[go: up one dir, main page]

JP3940826B2 - 三次元形状計測装置 - Google Patents

三次元形状計測装置 Download PDF

Info

Publication number
JP3940826B2
JP3940826B2 JP18404397A JP18404397A JP3940826B2 JP 3940826 B2 JP3940826 B2 JP 3940826B2 JP 18404397 A JP18404397 A JP 18404397A JP 18404397 A JP18404397 A JP 18404397A JP 3940826 B2 JP3940826 B2 JP 3940826B2
Authority
JP
Japan
Prior art keywords
sensor
moving frame
measurement
light
dimensional shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18404397A
Other languages
English (en)
Other versions
JPH10122850A (ja
Inventor
千代春 堀口
繁夫 高橋
哲夫 天野
浩幸 松浦
庫治 渡瀬
日出男 晝馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP18404397A priority Critical patent/JP3940826B2/ja
Priority to TW086112369A priority patent/TW349168B/zh
Priority to CN97117515A priority patent/CN1089891C/zh
Priority to US08/919,332 priority patent/US5850290A/en
Priority to DE69727632T priority patent/DE69727632T2/de
Priority to KR1019970045889A priority patent/KR100474165B1/ko
Priority to EP97306657A priority patent/EP0829231B1/en
Publication of JPH10122850A publication Critical patent/JPH10122850A/ja
Application granted granted Critical
Publication of JP3940826B2 publication Critical patent/JP3940826B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0064Body surface scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1077Measuring of profiles

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、人体などの被計測体の三次元形状を計測する三次元形状計測装置に関する。
【0002】
【従来の技術】
従来の三次元形状計測装置としては、特公平5−71882号公報に記載されるものが知られている。この三次元形状計測装置は、図13に示されるように、距離検出用の検出ヘッド121を複数備えた垂直移動自在な距離計測リング120と、その距離計測リング120の垂直移動を案内するガイド部材102と、距離計測リング120を移動させる駆動機構103とを具備して構成されている。この三次元形状計測装置によれば、距離計測リング120内に人体などの被計測体2を配した状態において、検出ヘッド121を作動させながら距離計測リング120を上下動させ、距離計測リング120の各垂直位置における各検出ヘッド121の距離データを集計してデータ処理することにより、被計測体の三次元形状が計測される。また、三次元形状計測装置は、距離計測リング120の重量が大きいため慣性により等速度で移動させるまでに時間を要し、その間は正確な形状測定が行えないという不具合に鑑みて、距離計測リング120の移動時における位置を検出して検出ヘッド121の動作とタイミングをとることにより、被計測体2の形状を正確に計測しようとしたものである。
【0003】
【発明が解決しようとする課題】
しかしながら、前述した従来の三次元形状計測装置にあっては次のような種々の問題点がある。
【0004】
まず第一に、被計測体の表面形状を正確に測定するためには、多数の検出ヘッド121が必要となるため、コストが増大してしまう。さらに、それらを所定の方向に向けて正確に配置する必要があり、調整が困難である。このため、設置後に技術者による長時間の調整が必要で、導入コストの増大を招いていた。
【0005】
第二に、距離計測リング120に設置されている各検出ヘッド121(距離センサ)が距離計測リング120の中心方向を向いているため、被計測体2が人体などの表面に凹凸のある場合、その凹部にあたる脇の下の部分や両足の股下の部分については被計測体自体の別の部位、例えば腕や腿により遮られてしまうので、正確な形状が計測できない。
【0006】
第三に、被計測体が人体などの重量の大きいものであるとき、計測のために装置内へ被計測体を配置すると、被計測体の重量により装置が微妙に歪む場合があり、その場合に距離計測リングと被計測体の相対位置にズレを生じて正確な計測が行えない。そのような不具合を解消するために、装置の枠組みを強固なものとし剛性を高めることが考えられるが、そのようにすると、装置全体の重量が非常に大きいものとなって、装置の組立作業や設置作業などが困難となり、非常に取扱い性の悪いものとなる。また、その重量に耐え得る床面を有する箇所でなければ設置することできず、設置箇所も制限される。更に、装置の部品コストの増加の一因ともなる。
【0007】
第四に、距離計測リングの可動範囲より小さいものしか計測が行えない。すなわち、被計測体が背の高いものであって距離計測リングの可動範囲より大きいものであるとき、当然のことながら距離計測リングの可動範囲でしか被計測体の形状を計測することができない。つまり、被計測体の上部分および下部分の形状が計測できない場合がある。
【0008】
第五に、計測のために装置内に配置された被計測体が計測中に移動してしまうと、計測が不能となるだけでなく、被計測体が距離計測リングに接触して損傷するおそれがあり、また、距離計測リングが破損するおそれがある。
【0009】
第六に、距離計測リングは重量のあるものであるから、その距離計測リングを駆動するために駆動手段として大型のモータなどを取り付ける必要があり、装置全体の重量が大きいものとなるだけでなく、作動の際にかかる電力も大きいものとなる。
【0010】
そこで本発明は、以上のような問題点を解決するためになされたものである。本発明の第1の課題は、少数のセンサで確実な三次元形状測定が可能な装置を提供することである。また、第2の課題は、被計測体が人体などの場合に脇の下部分や両足の股下部分の形状も確実に計測可能な三次元形状計測装置を提供することである。また、第3の課題は、重量物の測定が可能な軽量の装置を提供することである。さらに、第4の課題は、大型の被測定体の全体を確実に計測可能な装置を提供することである。そして、第5の課題は、センサの保護と被計測体の安全を確保した装置を提供することである。最後に、第6の課題は、装置の作動電力を削減することである。
【0011】
【課題を解決するための手段】
本発明の三次元形状計測装置は、計測空間内に配置された凹凸面を有する被計測体の三次元形状を非接触で検出する三次元形状計測装置であって、(1)計測空間の中心を貫く所定の軸を囲んで計測空間の周囲に設けられたこの軸方向に移動自在な移動枠と、(2)移動枠上に周方向に沿って3個以上配置され、被計測体の異なる部位の表面までの距離を計測するセンサと、(3)移動枠を軸方向に移動させる駆動機構と、(4)軸方向における移動枠の位置を検出して出力する位置検出手段と、(5)各センサ及び位置検出手段の出力に基づいて、移動枠の各移動位置における各センサから被計測体表面までの距離データを算出し、それらの距離データに基づいて被計測体表面の三次元形状を解析する解析手段と、を備えており、センサのそれぞれは、被計測体に光を照射する投光部と、被計測体からの反射光を受光する受光部を備えており、三角測量方式で被計測体との距離を検出するセンサであって、センサのそれぞれの光軸が軸方向への投影面上で一点で交差しないように構成され、3個以上のセンサは、移動枠の同一の側である一方の側に配置された隣接する第1のセンサ及び第2のセンサと、移動枠の他方の側に配置された第3のセンサとを少なくとも含み、第1のセンサ及び第2のセンサのそれぞれの光軸が、このセンサ群からみて計測空間の中心より遠方で交差することを特徴とする。
【0012】
この装置では、計測空間内に被計測体を配置して、移動枠を所定の軸方向に移動させながら、移動枠上に配置された3個以上のセンサで被計測体表面とセンサとの距離を計測していく。これらの各センサは、被計測空間内の一点(各センサの軸方向の配列位置が異なる場合は、上記軸方向に平行な特定の直線)に向かないように、移動枠の同一の側である一方の側に配置された隣接する第1のセンサ及び第2のセンサそれぞれの光軸が、このセンサ群からみて計測空間の中心より遠方で交差するように、センサの向きを異ならせているので、被計測体の表面に凹凸がある場合でも、第1及び第2のセンサとこれらの凹凸面のいずれかが対向するように被計測体を配置することで、凹凸面との距離測定が確実に行える。センサでの距離測定の際、合わせて、距離計測時の移動枠の位置も位置検出手段により計測しておく。移動枠の位置から距離測定時の各センサの位置の三次元座標を表す位置データが求められる。そして、この位置データと移動枠の移動に伴い検出した各センサと被計測体表面との距離データから、被計測体表面の被計測空間内での位置の三次元座標を表す位置データが求められる。この位置データの集合が被計測体表面の形状を表す三次元データである。
【0013】
これらのセンサは、移動枠の周方向に沿って、主としてその対向する2つの側面上のそれぞれの所定領域内に複数個ずつ計4個以上配置されていてもよい。
【0014】
この場合、各センサは、計測空間から見て対向する側面上の所定領域内に集中して配置されている。したがって、センサが向き合うように配置されることになるので、被測定体表面に凹凸がある場合に、その凹凸面をセンサに向き合うように配置して測定すれば、凹凸面との距離測定が確実に行える。
【0015】
さらに、センサのそれぞれは、被測定体に光を照射する投光部と、投光部と所定距離離れて配置され、被測定体からの反射光を受光する受光部を備えており、三角測量方式で被測定体との距離を検出するセンサであって、投光部は前述の軸方向に垂直な方向に所定角度で光を走査するものでもよい。
【0016】
これによれば、投光部から照射された光は、被測定体の表面に当たって乱反射(散乱)し、その一部が投光部から所定距離離れた位置に配置された受光部に入射する。被測定体の位置により、投光部から被測定体表面を経て受光部に入射する光の経路が形成する三角形の形状が異なってくる。その結果、受光部へ入射する反射光の入射角度あるいは入射位置が異なってくるので、これをもとにして三角測量方式で被測定体表面までの距離が求まる。さらに、軸方向に垂直な方向に光を走査することで一個のセンサで複数の異なる被測定体表面位置に対する距離データが計測される。
【0017】
また、移動枠の同一の側に配置された隣接するセンサの投光部のそれぞれの走査中心が、このセンサ群からみて計測空間の中心より遠方で交差していてもよい。
【0018】
これによれば、各センサは、対向するセンサとより相対するように配置されるので、被測定体表面に凹凸がある場合、この凹凸のある面をセンサ群に向き合うように配置して測定すれば、凹面に投光部からの光がさらに入射しやすくなり、その散乱光を受光部でより受光しやすくなる。
【0019】
各センサの受光部は、対向して配置される他のセンサ群の投光部と軸方向に所定距離離れて配置されていてもよい。これによれば、各センサの受光部は、対向して配置されるセンサ群の投光部との間を被測定体が遮らない場合でも、これらの投光部からの照射光が直接入射することがない。
【0020】
移動枠は、U字形、あるいは馬蹄形状であってもよい。この場合は、移動枠の片側が開放され、被計測体の導入等に利用できる。
【0021】
計測空間中に被計測体が上方に配置される配置台をさらに備えていてもよい。これによれば、被計測体の最下部までの計測が可能となる。
【0022】
計測空間と移動枠の移動空間とを仕切る内壁カバーをさらに備えていてもよい。これによれば、計測空間と移動枠が移動する空間が確実に分離される。
【0023】
計測空間と移動枠の移動空間とを仕切るとともに、各センサと被計測体の間の部分には光を透過する窓を有する内壁カバーをさらに備えていてもよい。これによれば、計測空間と移動枠が移動する空間が確実に分離されるとともに、センサの入出力光が遮られることがない。
【0024】
軸方向は、重力方向であって、計測空間より上部に配置された回転体と、一端に移動枠が結合され、他端にその移動枠とほぼ同重量のバランサが結合されて回転体の周面に掛け回されている可撓性長尺体と、をさらに備えており、駆動機構は、回転体を回転させることにより可撓性長尺体を介して移動枠を移動させることを特徴とするものでもよい。
【0025】
これによれば、可撓性長尺体に結合された移動枠とバランサがほぼ釣り合うので、移動枠を移動させるために回転体を回転させるのに必要な力が小さくなる。
【0026】
【発明の実施の形態】
以下、添付図面に基づき、本発明に係る三次元形状計測装置の実施形態を説明する。尚、各図において同一要素には同一符号を付して重複する説明を省略する。また、図面の寸法比率は説明のものと必ずしも一致していない。
【0027】
図1は、本発明の一実施形態の三次元形状計測装置1の全体概要図であり、図2は、この三次元形状計測装置1の水平断面図である。図1に示すように、本実施形態に係る三次元形状計測装置1は、人体2を被計測体としたときの人体の形状(体型や体の部分形状など)を計測するための装置であって、内部に計測空間11が形成されており、その計測空間11に沿って垂直移動自在に移動枠3が配設されている。移動枠3は、人体2の形状を垂直方向に沿って順次計測していくための枠体であって、その移動枠3には、移動枠の周方向に複数のセンサ4が並設されている。この移動枠3の形状は、計測空間11を囲める形状とされ、例えば、図2に示すように馬蹄形とするのが望ましい。すなわち、馬蹄形のような形状として移動枠3の一部に切欠部31を設けることにより、計測空間11を囲う形態でありながら、計測空間11へ人体の出入りが移動枠3の位置に関わらず、いつでも可能となる。
【0028】
また、センサ4は、計測空間11に配された人体2までの距離を検知するためのものであって、それぞれ人体2に対して異なる方向から距離検知を行えるように配置されている。図2においては、移動枠3に6つのセンサ41〜46が設けられているが、人体2の全周囲をカバーして形状を計測できれば、センサ4の設置数は7つ以上または5つ以下であってもよい。ただし、人体2の全周囲の形状を正確に測定するためには、センサ4は、最低3つ必要であることは明らかであり、確実に全周囲の形状を測定するためには、4つ以上配置することが好ましい。
【0029】
センサ4は、それぞれ馬蹄形の移動枠3の対向する側面上にそれぞれ3つずつ2組(41〜43と44〜46)に分けて配置されている。センサ4の配置の詳細については、後に詳述することとし、まず個々のセンサ4の構成について説明する。これらのセンサ4としては、光学三角測量法にて距離検出を行う反射型の光電センサが用いられる。
【0030】
例えば、センサ4は、図3に示すように、投光部45と投光部45を挟んで上下対称に配置された2つの受光部46とを備えている。投光部45は、発光部41の前方に照射光を平行光に調整する投光レンズ43が配置されており、この発光部41は、水平方向に一列に配列された複数のLEDチップからなる発光素子41bを有している。そして、これらの発光素子41bを順次発光するよう制御することにより、それらから射出されて人体2へ向かう光束41aは、投光レンズ43から扇型形状に走査される。このように光束41aを水平走査させることにより、一つのセンサ4における光束41aの照射範囲、すなわち距離検出可能な範囲が広がり、センサ4の設置数を削減することができる。
【0031】
一方、それぞれの受光部46は、受光素子42と、その前方に配置された反射光を受光素子42表面に集光する受光レンズ44を備える。この受光素子42としては、PSD(半導体位置検出素子)が用いられる。すなわち、受光素子42は、抵抗層からなる受光面42aを有し、その受光面42aを挟んで上下端に電極42b、42cが設けられた構造をしている。この受光素子42は、受光面42aに光が入射すると、受光位置で光電流を生じ、この光電流がそれぞれ電極42b、42cに分割されて流れていく。その際、各電極42b、42cに流れるそれぞれの光電流は、受光位置と各電極42b、42c間の抵抗値に応じて分割される。この抵抗値は、電極と受光位置の距離に比例する。したがって、各電極42b、42cに流れる電流の比は入射光の受光素子への受光位置に応じて変化するので、受光位置の検出ができる。
【0032】
そして、投光部45と受光部46は、それぞれの光軸中心が一致するよう、配置されている。つまり、発光部41と受光素子42、発光レンズ43と受光レンズ44は、それぞれ平行に配置されている。
【0033】
ここで、このセンサ4の測定原理について簡単に説明する。図4は、このセンサの測定原理を示す図である。LEDチップ41aから照射された光は、発光レンズ43を経て被検体である人体2表面で乱反射され、その一部が受光レンズ44で集光されて受光素子42の受光面42aの受光位置SPに入射する。この時、発光レンズ43から人体2までの距離をL、発光レンズ43と受光レンズ44の光軸中心の距離である基線長をB、受光レンズ44の焦点距離、つまり受光レンズ44と受光素子42間の距離をf、電極42b、42c間の距離をC、受光レンズ44の光軸中心からの受光位置SPの距離をx1とすると、
1=Bf/L …(1)
が成立する。
【0034】
また、受光素子42の各電極42b、42cからの出力電流IA、IB、は両者の和をI0とすると、それぞれ受光位置SPと電極との距離に反比例するから、受光位置SPと電極42cの距離をXとすると、
A=I0X/C
B=I0(C−X)/C …(2)
で表せる。
【0035】
受光レンズ44の光軸中心と電極42cの距離をx0とすると、X=x0+x1が成り立つから、これと(1)(2)式よりX、x1を消去すると、
L=Bf/{IAC/(IA+IB)−x0} …(3)
が成立し、各電流値より、被測定体である人体2までの距離Lを求めることができる。
【0036】
あるいは、受光素子42には、図5に示されるような2分割型半導体位置検出器を用いることもできる。この2分割型半導体位置検出器では、受光面42aを所定の曲線状の分離層42dによって2つの受光面42e、42fに絶縁分離してあり、分離された受光面のそれぞれに電極42b、42cを設けている。この場合は、受光面42aに電極42b、42cに平行なスリット状の光が入射するとそれぞれの側の面積に対応してそれぞれの電極から電流が取り出される。したがって、この曲線の形状を調整することにより、前述の距離Lにリニアな出力が得られる受光素子42を作成することができる。
【0037】
こうした距離Lにリニアな出力が得られる受光素子42の分離部42dの形状が満たすべき条件は、光源からの位置xにおける光源側の受光面の幅をH(x)、逆側の受光面の幅をW(x)、分離層の幅をI、受光面全体の幅をWとすると、
H(x)+W(x)+I=W
W(x)=ax/(x+b) …(4)
であり、定数a、bは以下の条件を満たす。
【0038】
a=Lf(W−1)/(Lf−Ln
b=fB/Lf …(5)
ここで、Lf、Lnは、それぞれ遠距離側、近距離側の測定限界を指している。
【0039】
前述したように、発光部41には、発光素子41bが水平方向に一列に配列されており、これを順次発光させることで、発光レンズ43から人体2に照射される光束41aを水平方向に走査させることができる。このそれぞれの光束に対する散乱光を受光素子42で検出することにより、前述の原理に基づいて被測定体である人体2までの距離を測定することができる。この走査光による反射光の受光素子42への水平方向の入射位置は、走査光を射出した発光素子41bの水平方向の位置に等しい。したがって、受光素子42の検出面42aの水平方向の幅は発光素子41bの水平方向の配列長さより大きくする必要がある。
【0040】
また、センサ4は、図3のように、受光素子42が発光部41を挟んで上下に一つずつ対称に配設されているので、人体2の表面に垂直方向に変化する凹凸があっても、人体2の表面に照射された光束41aの散乱光を上下いずれかの受光素子42で受光することができ、そのような凹凸部分の表面位置を確実に計測することが可能となる。
【0041】
次に、センサ4群の配置について説明する。センサ4の配置の詳細を図6に示す。本実施形態の場合は、センサ4は、測定空間の中心からみて人体2の正面と背面に対称に配置されており、それぞれの側で測定空間の中心から約70度の角度範囲内に3つずつ均等に配置されている。そして、センサ41〜43(あるいは44〜46)の光軸(水平走査の中心軸)は、計測空間の中心より200mm遠方で交わっている。つまり、各センサは、人体2の正面と背面に対向するように集中して配置されている形になる。そして、これらのセンサ4は、いずれも約30度の水平走査角度を有している。したがって、各センサ4の走査範囲が重なり合って、測定時に被測定体自身でセンサ4の視線上から遮られやすい股下や脇の下の部分についても、いずれかのセンサ4の視線上に入るため、正確な測定が可能となる。
【0042】
さらに、移動枠3の一方の側に取り付けられたセンサ群41〜43のそれぞれの受光部46は、別の側に取り付けられたセンサ群44〜46の投光部45と異なる高さ、好ましくは投光レンズ43(あるいは受光レンズ44)の直径以上に離れた高さに設置されていることが好ましい。これにより、センサ4の投光部45から射出された光や散乱光が反対側に取り付けられたセンサ4の受光部46に入射することがないので、不要光の入射に伴うノイズの発生を防止することができる。
【0043】
図1に戻って、本実施形態全体の説明を続けると、移動枠3は、駆動機構5により垂直方向へ移動可能となっている。駆動機構5は、回転自在の回転体であるローラ51に可撓性長尺体であるワイヤ52が掛け回されており、このワイヤ52は、一端が移動枠3に結合され、その他端が移動枠と略同重量の金属体等からなるバランサ53に結合されている。そして、ローラ51は、底板13に立設される支柱14の上部で水平に軸支されて配設されている。このローラ51は、ベルト54を介してモータ55の回転力が伝達される構造とされ、モータ55の駆動に従って回転するようになっている。バランサ14と移動枠3がワイヤ52で釣り下げられて、ほぼ両者が釣り合っているので、移動枠3を移動させるための動力が小さなもので済み、移動枠3の移動がスムーズに行える。このため、移動枠3の駆動に用いるモータ55に小トルクのものを用いることができ、装置1の作動時に必要な電力を低減できる。
【0044】
また、底板13は、略コ字形を呈する板体であって、装置1の外壁部12内の床面に配され、前述の移動枠3の切欠部31と同様に、計測空間11の人体2の出入口に向けて開放部13aを向けて載置されている。支柱14は、底板13の中央部分に立設されており、計測空間11に対向する面にスリット15が垂直方向、即ち移動枠3の移動方向に沿って開設された構造となっている。スリット15は、移動枠3を案内するためのガイド孔であって、このスリット15に移動枠3の係合片32が係止されており、スリット15の開口方向(長手方向)にのみ移動枠3を摺動させるようになっている。なお、図1において、底板13から支柱14のみが立設されているが、支柱14のほか、底板13上に補助柱体を垂直に立設して、支柱14とその補助柱体を上部で水平部材を架け渡して、装置1の剛性を高めた構造としておくのが望ましい。
【0045】
また、外壁部2には、操作パネル16が取り付けられており、装置1に電源供給させる主電源スイッチ16a、計測を開始させ、また停止させる起動停止スイッチ16b、作動異常を知らせるエラー表示LED16c、装置1を計測状態にさせるセットスイッチ16dがそれぞれ設けられている。また、駆動機構5には、移動枠3の移動に伴ってその移動量に対応したパルス信号を出力するロータリーエンコーダ17が設けられている。ロータリーエンコーダ17は、例えば、ローラ51の回転軸と同期して回転する回転体を有するものが用いられる。このロータリーエンコーダ17によれば、ローラ51の回転状態を検出して、移動枠3の移動量に同期するパルス信号を出力することができる。
【0046】
さらに、図7に示すように、支柱14には、三つのリミットスイッチ61〜63が取り付けられている。このリミットスイッチ61〜63は、移動枠3の移動位置を検知するためのものでものであって、例えば、光電スイッチが用いられる。支柱14に沿って移動する移動枠3がリミットスイッチ61〜63の前方を通過する時に、各リミットスイッチ61〜63から電気信号が出力されるように構成されている。リミットスイッチ61は、支柱14の上部であって、最上部から降下する移動枠3が等速度で移動し始める位置に取り付けられている。また、リミットスイッチ62は、支柱14の下部であって、計測位置の最下位置より下方の位置に取り付けられている。また、リミットスイッチ63は、支柱14の最下部に取り付けられている。
【0047】
再び、図1を参照すると、制御盤7が底板13上に設置されている。制御盤7は、装置1を駆動制御するとともに三次元形状を解析するためのものであって、図8に示されるように、計測手段である信号処理回路71と駆動制御回路72を備えて構成されている。信号処理回路71は、各センサ4と接続され、各センサ4の出力信号に基づいて人体2までの距離を算出し、人体2の三次元形状を計測する回路である。また、信号処理回路71には、ロータリーエンコーダ17が接続されており、移動枠3の移動に対応したパルス信号が入力されている。この信号処理回路71によれば、ロータリーエンコーダ17のパルス入力に従って、各センサ4の空間位置が求められるので、これら各センサ4の距離データに基づいて人体2の各表面位置を求めることができ、これを基にして人体2の三次元形状が算出される。一方、駆動制御回路72は、主電源スイッチ16a、起動スイッチ16b、エラー表示LED16c、セットスイッチ16d、リミットスイッチ61〜63が接続され、各スイッチの指令信号または出力信号に従って、モータ55を駆動制御する回路である。主電源スイッチ16a、起動スイッチ16b、エラー表示LED16c、セットスイッチ16dは、図1に示すように、外壁12の外面に取り付けられた操作パネル16に設けられている。なお、図1において、制御盤7と各部との配線ケーブル等の図示は省略されている。
【0048】
さらに、計測空間11の下部には、配置台8が配置されている。この配置台8は、被計測体である人体2の計測位置を高く上げるための台であって、中央の上面に計測面81が形成され、段状に高く設けられている。この計測面81は、移動枠3が最も下に位置しているときの各センサ4の検知位置よりも少なくとも高い位置に形成されている。この計測面81上に人体2を立たせることにより、移動枠3の移動範囲内に人体2を位置させることができ、人体2の下方部、例えば足首部分などまで確実に計測が可能となる。また、計測面81を両側部より段状に高くすることにより人体2の前後方向の位置決めが確実に行える。また、天井から取手部18を垂下させて設け、この取手部18を人体2に握らせることにより人体2の左右方向の位置決めが確実に行える。更に、配置台8の前面には計測面81より低い位置に踏台部82が設けらることにより、人体2がこの踏台部82を利用して容易に計測空間11内へ進入できるようになっている。
【0049】
また、この配置台8は、図2に示されるように、底板13と別体であって、底板13上でなく、底板13の側片部13b、13bの間に配置されている。このため、配置台8上に重量のある人体2が載り込んだときでも、人体2の重量による配置台8の歪みが駆動機構5および移動枠3へ伝達されることはない。従って、そのような歪みが計測に影響することがなく、正確な計測が可能となる。
【0050】
更に、配置台8は、計測空間11から着脱自在とされている。このため、配置台8の着脱により、移動枠3の移動範囲を超える背の高い人体2の計測も可能となる。すなわち、計測空間11に配置台8を配設した状態(図1)において、計測面81上に人体2を立たせて人体2の下半部を計測した後、配置台8を計測空間11から取り出して配置台8の無い状態で計測空間11内に人体2を立たせて人体2の上半部を計測する。そして、二つのデータ(上半部のデータ、下半部のデータ)を合成することにより、人体2の全体形状の計測が行える。
【0051】
図1および図2に示すように、移動枠3の内側(計測空間11側)には、内壁カバー9が設置されている。内壁カバー9は、移動枠3の移動空間と計測空間11を仕切るための板体であって、移動枠3の内面に沿って配置されている。但し、移動枠3の切欠部31の部分には設けられておらず、その部分を通じて計測空間11内へ人体2が進入できるようになっている。この内壁カバー9が設けられることにより、計測中に計測空間11で人体2が動いても移動する移動枠3に接触することがない。
【0052】
また、図2のように、内壁カバー9には透光窓91が設けられている。透光窓91は、センサ4の発光部41が発する光を透過させる透光性を有する部材、例えばスモークアクリル板などで形成されており、各センサ4の前面であって移動枠3の移動方向、即ち垂直方向に沿って設けられている。このため、内壁カバー9によれば、人体2の移動枠3の移動空間への進入を防止しながら、センサ4から人体2への投光およびセンサ4による受光が許容されている。
【0053】
また、図2に示すように、内壁カバー9の内面の形成角度は、任意のセンサ4から発せられた光が対向する内面で反射して直接その反射光が入射されない角度とされている。このような角度にしておくことにより、誤って対面までの距離が検出されることがない。
【0054】
次に、三次元形状計測装置1の使用方法及びその動作について説明する。
【0055】
図1に示される装置で、主電源スイッチ16aをオンにして、三次元形状計測装置1の各部に電源を供給する。主電源スイッチ16aをオンにした直後は、装置1のウォーミングアップ時間であり、他のスイッチ等を受付けない状態となる。ウォーミングアップ時間内はセットスイッチ16dが点滅状態(スイッチ16d内の発光体が点滅状態)となっており、そのウォーミングアップ時間の経過後にセットスイッチ16dが点滅状態から点灯状態に変わり、装置1のウォーミングアップが完了したことが分かる。
【0056】
そして、ウォーミングアップ時間の経過後、セットスイッチ16dをオンすると、モータ55の駆動に伴って、移動枠3が上方へ移動する。すなわち、セットスイッチ16dがオンとされることにより、図8に示すように、駆動制御回路72からモータ55へ駆動信号が出力され、モータ55が駆動する。このモータ55の駆動力がベルト54を介してローラ51へ伝達され、ローラ51が回転しワイヤ52を介して移動枠3が上方へ引き上げられる。その際、ワイヤ52の他端側にはほぼ同重量のバランサ53が釣り下げられているから、移動枠3の引き上げに大きな動力を必要としない。このため、モータ55の消費する電力が小さいものとなる。また、移動枠3を無理なく引き上げられるから、移動枠3の移動がスムーズである。なお、ウォーミングアップ時間の経過後、移動枠3が既に上方に位置しているときには、セットスイッチ16dをオンしても、移動枠3は移動しない。
【0057】
そして、図1において、移動枠3が上方へ移動したら、被計測体となる人体2を計測空間11内へ進入させる。計測空間11内では、人体2を配置台8の計測面81上に立たせて、取手部18を握らせて、人体2を計測に適した状態としておく。なお、人体2の配置は、前述の移動枠3の上方セットに先立って、また、そのセット中に行ってもよい。
【0058】
次いで、起動スイッチ16bをオンする。すると、駆動制御回路72の指令信号を受けてモータ55が駆動し、モータ55の駆動力がベルト54、ローラ51およびワイヤ52を介して移動枠3へ伝達され、図7に示すように、移動枠3が装置1の上部から降下していく。そして、移動枠3がリミットスイッチ61の前を通過すると、図8において、リミットスイッチ61から駆動制御回路72へ計測開始信号が出力され、その計測開始信号が駆動制御回路72を介して信号処理回路71へ入力される。信号処理回路71への計測開始信号の入力と同時に、ロータリーエンコーダ17から出力されるパルス信号を信号処理回路71がカウントし始め、移動枠3の降下に伴って断続的なパルス信号を信号処理回路71が順次カウントしていく。
【0059】
例えば、移動枠3が5mm移動するごとにロータリーエンコーダ17からパルスが出力されるようにしておけば、これをカウントすることで移動枠3の高さ位置(位置情報)が判定される。そして、各センサ4をこのパルス信号に同期して作動させる。つまり、信号処理回路71は、ロータリーエンコーダ17からパルスが入力されるごとに、各センサ4へ作動指令信号を出力する。その結果、図2に示すように、各センサ4の発光部41の発光素子41bが順次発光して、被計測体である人体2へ光(光束41a)が照射される。つまり、各センサ4で光の水平方向の走査が行われる。そして、人体2に照射された際の散乱光(反射光)が各センサ4の受光素子42で受光されることにより、前述の(3)式に基づいてセンサ4から人体2の表面までの距離に対応する電気信号(距離検出信号)が出力され、信号処理回路71に入力される。このようなセンサ4の作動がロータリーエンコーダ17からのパルス入力ごとに繰り返される。
【0060】
例えば、垂直方向の計測範囲(移動枠3の有効な移動範囲)が170cmであるとすると、一回の計測においてロータリーエンコーダ17から340個のパルスが断続的に出力されて、それぞれの発光部41bに対して、高さ5mm間隔の位置での人体2表面までの距離データが計340個ずつ得られることになる。
【0061】
なお、センサ4の発光部41による光束41aの走査は、複数の発光素子41bによるものに限られるものではなく、単一の発光体から発せられる光束41aを光軸上に配置した回転プリズムや回転ミラーなどにより走査するなど、その他の手法を用いてもよい。更に、センサ4としては、人体2までの距離を計測できるものであれば、前述の反射型の光電センサ以外の検出手段を用いることもできる。
【0062】
このとき、センサ4は、図6に示されるような配置とされているので、股下や脇の下のように人体2自体が障害となりやすい部位についてもいずれかのセンサ4の照射光がこれらの部位に到達するので正確な測定が可能である。したがって、正確な人体2の三次元形状の測定が可能となる。
【0063】
図9〜11は、このセンサ4の個数を4、5、8個とした場合の好ましい配置例を示している。図9のセンサ4を4個配置した場合は、人体2の正面側、背面側とも約32度の狭い角度範囲の両端に2個のセンサ41、42(43、44)が配置され、それぞれのセンサ41、42(43、44)の光軸は、測定空間の中心より約467mm遠方で交差している。図10のセンサ4を5個配置した場合は、正面側の3個のセンサ41〜43の配置は、図6に示すセンサ41〜43と同じ配置であり、背面側の2個のセンサ44、45の配置は、図9に示すセンサ43、44と同じ配置である。図11のセンサを8個配置した場合は、正面側、背面側とも約70度の角度範囲内に4つのセンサをほぼ均等に配置している。両端のセンサ41、44(45、48)の光軸は、測定空間の中心より約710mm遠方で交差し、内側のセンサ42、43(46、47)の光軸は、測定空間の中心より約900mm遠方で交差している。いずれの場合も人体の正面及び背面と向かいあうように各センサ4が配置されるので、図6に示したセンサ6個の場合の配置例と同様に脇の下や股下のような部位についても正確な測定が可能となる。
【0064】
比較のために図12に示されるように4個のセンサ4を人体2の中心から等距離に等間隔で配置した例について述べる。この場合は、センサ4からの照射光は、腕や脚、胴などで遮られて、脇の下や股下の対向する部分の表面には到達できない。このため、この部位の表面位置を測定することができず、正確な表面形状の測定ができなかった。これを克服するためには、センサ4の個数を増やして走査範囲を拡大する方法があるが、重複する測定箇所が多くなり無駄が多いこと、センサの個数上昇による価格上昇や散乱光の増加、調整の複雑さが増すなどの問題がある。これに対して、図9に示されるセンサ4配置では、少ないセンサ4で脇の下や股下などの部位についても正確な測定ができる。
【0065】
このように人体2の脇の下や股下を正確に測定できるように、センサ4を人体2に向かい合うように配置するためには、所定の領域内に集中してセンサ4を配置することが好ましい。もちろん、側面の測定を確実にするために、この範囲外に追加のセンサを設けてもよい。
【0066】
図2を参照した本実施形態の装置の動作説明を続ける。この測定の際に、移動枠3は、計測空間11に沿って降下し続けることとなるが、何らかの原因により人体2が動いた場合でも、移動枠3の移動空間と計測空間11が内壁カバー9で仕切られているので、人体2が移動枠3に接触する心配がない。従って、そのような場合に人体2が移動枠3に接触して、負傷したり、移動枠3や駆動機構5などが破損することなく、非常に安全である。
【0067】
そして、移動枠3の降下に伴って入力されるセンサ4から人体2までの距離検出信号は、信号処理回路71に送られて、前述の移動枠3の位置情報を基にした各センサ4の空間位置とともに処理することにより、人体2の表面の空間位置情報に変換される。この空間位置情報を組み合わせることにより、最終的に人体2の立体的な三次元形状を求めることができる。
【0068】
図7に示されるように、移動枠3がリミットスイッチ62を通過すると、駆動制御回路72により移動枠3の降下速度が減速され、移動枠3がリミットスイッチ63を通過すると間もなく移動枠3は停止する。このとき、配置台8により人体2の配置位置が高くなっているので、移動枠3の停止位置は人体2の配置位置(計測面81)より低くなり、移動枠3の移動により人体2の足部分まで完全に計測が可能となる。なお、何らかの原因により移動枠3が途中で停止してしまったとき、または所定の範囲の形状データが得られなかったときには、エラー表示LED16cが点灯して装置1の異常を容易に認識できる。その場合は、セットスイッチ16dをオンにして再度計測をやり直せばよい。
【0069】
そして、図8に示すように、信号処理回路71にモニタ19を接続すれば、人体2の三次元形状をコンピュータグラフィック等により立体的に画像表示することで、その形状を容易に把握することができる。また、同時に表面形状から数値処理により各寸法を数値表示することもできる。
【0070】
次に、計測すべき人体2の背が高い場合における三次元形状計測装置1の使用方法及びその動作について説明する。
【0071】
まず、図1において、前述の説明と同様に、主電源スイッチ16aをオンにして、三次元形状計測装置1の各部に電源を供給する。そして、ウォーミングアップ時間の経過後、セットスイッチ16dをオンして、移動枠3を上方へ移動させる。次いで、移動枠3が上方へ移動したら、被計測体となる人体2を計測空間11内へ進入させる。計測空間11内では、人体2を配置台8の計測面81上に立たせて、取手部18を握らせて、人体2を計測に適した状態としておく。なお、人体2の配置は、前述の移動枠3の上方セットに先立って、また、そのセット中に行ってもよい。
【0072】
そして、起動スイッチ16bをオンして、前述と同様に、人体2の三次元形状の計測を行う。その際、人体2の背が高いので人体2の上部、即ち頭部や上半身部分などの三次元形状のデータが得られない。
【0073】
次いで、最初の計測を行った後、再び、セットスイッチ16dをオンして、装置1を計測可能な状態とする。それと前後して、計測空間11内に配置されていた配置台8を取り外しておく。そして、計測空間11内へ人体2を進入させる。このとき、人体2は、最初の計測時と比較して配置台8の高さ寸法だけ、低い位置に配置されることとなる。この状態において、起動スイッチ16bをオンにして、人体2の頭部や上半身部分などの三次元形状の測定を行う。
【0074】
そして、二回の計測(下半身部分の計測、上半身部分の計測)を終了したら、信号処理回路71により、各計測データにおいて重複するデータ部分を検索させ、その重複データを合せるようにして各計測データを合成させる。
【0075】
このように、二回にわたる計測作業と各データの合成により、装置1の計測範囲(移動枠3の移動範囲)を超える身長を有する人体2であっても、確実に全体の三次元形状を計測することができる。
【0076】
以上のように、本実施形態の三次元形状計測装置1によれば、水平走査を行うセンサ4を対向する2つの群に分けて配置しているので、股下や脇の下など人体表面の凹部についても正確な測定が可能となる。特に、各センサを対向するセンサと異なる高さに設置することで、対向するセンサの出力光が直接入射するのを防止して、ノイズの発生を防ぐことができる。さらに、移動枠をU字形、馬蹄形状とすることで、人体2の被測定空間への導入が容易になる。また、配置台8を備えることにより、被計測体である人体2の下部の三次元形状を確実に計測することできる。さらに、配置台8が移動枠3や駆動機構5などと別体とされることにより、正確な計測が可能となる。また、配置台8が着脱自在とされることにより、背の高い人体2であっても全体の三次元形状が確実に計測できる。また、内壁カバー9が設けられることにより、安全に計測が行える。更に、駆動機構5にバランサ53が設けられることにより、移動枠3の移動能率が高められ、装置1の消費電力が低減できる。
【0077】
本実施形態の三次元形状計測装置1は、人体2の三次元形状を計測するものであったが、被計測体としては人体2に限られるものではなく、その他のものを計測対象とすることも可能である。
【0078】
また、本実施形態の三次元形状計測装置は、高さ方向に移動して三次元形状の計測を行ったが、測定方向はこれに限られるものではなく、水平方向など任意の軸方向に移動する移動枠上にセンサを配置して測定を行ってもよい。
【0079】
また、以上の説明では、センサを移動枠の2つの対向する側面に集中して配置した実施形態について説明したが、センサの配置はこれに限られるものではない。ただし、被計測体表面の凹凸形状を確実に測定するためには、各センサの光軸(走査角を有する場合はその中心線に相当する)は、一点で交差しない(各センサの軸方向の配置位置が異なる場合は、軸方向への投影面上で一点で交差しない)ことを必要とする。このようにセンサを配置したうえで、被計測体をその表面の凹凸がいずれからのセンサに向けられるように配置して測定することにより、表面の凹凸形状を正確に測定することができる。
【0080】
【発明の効果】
以上説明したように本発明によれば、次のような効果を得ることができる。
【0081】
すなわち移動枠上に光軸が一点で交差しないように配置された複数の距離センサにより、これらのセンサに対向する面に凹凸がある物体表面の三次元形状を正確に測定することが可能となる。
【0082】
さらに、三角測量方式で距離を検出するセンサを用い、光を所定角度に走査することにより、少ないセンサ個数で正確な測定が行えるので、調整が簡単で、コストも削減できる。
【0083】
特に、センサの走査中心の配置を工夫することで、さらに、センサに対向する面に凹凸がある、例えば、人体の股下や脇の下などの部分の形状測定を確実に行うことができる。
【0084】
また、対向するセンサの発光部と別の高さに受光部を設置することで、対向するセンサからの照射光や散乱光が受光部に直接入射することがなく、ノイズの少ない高精度の測定が可能となる。
【0085】
一方、移動枠をU字形あるいは馬蹄形とすることにより、被測定空間内への被計測体の導入が容易になる。
【0086】
また、配置台を備えることにより、被計測体の下部の三次元形状を確実に計測することができる。特に、配置台を移動枠や駆動機構などと別体とされることにより正確な計測が可能となる。また、配置台が着脱自在とされることにより、被計測体が背の高いものであっても全体の三次元形状が確実に計測できる。
【0087】
また、内壁カバーが設けられることにより安全に計測が行える。特に、内壁カバーに透過窓を設ければ、測定の邪魔にならない。
【0088】
また、駆動機構にバランサが設けられることにより、移動枠の移動能率が高められ、装置の消費電力が低減できる。
【図面の簡単な説明】
【図1】本発明の一実施形態の三次元形状計測装置の全体概要図である。
【図2】図1のII−II線断面図である。
【図3】図1の装置のセンサの構成を示す概略斜視図である。
【図4】図3のセンサの測定原理を示す説明図である。
【図5】図2に係るセンサの受光素子の別の実施形態を示す図である。
【図6】図1の三次元形状計測装置の概略縦断面図である。
【図7】図1の三次元形状計測装置の処理系の説明図である。
【図8】図1の三次元装置へのセンサ6個の好ましい配置例を示す図である。
【図9】図1の三次元装置へのセンサ4個の好ましい配置例を示す図である。
【図10】図1の三次元装置へのセンサ5個の好ましい配置例を示す図である。
【図11】図1の三次元装置へのセンサ8個の好ましい配置例を示す図である。
【図12】図1の三次元装置へのセンサ4個の好ましくない配置例を示す図である。
【図13】従来の三次元形状計測装置の構成図である。
【符号の説明】
1…三次元形状計測装置、2…人体(被計測体)、3…移動枠、4…センサ、5…駆動機構、8…配置台、11…計測空間。
代理人弁理士 長谷川 芳樹

Claims (8)

  1. 計測空間内に配置された凹凸面を有する被計測体の三次元形状を非接触で検出する三次元形状計測装置において、
    前記計測空間の中心を貫く所定の軸を囲んで前記計測空間の周囲に設けられた前記軸方向に移動自在な移動枠と、
    前記移動枠上に周方向に沿って3個以上配置され、前記被計測体の異なる部位の表面までの距離を計測するセンサと、
    前記移動枠を前記軸方向に移動させる駆動機構と、
    前記軸方向における前記移動枠の位置を検出して出力する位置検出手段と、
    前記各センサ及び位置検出手段の出力に基づいて、前記移動枠の各移動位置における前記各センサから前記被計測体表面までの距離データを算出し、それらの距離データに基づいて前記被計測体表面の三次元形状を解析する解析手段と、
    を備えており、
    前記センサのそれぞれは、被計測体に光を照射する投光部と、被計測体からの反射光を受光する受光部を備えており、三角測量方式で被計測体との距離を検出するセンサであって、
    前記センサのそれぞれの光軸が前記軸方向への投影面上で一点で交差しないように構成され、
    3個以上の前記センサは、前記移動枠の同一の側である一方の側に配置された隣接する第1のセンサ及び第2のセンサと、前記移動枠の他方の側に配置された第3のセンサとを少なくとも含み、
    前記第1のセンサ及び前記第2のセンサのそれぞれの光軸が、このセンサ群からみて前記計測空間の中心より遠方で交差することを特徴とする三次元形状計測装置。
  2. 前記センサは、前記移動枠に周方向に沿って、主としてその対向する2つの側面上のそれぞれの所定領域内に複数個ずつ計4個以上配置されていることを特徴とする請求項1に記載の三次元形状計測装置。
  3. 前記各センサの受光部は、対向して配置される他のセンサ群の前記投光部と前記軸方向に所定距離離れて配置されていることを特徴とする請求項記載の三次元形状計測装置。
  4. 前記移動枠は、U字形、あるいは馬蹄形状である請求項1あるいは2に記載の三次元形状計測装置。
  5. 前記計測空間中に前記被計測体が上方に配置される配置台をさらに備えている請求項1あるいは2に記載の三次元形状計測装置。
  6. 前記計測空間と前記移動枠の移動空間とを仕切る内壁カバーをさらに備えている請求項1あるいは2に記載の三次元形状計測装置。
  7. 前記計測空間と前記移動枠の移動空間とを仕切るとともに、前記センサと前記被計測体の間の部分には光を透過する窓を有する内壁カバーをさらに備えている請求項に記載の三次元形状計測装置。
  8. 前記軸方向は、略重力方向であって、
    前記計測空間より上部に配置された回転体と、一端に前記移動枠が結合され、他端にその移動枠とほぼ同重量のバランサが結合されて前記回転体の周面に掛け回されている可撓性長尺体と、をさらに備えており、
    前記駆動機構は、前記回転体を回転させることにより前記可撓性長尺体を介して前記移動枠を移動させることを特徴とする請求項1あるいは2に記載の三次元形状計測装置。
JP18404397A 1996-08-29 1997-07-09 三次元形状計測装置 Expired - Fee Related JP3940826B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP18404397A JP3940826B2 (ja) 1996-08-29 1997-07-09 三次元形状計測装置
CN97117515A CN1089891C (zh) 1996-08-29 1997-08-28 三维形状测量装置
US08/919,332 US5850290A (en) 1996-08-29 1997-08-28 Three-dimensional scanner utilizing moving frame with detectors
TW086112369A TW349168B (en) 1996-08-29 1997-08-28 Three-dimensional shape measuring apparatus
DE69727632T DE69727632T2 (de) 1996-08-29 1997-08-29 Dreidimensionale Formmessvorrichtung
KR1019970045889A KR100474165B1 (ko) 1996-08-29 1997-08-29 3차원형상계측장치
EP97306657A EP0829231B1 (en) 1996-08-29 1997-08-29 Three-dimensional shape measuring apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP22863296 1996-08-29
JP8-228632 1996-08-29
JP18404397A JP3940826B2 (ja) 1996-08-29 1997-07-09 三次元形状計測装置

Publications (2)

Publication Number Publication Date
JPH10122850A JPH10122850A (ja) 1998-05-15
JP3940826B2 true JP3940826B2 (ja) 2007-07-04

Family

ID=31948860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18404397A Expired - Fee Related JP3940826B2 (ja) 1996-08-29 1997-07-09 三次元形状計測装置

Country Status (7)

Country Link
US (1) US5850290A (ja)
EP (1) EP0829231B1 (ja)
JP (1) JP3940826B2 (ja)
KR (1) KR100474165B1 (ja)
CN (1) CN1089891C (ja)
DE (1) DE69727632T2 (ja)
TW (1) TW349168B (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101406700B1 (ko) * 2012-09-27 2014-06-12 배정용 오일 분사 장치
CN108175379A (zh) * 2017-12-25 2018-06-19 姚宜迁 一种骨科检查柜

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7065462B2 (en) * 1998-07-24 2006-06-20 Merilab, Inc. Vehicle wheel alignment by rotating vision sensor
GB2345750B (en) * 1998-12-11 2002-12-18 Wicks & Wilson Ltd Body scanning equipment
CA2267519A1 (en) 1999-04-13 2000-10-13 Inspeck Inc. Optical full human body 3d digitizer
US6792213B1 (en) * 1999-09-08 2004-09-14 Fuji Xerox Co., Ltd. Optical signal transmitting apparatus, optical data bus system and signal processing apparatus
US6888640B2 (en) * 2000-02-04 2005-05-03 Mario J. Spina Body spatial dimension mapper
JP4268308B2 (ja) * 2000-03-22 2009-05-27 株式会社キーエンス 光電スイッチ
US20020048396A1 (en) * 2000-09-20 2002-04-25 Bewley Wilbur C. Apparatus and method for three-dimensional scanning of a subject, fabrication of a natural color model therefrom, and the model produced thereby
FR2815446A1 (fr) * 2000-10-13 2002-04-19 Cabinet Leonard Dispositif de reproduction virtuelle et/ou physique de forme
FR2816821B1 (fr) * 2000-11-20 2003-01-17 Telmat Ind Installation et procede automatiques de prise de mensurations et d'acquisition de formes
KR100766860B1 (ko) * 2002-07-15 2007-10-15 (주) 케이앤아이테크놀로지 입체물 스캐너
US6980301B2 (en) 2002-07-25 2005-12-27 Cubic Co., Ltd Method and apparatus for three-dimensional surface morphometry
WO2004095059A1 (ja) * 2003-04-22 2004-11-04 Shima Seiki Manufacturing, Ltd. 人体形状測定方法とその装置
US20050101884A1 (en) * 2003-11-07 2005-05-12 Unique Solutions Design Limited Apparatus and method for acquiring and processing data regarding physical attributes of a user
CN1304816C (zh) * 2005-06-10 2007-03-14 北京工业大学 纸杯测量仪
KR20070092007A (ko) * 2006-03-08 2007-09-12 포스앤핏 주식회사 3차원 스캐닝 장치
EP1980202A1 (de) * 2006-10-18 2008-10-15 Patrick H. Ballew, Inc. P.s. Tragbare autonome digitaleinheit zur durchführung anthropometrischer messungen
JP4910754B2 (ja) * 2007-02-20 2012-04-04 パルステック工業株式会社 3次元形状測定装置
FR2914839B1 (fr) * 2007-04-16 2012-08-03 Jean Christophe Mignard Dispositif pour servir de structure pour prendre ou faire l'empreinte d'une partie du corps de l'individu ou de son corps entier
JP5079415B2 (ja) * 2007-07-19 2012-11-21 株式会社タニタ 体組成計
WO2009034238A1 (fr) * 2007-09-11 2009-03-19 Franck Baudino Cabine de sante
GB0813778D0 (en) * 2008-07-28 2008-09-03 Delaval Holding Ab Monitoring animal condition
WO2010107383A1 (en) * 2009-03-20 2010-09-23 Innovator Skåne Ab Apparatus and method for estimating body fat mass
KR101044138B1 (ko) 2009-08-07 2011-06-28 이종찬 체형측정장치
JP5204309B2 (ja) * 2009-09-15 2013-06-05 株式会社東芝 表示装置およびその制御方法
DE102010018465B4 (de) * 2010-04-27 2020-02-06 Centrotherm Photovoltaics Ag Vorrichtung und Verfahren zum Ermitteln der räumlichen Lage von Plattenelementen eines Waferbootes sowie Beladevorrichtung und Verfahren zum Be- und/oder Entladen eines solchen Waferbootes
WO2011146964A1 (en) * 2010-05-24 2011-12-01 F.B. Technologies Pty Ltd A system for manipulating objects
CN102511954A (zh) * 2011-10-13 2012-06-27 中国人民解放军总后勤部军需装备研究所 一种单柱式非接触三维人体自动测量仪
CN103126681A (zh) * 2011-12-01 2013-06-05 原相科技股份有限公司 物体外型量测系统
TWI448669B (zh) * 2011-12-16 2014-08-11 Ind Tech Res Inst 區域內人員位置定位與活動量之偵測方法
EP3195797B1 (en) * 2012-05-07 2019-07-24 Dermspectra LLC System and apparatus for automated total body imaging
CN103099643B (zh) * 2013-03-01 2014-12-24 上海海事大学 一种肌肉围度测量装置
CN104375142B (zh) * 2013-08-15 2019-12-13 同方威视技术股份有限公司 一种用于人体安全检查的毫米波全息成像设备
US9900585B2 (en) * 2013-09-18 2018-02-20 Matter and Form Inc. Device, system and method for three-dimensional modeling
CN103876710A (zh) * 2014-02-17 2014-06-25 钱晨 一种高解析度的人体局部三维成像系统
KR101616176B1 (ko) * 2014-02-27 2016-04-27 곽지민 인체 고속 입체 스캔 장치
CN103994730B (zh) * 2014-05-12 2017-01-04 南京星顿医疗科技有限公司 柱状体外周形状测量装置与方法
CN104392483A (zh) * 2014-10-17 2015-03-04 上海衣得体信息科技有限公司 一种根据人体扫描仪扫描数据进行三维人体建模的方法
CN104434111A (zh) * 2014-11-20 2015-03-25 东北大学 光学医用人体体形测量仪及其测量方法
CN104434112A (zh) * 2014-11-20 2015-03-25 东北大学 人体颈围腰围臀围测量仪及其测量方法
CN104535017B (zh) * 2014-12-19 2017-11-21 合肥市百胜科技发展股份有限公司 在线轮廓测量装置
CN106263206B (zh) * 2015-06-12 2018-01-23 北京英堡龙科技股份有限公司 一种基于激光位移传感器的自动量体装置
US10182758B2 (en) * 2015-10-05 2019-01-22 Htc Corporation Measuring device of human body and method thereof
KR101909469B1 (ko) * 2017-03-14 2018-10-18 주식회사 웰텍 부피 및 중량 자동 측정 장치
US10600203B2 (en) 2017-06-06 2020-03-24 CapSen Robotics, Inc. Three-dimensional scanner with detector pose identification
TWI640959B (zh) * 2017-08-04 2018-11-11 適着三維科技股份有限公司 校準設備
CN109381189B (zh) * 2017-08-04 2021-07-30 适着三维科技股份有限公司 校准设备
CN107320106B (zh) * 2017-08-11 2023-03-21 合肥哈工慈健智能科技有限公司 一种测量手扶式起立时人体重心位置的装置
KR101998396B1 (ko) * 2017-12-22 2019-07-09 한국기술교육대학교 산학협력단 3d 스캐너를 이용한 가상 벽면 기반의 작업 공간 모델링 방법 및 시스템
CN108433704B (zh) * 2018-04-10 2024-05-14 西安维塑智能科技有限公司 一种三维人体扫描设备
CN108592793B (zh) * 2018-05-21 2020-11-27 北京智造宝科技有限公司 一种可扩展模块数量的人体三维扫描仪
CN108670257B (zh) * 2018-06-04 2020-08-18 浙江树人学院 一种全景人体三维扫描装置
CN109141235A (zh) * 2018-08-14 2019-01-04 浙江树人学院 一种三维扫描人体的捕捉装置
JP2020071060A (ja) * 2018-10-29 2020-05-07 株式会社ミツトヨ 形状測定装置
JP2022509969A (ja) * 2018-11-26 2022-01-25 ロレックス・ソシエテ・アノニム 腕時計ストラップを構成する方法
CN109717875B (zh) * 2019-02-25 2021-06-01 无锡市第二人民医院 一种体检数据自动采集装置
CN110811565A (zh) * 2019-12-09 2020-02-21 浙江台嘉健康科技有限公司 一种人体健康量化测量集成装置
CN111721197B (zh) * 2020-05-14 2022-02-01 南京工程学院 一种基于双目立体的身体模型测量装置及方法
CN111632285B (zh) * 2020-05-28 2022-05-03 杜颖 一种关节痛风治疗装置
CN115014485B (zh) * 2022-05-30 2024-04-26 薛久洲 一种肉羊新品种选育用自动体重体尺测定装置
KR102785221B1 (ko) * 2022-10-17 2025-03-25 주식회사 휴고다이나믹스 하지 스캐닝 장치

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56115904A (en) * 1980-02-19 1981-09-11 Unitika Ltd Automatic measuring method for size of human body and device therefor
SE438091B (sv) * 1983-06-08 1985-04-01 Gote Palsgard Anordning for koordinatregistrering
DE3621927A1 (de) * 1986-06-30 1988-01-07 Ulrich M Landwehr Verfahren und vorrichtung zur ermittlung der abmessungen eines gegenstandes
GB8719951D0 (en) * 1987-08-24 1987-09-30 Lbp Partnership Three-dimensional scanner
JPH01121707A (ja) * 1987-11-05 1989-05-15 Hamamatsu Photonics Kk 三次元形状計測装置
SE470440B (sv) * 1992-08-12 1994-03-14 Jan Erik Juto Sätt och anordning för rinostereometrisk mätning
US5477371A (en) * 1993-12-13 1995-12-19 Shafir Production Systems Ltd. Three-dimensional, non-contact scanning apparatus and method
JPH08228632A (ja) 1995-02-27 1996-09-10 Kyoei Seisakusho:Kk 鑑賞魚用水槽の水質表示方式と水質表示装置
US5636030A (en) * 1995-05-01 1997-06-03 Limbach; Douglas C. Optical method and apparatus for measuring surface topography of an object
JPH09184043A (ja) 1995-12-28 1997-07-15 Nippon Steel Corp 高温強度に優れ溶接性の良好な低合金耐熱鋼

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101406700B1 (ko) * 2012-09-27 2014-06-12 배정용 오일 분사 장치
CN108175379A (zh) * 2017-12-25 2018-06-19 姚宜迁 一种骨科检查柜

Also Published As

Publication number Publication date
CN1176378A (zh) 1998-03-18
KR19980019222A (ko) 1998-06-05
DE69727632D1 (de) 2004-03-25
CN1089891C (zh) 2002-08-28
KR100474165B1 (ko) 2005-07-01
JPH10122850A (ja) 1998-05-15
EP0829231B1 (en) 2004-02-18
TW349168B (en) 1999-01-01
EP0829231A2 (en) 1998-03-18
US5850290A (en) 1998-12-15
EP0829231A3 (en) 1998-04-08
DE69727632T2 (de) 2004-09-30

Similar Documents

Publication Publication Date Title
JP3940826B2 (ja) 三次元形状計測装置
CA1154956A (en) Method and apparatus for measuring human body or the like
US10689226B2 (en) Position determining system for multicar ropeless elevator system
US20060009333A1 (en) Electric treadmill
JPH10139299A (ja) 精度の改善されたエレベータレベルモニタ方法
WO2008053659A1 (fr) Dispositif de test de performance de déplacement
CN100565095C (zh) 线性测量装置
JP5388045B2 (ja) 搬送台車及び光測距装置
EP3336030A1 (en) Optical standoff sensor
KR100483666B1 (ko) 광막을 이용한 원형물체의 비행 속도 및 위치 측정 시스템
JP2015171511A (ja) 歩行訓練装置
JP4658716B2 (ja) エレベータのガイドレール据付精度測定装置
KR20140057504A (ko) 엑스레이 촬영시스템 및 엑스레이 촬영시스템의 위치보정 방법
CN106370146B (zh) 电梯导轨垂直度检测系统
CN219501028U (zh) X射线摄像系统、x射线接收装置和x射线发射装置
JPS62269010A (ja) レ−ザ鉛直器を用いた鉄骨柱の建方精度測定方法とその装置
JPH07159117A (ja) 運動物体光検知測定装置
JP2541994B2 (ja) 三次元形状計測装置
JPH0571882B2 (ja)
KR102715440B1 (ko) 탑승자 안전사고방지 기능을 갖는 에스컬레이터
JP2960917B2 (ja) 体型測定方法およびその方法を用いた体型測定装置
JPH05193865A (ja) ガイドレールの据付位置測定装置
JP3934583B2 (ja) 体表面モニタ
CN215447805U (zh) 平面度检测装置
JPH0532381A (ja) エレベータの着床差距離検出装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060904

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070319

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees