセンス領域SAとなる領域を挟んで保護層6の両端部に金膜(Au膜)からなる端子7a,7bを形成した。
数種類の膜厚tのAg膜を作成し、各膜厚についてAg膜の成膜中の基板温度Aを+15℃、−35℃、−55℃の3段階とした。
【0019】
調査は、各々の条件で最大MR比(以下、単にMR比と称する。)を測定することにより行った。
図3に示す調査結果によれば、基板温度が+15℃の場合、Ag膜の膜厚が約60Åのとき、MR比が最大となる。そして、Ag膜の膜厚が60Åより薄くなると、MR比が小さくなる。ピンホールの発生による第1及び第2の磁性層3a,3b同士の接触のためであると考えられる。また、Ag膜の膜厚が60Åより厚くなると、その膜厚のためスピンバルブ磁気抵抗効果が小さくなる。
【0020】
基板温度が−35℃の場合、Ag膜の膜厚が約35Åのとき、MR比が最大となる。そして、Ag膜の膜厚が35Åより薄くなるとMR比が小さくなる。ピンホールの発生による磁性層3a,3b同士の接触のためであると考えられる。また、Ag膜の膜厚が35Åより厚くなると、その膜厚のためスピンバルブ磁気抵抗効果が小さくなる。
【0021】
基板温度が−55℃の場合、Ag膜の膜厚が約30Åのとき、MR比が最大となる。そして、Ag膜の膜厚が30Åより薄くなるとMR比が小さくなる。ピンホールの発生による磁性層3a,3b同士の接触のためであると考えられる。また、Ag膜の膜厚が30Åより厚くなると、その膜厚のためスピンバルブ磁気抵抗効果が小さくなる。
【0022】
また、従来から、非磁性金属層の膜厚を16〜40Åにすると好ましいことが知られている。図3によれば、Ag膜の膜厚が40Å以下のときに、MR比が特に良好である。また、ジァイアントMR素子では、膜厚が更に2分の1程度となる。よって、Ag膜の膜厚の下限を8Åとし、膜厚の範囲を8〜40Åとし、且つ、上記の条件式に基づいて基板の温度を−89〜−25℃とすることにより、更に良好な磁気抵抗効果を得ることが出来る。
【0023】
図4は、Ag膜の膜厚及び成膜温度と、磁気抵抗効果の有無の関係を示す特性図である。
まず、図4には、横軸に基板温度A(℃)を表し、縦軸にMR比が最大となるAg膜の膜厚t(Å)を表したとき、これらの関係がプロットされている。
これらのプロットされた点を結んだ直線により、A≒(t−52.5)×2、或いは、t≒A/2+52.5の関係式が得られる。この関係式はAg膜にピンホールが生じず、連続膜となるような成膜温度の上限、或いはAg膜の膜厚の下限を表している。よって、Ag膜の膜厚tを設定し、この膜厚tに基づいて上記条件式から得られる温度A以下の温度に基板の温度Aを設定することにより、顕著な磁気抵抗効果が得られる。また、逆に、基板の温度Aを設定し、この温度に基づいて上記条件式から得られる膜厚にAg膜の膜厚tを設定すると、ピンホールが生じず、連続膜となる、最も薄いAg膜が得られるため、最も顕著な磁気抵抗効果が得られる。
【0024】
更に、この直線の左上側の領域(t≧A/2+52.5)は磁気抵抗効果が生じる領域を示す。この領域は、Ag膜の膜厚が最適膜厚(膜厚の下限)よりも厚くなる領域であり、この領域では、スピンバルブ磁気抵抗効果は若干低下するが、その低下は緩やかであるため、磁気抵抗効果は比較的大きい。
一方、図4の直線の右下側の領域(t<A/2+52.5)は、磁気抵抗効果が起こらない領域を示す。この領域は、Ag膜の膜厚が最適膜厚(膜厚の下限)よりも薄くなる領域であり、この領域では、ピンホールの発生により急激にスピンバルブ磁気抵抗効果が起こらなくなると考えられる。
【0025】
(スピンバルブMR素子への適用例)
図2(a),(b)は、各々異なるスピンバルブMR素子における、磁場の大きさHと磁気抵抗比(MR比)の関係を示す特性図である。縦軸は線形目盛りで表したMR比(%)を示し、横軸は線形目盛りで表したH(Oe)を示す。
まず、図2(a)のMR素子の成膜条件について説明する。MR素子は図1(a),(b)の層構成を有し、Si基板からなる基板1上に、膜厚50ÅのTa膜からなる下地層2と、膜厚90ÅのNiFe膜からなる第1の磁性層3aと、膜厚60ÅのAg膜からなる非磁性金属層4と、膜厚40ÅのNiFe膜からなる第2の磁性層3bと、膜厚200ÅのFeMn膜からなる反強磁性層5と、膜厚50ÅのTa膜からなる保護層6とを積層した。基板の温度A(℃)を+15℃に保持した状態で上記Ag膜を成膜した。成膜すべきAg膜の膜厚をtÅとしたとき、A=(t−52.5)×2に相当する。
【0026】
一方、図2(b)のMR素子の成膜条件は、非磁性金属層4の膜厚を41Åに変更しただけであり、他の条件は上記の第1の実験例と同じである。A>(t−52.5)×2の範囲にある。
図2(a)によれば、このMR素子は、最大MR比が1.4%であり、磁気抵抗効果は比較的顕著である。なお、磁場の大きさHとMR比の関係は、若干ヒステリシス特性を有している。
【0027】
一方、図2(b)によれば、このMR素子は、最大MR比は0.3%であり、磁気抵抗効果が殆ど起きていない。即ち、設定された基板の温度Aに対してAg膜の膜厚tが薄くなっている。A≦(t−52.5)×2を満たすようにするため、Ag膜の膜厚tを41Åとした場合、基板の温度Aを下げて−23℃以下に設定しなければならない。
【0028】
(人工格子型MR素子への適用例)
また、本発明は、上記のスピンバルブMR素子に限られるものではなく、人工格子型MR素子にも適用することができる。図5は、人工格子型MR素子の断面図である。
この人工格子型MR素子は、基板1上に、下地層2と、第1の磁性層30と、第1の非磁性金属層40と、第2の磁性層31と、第2の非磁性金属層41と、複数組の磁性層及び非磁性金属層と、第Nの磁性層39と、第Nの非磁性金属層49と、保護層6とが順に積層され、センス領域SAを挟んで保護層6の両端部に端子17a及び17bが接触されてなる。なお、第2の非磁性金属層41と第Nの磁性層39の間の、複数組の磁性層及び非磁性金属層は、例えば、10〜20組程度積層されている。
【0029】
上記で、基板1はSi基板であり、下地層2は膜厚50ÅのTa膜であり、第1〜第Nの磁性層31,32,39は膜厚20ÅのNiFe膜であり、第1〜第Nの非磁性金属層40,41,49は膜厚20ÅのAg膜であり、保護層6は膜厚50ÅのTa膜である。
この人工格子型MR素子も、スピンバルブMR素子と同様、磁性層とAg膜からなる非磁性金属層とを積層するものであるから、上述の如く、Ag膜の膜厚とその膜厚に対応する基板の温度とを設定することにより、前述のスピンバルブ効果素子と同様の効果を有する。
(2)本発明の第2の実施例に係るスピンバルブMR素子の説明
図6は、本発明の第2の実施例に係るスピンバルブMR素子について示す断面図である。そのMR素子では、図1(a),(b)に示す層構成を有し、非磁性金属層8としてAg膜の代わりに銀銅合金膜(AgCu合金膜)を用いている。
【0030】
上記MR素子の成膜条件について以下に説明する。
(100)面を有するSi基板からなる基板1上に、膜厚50ÅのTa膜からなる下地層2と、膜厚90ÅのNiFe膜からなる第1の磁性層3aと、Agの割合が75%であるAgCu合金膜からなる非磁性金属層8と、膜厚40ÅのNiFe膜からなる第2の磁性層3bと、膜厚200ÅのFeMn膜からなる反強磁性層(バイアス磁性層)5と、膜厚50ÅのTa膜からなる保護層6とを積層した。そして、保護層16の両端部に端子7a,7bを形成した。
【0031】
非磁性金属層8としてのAgCu合金膜は、膜厚40Åを有し、上記した条件式にしたがって膜厚40Åでの温度範囲の上限以下の温度−65℃に基板の温度を設定し、保持した状態で、スパッタにより成膜した。
このMR素子に対して230℃、1時間の熱処理を行っても、MR比の低下は認められなかった。これに対して、非磁性金属層として銅膜(Cu膜)を用いた従来の場合、230℃、1時間の熱処理で、MR比が25%低下した。
【0032】
上記第2の実施例に係るスピンバルブMR素子によれば、非磁性金属層8としてAgCu合金膜を用い、成膜すべきAgCu合金膜の膜厚を設定した後、そのAgCu合金膜にピンホールが生じない成膜温度の上限以下の温度範囲に基板の温度を保持した状態でAgCu合金膜を形成しているので、薄く、かつピンホールのない連続膜を形成することが可能である。
【0033】
これにより、AgCu合金膜中のCuの拡散を抑制して耐熱性を向上させるとともに、薄く、かつピンホールのない連続膜であるAgCu合金膜を形成することで、大きな磁気抵抗効果が得られる。
(3)本発明の第3の実施例に係るスピンバルブMR素子の説明
図7は、第3の実施例に係るスピンバルブMR素子について示す断面図である。そのMR素子では、図1(a),(b)の層構成を有し、非磁性金属層9としてAg膜の代わりに、Ag膜9a/Cu膜9b/Ag膜9cの3層の非磁性金属膜を用いている。
【0034】
上記のMR素子の成膜条件について以下に説明する。
(110)面を有するSi基板からなる基板1上に、膜厚60ÅのTa膜からなる下地層2と、NiとFeの割合がそれぞれ82と18である膜厚90ÅのNiFe膜からなる第1の磁性層3aと、非磁性金属層9と、膜厚40ÅのNiFe膜からなる第2の磁性層3bと、膜厚120ÅのFeMn膜からなる反強磁性層(バイアス磁性層)5と、膜厚50ÅのTa膜からなる保護層6とを積層した。更に、保護層6の両端部に端子7a,7bを形成した。
【0035】
非磁性金属層9は、Cu膜9bを挟む上下のAg膜9a、9cの膜厚2Åを有し、その挟まれたCu膜9bの膜厚16Åを有する。Ag膜は薄いほどシャント効果が小さくなり、MR比が高くなるため、極めて薄い膜厚にしている。
非磁性金属層9の成膜時に、上記した条件式に従って基板の温度を−101℃に保持した状態で、Ag膜9a/Cu膜9b/Ag膜9cを各々スパッタにより成膜した。非磁性金属層9以外の他の層の成膜中は基板温度を常温25℃に保持した。
【0036】
このMR素子に対して300℃の加熱処理を行っても、、MR比が変化しないことが確かめられた。非磁性金属層としてCu膜を用い、230℃が限界であった従来の場合と比較して耐熱性が大幅に向上した。
上記第3の実施例に係るスピンバルブMR素子によれば、成膜中の基板1の温度を−101℃以下の低温に保持することにより、2Åの膜厚でもピンホールのない平坦性のよいAg膜9a、9cを形成することが可能である。
【0037】
従って、Ag膜9a,9cを薄くして有効な磁気抵抗効果を得るとともに、Cu膜9bを挟むピンホールのないAg膜9a,9cによりCu膜9b中のCuが上下の磁性層3a及び3bに拡散するのを抑制して耐熱性を向上させることができる。
なお、上記実施例ではCu膜9bを挟む銅拡散阻止膜としてAg膜9a,9cを用いているが、白金膜(Pt膜)や金膜(Au膜)又はこれらの金属のいずれかを含む合金膜のうちいずれかを用いてもよい。
(4)本発明の第4の実施例に係る磁気記録装置の説明
次に、上記のMR素子を組み込んだ第4の実施例に係る磁気記録装置について図8(a)〜(c)を参照しながら説明する。図8(a)〜(c)は、磁気記録装置の磁気ヘッド及び磁気記録媒体の部分を示す断面図である。
【0038】
図8(a)は、複合型MRヘッドを示す。A部が再生用ヘッド、B部が記録用ヘッドを示し、再生用ヘッドの磁気シールドと記録用ヘッドの磁極は軟磁性層102が共用されている。
図8(a)に示すように、再生用ヘッドの部分では、磁気シールドとしての軟磁性層101,102が間隔をおいて対向し、磁気記録媒体106と対面する部分105のギャップ内に上記のMR素子が挟まれている。磁気記録媒体106からの漏洩磁界は直接MR素子に検出される。
【0039】
また、記録用ヘッドの部分では、磁極としての軟磁性層102,104が間隔をおいて対向し、軟磁性層102,104間のギャップ内に軟磁性層102,104を通流する磁束を発生するコイル103が形成されている。この磁束により対面部分105のギャップから漏洩磁界を発生させて磁気記録媒体106に記録を行う。
【0040】
この磁気記録装置によれば、再生部に第1〜第3の実施例に係るMR素子を用いているので、耐熱性に優れ、再生感度の高い磁気記録装置を提供することが可能となる。
図8(b)はフラックスガイドを有するインギャップ型MRヘッドを示す。同図に示すように、磁極としての軟磁性層111,114が間隔をおいて対向し、磁気記録媒体116と対面する部分115のギャップ内に上記のMR素子が挟まれ、軟磁性層111,114間のギャップ内に軟磁性層111,114を通流する磁束を発生するコイル113が形成されている。
【0041】
MR素子は、腐食を避けるため、或いは磁気記録媒体との直接接触を避けるため、磁気記録媒体116との対面部分115に露出せずに、磁気ヘッドの内側に引っ込んでいる。対面部分115には、MR素子と電気的に絶縁され、磁気的に結合されているフラックスガイド112aが露出している。磁気記録媒体116からの漏洩磁界はフラックスガイド112aに入り、MR素子に検出される。なお、MR素子の他端には、MR素子と電気的に絶縁され、かつ磁気的に結合された別のフラックスガイド112bが形成されており、MR素子を通った磁束を軟磁性層111,114に導く。
【0042】
この磁気記録装置によれば、再生部に第1〜第3の実施例のMR素子を用いているので、耐熱性に優れ、再生感度の高いMR素子を提供することが可能である。
図8(c)はヨーク型MRヘッドを示す。同図に示すように、磁極としての軟磁性層121と123a及び123bが間隔をおいて対向し、軟磁性層121と軟磁性層123a及び123bの間のギャップ内に軟磁性層121と軟磁性層123a及び123bを通流する磁束を発生するコイル122が形成されている。MR素子は、一方の軟磁性層123a及び123bが途切れた箇所に軟磁性層123a及び123bと電気的に絶縁され、かつ磁気的に結合されて配置されている。コイル122で発生し、軟磁性層121と123a及び123bを通流する磁束により対面部分124のギャップから漏洩磁界を発生させて磁気記録媒体125に記録を行う。
【0043】
この場合も、再生部に第1〜第3の実施例のMR素子を用いているので、耐熱性に優れ、再生感度の高いMR素子を提供することが可能である。
なお、図8(a)〜(c)に示す磁気記録装置では、ともに磁気ヘッドが形成される基板や軟磁性層間の絶縁膜等は省略してある。
また、本発明に係るMR素子は、上記記録部と再生部を有する磁気記録装置に限らず、種々の磁気記録装置に用いることができる。
【0044】
更に、そのMR素子を再生専用の磁気記録装置に用いることも可能である。
【0045】
【発明の効果】
本発明の磁気抵抗効果素子によれば、非磁性金属層として銀銅合金膜や、銅膜と銅拡散阻止膜の多層膜を用いている。これにより、耐熱性が高い磁気抵抗効果素子を提供することが可能となる。
また、非磁性金属層にピンホールが発生しない成膜温度の上限以下の温度範囲に基板温度を保持して非磁性金属層を形成している。これにより、耐熱性が高く、大きな磁気抵抗効果を有する磁気抵抗効果素子を提供することが可能となる。
【図面の簡単な説明】
【図1】図1(a)は、本発明の第1の実施例に係るスピンバルブ磁気抵抗効果素子の断面図、図1(b)は、その斜視図である。
【図2】図2(a)は、本発明の第1の実施例に係るスピンバルブ磁気抵抗効果素子の磁場の大きさと磁気抵抗比の関係を示す特性図であり、図2(b)は、比較例に係るスピンバルブ磁気抵抗効果素子における同じ関係を示す特性図である。
【図3】図3は、本発明の第1の実施例に係るスピンバルブ磁気抵抗効果素子の銀膜の膜厚と磁気抵抗比の関係についての調査結果を示す特性図である。
【図4】図4は、本発明の第1の実施例に係るスピンバルブ磁気抵抗効果素子の銀膜の膜厚及び成膜温度と磁気抵抗効果の有無の関係についての調査結果を示す特性図である。
【図5】図5は、本発明の第1の実施例に係る人口格子型磁気抵抗効果素子の断面図である。
【図6】図6は、本発明の第2の実施例に係るスピンバルブ磁気抵抗効果素子の断面図である。
【図7】図7は、本発明の第3の実施例に係るスピンバルブ磁気抵抗効果素子の断面図である。
【図8】図8(a)は、本発明の実施例に係る磁気抵抗効果素子を用いた複合型MRヘッドを示す断面図であり、図8(b)は本発明の実施例に係る磁気抵抗効果素子を用いたインギャップ型MRヘッドを示す断面図であり、図8(c)は本発明の実施例に係る磁気抵抗効果素子を用いたヨーク型MRヘッドを示す断面図である。
【符号の説明】
1 基板、
2 下地層、
3a,3b,31,32,39 磁性層、
4,9,40,41,49 非磁性金属層、
5 反強磁性層(バイアス磁性層)、
6 保護層、
7a,7b 端子、
8 非磁性金属層(AgCu合金層)、
9a,9c Ag膜(銅拡散阻止膜)、
9b Cu膜(非磁性金属膜)、
101,102,104,111,114,121,123a,123b 軟磁性層、
103,113,122 コイル、
105,115,124 対面部分、
106,116,125 磁気記録媒体、
112a,112b フラックスガイド、
SA センス領域。
Claims (7)
- 磁気抵抗変化を検出するセンス領域全体にわたって形成されている、非磁性金属層と該非磁性金属層と接する磁性層とを有する積層構造を基板上に備え、
かつ、前記非磁性金属層は銀膜又は銅銀合金膜の単層からなり、前記非磁性金属層の膜厚t(Å)を
8≦t≦40
の範囲で設定し、該膜厚tの範囲で前記非磁性金属層にピンホールが生じない成膜温度の範囲を規定する
A≦(t−52.5)×2
A:基板の温度(℃)
の温度範囲に前記基板の温度を保持した状態で前記非磁性金属層を形成する磁気抵抗効果素子の製造方法であって、
前記基板の温度Aを設定し、前記非磁性金属層にピンホールが生じない膜厚範囲の下限付近の膜厚に前記非磁性金属層の膜厚を設定することを特徴とする磁気抵抗効果素子の製造方法。 - 前記積層構造は、前記磁性層と前記非磁性金属層とを交互に複数積層したものであることを特徴とする請求項1記載の磁気抵抗効果素子の製造方法。
- 前記積層構造は、各層間に非磁性金属層を挟んで配置される複数の磁性層と、最下部又は最上部の前記磁性層と隣接し、その磁性層に一定方向の磁化を付与するバイアス磁性層とを積層したものであることを特徴とする請求項1又は2の何れか一に記載の磁気抵抗効果素子の製造方法。
- 前記非磁性金属層は、平坦な下地の上に形成されていることを特徴とする請求項1乃至3の何れか一に記載の磁気抵抗効果素子の製造方法。
- 前記基板の温度Aを設定し、前記非磁性金属層にピンホールが生じない膜厚範囲の下限の膜厚に前記非磁性金属層の膜厚を設定することを特徴とする請求項1乃至4の何れか一に記載の記載の磁気抵抗効果素子の製造方法。
- 磁気抵抗変化を検出するセンス領域全体にわたって形成されている、非磁性金属層と該非磁性金属層と接する磁性層とを有する積層構造を基板上に備え、
かつ、前記非磁性金属層は、銅膜と、該銅膜と前記磁性層との間に介在する銅拡散阻止膜とで構成された多層からなり、前記非磁性金属層のうち前記磁性層と接する銅拡散阻止膜が銀膜又は銅銀合金膜であり、前記銅拡散阻止膜の膜厚t(Å)を
t≦40
の範囲で設定し、該膜厚tの範囲で前記銅拡散阻止膜にピンホールが生じない成膜温度の範囲を規定する
A≦(t−52.5)×2
A:基板の温度(℃)
の温度範囲に前記基板の温度を保持した状態で前記銅拡散阻止膜を形成する磁気抵抗効果素子の製造方法であって、
前記基板の温度Aを設定し、前記銅拡散阻止膜にピンホールが生じない膜厚範囲の下限付近の膜厚に前記銅拡散阻止膜の膜厚を設定することを特徴とする磁気抵抗効果素子の製造方法。 - 前記基板の温度Aを設定し、前記銅拡散阻止膜にピンホールが生じない膜厚範囲の下限の膜厚に前記銅拡散阻止膜の膜厚を設定することを特徴とする請求項6記載の磁気抵抗効果素子の製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08670295A JP3952515B2 (ja) | 1994-09-09 | 1995-04-12 | 磁気抵抗効果素子、磁気記録装置及び磁気抵抗効果素子の製造方法 |
US08/962,148 US6074535A (en) | 1994-09-09 | 1997-10-31 | Magnetoresistive head, method of fabricating the same and magnetic recording apparatus |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21618794 | 1994-09-09 | ||
JP6-216187 | 1994-09-09 | ||
JP08670295A JP3952515B2 (ja) | 1994-09-09 | 1995-04-12 | 磁気抵抗効果素子、磁気記録装置及び磁気抵抗効果素子の製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08129722A JPH08129722A (ja) | 1996-05-21 |
JP3952515B2 true JP3952515B2 (ja) | 2007-08-01 |
Family
ID=26427794
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP08670295A Expired - Fee Related JP3952515B2 (ja) | 1994-09-09 | 1995-04-12 | 磁気抵抗効果素子、磁気記録装置及び磁気抵抗効果素子の製造方法 |
Country Status (2)
Country | Link |
---|---|
US (1) | US6074535A (ja) |
JP (1) | JP3952515B2 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5838653B2 (ja) * | 2011-08-23 | 2016-01-06 | 大同特殊鋼株式会社 | 薄膜磁気センサの製造方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB670993A (en) * | 1949-06-01 | 1952-04-30 | Bayer Ag | Improvements in or relating to magnetic sound recorders |
US5206590A (en) * | 1990-12-11 | 1993-04-27 | International Business Machines Corporation | Magnetoresistive sensor based on the spin valve effect |
US5159513A (en) * | 1991-02-08 | 1992-10-27 | International Business Machines Corporation | Magnetoresistive sensor based on the spin valve effect |
JP2961914B2 (ja) * | 1991-03-08 | 1999-10-12 | 松下電器産業株式会社 | 磁気抵抗効果材料およびその製造方法 |
JPH0528436A (ja) * | 1991-07-19 | 1993-02-05 | Fujitsu Ltd | 磁気抵抗効果型ヘツド |
US5304975A (en) * | 1991-10-23 | 1994-04-19 | Kabushiki Kaisha Toshiba | Magnetoresistance effect element and magnetoresistance effect sensor |
JP2848083B2 (ja) * | 1992-03-02 | 1999-01-20 | 松下電器産業株式会社 | 磁気抵抗効果素子 |
JPH0636A (ja) * | 1992-04-17 | 1994-01-11 | Matsuoka Sangyo Kk | 水耕栽培法 |
JPH06220609A (ja) * | 1992-07-31 | 1994-08-09 | Sony Corp | 磁気抵抗効果膜及びその製造方法並びにそれを用いた磁気抵抗効果素子、磁気抵抗効果型磁気ヘッド |
JPH0660333A (ja) * | 1992-08-05 | 1994-03-04 | Hitachi Ltd | 磁気抵抗効果型ヘッド |
JPH0690038A (ja) * | 1992-09-09 | 1994-03-29 | Toshiba Corp | 磁気抵抗効果素子 |
US5493465A (en) * | 1993-03-15 | 1996-02-20 | Kabushiki Kaisha Toshiba | Magnetoresistance effect element and magnetic recording apparatus |
-
1995
- 1995-04-12 JP JP08670295A patent/JP3952515B2/ja not_active Expired - Fee Related
-
1997
- 1997-10-31 US US08/962,148 patent/US6074535A/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US6074535A (en) | 2000-06-13 |
JPH08129722A (ja) | 1996-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3293437B2 (ja) | 磁気抵抗効果素子、磁気抵抗効果型ヘッド及びメモリー素子 | |
US6258470B1 (en) | Exchange coupling film, magnetoresistance effect device, magnetoresistance effective head and method for producing exchange coupling film | |
US5896252A (en) | Multilayer spin valve magneto-resistive effect magnetic head with free magnetic layer including two sublayers and magnetic disk drive including same | |
KR100238912B1 (ko) | 자기저항효과헤드 | |
US6639765B2 (en) | Magnetoresistive element and magnetoresistive device using the same | |
US20060256480A1 (en) | Ferromagnetic tunnel magnetoresistive devices and magnetic head | |
JP2003218428A (ja) | 磁気検出素子 | |
US6721147B2 (en) | Longitudinally biased magnetoresistance effect magnetic head and magnetic reproducing apparatus | |
JP3362818B2 (ja) | スピンバルブ磁気抵抗効果型トランスジューサ及び磁気記録装置 | |
JPH0969211A (ja) | 磁気抵抗効果膜,磁気ヘッドおよび磁気記録再生装置 | |
KR20060101139A (ko) | 자기 저항 효과 소자, 자기 헤드, 및 자기 기억 장치 | |
JP2924819B2 (ja) | 磁気抵抗効果膜及びその製造方法 | |
JP2001094173A (ja) | 磁気センサー、磁気ヘッド及び磁気ディスク装置 | |
JP4038839B2 (ja) | 磁気抵抗効果素子及びその製造方法 | |
KR20000062470A (ko) | 스핀 밸브 자기 저항 효과형 소자와 그 제조법, 및 이소자를 이용한 자기 헤드 | |
JP3527786B2 (ja) | 多層磁気抵抗効果膜および磁気ヘッド | |
JP3952515B2 (ja) | 磁気抵抗効果素子、磁気記録装置及び磁気抵抗効果素子の製造方法 | |
JPH0950612A (ja) | 磁気抵抗効果膜,磁気抵抗効果素子,磁気ヘッドおよび磁気記録再生装置 | |
JP2001284680A (ja) | 磁気抵抗効果素子及び磁気抵抗効果型磁気ヘッド、並びに磁気抵抗効果素子の製造方法 | |
JP3217625B2 (ja) | 磁気抵抗効果型ヘッド | |
JP2907805B1 (ja) | 磁気抵抗効果素子、磁気抵抗効果型ヘッドおよび磁気記録再生装置 | |
JP2000340859A5 (ja) | ||
JP2004178659A (ja) | スピンバルブヘッドおよび磁気記録装置 | |
JPH11328624A (ja) | 磁気抵抗効果素子 | |
JPH0765329A (ja) | 多層磁気抵抗効果膜及び磁気ヘッド |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040127 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040224 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20040414 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20040521 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060821 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070423 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |