JP3950970B2 - Method for producing Sn single crystal thin film - Google Patents
Method for producing Sn single crystal thin film Download PDFInfo
- Publication number
- JP3950970B2 JP3950970B2 JP2003380699A JP2003380699A JP3950970B2 JP 3950970 B2 JP3950970 B2 JP 3950970B2 JP 2003380699 A JP2003380699 A JP 2003380699A JP 2003380699 A JP2003380699 A JP 2003380699A JP 3950970 B2 JP3950970 B2 JP 3950970B2
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- single crystal
- crystal thin
- substrate
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000010409 thin film Substances 0.000 title claims description 39
- 239000013078 crystal Substances 0.000 title claims description 30
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 39
- 239000010408 film Substances 0.000 claims description 30
- 239000000758 substrate Substances 0.000 claims description 23
- 239000002245 particle Substances 0.000 claims description 19
- 229910052710 silicon Inorganic materials 0.000 claims description 10
- 239000010703 silicon Substances 0.000 claims description 10
- 238000007740 vapor deposition Methods 0.000 claims description 8
- 230000008021 deposition Effects 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 4
- 125000004432 carbon atom Chemical group C* 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 description 18
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 16
- 238000000034 method Methods 0.000 description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 9
- 239000000463 material Substances 0.000 description 8
- 239000000377 silicon dioxide Substances 0.000 description 8
- 238000000089 atomic force micrograph Methods 0.000 description 4
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 150000001721 carbon Chemical group 0.000 description 2
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000005566 electron beam evaporation Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Substances [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- -1 argon ions Chemical class 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000007736 thin film deposition technique Methods 0.000 description 1
Images
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Physical Vapour Deposition (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
Description
本発明は、非晶質シリカ基板上に高結晶性の薄膜をエピタキシャル成長させるための下
地となるSn単結晶薄膜の製造方法に関する。更に詳しくは、シリカガラスまたはシリコ
ン上の非晶質シリカ絶縁膜上に電子デバイス、光デバイス、集積回路などの高結晶性薄膜
素子をエピタキシャル成長させるための薄膜形成法に関する。
The present invention relates to a method for producing a Sn single crystal thin film that serves as a base for epitaxially growing a highly crystalline thin film on an amorphous silica substrate. More specifically, the present invention relates to a thin film forming method for epitaxially growing a highly crystalline thin film element such as an electronic device, an optical device, an integrated circuit, etc. on an amorphous silica insulating film on silica glass or silicon.
シリコン半導体技術では、機器、デバイスの小型化への要請に伴い素子の微細化・高密
度化が推し進められてきた。その結果、1素子構造あたりの面積はミクロンオーダーから
サブミクロンの領域となり、すでに物質性能を発揮する限界領域まで微細化されてきてい
る。そのため更なる微細化のために素子の3次元構造設計が進められている。
In the silicon semiconductor technology, the miniaturization and high density of elements have been promoted in accordance with the demand for miniaturization of devices and devices. As a result, the area per element structure is in the micron order to sub-micron region, and has already been miniaturized to a limit region that exhibits material performance. Therefore, the three-dimensional structure design of the element is being advanced for further miniaturization.
さらに、3次元構造素子では機能の多様化のために、非シリコン系の薄膜材料を集積化
することが求められている。通常、シリコン基素子では絶縁材料として酸化シリコン(シ
リカ)が用いられている。3次元集積化のためにはシリカの上に薄膜材料を堆積しなけれ
ばならないが、このシリカ材料は非晶質(シリカガラス)であるために、堆積された薄膜
材料の結晶性が悪く、薄膜材料本来の特性を発揮することが困難であった。
Furthermore, in order to diversify the functions of the three-dimensional structure element, it is required to integrate non-silicon-based thin film materials. Usually, silicon oxide (silica) is used as an insulating material in a silicon-based element. For three-dimensional integration, a thin film material must be deposited on silica. However, since this silica material is amorphous (silica glass), the deposited thin film material has poor crystallinity, and the thin film material is thin. It was difficult to demonstrate the original characteristics of the material.
一方、3次元集積化素子として考えられている構造では、例えば、パソコン並みの機能
を持つICカード(カードコンピュータ)の実現に対して要求される大容量強誘電体メモ
リの場合、シリコントランジスターセルのシリカ絶縁膜(シリカガラス)上にサイズが粒
径400nm程度の強誘電体薄膜を作成することが必要と予測されている。そのため、高
結晶性の強誘電体膜を作成するためには粒径400nmサイズの単結晶薄膜をシリカ絶縁
膜上に形成することが必要となる。
On the other hand, in the structure considered as a three-dimensional integrated device, for example, in the case of a large-capacity ferroelectric memory required for realizing an IC card (card computer) having a function similar to that of a personal computer, the silicon transistor cell It is predicted that it is necessary to form a ferroelectric thin film having a size of about 400 nm on a silica insulating film (silica glass). Therefore, in order to produce a highly crystalline ferroelectric film, it is necessary to form a single crystal thin film having a particle size of 400 nm on the silica insulating film.
シリカガラス上での単結晶膜作成に関しては、Neビーム照射による単結晶膜作成(特
許文献1)、マイクロチャネルエピタキシーによる単結晶膜の作成(特許文献2)がある
。しかしこれらの手法は高価な設備、複雑・高精度の工程を必要としていた。
以上のようにシリカガラス上に簡便に単結晶薄膜を作成できなかった。 As described above, a single crystal thin film could not be easily formed on silica glass.
本発明者らは、軸配向性をもつSnを用いることにより、非晶質であるシリカ基板上に
エピタキシャル成長用の下地となる方位の揃ったSn単結晶粒子からなる薄膜を作成する
ことが可能であること、またシリカ基板とSn単結晶粒子からなる薄膜の間の中間層とし
て炭素系の極薄膜を利用することによりSn単結晶粒子を粒径400nm以上の平板状粒
子として成長させうることを見出した。これらの知見に基づき本発明を完成した。なお、
本明細書中で、「平板状」とは、AFMによる表面観察において、粒子の形状が球状や多
面体状ではなく、平らな板状に観察されることを言う。
By using Sn with axial orientation, the present inventors have made an amorphous silica substrate .
It is possible to produce a thin film made of Sn single crystal particles with a uniform orientation as a base for epitaxial growth, and a carbon-based ultra-thin film as an intermediate layer between a silica substrate and a thin film made of Sn single crystal particles. It found that can grow the Sn single crystal particles as the particle diameter 400nm or more tabular grain <br/> element by utilizing. The present invention has been completed based on these findings. In addition,
In this specification, the term “flat plate” means that the particle shape is spherical or multi-dimensional in surface observation by AFM.
It means that it is observed as a flat plate, not a face.
すなわち、本発明は、非晶質シリカ基板上に厚さが炭素原子数で1E17/m 2 以上、
1E22/m 2 以下である炭素又は炭化水素からなる炭素系の極薄膜を形成し、該極薄膜
を形成した基板上に粒径400nm以上の大きさを持つ平板状Sn単結晶薄膜を蒸着法に
より形成することを特徴とするSn単結晶薄膜の製造方法である。
That is, the present invention provides an amorphous silica substrate having a thickness of 1E17 / m 2 or more in terms of carbon atoms ,
Forming a carbon-based ultrathin film composed of carbon or hydrocarbon of 1E22 / m 2 or less, and the ultrathin film
Tabular Sn single crystal thin film deposition method having a size greater than the particle diameter 400nm the formed on a substrate
It is a manufacturing method of the Sn single crystal thin film characterized by forming more .
本発明により、非晶質シリカ基板上に高結晶性の薄膜をエピタキシャル成長させるため
の単結晶薄膜からなる下地膜の製造方法を容易に提供することが可能となった。
According to the present invention, it is possible to easily provide a method for producing a base film made of a single crystal thin film for epitaxial growth of a highly crystalline thin film on an amorphous silica substrate .
本発明の製造方法において使用する非晶質シリカ基板はシリカガラスまたはシリコン上
の非晶質シリカ絶縁膜である。該基板表面に炭素系の極薄膜を形成する。炭素系の極薄膜
とは炭素又は炭化水素の極薄膜を言う。炭素系の極薄膜の形成方法は特に限定されるもの
ではない。炭素系極薄膜は炭素の蒸着、炭化水素分子の吸着、塗布・乾燥により形成可能
である。炭素量の規定のためには蒸着法がもっとも望ましいが、これに限定するものでは
ない。炭素系極薄膜の厚さは、炭素原子数として1E17/m2以上、1E22/m2以
下であることが必要である。1E17/m2未満では炭素系極薄膜形成の効果がなく、S
n単結晶粒子は粒径400nm以上の平板状粒子として成長しない。1E22/m2を超
える場合は、Sn単結晶粒子の形状が平板状にならない。
The amorphous silica substrate used in the production method of the present invention is silica glass or silicon.
This is an amorphous silica insulating film. A carbon-based ultrathin film is formed on the surface of the substrate . The carbon-based ultrathin film refers to a carbon or hydrocarbon ultrathin film. The method for forming the carbon-based ultrathin film is not particularly limited. The carbon-based ultrathin film can be formed by carbon deposition, adsorption of hydrocarbon molecules, coating and drying. The vapor deposition method is most desirable for defining the carbon content, but is not limited thereto. The thickness of the carbon-based ultrathin film needs to be 1E17 / m 2 or more and 1E22 / m 2 or less as the number of carbon atoms. If it is less than 1E17 / m 2 , there is no effect of forming a carbon-based ultrathin film, and S
n single crystal grains do not grow as more of the tabular grains a
Sn単結晶膜は、蒸着法により形成する。炭素系極薄膜を形成した非晶質シリカガラス
基板を真空中に設置する。蒸着装置はTaやMoからなるボート型あるいは坩堝型蒸着装
置、k−cellを用いる。坩堝の材質はTaやMo、BNが一般的であるが、Snと反
応しなければよく、これに限定するものではない。また、蒸着装置もボート型、坩堝型、
k−cellに限定されない。
The Sn single crystal film is formed by a vapor deposition method. An amorphous silica glass substrate on which a carbon-based ultrathin film is formed is placed in a vacuum. As the vapor deposition device, a boat type or crucible type vapor deposition device made of Ta or Mo, or k-cell is used. The material of the crucible is generally Ta, Mo, or BN, but is not limited to this as long as it does not react with Sn. Also, the vapor deposition equipment is boat type, crucible type,
It is not limited to k-cell.
蒸着装置を用いてSn金属薄膜を形成する。このとき基板加熱は必要ない。
しかし、例えばシリコントランジスターセル上に形成する強誘電体の分極率不足を補うた
めに、あるいは後工程でのリソグラフィーの精度不足を補うために、Sn単結晶薄膜の粒
径を400nm以上とする必要がある場合には、基板加熱を採用しても良いが、その温度
は200℃以下とする。200℃を超えるとSn粒子の表面張力が付着力を上回り、粒子
が球状の形状となり、エピタキシャル成長のための基板結晶としては不適切となる。
An Sn metal thin film is formed using a vapor deposition apparatus. At this time, no substrate heating is required.
However, for example, in order to compensate for the lack of polarizability of the ferroelectric formed on the silicon transistor cell, or to compensate for the lack of lithography accuracy in the subsequent process, it is necessary to set the grain size of the Sn single crystal thin film to 400 nm or more. In some cases, substrate heating may be employed, but the temperature is 200 ° C. or lower. When the temperature exceeds 200 ° C., the surface tension of Sn particles exceeds the adhesive force, and the particles have a spherical shape, which is inappropriate as a substrate crystal for epitaxial growth.
5keVのアルゴンイオンによるスパッタクリーニング法により表面を清浄化したシリ
カガラス基板上に、電子線蒸着法により、炭素原子数1.8E19/m2の炭素極薄膜を
形成した。電子線蒸着は、炭素を蒸発源として10keV、50mAの電子線照射により
行った。
A carbon ultrathin film having a carbon atom number of 1.8E19 / m 2 was formed by an electron beam evaporation method on a silica glass substrate whose surface was cleaned by a sputter cleaning method using 5 keV argon ions. The electron beam evaporation was performed by electron beam irradiation of 10 keV and 50 mA using carbon as an evaporation source.
基板を加熱することなしにこの炭素極薄膜を形成した基板上に、Sn蒸着装置としてM
oボート型蒸着装置を用いSn薄膜を形成した。蒸着源として金属Snを用い、ボート温
度は880℃とした。このSn薄膜はAFMによる表面観察から粒径400nm以上の平
板状Sn単結晶粒子で構成されていた。図1にそのAFM像を示す。図の一辺は1μmで
ある。粒子が粒径400nm以上の平板状結晶であることが分かる。図2にそのX線回折
図を示す。薄膜が基板に垂直にa軸を立てた単結晶であることがわかる。
On the substrate on which this carbon ultrathin film was formed without heating the substrate, Sn was deposited as an M
An Sn thin film was formed using a boat-type vapor deposition apparatus. Metal Sn was used as the evaporation source, and the boat temperature was 880 ° C. This Sn thin film was composed of flat plate-like Sn single crystal particles having a particle diameter of 400 nm or more based on surface observation by AFM. FIG. 1 shows the AFM image. One side of the figure is 1 μm. It can be seen that the particles are tabular crystals having a particle size of 400 nm or more. FIG. 2 shows the X-ray diffraction pattern. It can be seen that the thin film is a single crystal with the a axis set perpendicular to the substrate.
(比較例1)
シリカガラス基板上に炭素極薄膜を蒸着しなかった基板上に、Sn蒸着装置としてMo
ボート型蒸着装置を用いSn薄膜を形成した。このSn薄膜は粒径300nm以下の多面
体状Sn単結晶粒子で構成されていた。図3にそのAFM像を示す。図の一辺は1μmで
ある。粒子が粒径300nm以下の多面体状結晶であることが分かる。
(Comparative Example 1)
Mo is used as a Sn deposition device on a substrate on which a carbon ultrathin film was not deposited on a silica glass substrate.
An Sn thin film was formed using a boat-type deposition apparatus. This Sn thin film was composed of polyhedral Sn single crystal particles having a particle size of 300 nm or less. FIG. 3 shows the AFM image. One side of the figure is 1 μm. It can be seen that the particles are polyhedral crystals having a particle size of 300 nm or less.
本発明の製造方法で得られるSn薄膜を用いることにより、非晶質であるシリカガラス
上又はシリコン上の非晶質シリカ絶縁膜上に高結晶性の薄膜をエピタキシャル成長させる
ことが可能となることから、本発明の製造方法は、シリカ絶縁膜を有するシリコン素子の
シリカ絶縁膜上に電子デバイス、光デバイス、集積回路などの高結晶性薄膜素子をエピタ
キシャル成長させるための下地膜の形成法として有用である。
By using the Sn thin film obtained by the production method of the present invention, a highly crystalline thin film can be epitaxially grown on amorphous silica glass or amorphous silica insulating film on silicon. The production method of the present invention is useful as a method for forming a base film for epitaxially growing a high crystalline thin film element such as an electronic device, an optical device, or an integrated circuit on a silica insulating film of a silicon element having a silica insulating film. .
Claims (4)
る炭素又は炭化水素からなる炭素系の極薄膜を形成し、該極薄膜を形成した基板上に粒径
400nm以上の大きさを持つ平板状Sn単結晶薄膜を蒸着法により形成することを特徴
とするSn単結晶薄膜の製造方法。 The thickness is 1E17 / m 2 or more and 1E22 / m 2 or less in terms of carbon atoms on the amorphous silica substrate.
And forming a flat Sn single crystal thin film having a particle size of 400 nm or more on the substrate on which the ultrathin film is formed by vapor deposition. Manufacturing method of Sn single crystal thin film.
特徴とする請求項1記載のSn単結晶薄膜の製造方法。 Amorphous silica substrate, that the amorphous silica insulating film on silica glass or silicon
The manufacturing method of the Sn single crystal thin film of Claim 1 characterized by the above-mentioned.
ることを特徴とする請求項1記載のSn単結晶薄膜の製造方法。 Sn or not the substrate pressurized heated during deposition of the single-crystal thin film, or the production method of the Sn single crystal thin film according to claim 1, wherein the heating temperature of the substrate, characterized in <br/> Rukoto be between 200 ° C. or less.
ことを特徴とする請求項1ないし3のいずれかに記載のSn単結晶薄膜の製造方法。The method for producing a Sn single crystal thin film according to any one of claims 1 to 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003380699A JP3950970B2 (en) | 2003-11-11 | 2003-11-11 | Method for producing Sn single crystal thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003380699A JP3950970B2 (en) | 2003-11-11 | 2003-11-11 | Method for producing Sn single crystal thin film |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006293688A Division JP4441605B2 (en) | 2006-10-30 | 2006-10-30 | Semiconductor substrate and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005145719A JP2005145719A (en) | 2005-06-09 |
JP3950970B2 true JP3950970B2 (en) | 2007-08-01 |
Family
ID=34690293
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003380699A Expired - Lifetime JP3950970B2 (en) | 2003-11-11 | 2003-11-11 | Method for producing Sn single crystal thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3950970B2 (en) |
-
2003
- 2003-11-11 JP JP2003380699A patent/JP3950970B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2005145719A (en) | 2005-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5816981B2 (en) | Control method of graphene film growth | |
US20120015166A1 (en) | Graphene/(multilayer) boron nitride heteroepitaxy for electronic device applications | |
TWI660076B (en) | Silicon carbide crystal and manufacturing method for same | |
US8852342B2 (en) | Formation of a vicinal semiconductor-carbon alloy surface and a graphene layer thereupon | |
JP4784947B2 (en) | Nanowire manufacturing method using compressive stress | |
JP6723603B2 (en) | Method for producing multilayer graphene and multilayer graphene laminate | |
JP2010212705A (en) | Process for varying characteristic of thin film layer, and substrate for applying same process thereto | |
US20030126742A1 (en) | Method of fabrication of ZnO nanowires | |
KR101692514B1 (en) | Formation method of large area, single crystal, single layered hexagonal boron nitride thin film on a substrate and hexagonal boron nitride thin film laminate thereby | |
US5404835A (en) | Method of making large area single crystalline diamond films | |
JP2004315342A (en) | High-density columnar ZnO crystal film and manufacturing method thereof | |
Lee et al. | Well-ordered large-area arrays of epitaxial ferroelectric (Bi, La) 4Ti3O12 nanostructures fabricated by gold nanotube-membrane lithography | |
JP3950970B2 (en) | Method for producing Sn single crystal thin film | |
KR100422333B1 (en) | Method for manufacturing a metal film having giant single crystals and the metal film | |
JP2005528987A5 (en) | ||
JP3834643B2 (en) | Method for producing copper nanorods or nanowires | |
JP4441605B2 (en) | Semiconductor substrate and manufacturing method thereof | |
US20060280945A1 (en) | Method of synthesising a crystalline material and material thus obtained | |
CN114182351B (en) | Tetragonal phase cuprous telluride and synthesis method thereof | |
JP4405485B2 (en) | Magnetic film and method of manufacturing magnetic film | |
JP4035453B2 (en) | Structure, structure manufacturing method, and device using the structure | |
Il’Chuk et al. | Morphology, structure, and composition of polycrystalline CdTe films grown on three-dimensional silicon substrates | |
CN113307236A (en) | Single-layer or several single-layer CrTe3 film and preparation method thereof | |
JPH01313974A (en) | Method of manufacturing polycrystalline silicon semiconductor resistance layer on silicon substrate and silicon pressure sensor manufactured by the method | |
CN104805419A (en) | Preferable selection method of CVD graphene film region |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060626 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060905 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061030 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070327 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3950970 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |