JP3941316B2 - Semiconductor device manufacturing method, electronic device manufacturing method, semiconductor device, and electronic device - Google Patents
Semiconductor device manufacturing method, electronic device manufacturing method, semiconductor device, and electronic device Download PDFInfo
- Publication number
- JP3941316B2 JP3941316B2 JP2000020819A JP2000020819A JP3941316B2 JP 3941316 B2 JP3941316 B2 JP 3941316B2 JP 2000020819 A JP2000020819 A JP 2000020819A JP 2000020819 A JP2000020819 A JP 2000020819A JP 3941316 B2 JP3941316 B2 JP 3941316B2
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor film
- film
- semiconductor
- semiconductor device
- region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Thin Film Transistor (AREA)
- Recrystallisation Techniques (AREA)
Description
【0001】
【発明の属する技術分野】
本願発明は600℃程度以下の比較的低温にて、基板上に形成された結晶性半導体膜の品質を向上せしめ、且つ其の品質変動を最小にし得る技術に関する。取り分け此の技術を適応して、基板上に形成された結晶性半導体膜を半導体装置のチャンネル形成領域として活用している薄膜半導体装置の性能を著しく改善し、且つ半導体装置素子間の品質が均一と成り得る、薄膜半導体装置の製造方法に関する。
【0002】
【従来の技術】
多結晶硅素薄膜トランジスタ(p−Si TFT)に代表される半導体装置を汎用ガラス基板を使用し得る600℃程度以下の低温にて製造する場合、従来以下の如き製造方法が取られて居た。まず基板上に半導体膜と成る非晶質硅素膜を低圧化学気相堆積法(LPCVD法)で形成する。次に此の非晶質膜にエキシマレーザー等を照射して多結晶硅素膜(p−Si膜)とした後、ゲート絶縁膜と成る酸化硅素膜を化学気相堆積法(CVD法)や物理気相堆積法(PVD法)にて形成する。次にタンタル等でゲート電極を作成して、金属(ゲート電極)−酸化膜(ゲート絶縁膜)−半導体(多結晶硅素膜)から成る電界効果トランジスタ(MOS−FET)を構成させる。最後に層間絶縁膜を此等の膜上に堆積し、コンタクトホールを開孔した後に金属薄膜にて配線を施して、半導体装置が完成する。
【0003】
【発明が解決しようとする課題】
しかしながら此等従来の半導体装置の製造方法では、半導体特性を良好する為に照射レーザー光のエネルギー密度を増すと、僅かなエネルギー密度の変動に依っても半導体特性が同一基板内に於いてすら大きくばらつ居ていた。それ故、基板内で比較的均質な多結晶半導体膜を得るには、レーザー光のエネルギー密度を最適値よりも可成り低く設定する必要が有った。又、レーザー光の出力変動に対して非晶質硅素膜が窮めて敏感である為に、同一基板上に形成された薄膜半導体素子間で移動度や閾値電圧に代表される電気特性の偏差が非常に大きい物となっていた。斯くした事実に則し、従来の製造方法にてp−Si TFT等の半導体装置を製造すると、完成した半導体装置の電気特性の平均値は、例えばNMOSの移動度の平均値ならば80cm2V-1s-1と低く、加えて偏差も平均値に対して20%程度認められるとの課題を有して居た。
【0004】
そこで本発明は上述の諸事情を鑑み、その目的とする所は600℃程度以下との低温工程で優良な半導体装置を安定的に製造する方法を提供する事に有る。
【0005】
【課題を解決するための手段】
本発明に係る半導体装置の製造方法は、基板上に結晶粒を含む第1の半導体膜を形成する半導体膜形成工程と、前記第1の半導体膜上にイオン注入保護膜を形成する保護膜形成工程と、前記第1の半導体膜の一部に希ガス元素イオンを打ち込み、前記結晶粒を含む第1結晶質領域と、前記結晶粒を含む第2結晶質領域と、前記第1結晶質領域と前記第2結晶質領域とに挟持された前記結晶粒を含まない非晶質領域と、前記非晶質領域と前記基板との間に狭持された、前記基板と前記第1の半導体膜との界面の前記第1の半導体膜内に形成された結晶粒を含む第3結晶質領域と、を有する第2の半導体膜を形成するイオン注入工程と、前記第2の半導体膜を結晶化し、前記第1結晶質領域と前記第2結晶質領域と前記第3結晶質領域とから、前記非晶質領域へ結晶を成長させ、第3の半導体膜を形成する結晶化工程と、を有し、前記第1結晶質領域から成長した第1結晶粒と、前記第2結晶質領域から成長した第2結晶粒とが、前記非晶質領域において粒界を形成し、前記非晶質領域には、前記第3結晶質領域から成長した第3結晶粒が形成されていることを特徴とする。
【0006】
上記半導体装置の製造方法は、前記基板が前記第1の半導体膜に面している下地保護膜を含み、該下地保護膜が1012cm-2程度以下の界面準位を有する酸化硅素膜であることが好ましい。また、前記第2の半導体膜が結晶核の密度を3×107cm-2程度未満とすることが好ましい。また、前記第1の半導体膜の結晶核密度より前記第2の半導体膜の結晶核密度のほうが小さいことが好ましい。また、前記第1の半導体膜の結晶粒径より前記第3の半導体膜の結晶粒径のほうが大きいことが好ましい。また、前記結晶化工程が、前記第2の半導体膜にレーザー光を照射することが好ましい。また、前記イオン注入工程において、前記希ガス元素イオンの前記第2半導体膜の前記結晶粒を含まない非晶質領域中での最大濃度が5×1019cm-3程度から3×1020cm-3であることが好ましい。また、前記イオン注入工程において、前記希ガス元素イオンの飛程中心が前記基板と前記第1の半導体膜との界面と、該界面より20nm離れた前記第1の半導体膜の中との間にあることが好ましい。また、前記イオン注入工程において、前記希ガス元素イオンの打ち込まれた部分の少なくとも一部をトランジスタのチャネル領域に用いることが好ましい。
【0007】
また、本発明にかかる電子機器の製造方法は、上記半導体装置の製造方法を用いることが好ましい。
【0008】
本発明にかかる半導体装置は、ソース領域と、ドレイン領域と、前記ソース領域と前記ドレイン領域に挟まれたチャネル領域と、を有する半導体膜と、ゲート電極と、前記半導体膜と前記ゲート電極との間に形成されたゲート絶縁膜と、を有し、前記チャネル領域に含まれる結晶粒が前記ソース領域および前記ドレイン領域に含まれる結晶粒より大きく、前記ソース領域から延びる結晶粒と、前記ドレイン領域から延びる結晶粒とが、前記チャネル領域において粒界を形成することを特徴とする。
【0009】
また、本発明にかかる電子機器は、上記半導体装置を含むことが好ましい。
【0010】
【発明の実施の形態】
本発明は薄膜半導体装置の製造方法に関し、ガラスの歪点温度が600℃程度から750℃程度と云った低耐熱性ガラス基板、或いは単結晶硅素基板等の各種基板上に硅素膜(Si)や硅素ゲルマニウム膜(SixGe1-x:0<x<1)に代表される半導体物質を半導体薄膜として形成する半導体膜形成工程と、此の半導体膜に希ガス元素イオンを打ち込むイオン注入工程と、イオン注入工程後に半導体膜の一部を溶融させた後に冷却固化過程を経て半導体膜の溶融結晶化を進める結晶性半導体膜形成工程とを少なくとも含む事を特徴とする(図1)。
【0011】
半導体膜形成工程では下地保護膜の形成方法や其れに引き続く半導体膜堆積工程直前の洗浄工程、及び半導体膜堆積工程等を工夫してまず結晶粒が比較的大きい多結晶膜を形成する(図2A)。此の状態では結晶粒は十分に大きくなく、其の分布も広がっている。そこで次のイオン注入工程にて希ガス元素イオンを多結晶半導体膜に打ち込み、多結晶体を構成していた結晶粒の大半を破壊する。結晶粒の大半が破壊され、結晶粒の一部のみが僅かに残る為、希ガス元素イオンを打ち込まれた半導体中の結晶核密度は著しく低下する(図2B)。此の原理に則りイオン注入工程後の結晶核密度は確実に半導体膜形成工程直後の多結晶半導体膜の結晶粒密度よりも小さくなる。その後に結晶性半導体膜形成工程が行わる。結晶核密度が低下した半導体膜を溶融結晶化させるので、最終的に得られる結晶性半導体膜は必ずイオン注入工程以前に形成された膜よりも結晶粒密度が小さく、故に平均結晶粒径は増大するに至る(図2C)。
【0012】
イオン注入工程に於ける希ガス元素イオンの半導体膜への打ち込みを、半導体膜の特定な領域にイオン注入保護膜を設けるなどとして局所的に行えば(図3A)、半導体膜内でイオン注入保護膜に被われていない領域の結晶粒のみが選択的に破壊され、其の一方でイオン注入保護膜に被われていた領域の結晶粒は保護されて生き残る(図3B)。その後に結晶性半導体膜形成工程が行われ、保護されて生き残った結晶粒が溶融再結晶化時の結晶種として機能するので結晶は横方向に成長し、大粒径の結晶粒となる(図3C)。加えて此の場合には結晶粒界の位置を或程度制御出来るので、ゲート長やベース長が4μm程度未満の小さい半導体装置で有れば、半導体装置の電流方向(MOSFETではソース・ドレイン方向、バイポーラトランジスタではエミッター・コレクター方向)を横切る結晶粒界を無くし、窮めて高性能な結晶性半導体装置を作成し得る。結晶粒界を或程度制御可能なので半導体装置の移動度や閾値電圧などの変動は著しく小さくなり、常に高性能な半導体装置を安定的にばらつきなく製造出来るのである。以下、本願発明の薄膜半導体装置の製造方法を図面を用いて詳述する。
【0013】
半導体膜形成工程では基板上に硅素(Si)を主体とした半導体膜を形成する。半導体膜は硅素をその主構成元素(硅素原子構成比が80%程度以上)として居り、多結晶状態にある。基板としては単結晶硅素等の半導体基板、或いは無アルカリガラスやセラミック等の絶縁性基板が用いられるのが通常だが、基板の耐熱性が600℃程度以上有れば其の種類に囚われない。此等の基板の表面には半導体膜に対する下地保護膜として、酸化硅素膜が100nm程度から10μm程度堆積されて居るのが好ましい。下地保護膜としての酸化硅素膜は単に半導体膜と基板との電気的絶縁性を取ったり、或いは基板が含有する不純物の半導体膜への拡散混入を防ぐにのみならず、下地酸化膜と結晶性半導体膜との界面を良質な物として居る。本願発明では薄膜半導体装置の半導体膜は10nm程度から150nm程度の厚みを有し、半導体膜の膜厚方向全域に渡ってエネルギーバンドが曲がって居る場合(SOIの完全空乏化モデルに相当する)が考えられる。斯様な状況下ではゲート絶縁膜と半導体膜との界面と共に、下地保護膜と半導体膜との界面も電気伝導に無視できぬ関与を及ぼす。酸化硅素膜は半導体膜と界面を成す際に界面捕獲準位を最も低減し得る物質で有るから下地保護膜として適している訳で有る。半導体膜は此の下地保護膜上に形成される。従って下地保護膜としては半導体膜との界面に1012cm-2程度以下の界面準位を有する酸化硅素膜が望まれる。更に本願発明では半導体膜下部に於ける結晶核発生を抑制する事が重要な役割を演ずる。斯うした意味からも下地保護膜は半導体膜との界面に生ずる結晶核の密度を3×107cm-2程度未満とし得る絶縁膜で有る事が求められる。結晶核となりうる物は1nm程度以上の凹凸や段差、塵、埃、微粒子(パーティクル)等である。従って此等の絶縁膜表面での濃度は3×107cm-2程度未満でなければならない。
【0014】
下地保護膜はプラズマ化学気相堆積法(PECVD法)や低圧化学気相堆積法(LPCVD法)、スパッター法と云った気相堆積法や硅素の熱酸化法等で形成される。基板が高純度の石英から成る時には下地保護膜と石英基板とが兼用される事も可能で有る。此等下地保護膜上に半導体膜が化学気相堆積法(CVD法)で堆積される。CVD法としてはプラズマ化学気相堆積法(PECVD法)や低圧化学気相堆積法(LPCVD法)が適応される。堆積された半導体内に結晶核と成り得る不純物が少ないと云う高純度半導体膜を得る立場からは、高真空型LPCVD法にて半導体膜を堆積するのが好ましい。この際に高次シラン(SinH2n+2:n=2,3,4)を原料気体の一種として半導体膜を堆積する。これは本願発明が対象としている600℃程度以下の低温工程でも、速い堆積速度で半導体膜が堆積される為に、不純物混入の割合が減り、以て半導体膜の純度が上がるからである。斯うした気相堆積法で形成された半導体膜は堆積直後には非晶質状態に有る。非晶質状態に有る薄膜は非晶質膜と呼ばれ、薄膜は多くの非晶質粒から、或いは非晶質粒と僅かな量の結晶粒から構成されて居る(M. Miyasaka, et al.: Jpn. J. Appl. Phys. vol.36 (1997) p.2049)。本願発明では斯様にして得られた非晶質膜をまず結晶化して多結晶性半導体膜を得る。次にイオン注入工程にて多結晶半導体膜の大半を破壊する。イオン注入は半導体膜の表側より執り行われ、飛程中心は半導体膜の下部に合わせられるので、注入された領域では半導体膜の下側界面近傍のみに僅かな結晶核が残留する事になる。最後に結晶性半導体膜形成工程にてイオン注入された半導体膜の下部を除いた他の部分を溶融させ、溶融した半導体膜の冷却固化時に残留した下部を結晶源として半導体膜の再結晶化を進めて結晶性半導体膜(溶融結晶化膜)を得る。最初に化学気相堆積法にて堆積される非晶質膜を構成する非晶質粒が大きければ、此の非晶質膜から得られる多結晶半導体膜を構成する結晶粒も大きく成る。即ち結晶核密度が小さくなる。結晶核密度が小さいので、イオン注入後に残留する結晶核の密度も自ずから小さくなる。従って結晶性半導体膜形成工程後に得られる結晶性半導体膜を構成する結晶粒も大きく成り、斯くして薄膜半導体装置の高性能化が実現されるので有る。更に上述の条件を満たすと、イオン注入工程が半導体装置のチャンネル形成領域とその周辺の近傍領域とに限定される場合、注入領域では結晶核発生確率が窮めて小さく、其の反面で注入領域の外側は大粒径の結晶粒から構成される多結晶膜で有る為に、結晶性半導体膜形成工程時に注入領域の外側から内側に向かって大粒径の結晶成長が生じる。最終的には此の領域に半導体装置の心臓部であるチャンネル形成領域が作られるので、窮めて優良な薄膜半導体装置が実現される事になる。斯うした意味に於いて、半導体膜形成工程に先立つ下地保護膜形成、及び半導体膜形成方法が重要となる。
【0015】
本願発明では半導体膜形成工程に先立ち下地保護膜形成工程として、基板上に半導体膜に対する下地保護膜と成る酸化硅素膜を気相堆積法等で形成する。更に此の下地保護膜形成工程が終了した後に、此の基板を洗浄する洗浄工程を設ける。洗浄工程は酸を含む水溶液を少なくとも含んでおり、酸の内でも弗化水素酸水溶液にて基板を洗浄する事が殊の他重要で有る。下地保護膜上の塵や埃は其の上に形成される半導体の純度を落とにのみならず、更には非晶質膜を堆積する時に非晶質核と成ったり、或いは非晶質膜を結晶成長させる時に結晶核とも成る。即ち、下地保護膜上の塵や埃の存在は最終的に得られる結晶性半導体膜の純度を落とすと同時に非晶質膜の非晶質粒を小さくし、多結晶膜の結晶粒を小さくし、イオン注入後の結晶核密度を上げ、斯様にして溶融結晶化膜の結晶粒を小さくし、結局薄膜半導体装置の性能を落とす事に繋がるので有る。従って優良な半導体装置を得る為には、半導体膜堆積前に基板を十分洗浄する必要が有る。此に依り純度が高く、結晶粒の大きい結晶性半導体膜が後に得られる事と成る。下地保護膜の付いた基板は石鹸等の界面活性剤を含む水溶液や酸を含む水溶液、或いはアルカリを含む水溶液、更にはエタノール等のアルコールやアセトン等のケトンなどの有機溶剤にて洗浄される。酸を含む水溶液としては硫酸(H2SO4)や塩酸(HCl)、硝酸(HNO3)、弗酸(HF)等の水溶液、或いは硫酸と過酸化水素水(H2O2)と純水(H2O)との混合液(以下本願明細書中では硫酸過水と略す)、塩酸と過酸化水素水と純水との混合液(塩酸過水と略す)、硝酸と過酸化水素水と純水との混合液(硝酸過水と略す)、硫酸と弗酸と純水(H2O)との混合液、塩酸と弗酸と純水との混合液、硝酸と弗酸と純水との混合液、アンモニアと弗酸と純水との混合液等が特に適して居る。アルカリを含む水溶液としてはアンモニア(NH3)水溶液や、アンモニアと過酸化水素水と純水との混合液(アンモニア過水と略す)が適して居る。半導体膜堆積前には此等の各種洗浄を適宜組み合わせ、最終的には純水で十分洗い流す必要が有る。ガラス基板の好ましい洗浄の一例としては次の方法が有る。
(1)有機溶剤洗浄
(1−1)アセトン等のケトン洗浄(有機物除去)
(0℃程度から30℃程度で1分程度から10分程度)
(1−2)エタノール等のアルコール洗浄(有機物除去)
(0℃程度から30℃程度で1分程度から10分程度)
(1−3)純水洗浄(ケトン、アルコール除去)
(0℃程度から30℃程度で1分程度から10分程度)
(2)アルカリ洗浄
(2−1)アンモニア過水洗浄(金属除去)
(50℃程度から100℃程度で1分程度から10分程度)
(2−2)純水洗浄(アンモニア除去)
(0℃程度から50℃程度で1分程度から10分程度)
(3)酸洗浄
(3−1)硫酸過水洗浄(金属除去)
(50℃程度から100℃程度で1分程度から10分程度)
(3−2)純水洗浄(硫酸除去)
(0℃程度から50℃程度で1分程度から10分程度)
(3−3)塩酸過水洗浄(金属除去)
(50℃程度から100℃程度で1分程度から10分程度)
(3−4)純水洗浄(塩酸除去)
(0℃程度から50℃程度で1分程度から10分程度)
(4)表面酸化膜除去
(4−1)弗酸水溶液洗浄(酸化膜表面除去及び酸化膜表面の水素終端化)
(0℃程度から30℃程度で1分程度から10分程度)
(4−2)純水洗浄(弗酸除去)
(0℃程度から30℃程度で1分程度から10分程度)
此の四工程から成る洗浄の内で最も重要なのは表面酸化膜除去の洗浄で有る。下地保護膜を成す酸化膜の表面層を除去すれば表面層に付着していた金属や塵等も自動的に取り除かれるからで有る。従って工程簡略化等の要請に依り半導体膜堆積前の洗浄工程を最少とさせたい時には、少なくとも表面酸化膜除去の洗浄だけは含まれる様に洗浄工程を設定すれば良い。但し、表面酸化膜除去に用いる洗浄液の寿命を長くして生産性を上げ、且つ下地保護膜上の不純物をより確実に除去するとの視点からは表面酸化膜除去工程の前にアルカリ洗浄乃至は酸洗浄を行うのが好ましい。表面酸化膜除去の洗浄では上例の如く弗酸と純水の混合液(弗化水素酸水溶液)の他に弗酸水溶液とアンモニア等のアルカリ水溶液との混合液を用いても良い。此の混合液はガラスへの損傷を小さくするとの利点が有り、汎用無アルカリガラスを基板として用いる時の表面酸化膜除去の洗浄として最も適して居る。弗酸水溶液とアルカリ水溶液の混合液の一例としては弗化アンモン(NH4F)水溶液が考えられる。
【0016】
上述の洗浄と最後の純水に依る洗い流しが済んだ後に、下地保護膜上に非晶質半導体膜を堆積する。半導体膜堆積には各種気相堆積法が可能で有るが、高純度の半導体膜が容易に堆積されるとの立場からは、其の内でも特に低圧化学気相堆積法(LPCVD法)が適して居る。基板は純水に依る洗い流しが終了した後、基板に新たな塵や埃の付着を防ぐ為に、直ちに(長くとも2時間程度以内に)気相堆積装置内に設置されるべきで有る。低圧化学気相堆積法は高真空型低圧化学気相堆積装置にて行われる。此は半導体膜の純度を高める事と、不純物に起因する非晶質核の発生を最小として、本願発明で最終的に得られる結晶性半導体膜を高純度で且つ大きな結晶粒から構成される様にする為で有る。高真空型とは非晶質半導体膜堆積直前の背景真空度が5×10-7Torr程度以下とし得る装置で、具体的には成膜室への装置外部からの漏洩流量が、洗浄した基板からの最大脱ガス総流量(例えば300mm×300mmのガラス基板17枚で最大脱ガス総流量は1×10-2(sccm)程度)の十分の一程度以下(先の例に則ると装置外部からの漏洩流量は1×10-3(sccm)程度以下)の気密性を有する装置で有る。装置成膜室の気密性は避け得ない基板からの脱ガスの最大流量の十分の一程度以下で有れば、仮令気密性に多少の変動が有ろうとも、総不純物流量(成膜室への装置外部からの漏洩流量と基板からの脱ガス流量との和)に対して著しい影響を及ぼさないからで有る。斯様な高真空型低圧化学気相堆積装置は単に成膜室の気密性が優れて居るにのみならず、成膜室に於ける排気速度が100sccm/mTorr(不活性ガスを100sccm成膜室に流した時に得られる平衡圧力が1mTorrと成る排気速度)程度以上の排気能力を有して居る事が更に望まれる。斯うした高排気能力を有する装置では1時間程度の比較的短時間で、十分な洗浄を施された基板からの水等の脱ガス流量を装置の漏洩流量程度以下の水準迄低下せしめ、生産性を著しく高める事が可能と成るからで有る。
【0017】
非晶質硅素膜に代表されるシリコンを主体とする半導体膜は高次シラン(SinH2n+2:nは2以上の整数)を原料気体の一種として堆積される。価格や安全性を考慮すると高次シランとしてはジシラン(Si2H6)が最も適している。さて、高純度で高品質の半導体膜を堆積するには、低圧化学気相堆積装置に於ける装置外部からの漏洩流量(QL)の高次シラン流量(QSiH)に対する比(R=QL/QSiH)を10ppm程度以下(R≦10-5)とせねばならない。(先の漏洩流量が1×10-3(sccm)程度の例の場合、ジシラン流量は100sccm程度以上とする。)前述の如く、本願発明では高真空型低圧化学気相堆積装置を用いて基板からの脱ガス流量が最大脱ガス総流量の十分の一程度以下になってから、即ち外部からの漏洩流量(QL)程度以下に成ってから半導体膜の堆積を試みる。従って総不純物流量は外部からの漏洩流量(QL)と同程度の水準で有る。装置外部から成膜室へ漏洩する物質は主として空気で有る。空気中の80%を占める窒素は不活性で有るから、半導体品質に対して大きな問題は生じせしめず、不純物として問題と成るのは残りの20%を占める酸素で有る。一方、成膜室に導入された高次シランの内で、実際に反応に関与して半導体膜に取り込まれる物は、成膜条件に依存して多少の変動は有るものの、大凡20%程度で有る。それ故、仮令成膜室内に存在する酸素等の不純物が総て半導体膜中に取り込まれるとの現実には有り得ぬ最悪の状況を想定しても、外部からの漏洩流量(QL)の高次シラン流量(QSiH)に対する比(R=QL/QSiH)を10ppm程度以下(R≦10-5)とすれば、堆積された半導体膜中の硅素原子に対する酸素原子等の不要な不純物の濃度は多くとも1017cm-3程度以下(実際は1016cm-3程度以下)と成り、高純度な半導体膜が得られるので有る。高純度な多結晶半導体膜はそれを薄膜半導体装置の活性層(電界効果トランジスタのソース・ドレイン領域やチャンネル形成領域、或いはバイポーラトランジスタのエミッター・ベース・コレクター領域)として用いた時に、半導体膜禁制帯中の捕獲準位を減らすと共に不純物元素に起因する移動度低下を最小限に押さえるとの効果を有する。
【0018】
上述の諸条件に加え、更に本願発明では430℃程度未満との比較的低温で非晶質半導体膜の堆積を行う。この際に半導体膜の堆積速度が0.5nm/min程度以上と成る様に成膜室の圧力や高次シランの流量、或いは挿入基板枚数が設定される。斯様な低温(430℃程度未満)で且つ比較的速い堆積速度を以て非晶質半導体膜を堆積すると、堆積により得られる非晶質膜を構成する非晶質粒が総じて大きくなり、斯くして此の非晶質膜を結晶化させた際に得られる多結晶膜の結晶粒は著しく増大するに到る。此の説明から分かる様に高性能薄膜半導体装置を実現する上での一つの重要要件は非晶質膜の堆積条件に有る。430℃程度未満との低温で且つ0.5nm/min程度以上の堆積速度で非晶質半導体膜を堆積すると、非晶質粒の成長元と成る核(非晶質核)の発生速度が非晶質膜の成長速度に比べて遅く成り、それ故堆積非晶質膜を構成する非晶質粒が大きく成るので有る。但し、半導体膜堆積の際に基板洗浄が不十分で有ると、基板上に付着した不純物が非晶質核として作用する為、非晶質粒は小さく成って仕舞う。同様に気相堆積装置の機密度が不十分で有ると(例えばR=QL/QSiH>10-5)、外部から成膜室に漏洩した不純物気体が基板上に付着して矢張り非晶質核と成って仕舞い、結果として大粒径の非晶質粒から成る優れた非晶質膜は得られない。又、成膜室内での基板乾燥が不十分で有ると(この時には半導体膜堆積直前の背景真空度が5×10-7Torr程度以下と成って居ない)、全く同じ原理で非晶質粒は小さく成る。高性能薄膜半導体装置を得る為には、基板に十分な洗浄(少なくとも表面酸化膜除去の洗浄工程)を施し、原料気体流量に対する機密度が十分で有る成膜装置(R=QL/QSiH≦10-5)を用いて、基板を成膜室で良く乾燥させた後(半導体膜堆積直前の背景真空度が5×10-7Torr程度以下とした後)、ジシラン等の高次シランを原料気体として用いて430℃程度未満との堆積温度で且つ0.5nm/min程度以上の堆積速度で非晶質半導体膜を堆積する事が肝要なので有る。
【0019】
半導体膜形成工程にて形成される半導体膜は多結晶半導体膜である。此処迄述べて来た手法にて非晶質膜が堆積された後、次に此の非晶質膜を結晶化して多結晶半導体膜へと変換する。非晶質膜から多結晶膜を得るには非晶質膜を固相状態で結晶化しても良いし、或いは非晶質膜を基板全体の0.1%程度未満の局所的で、且つ10ns程度から1μs程度の極短時間の溶融状態を経て結晶化しても良い。固相状態で結晶化させるには、例えば非晶質膜を略熱平衡状態にある熱処理炉に挿入して、500℃程度から700℃程度の温度で数分から数日間に渡り熱処理を施したり、或いは急速熱処理法(RTA法)を用いて600℃程度から900℃程度の温度で0.1秒程度から数分間に渡り熱処理を施す。熱処理温度と時間は温度が上がる程短時間で処理が終了するとの関係にある。従って高い熱処理温度で結晶化を進めれば、生産性が上がるとの効果が認められる。反対に温度が低ければ結晶核の発生密度が低下するので大粒径の多結晶膜が得られるとの効果が認められる。具体的には処理温度が550℃程度の時は一週間程度の熱処理時間が必要であるが、600℃程度では数日、650℃程度では数時間、700℃程度で数分、800℃程度で数秒の時間が必要と成る。無論斯うした比較的高い温度を利用するには基板の耐熱性(歪点温度)がそれらの温度よりも最低でも150℃程度以上勝っている事が前提となる。此等の諸事実を鑑みると理想的には550℃程度一週間程度の熱処理から650℃程度数時間の熱処理の間の条件が適していると言える。此の手法は基板全体が熱平衡状態に有るので窮めて均質な多結晶膜を基板全面に渡って得られ、最終的に作成される半導体装置の電気特性を基板全体で均一にし得るとの効果を有する。
【0020】
非晶質半導体膜を局所的な極短時間の溶融状態を経て結晶化させるには、非晶質膜にレーザー光を照射するのが最も簡便である。局所的な極短時間の溶融結晶化で有れば基板に熱損傷を与えることなく、基板の選択範囲が広がるとの利点を有する。レーザー光としてはエキシマレーザー光が利用でき、より具体的にはキセノン塩素(XeCl)エキシマレーザー光(波長308nm)やクリプトン弗素(KrF)エキシマレーザー光(波長248nm)等が用いられる。非晶質半導体膜へのレーザー照射では照射後の半導体膜の状態に応じて三種類の相に分類できる(図4)。即ち照射レーザーエネルギー密度が弱すぎて照射後も非晶質状態にある非晶質相と、適度な照射エネルギー密度で照射後に多結晶状態が得られる多結晶相、及び照射エネルギー密度が強すぎて照射後に微結晶状態となる微結晶相である。非晶質相と多結晶相とを隔てるのが表面溶融エネルギー密度(ESM)で、此のエネルギー密度の時に非晶質半導体膜の極表面が溶融する事になる。半導体膜の表面のみが溶融するので表面溶融エネルギー密度は半導体膜の厚みに対して独立である。一方、多結晶相と微結晶相とを隔てるのが完全溶融エネルギー密度(ECM)で、此のエネルギー密度の時に非晶質半導体膜が膜厚方向の全域に渡って完全に溶融する事になる。従って完全溶融エネルギー密度(ECM)は半導体膜が厚くなるに連れて其の値を増加させて行く。本願発明の半導体膜形成工程にて非晶質膜を多結晶膜に変換する理想のレーザーエネルギー密度をEiで表現すると、Eiの値は次の不等式を満たす。
【0021】
(ECM−ESM)×kL+ESM<Ei<(ECM−ESM)×kH+ESM
kL=0.85
kH=0.95
この式が示している様に本願発明のレーザーエネルギー密度Eiは多結晶相エネルギー密度の85%から95%の間に設定され、其れは半導体膜の厚み方向に対して凡そ85%から95%を溶融させている事を意味する。理想のレーザーエネルギー密度Eiを用いてkiを
Ei=(ECM−ESM)×ki+ESM
と定義すると、先の不等式は
kL<ki<kH
kL=0.85
kH=0.95
と記載し直される。即ちkiを0.85程度から0.95程度としてレーザー光照射を施すと、半導体膜の厚み方向の大凡85%程度から95%程度が溶融し、結果として得られる多結晶膜は比較的大きい結晶粒から構成される事になる。それ故、後のイオン注入工程では結晶核密度を激減させる事が出来、最終的に得られる半導体装置の電気特性をも改善する。粒径の大きい結晶粒を得るにはEiは出来る限りECMに近い事が望まれる。然るに従来技術の欄にて詳述した様に現在のエキシマレーザー装置の出力変動は数%のオーダーで認められる為、kHを0.97程度よりも大きくすると半導体膜は微結晶相に入って仕舞う場合も認められる。本願発明ではEiの値をECMからレーザー装置の出力偏差分よりも十分に小さく取る(kH=0.95)。そうする事で此の段階では平均結晶粒径は差程大きく成らない一方で、結晶粒径偏差は窮めて小さくなる。結晶粒の平均径は次工程以降で増大させられる。溶融結晶化は半導体膜の同一地点を20回程度以上80回程度以下の回数で繰り返される様に行う。
【0022】
斯様にして半導体膜形成工程にて形成された多結晶半導体膜に希ガス元素イオンを注入して、結晶核密度の一段たる低減を図る。イオン注入工程にて打ち込まれるイオンはアルゴン(Ar)イオン或いはヘリウム(He)イオン、又はネオン(Ne)イオン等の希ガス元素が好ましい。此等の元素は化学的に不活性なので半導体中に残留しても半導体装置の電気特性に影響を及ぼさないからである。此に反して硅素やゲルマニウムなどの半導体元素もイオン注入元素として候補に挙がるが、後述する様にイオン注入の飛程中心は半導体膜の下側界面近傍に設定される。その為に半導体元素が注入されると半導体膜の下側界面が不明瞭な広がりを有する事になり、半導体膜全体に渡ってエネルギーバンドが曲がる本願発明の半導体装置では下側界面の悪い状態が半導体特性に悪影響を及ぼす事になる。希ガス元素ならば下側界面近傍に飛程中心が設定されても下側界面を乱すことなく、故に完全空乏型の半導体装置を作成しても良好な性能を示す訳である。希ガス元素がアルゴンならば、製造コストが下がるとの利点と質量が重いので容易に多結晶膜を破壊し、結晶核密度を最小にするとの効果が認められる。希ガス元素がヘリウムで有れば、半導体膜に打ち込まれた後で容易に半導体膜から離脱して残留しないとの利点が認められる。希ガス元素がネオンで有れば、此等の中間で或程度確実に結晶粒を破壊し且つ半導体膜への残留を最小に止められる。
【0023】
アルゴン等の希ガス元素イオンが半導体膜に打ち込まれる際には、希ガス元素イオンの半導体膜内での最大濃度(飛程中心に於ける濃度)が2×1019cm-3程度以上1×1021cm-3程度以下と成る様にする。2×1019cm-3程度以上の濃度で打ち込めば、多結晶半導体膜を構成する結晶粒の大半は確実に破壊される。1×1021cm-3程度以下の打ち込みならば、後の熱工程で希ガスイオン元素は半導体膜から離脱し、半導体膜の密度を落としたり、或いは半導体膜中に空隙(void)を作ったりすることはない。理想的な打ち込み量としては飛程中心に於ける濃度が5×1019cm-3程度から3×1020cm-3程度の間である。
【0024】
打ち込まれる希ガス元素イオンの飛程中心は半導体膜の下側界面と半導体膜の下側界面からの厚みの40%程度との間に存在する様に工程処理を行う。例えば半導体膜の厚みが50nmで有れば、飛程中心が下側界面と下側界面より20nmとの間に来るようにイオン注入時のイオン加速エネルギーを設定する。此は半導体膜の下側界面近傍に後の結晶性半導体膜形成工程での結晶核が多く存在し、此等を効率的に破壊する事が求められるからで有る。希ガスイオン注入では飛程中心当たりの半導体が最も損傷を被り、それ故最も確実に結晶核密度が低減される。最も結晶核密度の高い部位を最も確実に破壊するには、其の部位に飛程中心を合わせるのである。換言すれば、イオン注入工程にて打ち込まれる希ガス元素イオンの飛程中心が、半導体膜の下側界面から10nm±10nm内に来るようにイオン注入工程を行うのである。
【0025】
希ガス元素イオンは半導体薄膜全体に一様に打ち込まれても良いが、半導体装置のチャンネル形成領域及び其の周辺となる近傍領域のみに選択的に注入されるのが殊の外望ましい(図5A)。近傍領域とは、具体的に後に薄膜半導体装置のチャンネル形成領域となる領域からの周辺1μm程度以内の領域を示す。図5Aに局所的なイオン注入工程に於ける素子断面図を示し、図5Bには局所的なイオン注入工程を経て作成された半導体素子断面図を示す。図5Aと5Bとではチャンネル形成領域が一致する様に描かれている。此等の図より希ガス元素イオンが注入される領域は半導体膜の内で後にゲート電極下に来る部分とその周辺である事が分かる。希ガス元素イオンを半導体膜全体に一様に打ち込むと半導体膜全体で一様に結晶核密度が減少し、全体に大きな結晶粒が形成される。此に対して半導体薄膜の特定部位のみに選択的に希ガス元素イオンを注入すると、此の部位のみ半導体膜が破壊され、結晶核密度は著しく減少する。その一方でイオン注入保護膜に保護された多結晶膜は多結晶の状態を維持して残る。即ち結晶核密度が高い状態に残る。此の為、次の結晶性半導体膜形成工程にて半導体膜の溶融再結晶化を進めると、希ガス元素イオンの注入された領域は周辺の多結晶膜を結晶成長の核として横方向への成長が生ずる。溶融結晶化時の結晶成長速度は10m/s程度であり、溶融時間はレーザー照射条件に応じて100nm程度から400nm程度と変わるので、結晶の横成長距離は1μm程度から4μm程度となる。結局、イオン注入された領域の左右1μm程度から4μm程度がイオン注入保護膜に覆われた多結晶体から横方向に結晶成長する事になる。この事はゲート長が短いトランジスタでは或る程度の結晶粒界制御が可能との事実を物語っている(図5C)。例えば横成長が4μm生ずる条件では、近傍領域の距離を1μmに取っても、ゲート長が6μm以下のトランジスタではソースドレイン方向を横切る結晶粒界は、常にチャンネル形成領域の中央部に一個のみとなる。図5Cは此の様子を模式的に描いてある。左右両方向の多結晶体から横成長した結晶粒がゲート電極の略中央部で衝突して、ソースドレイン方向を横切る結晶粒界を只一つだけ作っている(此を横成長効果と称する)。多結晶トランジスタの移動度は結晶粒界を電子又は正孔が横切る時に大きな低下を示すので、斯うした構造の多結晶半導体装置は明らかに優れた性能を示す。ゲート長が長いトランジスタでは、横成長が届かなかった領域は先の全体に均一にイオン注入された半導体膜と同じ結晶核密度を以て結晶成長する。此等の領域も従来よりは著しく結晶核発生密度が落とされているので、横成長は届かぬものの大きな粒径の結晶粒から半導体膜は構成される。斯うしたトランジスタでは結晶粒が大きい効果と横成長効果が共に働き、従来よりも際だって優れた半導体装置を形作る事になる。先にも述べたように横成長効果を最大限に発揮するにはゲート長は8μm程度以下で有る事が望まれ、近傍領域距離を考慮するとゲート長は6μm程度以下が好ましい。
【0026】
局所的なイオン注入工程を行う際のチャンネル形成領域(図5A)と半導体装置作成終了後のチャンネル形成領域(図5B)とが厳密に一致して居ればチャンネル形成領域内に横成長結晶粒を最大限取り込むべく(横成長効果を最大限取り入れるべく)、近傍領域の距離は小さい方が好ましい。然るに現実には製造途上で必ずアライメントエラーが発生し、此等チャンネル形成領域は厳密には一致しない。従って近傍領域距離の最小値はアライメントエラーの最大値よりも大きくする。400mm×500mm或いは550mm×650mmと云った様な大型ガラス基板を使用する際のアライメントエラーは0.3μm程度なので、近傍領域距離は余裕を持って1μm程度とする。無論アライメントエラーが小さくなれば、近傍領域距離も小さくし得る。近傍領域距離が小さい程トランジスタに於ける横成長効果が強く発揮されるので、此の距離は短いに越した事はない。近傍領域距離が結晶横成長距離よりも短い時に、トランジスタの横成長効果が生ずる。従って近傍領域距離の最大値は結晶横成長距離の最大値であり、その値は大凡4μm程度と云える。
【0027】
斯うしてイオン注入工程で結晶核密度を激減された後に、結晶性半導体膜形成工程にて半導体膜の少なくとも表面を溶融結晶化して、大粒径な結晶性半導体膜或いは横成長効果が認められる結晶性半導体膜を得る。結晶性半導体膜形成工程は半導体膜に表側より光照射を施して半導体膜の溶融結晶化を進めるのが好ましい。光照射を表側より行うのはイオン注入工程などで制御された結晶成長核が半導体膜の下側界面近傍に位置し、制御された此等の核を利用して結晶化を進める為である。表側より光照射を行えば必ず表側の温度は下側界面近傍よりも高くなり、下側界面近傍の結晶成長核を利用出来るのである。光照射としてはエネルギー効率が高く、半導体膜の局所的な極短時間溶融状態を経て結晶化し得るレーザー光照射が最適である。斯様なレーザー光照射では基板への熱損傷を殆どもたらさないからである。レーザー光の内ではエキシマレーザー光が利用でき、より具体的にはキセノン塩素(XeCl)エキシマレーザー光(波長308nm)やクリプトン弗素(KrF)エキシマレーザー光(波長248nm)等が用いられる。
【0028】
結晶性半導体膜形成工程にて、局所的乃至は全面均一にイオン注入された半導体膜にエキシマレーザー光を照射するには、その際のレーザーエネルギー密度をECRで表現すると、ECRの値は次の不等式を満たす様にする。
【0029】
(ECM−ESM)×kLC+ESM<ECR<(ECM−ESM)×kHC+ESM
kLC=0.85
kHC=0.97
此処でECMはイオン注入された半導体膜の完全溶融エネルギー密度で、ESMは矢張りイオン注入された半導体膜の表面溶融エネルギー密度である。結晶性半導体膜形成工程で照射するレーザー光のエネルギー密度ECRは多結晶相エネルギー密度の85%から97%の間に設定される。照射レーザーエネルギー密度ECRを用いてkCRを
ECR=(ECM−ESM)×kCR+ESM
と定義すると、先の不等式は
kLC<kCR<kHC
kLC=0.85
kHC=0.97
と記載し直される。即ち、理想的にはkCRを0.85程度から0.97程度としてレーザー光照射を施すと、半導体膜の厚み方向の大凡85%程度から97%程度が溶融し、結果として得られる多結晶膜は大きな結晶粒から構成される事になる。エキシマレーザー光の変動を考慮するとkHCは実質的に0.95程度となる。又良好な特性を確実に得るにはkLCは実質的に0.89程度となる。溶融結晶化は半導体膜の同一地点を20回程度以上80回程度以下の回数で繰り返される様に行う。半導体膜形成工程で多結晶半導体膜を得るのにレーザー光照射を行う場合、本工程のレーザー照射と合わせて半導体膜の同一地点を総計で120回程度以下の照射回数に成る様にそれぞれの工程を調整する。此は照射回数の総計が多すぎる時の面荒れや不純物混入を防いで、平滑で清浄なMOS界面を得る為である。
【0030】
(実施例1)
図6(a)〜(e)はMOS型電界効果トランジスタを形成する薄膜半導体装置の製造工程を断面で示した図で有る。本実施例1では基板101としてガラスの歪点温度が750℃の結晶化ガラスを用いた。然るに此以外の基板で有っても、薄膜半導体装置製造工程中の最高温度に耐えられれば、その種類や大きさは無論問われない。まず基板101上に下地保護膜102と成る酸化硅素膜を堆積する。基板が高濃度に不純物がドープされた単結晶硅素基板等の導伝性物質の場合や、セラミックス基板等で半導体膜に取って望ましからざる不純物を含んでいる場合、酸化硅素膜堆積前に酸化タンタル膜や窒化硅素膜等の第一の下地保護膜を堆積しても良い。本実施例1では基板101上にプラズマ化学気相堆積法(PECVD法)で酸化硅素膜を200nm程度堆積し、下地保護膜102とした。酸化硅素膜はECR−PECVDにて以下の堆積条件で堆積された。
【0031】
モノシラン(SiH4)流量・・・60sccm
酸素(O2)流量・・・100sccm
圧力・・・2.40mTorr
マイクロ波(2.45GHz)出力・・・2250W
印可磁場・・・875Gauss
基板温度・・・100℃
成膜時間・・・40秒
次に下地保護膜堆積後、基板を次の手順で洗浄した。
【0032】
(1)超音波照射に依るイソプロピルアルコール洗浄(27℃、5分間)
(2)窒素バブリングされた純水洗浄(27℃、5分間)
(3)アンモニア過水洗浄(80℃、5分間)
(4)窒素バブリングされた純水洗浄(27℃、5分間)
(5)硫酸過水洗浄(97℃、5分間)
(6)窒素バブリングされた純水洗浄(27℃、5分間)
(7)希釈弗酸水溶液(弗酸濃度1.67%)洗浄(27℃、20秒間)
(8)窒素バブリングされた純水洗浄(27℃、5分間)
上記7番目の希釈弗酸水溶液洗浄により、下地酸化膜の表層部が凡そ10nm除去されて居る。斯うして洗浄された下地保護膜上に真性非晶質硅素膜をLPCVD法にて50nm程度の膜厚に堆積した。上記8番目の純水洗浄が終了してから基板がLPCVD装置の成膜室に設置される迄の時間は約25分間で有った。
【0033】
LPCVD装置はホット・ウォール型で容積が184.5l有り、基板挿入後の反応総面積は約44000cm2で有る。成膜室に於ける最大排気速度は120sccm/mTorrで有る。堆積温度は425℃で、此の温度にて1時間15分間に渡る基板の加熱乾燥処理が施された。乾燥熱処理の最中、基板が設置された成膜室には純度が99.9999%以上のヘリウム(He)を200(sccm)と純度が99.9999%以上の水素(H2)を100(sccm)導入し、成膜室の圧力は約2.5mTorrに保たれた。乾燥処理後に成膜室を孤立させた際の成膜室内圧力上昇は9.4×10-6Torr/minで有ったから、成膜室への装置外部からの漏洩流量(QL)と基板からの脱ガス流量の和で有る総不純物漏洩流量(QTL)はボイル・シャルルの法則に則り、
QTL(sccm)=273.15(K)/698.15(K)
×9.4×10-6(Torr/min)/760(Torr)
×184.5×103(cm3)
=8.93×10-4(sccm)
で有る。原料ガスで有る純度99.99%以上のジシラン(Si2H6)は200sccmの流量で成膜室に供給されたから、総不純物漏洩流量(QTL)に対する高次シランの比(QTL/QSiH)は4.465×10-6と成る。従って、漏洩流量(QL)の高次シラン流量(QSiH)に対する比(R=QL/QSiH)は4.465ppm以下で有る。斯うした乾燥処理が終了した半導体膜堆積直前の成膜室背景真空度は、425℃に於ける温度平衡条件で2.3×10-7Torrで有った。非晶質硅素膜堆積時に於ける堆積圧力は凡そ1.1Torrで有り、此の条件下で硅素膜の堆積速度は0.77nm/minで有る。
【0034】
次に斯うして得られた非晶質半導体膜に熱処理を施して、非晶質膜を固相にて結晶化させた。熱処理は大気圧の窒素99%と酸素1%の混合気体雰囲気下にて、600℃の温度で24時間行われた。この熱処理に依り半導体膜は非晶質状態から多結晶状態へと改質される(半導体膜形成工程終了)。
【0035】
次にイオン注入工程として、多結晶半導体膜103のチャンネル形成領域105と其の近傍領域106にアルゴンイオン107を注入した(図6a)。イオン注入保護膜104としては厚みが1μmのフォトレジストを用いた。近傍領域距離は1.0μmである。アルゴンイオン(40Ar+)は加速エネルギー40keVで、5×1014cm-2のドーズ量で半導体膜に打ち込んだ。此の条件に於ける飛程中心は半導体膜の下側界面より9.6nmの半導体膜中にあり、其の飛程中心での濃度は凡そ1.2×1020cm-3である。斯うして後に薄膜半導体装置のチャンネル形成領域と其の近傍領域にアルゴンイオンが打ち込まれ、多結晶膜は破壊された半導体膜108と化した(イオン注入工程終了)。
【0036】
イオン注入工程終了後にイオン注入保護膜であるフォトレジストを剥離し、結晶性半導体膜形成工程として、局所的にアルゴンイオン注入された硅素膜にキセノン塩素(XeCl)のエキシマ・レーザー光を照射し、溶融再結晶化を進めた。レーザー光は幅350μmで長さ15cmの線状に集光され、此の線状の光を各照射毎に2.5%づつ幅方向にずらして、基板上を走査した。従って半導体膜上の同一地点は40回のレーザー光照射を被る事になる。レーザー光の照射エネルギー密度は385mJ・cm-2で有った。本実施例1にて使用したエキシマレーザー光では、アルゴンイオンの注入された50nmの半導体膜の最表面のみを溶融させるエネルギー密度ESMは120mJ・cm-2で有り、完全溶融させるエネルギー密度ECMは400mJ・cm-2で有った。従って照射エネルギー密度の385mJ・cm-2はkCRの0.946を意味し、半導体膜の膜厚方向に対して約94.6%が溶融した事に成る。斯様にして得られた結晶性硅素膜をパターニング加工して半導体膜の島109を形成した(結晶性半導体膜形成工程終了)(図6b)。
【0037】
次にパターニング加工された半導体膜の島109を被う様に酸化硅素膜110をECR−PECVD法にて形成した。此の酸化硅素膜は半導体装置のゲート絶縁膜として機能する。ゲート絶縁膜と成る酸化硅素膜堆積条件は堆積時間が24秒と短縮された事を除いて、下地保護膜の酸化硅素膜の堆積条件と同一で有る。但し、酸化硅素膜堆積の直前にはECR−PECVD装置内で基板に酸素プラズマを照射して、半導体の表面に低温プラズマ酸化膜を形成した。プラズマ酸化条件は次の通りで有る。
【0038】
酸素(O2)流量・・・100sccm
圧力・・・1.85mTorr
マイクロ波(2.45GHz)出力・・・2000W
印可磁場・・・875Gauss
基板温度・・・100℃
処理時間・・・24秒
プラズマ酸化に依り凡そ3.5nmの酸化膜が半導体表面に形成されて居る。酸素プラズマ照射が終了した後、真空を維持した侭連続で酸化膜を堆積した。従ってゲート絶縁膜と成る酸化硅素膜はプラズマ酸化膜と気相堆積膜の二者から成り、その膜厚は126nmで有った。斯様にしてゲート絶縁膜堆積が完了した(図6c)。
【0039】
引き続いて金属薄膜に依りゲート電極111をスパッター法にて形成する。スパッター時の基板温度は150℃で有った。本実施例1では750nmの膜厚を有するα構造のタンタル(Ta)にてゲート電極を作成し、このゲート電極のシート抵抗は0.8Ω/□で有った。次にゲート電極をマスクとして、ドナー又はアクセプターとなる不純物イオン112を打ち込み、ソース・ドレイン領域113とチャンネル形成領域114をゲート電極に対して自己整合的に作成する。本実施例1ではCMOS半導体装置を作製した。NMOSトランジスタを作製する際にはPMOSトランジスタ部をアルミニウム(Al)薄膜で覆った上で、不純物元素として水素中に5%の濃度で希釈されたフォスヒィン(PH3)を選び、加速電圧80kVにて水素を含んだ総イオンを7×1015cm-2の濃度でNMOSトランジスタのソース・ドレイン領域に打ち込んだ。反対にPMOSトランジスタを作製する際にはNMOSトランジスタ部をアルミニウム(Al)薄膜で覆った上で、不純物元素として水素中に5%の濃度で希釈されたジボラン(B2H6)を選び、加速電圧80kVにて水素を含んだ総イオンを5×1015cmー2の濃度でPMOSトランジスタのソース・ドレイン領域に打ち込んだ(図6d)。イオン打ち込み時の基板温度は300℃で有る。
【0040】
次にPECVD法でTEOS(Si−(OCH2CH3)4)と酸素を原料気体として、基板温度300℃で層間絶縁膜115を堆積した。層間絶縁膜は二酸化硅素膜から成り、その膜厚は凡そ500nmで有った。層間絶縁膜堆積後、層間絶縁膜の焼き締めとソース・ドレイン領域に添加された不純物元素の活性化を兼ねて、窒素雰囲気下350℃にて2時間の熱処理を施した。最後にコンタクト・ホールを開穴し、スパッター法で基板温度を180℃としてアルミニウムを堆積し、配線116を作成して薄膜半導体装置が完成した(図6e)。
【0041】
この様にして作成した薄膜半導体装置の伝達特性を測定した。測定した半導体装置のチャンネル形成領域の長さ及び幅は其々10μmで、測定は室温にて行われた。NMOSトランジスタのVds=8Vに於ける飽和領域より求めた移動度±標準偏差は216.9±1.9cm2・Vー1・s-1で有り、閾値電圧は3.458±0.206V、サブスレーシュホールド・スイングは0.4253±0.0087Vで有った。又、PMOSトランジスタのVds=−8Vに於ける飽和領域より求めた移動度は72.4±3.8cm2・Vー1・s-1で有り、閾値電圧は−3.640±0.241V、サブスレーシュホールド・スイングは0.3457±0.0174Vで有った。此の測定実績が示す通り、此等の半導体装置は其の特性が基板内で殆ど変動が無く、高性能半導体装置が均一に製造されて居た。此に対して従来技術で非晶質硅素膜を堆積してXeClエキシマ・レーザーで結晶化した比較例ではNMOSトランジスタの移動度が112.2±25.3cm2・Vー1・s-1、閾値電圧が3.908±0.421V、サブスレーシュホールド・スイングが0.5866±0.0956Vで、PMOSトランジスタの移動度が40.8±9.9cm2・Vー1・s-1、閾値電圧が−4.505±0.946V、サブスレーシュホールド・スイングが0.4923±0.0740Vで有った。この例が示す様に本発明に依るとN型とP型の両半導体装置共に高移動度で低閾値電圧を有し、且つ急峻なサブスレーシュホールド特性を示す良好な薄膜半導体装置が汎用ガラス基板を使用し得る低温工程にて、簡便且つ容易に、又安定的に作成出来るので有る。加えて総ての電気特性にて其の変動幅を低減した。
【0042】
【発明の効果】
以上詳述してきた様に、従来低品質で品質のばらつきが大きかった多結晶薄膜半導体装置を本願発明は高性能で均一な薄膜半導体装置へと簡便且つ安定的に改質でき、同時に半導体装置の動作安定性をも高めるとの効果が認められる。斯うした事実に基づき半導体装置回路の高速動作や電源電圧の低下との効果をもたらし、以て電子機器の高速応答や省エネルギーを導くとの効果が認められる。
【図面の簡単な説明】
【図1】 本願発明の原理を説明した図。
【図2】 本願発明の原理を説明した図。
【図3】 本願発明の原理を説明した図。
【図4】 レーザー結晶化の相を説明した図。
【図5】 本願発明の原理を説明した図。
【図6】 本願発明の製造工程を説明した図。
【符号の説明】
101・・・基板
102・・・下地保護膜
103・・・多結晶半導体膜
104・・・イオン注入保護膜
105・・・チャネル形成領域
106・・・近傍領域
107・・・希ガス元素イオン
108・・・破壊された半導体膜
109・・・半導体膜の島
110・・・ゲート絶縁膜
111・・・ゲート電極
112・・・不純物イオン
113・・・ソース・ドレイン領域
114・・・チャネル形成領域
115・・・層間絶縁膜
116・・・配線[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technique capable of improving the quality of a crystalline semiconductor film formed on a substrate at a relatively low temperature of about 600 ° C. or less and minimizing the quality variation thereof. In particular, this technology can be applied to significantly improve the performance of thin film semiconductor devices using crystalline semiconductor films formed on substrates as channel formation regions of semiconductor devices, and the quality between semiconductor device elements is uniform. The present invention relates to a method for manufacturing a thin film semiconductor device.
[0002]
[Prior art]
When manufacturing a semiconductor device typified by a polycrystalline silicon thin film transistor (p-Si TFT) at a low temperature of about 600 ° C. or lower where a general-purpose glass substrate can be used, the following manufacturing method has been conventionally employed. First, an amorphous silicon film serving as a semiconductor film is formed on a substrate by low pressure chemical vapor deposition (LPCVD). Next, after this amorphous film is irradiated with an excimer laser or the like to form a polycrystalline silicon film (p-Si film), a silicon oxide film to be a gate insulating film is formed by chemical vapor deposition (CVD) or physical It is formed by a vapor deposition method (PVD method). Next, a gate electrode is made of tantalum or the like, and a field effect transistor (MOS-FET) made of metal (gate electrode) -oxide film (gate insulating film) -semiconductor (polycrystalline silicon film) is formed. Finally, an interlayer insulating film is deposited on these films, contact holes are opened, and wiring is performed with a metal thin film to complete a semiconductor device.
[0003]
[Problems to be solved by the invention]
However, in these conventional semiconductor device manufacturing methods, when the energy density of the irradiated laser beam is increased in order to improve the semiconductor characteristics, the semiconductor characteristics are increased even in the same substrate even if the energy density is slightly changed. It was scattered. Therefore, in order to obtain a relatively homogeneous polycrystalline semiconductor film within the substrate, it is necessary to set the energy density of the laser beam to be considerably lower than the optimum value. In addition, since amorphous silicon films are sensitive to fluctuations in the output of laser light, deviations in electrical characteristics such as mobility and threshold voltage between thin film semiconductor elements formed on the same substrate. Was a very big thing. In accordance with such a fact, when a semiconductor device such as a p-Si TFT is manufactured by a conventional manufacturing method, the average value of the electrical characteristics of the completed semiconductor device is, for example, 80 cm if the average value of the mobility of NMOS.2V-1s-1In addition, there is a problem that the deviation is recognized to be about 20% of the average value.
[0004]
In view of the above-described circumstances, the present invention is intended to provide a method for stably manufacturing an excellent semiconductor device in a low temperature process of about 600 ° C. or lower.
[0005]
[Means for Solving the Problems]
A method for manufacturing a semiconductor device according to the present invention includes a semiconductor film forming step of forming a first semiconductor film containing crystal grains on a substrate, and a protective film formation for forming an ion implantation protective film on the first semiconductor film. A step of implanting rare gas element ions into a part of the first semiconductor film, a first crystalline region including the crystal grains, a second crystalline region including the crystal grains, and the first crystalline region And an amorphous region not including the crystal grains sandwiched between the substrate and the second crystalline region, and the substrate and the first semiconductor film sandwiched between the amorphous region and the substrate An ion implantation step of forming a second semiconductor film having a third crystalline region including crystal grains formed in the first semiconductor film at the interface with the first semiconductor film, and crystallizing the second semiconductor film , From the first crystalline region, the second crystalline region, and the third crystalline region, A crystallization step of growing a crystal in an amorphous region to form a third semiconductor film, and growing from the first crystalline region grown from the first crystalline region and from the second crystalline region The second crystal grains form a grain boundary in the amorphous region, and the third crystal grains grown from the third crystalline region are formed in the amorphous region. To do.
[0006]
The method for manufacturing a semiconductor device includes a base protective film in which the substrate faces the first semiconductor film, and the base protective film has a thickness of 1012cm-2A silicon oxide film having an interface state below about a certain level is preferable. The second semiconductor film has a crystal nucleus density of 3 × 10 5.7cm-2It is preferable to be less than about. The crystal nucleus density of the second semiconductor film is preferably smaller than the crystal nucleus density of the first semiconductor film. The crystal grain size of the third semiconductor film is preferably larger than the crystal grain size of the first semiconductor film. Moreover, it is preferable that the said crystallization process irradiates a laser beam to the said 2nd semiconductor film. In the ion implantation step, the maximum concentration of the rare gas element ions in the amorphous region not including the crystal grains of the second semiconductor film is 5 × 10 5.19cm-3About 3 × 1020cm-3It is preferable that Further, in the ion implantation step, a range center of the rare gas element ions is between the interface between the substrate and the first semiconductor film and the first semiconductor film that is 20 nm away from the interface. Preferably there is. In the ion implantation step, it is preferable that at least part of the portion into which the rare gas element ions are implanted is used for a channel region of a transistor.
[0007]
Moreover, it is preferable to use the manufacturing method of the said semiconductor device for the manufacturing method of the electronic device concerning this invention.
[0008]
A semiconductor device according to the present invention includes a semiconductor film having a source region, a drain region, a channel region sandwiched between the source region and the drain region, a gate electrode, the semiconductor film, and the gate electrode. A gate insulating film formed therebetween, crystal grains included in the channel region are larger than crystal grains included in the source region and the drain region, and extend from the source region; and the drain region The crystal grains extending from the surface form grain boundaries in the channel region.
[0009]
Moreover, it is preferable that the electronic device concerning this invention contains the said semiconductor device.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to a method for manufacturing a thin film semiconductor device, and relates to a low heat resistant glass substrate having a glass strain point temperature of about 600 ° C. to about 750 ° C., or a silicon film (Si) on various substrates such as a single crystal silicon substrate. Silicon germanium film (SixGe1-x: A semiconductor film forming step of forming a semiconductor material typified by 0 <x <1) as a semiconductor thin film, an ion implantation step of implanting rare gas element ions into the semiconductor film, and a part of the semiconductor film after the ion implantation step And a crystalline semiconductor film forming step in which the semiconductor film is melted and crystallized through a cooling and solidifying process after melting (FIG. 1).
[0011]
In the semiconductor film formation process, first, a polycrystalline film having relatively large crystal grains is formed by devising a method for forming a base protective film, a subsequent cleaning process immediately before the semiconductor film deposition process, a semiconductor film deposition process, and the like (see FIG. 2A). In this state, the crystal grains are not sufficiently large and their distribution is widened. Therefore, in the next ion implantation step, rare gas element ions are implanted into the polycrystalline semiconductor film to destroy most of the crystal grains constituting the polycrystalline body. Since most of the crystal grains are destroyed and only a part of the crystal grains remain, the density of crystal nuclei in the semiconductor into which the rare gas element ions are implanted is significantly reduced (FIG. 2B). In accordance with this principle, the crystal nucleus density after the ion implantation process is surely smaller than the crystal grain density of the polycrystalline semiconductor film immediately after the semiconductor film formation process. Thereafter, a crystalline semiconductor film forming step is performed. Since the semiconductor film with a lowered crystal nucleus density is melted and crystallized, the finally obtained crystalline semiconductor film always has a lower crystal grain density than the film formed before the ion implantation process, and therefore the average crystal grain size increases. (FIG. 2C).
[0012]
If implantation of rare gas element ions into the semiconductor film in the ion implantation process is locally performed by providing an ion implantation protective film in a specific region of the semiconductor film (FIG. 3A), ion implantation protection is performed in the semiconductor film. Only the crystal grains in the region not covered with the film are selectively destroyed, while the crystal grains in the region covered with the ion implantation protective film are protected and survive (FIG. 3B). Thereafter, a crystalline semiconductor film forming step is performed, and the crystal grains that have been protected and survived function as crystal seeds at the time of melt recrystallization, so that the crystals grow laterally and become large crystal grains (see FIG. 3C). In addition, since the position of the crystal grain boundary can be controlled to some extent in this case, the current direction of the semiconductor device (source / drain direction in a MOSFET, Bipolar transistors eliminate the grain boundaries that cross the emitter-collector direction) and can give up and produce high-performance crystalline semiconductor devices. Since the crystal grain boundary can be controlled to some extent, fluctuations in the mobility and threshold voltage of the semiconductor device are remarkably reduced, and a high-performance semiconductor device can always be manufactured stably and without variations. Hereinafter, the manufacturing method of the thin film semiconductor device of this invention is explained in full detail using drawing.
[0013]
In the semiconductor film formation step, a semiconductor film mainly composed of silicon (Si) is formed on the substrate. The semiconductor film has silicon as its main constituent element (silicon atom constituent ratio of about 80% or more) and is in a polycrystalline state. As the substrate, a semiconductor substrate such as single crystal silicon or an insulating substrate such as non-alkali glass or ceramic is usually used. However, if the substrate has a heat resistance of about 600 ° C. or more, it is not limited to the type. A silicon oxide film is preferably deposited on the surface of these substrates as a base protective film for the semiconductor film from about 100 nm to about 10 μm. The silicon oxide film as the base protective film not only simply takes electrical insulation between the semiconductor film and the substrate, but also prevents diffusion of impurities contained in the substrate into the semiconductor film. The interface with the semiconductor film is of good quality. In the present invention, the semiconductor film of the thin film semiconductor device has a thickness of about 10 nm to 150 nm, and the energy band is bent over the entire thickness direction of the semiconductor film (corresponding to a complete depletion model of SOI). Conceivable. Under such circumstances, the interface between the base protective film and the semiconductor film, as well as the interface between the gate insulating film and the semiconductor film, has a significant influence on the electrical conduction. Since the silicon oxide film is a substance that can most reduce the interface trap level when forming an interface with the semiconductor film, it is suitable as a base protective film. The semiconductor film is formed on this base protective film. Accordingly, the base protective film has a thickness of 10 at the interface with the semiconductor film.12cm-2A silicon oxide film having an interface state below about a certain level is desired. Furthermore, in the present invention, suppressing the generation of crystal nuclei in the lower part of the semiconductor film plays an important role. Also in this sense, the base protective film has a density of crystal nuclei generated at the interface with the semiconductor film of 3 × 10.7cm-2It is required to be an insulating film that can be less than about. Objects that can be crystal nuclei are irregularities and steps of about 1 nm or more, dust, dust, fine particles (particles) and the like. Therefore, the concentration on the surface of these insulating films is 3 × 10.7cm-2Must be less than about.
[0014]
The undercoat protective film is formed by a plasma chemical vapor deposition method (PECVD method), a low pressure chemical vapor deposition method (LPCVD method), a vapor deposition method such as a sputtering method, a thermal oxidation method of silicon, or the like. When the substrate is made of high-purity quartz, it is possible to use both the base protective film and the quartz substrate. A semiconductor film is deposited on these underlying protective films by chemical vapor deposition (CVD). As the CVD method, a plasma chemical vapor deposition method (PECVD method) or a low pressure chemical vapor deposition method (LPCVD method) is applied. From the standpoint of obtaining a high-purity semiconductor film in which there are few impurities that can be crystal nuclei in the deposited semiconductor, it is preferable to deposit the semiconductor film by a high vacuum LPCVD method. At this time, higher order silane (SinH2n + 2: N = 2, 3, 4) is used as a kind of source gas to deposit a semiconductor film. This is because the semiconductor film is deposited at a high deposition rate even at a low temperature process of about 600 ° C. or less, which is the subject of the present invention, so that the impurity mixing ratio is reduced and the purity of the semiconductor film is increased. A semiconductor film formed by such a vapor deposition method is in an amorphous state immediately after deposition. A thin film in an amorphous state is called an amorphous film, and the thin film is composed of many amorphous grains or amorphous grains and a small amount of crystal grains (M. Miyasaka, et al .: Jpn. J. Appl. Phys. Vol.36 (1997) p.2049). In the present invention, the amorphous film thus obtained is first crystallized to obtain a polycrystalline semiconductor film. Next, most of the polycrystalline semiconductor film is destroyed by an ion implantation process. Ion implantation is performed from the front side of the semiconductor film, and the range center is aligned with the lower part of the semiconductor film, so that only a few crystal nuclei remain in the vicinity of the lower interface of the semiconductor film in the implanted region. Finally, the other part except the lower part of the semiconductor film ion-implanted in the crystalline semiconductor film forming step is melted, and the semiconductor film is recrystallized using the lower part remaining during cooling and solidification of the molten semiconductor film as a crystal source. Proceed to obtain a crystalline semiconductor film (melt crystallized film). If the amorphous grains constituting the amorphous film deposited by the chemical vapor deposition method are large, the crystal grains constituting the polycrystalline semiconductor film obtained from this amorphous film are also large. That is, the crystal nucleus density is reduced. Since the density of crystal nuclei is small, the density of crystal nuclei remaining after ion implantation is naturally reduced. Therefore, the crystal grains constituting the crystalline semiconductor film obtained after the crystalline semiconductor film forming step are also increased, and thus high performance of the thin film semiconductor device is realized. Furthermore, when the above conditions are satisfied, when the ion implantation process is limited to the channel formation region of the semiconductor device and the neighboring region around the channel formation region, the probability of crystal nucleus generation is extremely small in the implantation region. Since the outside is a polycrystalline film composed of crystal grains having a large grain size, crystal growth with a large grain size occurs from the outside to the inside of the implantation region during the crystalline semiconductor film forming step. Eventually, a channel forming region which is the heart of the semiconductor device is formed in this region, so that an excellent thin film semiconductor device can be realized. In such a meaning, the formation of the base protective film and the semiconductor film forming method prior to the semiconductor film forming step are important.
[0015]
In the present invention, as a base protective film forming step prior to the semiconductor film forming step, a silicon oxide film serving as a base protective film for the semiconductor film is formed on the substrate by a vapor deposition method or the like. Further, a cleaning process for cleaning the substrate is provided after the base protective film forming process is completed. The cleaning step includes at least an aqueous solution containing an acid, and it is particularly important to clean the substrate with an aqueous hydrofluoric acid solution. Dust and dust on the underlying protective film not only reduce the purity of the semiconductor formed on it, but also form amorphous nuclei when depositing an amorphous film, or It becomes a crystal nucleus when crystal is grown. That is, the presence of dust or dust on the underlying protective film lowers the purity of the finally obtained crystalline semiconductor film and at the same time reduces the amorphous grains of the amorphous film, and reduces the polycrystalline grains. This is because the density of crystal nuclei after ion implantation is increased, and thus the crystal grains of the melt crystallized film are made smaller, and eventually the performance of the thin film semiconductor device is degraded. Therefore, in order to obtain a good semiconductor device, it is necessary to sufficiently clean the substrate before the semiconductor film is deposited. Accordingly, a crystalline semiconductor film having high purity and large crystal grains will be obtained later. The substrate with the base protective film is washed with an aqueous solution containing a surfactant such as soap, an aqueous solution containing an acid, an aqueous solution containing an alkali, or an organic solvent such as an alcohol such as ethanol or a ketone such as acetone. As an aqueous solution containing an acid, sulfuric acid (H2SOFour), Hydrochloric acid (HCl), nitric acid (HNO)Three), Aqueous solution of hydrofluoric acid (HF), or sulfuric acid and hydrogen peroxide (H2O2) And pure water (H2O) (hereinafter abbreviated as sulfuric acid / hydrogen peroxide), hydrochloric acid, hydrogen peroxide and pure water (hydrochloric acid / water), nitric acid, hydrogen peroxide and pure water Liquid with nitric acid (abbreviated as nitric acid / hydrogen peroxide), sulfuric acid, hydrofluoric acid and pure water (H2A mixed solution of O), a mixed solution of hydrochloric acid, hydrofluoric acid and pure water, a mixed solution of nitric acid, hydrofluoric acid and pure water, a mixed solution of ammonia, hydrofluoric acid and pure water, etc. are particularly suitable. As an aqueous solution containing an alkali, ammonia (NHThree) Aqueous solution or a mixed solution of ammonia, hydrogen peroxide solution and pure water (abbreviated as ammonia overwater) is suitable. Before the semiconductor film is deposited, it is necessary to combine these various cleanings as appropriate, and finally to thoroughly wash away with pure water. As an example of preferable cleaning of the glass substrate, there is the following method.
(1) Organic solvent cleaning
(1-1) Cleaning with ketones such as acetone (removing organic substances)
(About 0 to 30 ° C, about 1 to 10 minutes)
(1-2) Washing alcohol such as ethanol (removing organic substances)
(About 0 to 30 ° C, about 1 to 10 minutes)
(1-3) Pure water cleaning (ketone and alcohol removal)
(About 0 to 30 ° C, about 1 to 10 minutes)
(2) Alkali cleaning
(2-1) Ammonia overwater cleaning (metal removal)
(About 50 minutes to 100 degrees C, about 1 minute to 10 minutes)
(2-2) Pure water cleaning (ammonia removal)
(About 0 to 50 ° C, about 1 to 10 minutes)
(3) Acid cleaning
(3-1) Sulfuric acid overwater cleaning (metal removal)
(About 50 minutes to 100 degrees C, about 1 minute to 10 minutes)
(3-2) Pure water cleaning (sulfuric acid removal)
(About 0 to 50 ° C, about 1 to 10 minutes)
(3-3) Hydrochloric acid overwater cleaning (metal removal)
(About 50 minutes to 100 degrees C, about 1 minute to 10 minutes)
(3-4) Pure water cleaning (hydrochloric acid removal)
(About 0 to 50 ° C, about 1 to 10 minutes)
(4) Removal of surface oxide film
(4-1) Hydrofluoric acid aqueous solution cleaning (oxide film surface removal and oxide film surface hydrogen termination)
(About 0 to 30 ° C, about 1 to 10 minutes)
(4-2) Pure water cleaning (hydrofluoric acid removal)
(About 0 to 30 ° C, about 1 to 10 minutes)
Of these four steps, the most important is the removal of the surface oxide film. This is because if the surface layer of the oxide film that forms the base protective film is removed, the metal, dust, etc. adhering to the surface layer are automatically removed. Therefore, when it is desired to minimize the cleaning process before the semiconductor film deposition in response to a request for simplification of the process, the cleaning process may be set so as to include at least cleaning of the surface oxide film removal. However, from the viewpoint of extending the life of the cleaning liquid used for removing the surface oxide film to increase the productivity and more reliably removing impurities on the undercoat protective film, an alkali cleaning or acid before the surface oxide film removing step is performed. Washing is preferably performed. In the cleaning for removing the surface oxide film, a mixed solution of a hydrofluoric acid aqueous solution and an alkaline aqueous solution such as ammonia may be used in addition to a mixed solution of hydrofluoric acid and pure water (hydrofluoric acid aqueous solution) as in the above example. This mixed solution has the advantage of reducing damage to the glass, and is most suitable for cleaning the surface oxide film when using a general alkali-free glass as a substrate. An example of a mixture of hydrofluoric acid aqueous solution and alkaline aqueous solution is ammonium fluoride (NHFourF) An aqueous solution is conceivable.
[0016]
After the above-described cleaning and the final rinse with pure water are completed, an amorphous semiconductor film is deposited on the base protective film. Various vapor deposition methods are available for semiconductor film deposition. From the standpoint that high-purity semiconductor films can be easily deposited, low-pressure chemical vapor deposition (LPCVD) is particularly suitable. It is. The substrate should be placed in the vapor deposition apparatus immediately (within about 2 hours at the longest) in order to prevent new dust and dirt from adhering to the substrate after washing with pure water is completed. The low pressure chemical vapor deposition method is performed in a high vacuum type low pressure chemical vapor deposition apparatus. This increases the purity of the semiconductor film and minimizes the generation of amorphous nuclei due to impurities, so that the crystalline semiconductor film finally obtained by the present invention is composed of high-purity and large crystal grains. It is for making it. The high vacuum type has a background vacuum degree of 5 × 10 immediately before deposition of the amorphous semiconductor film.-7In the apparatus that can be set to about Torr or less, specifically, the leakage flow rate from the outside of the apparatus to the film formation chamber is the maximum degassing total flow rate from the cleaned substrate (for example, the maximum degassing total of 17 glass substrates of 300 mm × 300 mm) The flow rate is 1 × 10-2(Sccm)) of about one tenth or less (according to the previous example, the leakage flow rate from the outside of the apparatus is 1 × 10-3(Sccm) or less). If the airtightness of the film formation chamber is inevitably less than one tenth of the maximum degassing flow rate from the substrate, the total impurity flow rate (to the film formation chamber) may be This is because there is no significant influence on the sum of the leakage flow rate from the outside of the apparatus and the degassing flow rate from the substrate. Such a high vacuum type low pressure chemical vapor deposition apparatus is not only excellent in airtightness of the film forming chamber, but also has an exhaust speed of 100 sccm / mTorr (100 sccm of inert gas in the film forming chamber). It is further desired to have an exhaust capability of about equal to or greater than the exhaust velocity at which the equilibrium pressure obtained when flowing through the exhaust gas is 1 mTorr. In such a device having a high exhaust capacity, the degassing flow rate of water etc. from a sufficiently cleaned substrate is lowered to a level below the leakage flow rate of the device in a relatively short time of about 1 hour to produce This is because it is possible to remarkably improve the performance.
[0017]
A semiconductor film mainly composed of silicon typified by an amorphous silicon film is a high-order silane (SinH2n + 2: N is an integer of 2 or more). In consideration of price and safety, disilane (Si2H6) Is the most suitable. In order to deposit a high-purity and high-quality semiconductor film, the leakage flow rate (Q from the outside of the low-pressure chemical vapor deposition apparatus)L) Higher silane flow rate (QSiH) Ratio (R = QL/ QSiH) Of about 10 ppm or less (R ≦ 10)-Five) (The previous leakage flow rate is 1 × 10-3In the case of an example of about (sccm), the disilane flow rate is about 100 sccm or more. ) As described above, the present invention uses a high vacuum type low pressure chemical vapor deposition apparatus and the degassing flow rate from the substrate is less than one tenth of the maximum degassing total flow rate. QL) Attempt to deposit semiconductor film after reaching below level. Therefore, the total impurity flow rate is the leakage flow rate from the outside (QL) And the same level. The substance that leaks from the outside of the apparatus to the film forming chamber is mainly air. Nitrogen, which accounts for 80% of the air, is inactive, so it does not cause a major problem with respect to semiconductor quality, and the oxygen that accounts for the remaining 20% is a problem as an impurity. On the other hand, among the higher order silanes introduced into the film formation chamber, the substances actually involved in the reaction and taken into the semiconductor film are about 20%, although there are some fluctuations depending on the film formation conditions. Yes. Therefore, even if the worst situation that is impossible in reality is that all impurities such as oxygen existing in the temporary film formation chamber are taken into the semiconductor film, the leakage flow rate (QL) Higher silane flow rate (QSiH) Ratio (R = QL/ QSiH) Of about 10 ppm or less (R ≦ 10)-Five), The concentration of unnecessary impurities such as oxygen atoms with respect to silicon atoms in the deposited semiconductor film is at most 1017cm-3Less than about (actually 1016cm-3This is because a high-purity semiconductor film can be obtained. When a high-purity polycrystalline semiconductor film is used as an active layer of a thin film semiconductor device (source / drain region or channel formation region of a field effect transistor, or emitter / base / collector region of a bipolar transistor), the semiconductor film forbidden band It has the effect of reducing the trap level in the medium and minimizing the decrease in mobility caused by the impurity element.
[0018]
In addition to the above conditions, the present invention further deposits an amorphous semiconductor film at a relatively low temperature of less than about 430 ° C. At this time, the pressure in the deposition chamber, the flow rate of the higher order silane, or the number of inserted substrates is set so that the deposition rate of the semiconductor film becomes about 0.5 nm / min or more. When an amorphous semiconductor film is deposited at such a low temperature (less than about 430 ° C.) and at a relatively high deposition rate, the amorphous grains constituting the amorphous film obtained by deposition generally increase, and thus The crystal grains of the polycrystalline film obtained when the amorphous film is crystallized significantly increase. As can be understood from this description, one important requirement for realizing a high-performance thin film semiconductor device is the deposition condition of the amorphous film. When an amorphous semiconductor film is deposited at a low temperature of less than about 430 ° C. and a deposition rate of about 0.5 nm / min or more, the generation rate of nuclei (amorphous nuclei) that are the growth source of amorphous grains is amorphous. It is slower than the growth rate of the material film, and therefore the amorphous grains constituting the deposited amorphous film become larger. However, if the substrate cleaning is insufficient when the semiconductor film is deposited, the impurities adhering to the substrate act as amorphous nuclei, so that the amorphous grains are made smaller. Similarly, if the density of the vapor deposition apparatus is insufficient (for example, R = QL/ QSiH> 10-Five) Impurity gas leaked from the outside to the deposition chamber adheres to the substrate and forms an arrow-shaped amorphous nucleus, resulting in an excellent amorphous film composed of large-sized amorphous particles. Absent. Further, if the substrate is not sufficiently dried in the film formation chamber (at this time, the background vacuum degree immediately before the semiconductor film deposition is 5 × 10-7Amorphous grains are reduced by exactly the same principle. In order to obtain a high-performance thin film semiconductor device, the substrate is sufficiently cleaned (at least the cleaning step for removing the surface oxide film), and the film forming device (R = QL/ QSiH≦ 10-Five) Is used to dry the substrate well in the film formation chamber (the background vacuum just before the semiconductor film deposition is 5 × 10-7After setting to about Torr or less, an amorphous semiconductor film is deposited at a deposition temperature of less than about 430 ° C. and a deposition rate of about 0.5 nm / min or more using a higher order silane such as disilane as a source gas. Because it is essential.
[0019]
The semiconductor film formed in the semiconductor film formation step is a polycrystalline semiconductor film. After the amorphous film is deposited by the method described so far, the amorphous film is crystallized and converted into a polycrystalline semiconductor film. In order to obtain a polycrystalline film from an amorphous film, the amorphous film may be crystallized in a solid state, or the amorphous film may be locally less than about 0.1% of the entire substrate and 10 ns. It may be crystallized through a melt state in a very short time of about 1 μs to about 1 μs. In order to crystallize in a solid state, for example, an amorphous film is inserted into a heat treatment furnace in a substantially thermal equilibrium state and subjected to heat treatment at a temperature of about 500 ° C. to 700 ° C. for several minutes to several days, or Heat treatment is performed at a temperature of about 600 ° C. to 900 ° C. for about 0.1 seconds to several minutes using a rapid heat treatment method (RTA method). The heat treatment temperature and time have a relationship that the treatment is completed in a short time as the temperature increases. Therefore, it is recognized that if crystallization is advanced at a high heat treatment temperature, productivity is improved. On the other hand, if the temperature is low, the generation density of crystal nuclei is lowered, so that an effect that a polycrystalline film having a large grain size can be obtained is recognized. Specifically, when the processing temperature is about 550 ° C., a heat treatment time of about one week is required, but at about 600 ° C. for several days, at about 650 ° C. for several hours, at about 700 ° C. for several minutes, at about 800 ° C. It takes a few seconds. Of course, in order to use such a relatively high temperature, it is premised that the heat resistance (strain temperature) of the substrate is at least about 150 ° C. higher than those temperatures. In view of these facts, it can be said that ideally the conditions between the heat treatment at about 550 ° C. for about one week and the heat treatment at about 650 ° C. for several hours are suitable. This method has the effect that the entire substrate is in thermal equilibrium, giving up a uniform polycrystalline film over the entire surface of the substrate, and making the electrical characteristics of the semiconductor device finally produced uniform across the substrate. Have
[0020]
In order to crystallize an amorphous semiconductor film through a local extremely short melting state, it is easiest to irradiate the amorphous film with laser light. Local melt-crystallization in a very short time has the advantage that the substrate selection range can be expanded without causing thermal damage to the substrate. As the laser light, excimer laser light can be used. More specifically, xenon chlorine (XeCl) excimer laser light (wavelength 308 nm), krypton fluorine (KrF) excimer laser light (wavelength 248 nm), or the like is used. Laser irradiation of an amorphous semiconductor film can be classified into three types of phases according to the state of the semiconductor film after irradiation (FIG. 4). That is, the irradiation laser energy density is too weak and the amorphous phase remains in an amorphous state after irradiation, the polycrystalline phase in which a polycrystalline state is obtained after irradiation at an appropriate irradiation energy density, and the irradiation energy density is too strong. It is a microcrystalline phase that becomes a microcrystalline state after irradiation. Separating the amorphous phase from the polycrystalline phase is the surface melting energy density (ESM), The extreme surface of the amorphous semiconductor film is melted at this energy density. Since only the surface of the semiconductor film melts, the surface melting energy density is independent of the thickness of the semiconductor film. On the other hand, the complete melting energy density (EcmAt this energy density, the amorphous semiconductor film is completely melted over the entire region in the film thickness direction. Therefore, the complete melting energy density (Ecm) Increases its value as the semiconductor film becomes thicker. The ideal laser energy density for converting an amorphous film into a polycrystalline film in the semiconductor film forming process of the present invention is EiIn terms of EiThe value of satisfies the following inequality.
[0021]
(Ecm-ESM) × kL+ ESM<Ei<(Ecm-ESM) × kH+ ESM
kL= 0.85
kH= 0.95
As this equation shows, the laser energy density E of the present invention isiIs set between 85% and 95% of the polycrystalline phase energy density, which means that about 85% to 95% is melted in the thickness direction of the semiconductor film. Ideal laser energy density EiUsing kiThe
Ei= (Ecm-ESM) × ki+ ESM
Define the above inequality as
kL<Ki<KH
kL= 0.85
kH= 0.95
Is rewritten. That is, kiWhen laser light irradiation is performed with a thickness of about 0.85 to about 0.95, about 85% to about 95% in the thickness direction of the semiconductor film is melted, and the resulting polycrystalline film is formed from relatively large crystal grains. Will be composed. Therefore, in the subsequent ion implantation process, the crystal nucleus density can be drastically reduced, and the electrical characteristics of the finally obtained semiconductor device are also improved. To obtain large grain size EiE as much as possiblecmIt is desirable to be close to However, as detailed in the prior art section, the output fluctuation of the current excimer laser device is recognized on the order of several percent.HWhen the value is larger than about 0.97, it is recognized that the semiconductor film may enter the microcrystalline phase and finish. In the present invention, EiThe value of EcmIs sufficiently smaller than the output deviation of the laser device (kH= 0.95). By doing so, the average crystal grain size does not become so large at this stage, while the crystal grain size deviation becomes small. The average diameter of the crystal grains is increased after the next step. The melt crystallization is performed so that the same point of the semiconductor film is repeated about 20 times or more and about 80 times or less.
[0022]
In this way, rare gas element ions are implanted into the polycrystalline semiconductor film formed in the semiconductor film formation step, thereby reducing the crystal nucleus density by one step. The ions implanted in the ion implantation step are preferably rare gas elements such as argon (Ar) ions, helium (He) ions, or neon (Ne) ions. This is because these elements are chemically inert and therefore remain in the semiconductor without affecting the electrical characteristics of the semiconductor device. On the other hand, semiconductor elements such as silicon and germanium are also candidates as ion implantation elements, but the range of ion implantation is set near the lower interface of the semiconductor film, as will be described later. For this reason, when the semiconductor element is implanted, the lower interface of the semiconductor film has an unclear spread, and the energy band is bent over the entire semiconductor film. The semiconductor characteristics will be adversely affected. In the case of a rare gas element, even if the range center is set near the lower interface, the lower interface is not disturbed. Therefore, even if a fully depleted semiconductor device is produced, good performance is exhibited. If the rare gas element is argon, the advantage is that the manufacturing cost is reduced and the mass is heavy, so that it is easy to destroy the polycrystalline film and minimize the crystal nucleus density. If the rare gas element is helium, there is an advantage that it is easily detached from the semiconductor film and does not remain after being implanted into the semiconductor film. If the rare gas element is neon, the crystal grains can be destroyed to some extent in the middle of these and the residual in the semiconductor film can be minimized.
[0023]
When rare gas element ions such as argon are implanted into the semiconductor film, the maximum concentration (concentration at the center of the range) of the rare gas element ions in the semiconductor film is 2 × 10.19cm-3About 1 × 10twenty onecm-3Try to be less than or equal to. 2 × 1019cm-3If implanted at a concentration higher than about, most of the crystal grains constituting the polycrystalline semiconductor film are surely destroyed. 1 × 10twenty onecm-3If the implantation is less than or equal to the degree, the rare gas ion element is released from the semiconductor film in a later thermal process, and does not reduce the density of the semiconductor film or create voids in the semiconductor film. As an ideal driving amount, the concentration at the center of the range is 5 × 10.19cm-3About 3 × 1020cm-3Between degrees.
[0024]
The process is performed so that the range center of the rare gas element ions to be implanted exists between the lower interface of the semiconductor film and about 40% of the thickness from the lower interface of the semiconductor film. For example, if the thickness of the semiconductor film is 50 nm, the ion acceleration energy at the time of ion implantation is set so that the center of the range is between the lower interface and 20 nm from the lower interface. This is because there are many crystal nuclei in the subsequent step of forming a crystalline semiconductor film near the lower interface of the semiconductor film, and it is required to destroy these efficiently. In rare gas ion implantation, the semiconductor around the center of the range suffers the most damage, and therefore the crystal nucleus density is most reliably reduced. The most reliable destruction of the part with the highest crystal nucleus density is to align the range center with that part. In other words, the ion implantation process is performed such that the range center of the rare gas element ions implanted in the ion implantation process is within 10 nm ± 10 nm from the lower interface of the semiconductor film.
[0025]
Although the rare gas element ions may be uniformly implanted into the entire semiconductor thin film, it is particularly preferable that the rare gas element ions be selectively implanted only into the channel forming region of the semiconductor device and its neighboring region (FIG. 5A). ). The near region specifically indicates a region within about 1 μm from a region that will be a channel formation region of the thin film semiconductor device later. FIG. 5A shows a device cross-sectional view in the local ion implantation step, and FIG. 5B shows a semiconductor device cross-sectional view created through the local ion implantation step. In FIGS. 5A and 5B, the channel forming regions are drawn to coincide with each other. From these figures, it can be seen that the region into which the rare gas element ions are implanted is a portion of the semiconductor film that will later come under the gate electrode and its periphery. When rare gas element ions are uniformly implanted throughout the semiconductor film, the crystal nucleus density is uniformly reduced throughout the semiconductor film, and large crystal grains are formed throughout. On the other hand, when a rare gas element ion is selectively implanted only into a specific portion of the semiconductor thin film, the semiconductor film is destroyed only at this portion, and the crystal nucleus density is significantly reduced. On the other hand, the polycrystalline film protected by the ion implantation protective film remains in a polycrystalline state. That is, the crystal nucleus density remains high. For this reason, when the semiconductor film is melted and recrystallized in the next crystalline semiconductor film forming step, the region into which the rare gas element ions are implanted is laterally formed using the peripheral polycrystalline film as the nucleus of crystal growth. Growth occurs. The crystal growth rate at the time of melt crystallization is about 10 m / s, and the melting time varies from about 100 nm to about 400 nm depending on the laser irradiation conditions, so that the lateral growth distance of the crystal is about 1 μm to 4 μm. Eventually, about 1 μm to 4 μm on the left and right sides of the ion-implanted region are laterally grown from the polycrystalline body covered with the ion implantation protective film. This indicates the fact that a certain degree of grain boundary control is possible with a transistor having a short gate length (FIG. 5C). For example, under the condition that the lateral growth is 4 μm, even if the distance between neighboring regions is 1 μm, the transistor having a gate length of 6 μm or less always has only one crystal grain boundary crossing the source / drain direction at the center of the channel formation region. . FIG. 5C schematically illustrates this situation. Crystal grains laterally grown from the right and left polycrystals collide with each other at a substantially central portion of the gate electrode to form only one crystal grain boundary crossing the source / drain direction (this is referred to as a lateral growth effect). Since the mobility of the polycrystalline transistor shows a large decrease when electrons or holes cross the grain boundary, the polycrystalline semiconductor device having such a structure clearly shows excellent performance. In a transistor having a long gate length, a region where lateral growth has not reached grows with the same crystal nucleus density as that of the semiconductor film in which ions are uniformly implanted into the entire region. In these regions as well, since the crystal nucleus generation density is significantly lower than in the conventional case, the semiconductor film is composed of crystal grains having a large grain size although lateral growth does not reach. In such a transistor, the effect of large crystal grains and the effect of lateral growth work together to form a semiconductor device that is remarkably superior to conventional ones. As described above, in order to maximize the lateral growth effect, it is desired that the gate length is about 8 μm or less, and the gate length is preferably about 6 μm or less in consideration of the neighborhood region distance.
[0026]
If the channel formation region (FIG. 5A) when the local ion implantation process is performed and the channel formation region (FIG. 5B) after the fabrication of the semiconductor device exactly match, laterally grown crystal grains are formed in the channel formation region. In order to take in as much as possible (in order to take in the lateral growth effect as much as possible), it is preferable that the distance between neighboring regions is small. However, in reality, an alignment error always occurs during the manufacturing process, and these channel formation regions do not exactly match. Therefore, the minimum value of the neighborhood region distance is set larger than the maximum value of the alignment error. Since the alignment error when using a large glass substrate such as 400 mm × 500 mm or 550 mm × 650 mm is about 0.3 μm, the distance between adjacent regions is set to about 1 μm with a margin. Of course, if the alignment error is reduced, the neighborhood region distance can also be reduced. Since the lateral growth effect in the transistor becomes stronger as the neighborhood region distance is smaller, this distance is never short. When the neighborhood region distance is shorter than the crystal lateral growth distance, the lateral growth effect of the transistor occurs. Therefore, the maximum value of the neighborhood region distance is the maximum value of the crystal lateral growth distance, and it can be said that the value is about 4 μm.
[0027]
Thus, after the crystal nucleus density is drastically reduced in the ion implantation process, at least the surface of the semiconductor film is melted and crystallized in the crystalline semiconductor film forming process, and a large-grain crystalline semiconductor film or a lateral growth effect is recognized. A crystalline semiconductor film is obtained. In the crystalline semiconductor film forming step, it is preferable that the semiconductor film is irradiated with light from the front side to promote melt crystallization of the semiconductor film. The reason why light irradiation is performed from the front side is that crystal growth nuclei controlled by an ion implantation process or the like are located in the vicinity of the lower interface of the semiconductor film, and crystallization is advanced using these controlled nuclei. If light is irradiated from the front side, the temperature on the front side is always higher than that near the lower interface, and crystal growth nuclei near the lower interface can be used. As the light irradiation, laser light irradiation which has high energy efficiency and can be crystallized through a local extremely short-time melting state of the semiconductor film is optimal. This is because such laser light irradiation hardly causes thermal damage to the substrate. Among the laser light, excimer laser light can be used, and more specifically, xenon chlorine (XeCl) excimer laser light (wavelength 308 nm), krypton fluorine (KrF) excimer laser light (wavelength 248 nm), or the like is used.
[0028]
In order to irradiate excimer laser light to a semiconductor film ion-implanted locally or uniformly throughout the crystalline semiconductor film forming step, the laser energy density at that time is set to ECRIn terms of ECRThe value of satisfies the following inequality.
[0029]
(Ecm-ESM) × kLC+ ESM<ECR<(Ecm-ESM) × kHC+ ESM
kLC= 0.85
kHC= 0.97
E herecmIs the complete melt energy density of the implanted semiconductor film, ESMIs the surface melting energy density of the semiconductor film implanted with the arrow ions. Energy density E of laser light irradiated in crystalline semiconductor film formation processCRIs set between 85% and 97% of the polycrystalline phase energy density. Irradiation laser energy density ECRUsing kCRThe
ECR= (Ecm-ESM) × kCR+ ESM
Define the above inequality as
kLC<KCR<KHC
kLC= 0.85
kHC= 0.97
Is rewritten. That is, ideally kCRWhen laser light irradiation is performed with a thickness of about 0.85 to about 0.97, approximately 85% to 97% in the thickness direction of the semiconductor film is melted, and the resulting polycrystalline film is composed of large crystal grains. It will be. Considering excimer laser light fluctuations, kHCIs substantially about 0.95. In order to ensure good characteristics, kLCIs substantially about 0.89. The melt crystallization is performed so that the same point of the semiconductor film is repeated about 20 times or more and about 80 times or less. When laser light irradiation is performed to obtain a polycrystalline semiconductor film in the semiconductor film forming process, each process is performed so that the total number of times of irradiation is about 120 times or less at the same point of the semiconductor film in combination with the laser irradiation of this process. Adjust. This is to prevent surface roughness and impurity contamination when the total number of irradiations is too large, and to obtain a smooth and clean MOS interface.
[0030]
Example 1
FIGS. 6A to 6E are cross-sectional views showing a manufacturing process of a thin film semiconductor device for forming a MOS field effect transistor. In Example 1, crystallized glass having a glass strain point temperature of 750 ° C. was used as the
[0031]
Monosilane (SiHFour) Flow rate ... 60sccm
Oxygen (O2) Flow rate ... 100sccm
Pressure ... 2.40 mTorr
Microwave (2.45 GHz) output: 2250 W
Applied magnetic field: 875 Gauss
Substrate temperature ... 100 ° C
Deposition time: 40 seconds
Next, after depositing the base protective film, the substrate was cleaned by the following procedure.
[0032]
(1) Isopropyl alcohol cleaning by ultrasonic irradiation (27 ° C, 5 minutes)
(2) Nitrogen bubbled pure water cleaning (27 ° C., 5 minutes)
(3) Ammonia overwater cleaning (80 ° C., 5 minutes)
(4) Cleaning with pure water with nitrogen bubbling (27 ° C, 5 minutes)
(5) Sulfuric acid overwater cleaning (97 ° C, 5 minutes)
(6) Nitrogen bubbled pure water cleaning (27 ° C., 5 minutes)
(7) Diluted hydrofluoric acid aqueous solution (hydrofluoric acid concentration 1.67%) cleaning (27 ° C., 20 seconds)
(8) Pure water cleaning with nitrogen bubbling (27 ° C., 5 minutes)
By the seventh diluted hydrofluoric acid aqueous solution cleaning, the surface layer portion of the underlying oxide film is removed by about 10 nm. An intrinsic amorphous silicon film was deposited to a thickness of about 50 nm by the LPCVD method on the base protective film thus cleaned. The time from the completion of the eighth pure water cleaning until the substrate was installed in the film forming chamber of the LPCVD apparatus was about 25 minutes.
[0033]
The LPCVD system is a hot wall type with a volume of 184.5 l, and the total reaction area after inserting the substrate is about 44000 cm.2It is. The maximum exhaust speed in the film forming chamber is 120 sccm / mTorr. The deposition temperature was 425 ° C., and the substrate was heated and dried at this temperature for 1 hour and 15 minutes. During the drying heat treatment, the deposition chamber in which the substrate is installed has a helium (He) purity of 99.9999% or higher of 200 (sccm) and a hydrogen purity of 99.9999% or higher (H2) Was introduced at 100 (sccm), and the pressure in the film formation chamber was maintained at about 2.5 mTorr. When the film forming chamber is isolated after the drying process, the pressure increase in the film forming chamber is 9.4 × 10-6Since it was Torr / min, the leakage flow rate from the outside of the apparatus (QL) And the total degas flow rate (QTL) In accordance with Boyle-Charles's law
QTL(Sccm) = 273.15 (K) /698.15 (K)
× 9.4 × 10-6(Torr / min) / 760 (Torr)
× 184.5 × 10Three(CmThree)
= 8.93 × 10-Four(Sccm)
It is. Disilane having a purity of 99.99% or more (Si2H6) Was supplied to the film formation chamber at a flow rate of 200 sccm, so that the total impurity leakage flow rate (QTLRatio of higher order silane toTL/ QSiH) Is 4.465 × 10-6It becomes. Therefore, the leakage flow rate (QL) Higher silane flow rate (QSiH) Ratio (R = QL/ QSiH) Is 4.465 ppm or less. The degree of vacuum in the film forming chamber immediately before deposition of the semiconductor film after such drying treatment is 2.3 × 10 6 under the temperature equilibrium condition at 425 ° C.-7It was Torr. The deposition pressure during the deposition of the amorphous silicon film is about 1.1 Torr, and under this condition, the deposition rate of the silicon film is 0.77 nm / min.
[0034]
Next, the amorphous semiconductor film thus obtained was subjected to a heat treatment to crystallize the amorphous film in a solid phase. The heat treatment was performed for 24 hours at a temperature of 600 ° C. in a mixed gas atmosphere of 99% nitrogen and 1% oxygen at atmospheric pressure. By this heat treatment, the semiconductor film is modified from an amorphous state to a polycrystalline state (end of the semiconductor film forming step).
[0035]
Next, as an ion implantation process,
[0036]
After completion of the ion implantation process, the photoresist, which is an ion implantation protective film, is peeled off. As a crystalline semiconductor film formation process, a silicon film locally implanted with argon ions is irradiated with an excimer laser beam of xenon chlorine (XeCl), Melt recrystallization proceeded. The laser beam was condensed into a line having a width of 350 μm and a length of 15 cm, and the substrate was scanned by shifting the line-shaped light in the width direction by 2.5% for each irradiation. Therefore, the same spot on the semiconductor film is subjected to 40 times of laser light irradiation. The irradiation energy density of laser light is 385 mJ · cm-2It was in. In the excimer laser beam used in the first embodiment, an energy density E that melts only the outermost surface of a 50 nm semiconductor film implanted with argon ions.SMIs 120mJ · cm-2The energy density E for complete meltingcm400mJ · cm-2It was in. Therefore, the irradiation energy density of 385 mJ · cm-2Is kCROf 0.946, and about 94.6% melted in the film thickness direction of the semiconductor film. The crystalline silicon film thus obtained was patterned to form an
[0037]
Next, a
[0038]
Oxygen (O2) Flow rate ... 100sccm
Pressure ... 1.85 mTorr
Microwave (2.45 GHz) output: 2000 W
Applied magnetic field: 875 Gauss
Substrate temperature ... 100 ° C
Processing time: 24 seconds
An oxide film of approximately 3.5 nm is formed on the semiconductor surface by plasma oxidation. After the oxygen plasma irradiation was completed, an oxide film was deposited continuously while maintaining a vacuum. Therefore, the silicon oxide film serving as the gate insulating film is composed of a plasma oxide film and a vapor deposition film, and its film thickness is 126 nm. Thus, the gate insulating film deposition was completed (FIG. 6c).
[0039]
Subsequently, a gate electrode 111 is formed by sputtering using a metal thin film. The substrate temperature during sputtering was 150 ° C. In Example 1, a gate electrode was made of tantalum (Ta) with an α structure having a thickness of 750 nm, and the sheet resistance of the gate electrode was 0.8Ω / □. Next,
[0040]
Next, TEOS (Si- (OCH2CHThree)Four) And oxygen as source gases, and an
[0041]
The transfer characteristics of the thin film semiconductor device thus prepared were measured. The length and width of the channel formation region of the measured semiconductor device were 10 μm, respectively, and the measurement was performed at room temperature. Mobility ± standard deviation obtained from saturation region at Vds = 8V of NMOS transistor is 216.9 ± 1.9 cm2・ Vー 1・ S-1The threshold voltage was 3.458 ± 0.206V, and the subthreshold swing was 0.4253 ± 0.0087V. The mobility obtained from the saturation region of the PMOS transistor at Vds = −8 V is 72.4 ± 3.8 cm.2・ Vー 1・ S-1The threshold voltage was -3.640 ± 0.241V, and the sub-threshold swing was 0.3457 ± 0.0174V. As these measurement results show, these semiconductor devices have almost no variation in the characteristics in the substrate, and high-performance semiconductor devices are uniformly manufactured. On the other hand, in the comparative example in which an amorphous silicon film is deposited and crystallized with a XeCl excimer laser by the prior art, the mobility of the NMOS transistor is 112.2 ± 25.3 cm.2・ Vー 1・ S-1The threshold voltage is 3.908 ± 0.421V, the subthreshold swing is 0.5866 ± 0.0956V, and the mobility of the PMOS transistor is 40.8 ± 9.9 cm.2・ Vー 1・ S-1The threshold voltage was −4.505 ± 0.946V, and the sub-threshold swing was 0.4923 ± 0.0740V. As shown in this example, according to the present invention, both N-type and P-type semiconductor devices have a high mobility, a low threshold voltage, and a good thin film semiconductor device exhibiting steep subthreshold characteristics is a general purpose glass. This is because it can be easily, easily and stably produced in a low-temperature process in which a substrate can be used. In addition, the fluctuation range was reduced in all electrical characteristics.
[0042]
【The invention's effect】
As described above in detail, the present invention can easily and stably modify a polycrystalline thin film semiconductor device, which has conventionally had a low quality and a large variation in quality, into a high performance and uniform thin film semiconductor device. The effect of enhancing the operational stability is recognized. Based on such facts, the effects of high-speed operation of the semiconductor device circuit and reduction of the power supply voltage are brought about, and the effect of leading to high-speed response and energy saving of the electronic device is recognized.
[Brief description of the drawings]
FIG. 1 illustrates the principle of the present invention.
FIG. 2 is a diagram illustrating the principle of the present invention.
FIG. 3 is a diagram illustrating the principle of the present invention.
FIG. 4 is a diagram illustrating a phase of laser crystallization.
FIG. 5 is a diagram illustrating the principle of the present invention.
FIG. 6 is a diagram illustrating a manufacturing process of the present invention.
[Explanation of symbols]
101 ... Substrate
102 ... Underlying protective film
103 ... polycrystalline semiconductor film
104 ... Ion implantation protective film
105 ... Channel formation region
106 ... Neighborhood area
107: Noble gas element ion
108 ... Broken semiconductor film
109 ... Island of semiconductor film
110 ... Gate insulating film
111 ... Gate electrode
112 ... Impurity ions
113 ... Source / drain region
114 ... Channel formation region
115 ... Interlayer insulating film
116: Wiring
Claims (12)
前記第1の半導体膜上にイオン注入保護膜を形成する保護膜形成工程と、
前記第1の半導体膜の一部に希ガス元素イオンを打ち込み、前記結晶粒を含む第1結晶質領域と、前記結晶粒を含む第2結晶質領域と、前記第1結晶質領域と前記第2結晶質領域とに挟持された前記結晶粒を含まない非晶質領域と、前記非晶質領域と前記基板との間に狭持された、前記基板と前記第1の半導体膜との界面の前記第1の半導体膜内に形成された結晶粒を含む第3結晶質領域と、を有する第2の半導体膜を形成するイオン注入工程と、
前記第2の半導体膜を結晶化し、前記第1結晶質領域と前記第2結晶質領域と前記第3結晶質領域とから、前記非晶質領域へ結晶を成長させ、第3の半導体膜を形成する結晶化工程と、を有し、
前記第1結晶質領域から成長した第1結晶粒と、前記第2結晶質領域から成長した第2結晶粒とが、前記非晶質領域において粒界を形成し、
前記非晶質領域には、前記第3結晶質領域から成長した第3結晶粒が形成されていることを特徴とする半導体装置の製造方法。A semiconductor film forming step of forming a first semiconductor film containing crystal grains on a substrate;
A protective film forming step of forming an ion implantation protective film on the first semiconductor film;
A rare gas element ion is implanted into a part of the first semiconductor film, the first crystalline region including the crystal grains, the second crystalline region including the crystal grains, the first crystalline region, and the first crystalline region. An amorphous region not including the crystal grains sandwiched between two crystalline regions; and an interface between the substrate and the first semiconductor film sandwiched between the amorphous region and the substrate An ion implantation step of forming a second semiconductor film having a third crystalline region including crystal grains formed in the first semiconductor film;
Crystallizing the second semiconductor film, growing a crystal from the first crystalline region, the second crystalline region, and the third crystalline region to the amorphous region, and forming a third semiconductor film A crystallization step to form,
A first crystal grain grown from the first crystalline region and a second crystal grain grown from the second crystalline region form a grain boundary in the amorphous region;
3. A method of manufacturing a semiconductor device, wherein third crystal grains grown from the third crystalline region are formed in the amorphous region.
前記基板が前記第1の半導体膜に面している下地保護膜を含み、該下地保護膜が1012cm-2程度以下の界面準位を有する酸化硅素膜である、半導体装置の製造方法。In claim 1,
A method for manufacturing a semiconductor device, wherein the substrate includes a base protective film facing the first semiconductor film, and the base protective film is a silicon oxide film having an interface state of about 10 12 cm −2 or less.
前記第2の半導体膜が結晶核の密度を3×107cm-2程度未満とすることを特徴とする、半導体装置の製造方法。In claim 1 or 2,
The method of manufacturing a semiconductor device, wherein the second semiconductor film has a density of crystal nuclei of less than about 3 × 10 7 cm −2 .
前記第1の半導体膜の結晶核密度より前記第2の半導体膜の結晶核密度のほうが小さい、半導体装置の製造方法。In any of claims 1 to 3,
A method for manufacturing a semiconductor device, wherein the crystal nucleus density of the second semiconductor film is smaller than the crystal nucleus density of the first semiconductor film.
前記第1の半導体膜の結晶粒径より前記第3の半導体膜の結晶粒径のほうが大きい、半導体装置の製造方法。In any of claims 1 to 4,
A method for manufacturing a semiconductor device, wherein the crystal grain size of the third semiconductor film is larger than the crystal grain size of the first semiconductor film.
前記結晶化工程が、前記第2の半導体膜にレーザー光を前記第2の半導体膜の基板とは反対側の表面から照射して、前記第2の半導体膜の表面側から前記第2の半導体膜へ向かう膜厚に対して、85%以上97%以下を溶融させるエネルギーを用いて前記第2の半導体膜を溶融させる、半導体装置の製造方法。In any of claims 1 to 5,
In the crystallization step, the second semiconductor film is irradiated with laser light from the surface of the second semiconductor film opposite to the substrate, and the second semiconductor film is irradiated from the surface side of the second semiconductor film. A method for manufacturing a semiconductor device, wherein the second semiconductor film is melted using energy that melts 85% or more and 97% or less of the film thickness toward the film.
前記イオン注入工程において、前記希ガス元素イオンの前記第2半導体膜の前記結晶粒を含まない非晶質領域中での最大濃度が5×1019cm-3程度から3×1020cm-3である、半導体装置の製造方法。In any one of Claims 1 thru | or 6.
In the ion implantation step, the maximum concentration of the rare gas element ions in the amorphous region not including the crystal grains of the second semiconductor film is about 5 × 10 19 cm −3 to 3 × 10 20 cm −3. A method for manufacturing a semiconductor device.
前記イオン注入工程において、前記希ガス元素イオンの飛程中心が前記基板と前記第1の半導体膜との界面と、該界面より20nm離れた前記第1の半導体膜の中との間にある、半導体装置の製造方法。In any one of Claims 1 thru | or 7,
In the ion implantation step, a range center of the rare gas element ions is between the interface between the substrate and the first semiconductor film and the first semiconductor film that is 20 nm away from the interface. A method for manufacturing a semiconductor device.
前記イオン注入工程において、前記希ガス元素イオンの打ち込まれた部分の少なくとも一部をトランジスタのチャネル領域に用いる、半導体装置の製造方法。In any of claims 1 to 8,
A method for manufacturing a semiconductor device, wherein in the ion implantation step, at least a part of a portion into which the rare gas element ions are implanted is used for a channel region of a transistor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000020819A JP3941316B2 (en) | 1999-11-29 | 2000-01-28 | Semiconductor device manufacturing method, electronic device manufacturing method, semiconductor device, and electronic device |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11-338165 | 1999-11-29 | ||
JP33816599 | 1999-11-29 | ||
JP2000020819A JP3941316B2 (en) | 1999-11-29 | 2000-01-28 | Semiconductor device manufacturing method, electronic device manufacturing method, semiconductor device, and electronic device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001223359A JP2001223359A (en) | 2001-08-17 |
JP3941316B2 true JP3941316B2 (en) | 2007-07-04 |
Family
ID=26576022
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000020819A Expired - Lifetime JP3941316B2 (en) | 1999-11-29 | 2000-01-28 | Semiconductor device manufacturing method, electronic device manufacturing method, semiconductor device, and electronic device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3941316B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7160762B2 (en) | 2002-11-08 | 2007-01-09 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device, semiconductor device, and laser irradiation apparatus |
JP4429586B2 (en) | 2002-11-08 | 2010-03-10 | 株式会社半導体エネルギー研究所 | Method for manufacturing semiconductor device |
TWI279852B (en) * | 2004-03-16 | 2007-04-21 | Imec Inter Uni Micro Electr | Method of manufacturing a semiconductor on a silicon on insulator (SOI) substrate using solid epitaxial regrowth (SPER) and semiconductor device made thereby |
JP5126730B2 (en) * | 2004-11-10 | 2013-01-23 | キヤノン株式会社 | Method for manufacturing field effect transistor |
JP5132637B2 (en) * | 2009-07-28 | 2013-01-30 | 株式会社半導体エネルギー研究所 | Method for manufacturing semiconductor device |
-
2000
- 2000-01-28 JP JP2000020819A patent/JP3941316B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2001223359A (en) | 2001-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100327086B1 (en) | Fabrication method for a thin film semiconductor device, the thin film semiconductor device itself, liquid crystal dispaly, and electronic device | |
JP4323724B2 (en) | Manufacturing method of semiconductor device | |
JP2001210828A (en) | Manufacturing method of thin-film semiconductor device | |
JP4919546B2 (en) | Method for forming polycrystalline silicon film | |
JP3941316B2 (en) | Semiconductor device manufacturing method, electronic device manufacturing method, semiconductor device, and electronic device | |
JP3596188B2 (en) | Method for manufacturing thin film transistor | |
JP2000269133A (en) | Method for manufacturing thin film semiconductor device | |
JPH1168109A (en) | Production of polycrystalline thin film and production of thin-film transistor | |
JP4258476B2 (en) | Method for manufacturing thin film semiconductor device | |
JP4281753B2 (en) | Method for manufacturing thin film semiconductor device | |
JP3707287B2 (en) | Manufacturing method of semiconductor device | |
JP4214989B2 (en) | Manufacturing method of semiconductor device | |
JP3837935B2 (en) | Method for manufacturing thin film semiconductor device | |
JP4737366B2 (en) | Manufacturing method of semiconductor device | |
JPH06181313A (en) | Thin film transistor and its manufacturing method | |
JP2000106439A (en) | Method for manufacturing thin film semiconductor device | |
JP4200530B2 (en) | Thin film transistor manufacturing method | |
JP3837934B2 (en) | Manufacturing method of semiconductor device | |
JP2000286211A (en) | Method for manufacturing thin film semiconductor device | |
JP2000260708A (en) | Method for manufacturing thin film semiconductor device | |
JP2000182957A (en) | Method for manufacturing thin film semiconductor device | |
JPH11186552A (en) | Manufacture of thin-film transistor | |
JPH10303128A (en) | Film formation method | |
JP2004241784A (en) | Method for manufacturing thin film transistor | |
JP3837937B2 (en) | Method for manufacturing thin film semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040219 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051117 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051122 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051205 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060926 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061122 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20061220 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070313 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070326 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3941316 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110413 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110413 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120413 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130413 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130413 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140413 Year of fee payment: 7 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |