JP3936014B2 - Carbon fiber bundle for cement reinforcement - Google Patents
Carbon fiber bundle for cement reinforcement Download PDFInfo
- Publication number
- JP3936014B2 JP3936014B2 JP06099397A JP6099397A JP3936014B2 JP 3936014 B2 JP3936014 B2 JP 3936014B2 JP 06099397 A JP06099397 A JP 06099397A JP 6099397 A JP6099397 A JP 6099397A JP 3936014 B2 JP3936014 B2 JP 3936014B2
- Authority
- JP
- Japan
- Prior art keywords
- carbon fiber
- cement
- fiber bundle
- strength
- glycerin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B14/00—Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B14/38—Fibrous materials; Whiskers
- C04B14/386—Carbon
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Ceramic Engineering (AREA)
- Nanotechnology (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Fibers (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、カット等の作業性に優れ、しかもセメント中での分散性にも優れ、セメント系複合材として良好な強度発現性を有するセメント補強用炭素繊維束に関する。
【0002】
【従来の技術】
従来、セメント類の水硬性粉体を用いた混練物は各種の建築材料、土木材料に広く用いられている。このような混練物を補強し、亀裂発生を防止するため、ガラス繊維等の繊維材料を配合することも広く行われている。しかしながら、補強繊維であるガラス繊維は耐アルカリ性に劣るため、セメント中でガラス繊維自体の強度が劣化するという欠点を有する。
【0003】
このため、耐アルカリガラスが強化材として検討されているが、耐アルカリガラスを用いても、セメント等のアルカリ性環境下では、長期間使用すると強度が低下するという問題がある。
【0004】
そこで耐熱性、耐薬品性に優れる炭素繊維が注目されている。ところが炭素繊維をセメントに添加混合すると、均一に分散し難く、さらに均一な分散を得るため強く攪拌を行うと、繊維の切断が起こったり、ファイバーボールと呼ばれる繊維の毛羽だまりができてしまい、補強材として充分な効果を発揮し得なかった。
【0005】
この問題を解決するため種々の改良が試みられており、例えば、繊維補強材に界面活性剤を付着させる方法(特開昭60−96554号参照)、炭素繊維をスルホン化処理する方法(特開昭60−137860号参照)、セメントに減水剤を混入する方法(特開昭61−236646号参照)、炭素繊維にラテックスコーティングを行う方法(特開昭62−108755号参照)、アルカリ金属またはアルカリ土類金属の塩化物を混入する方法(特開平1−141852号参照)、硫酸またはチオ硫酸塩を混入させる方法(特開平1−141853号参照)、炭素繊維にシランカップリング剤処理を施し界面活性剤を付着させる方法(特開平3−1502421号参照)、炭素繊維にアミノシランカップリング剤処理を施す方法(特開平3−150242号参照)等が提案されている。
【0006】
【発明が解決しようとする課題】
しかしながら、上記のような従来の処理方法では、炭素繊維とセメント等の混練工程での分散性が良好でも、さらにその複合材の強度発現性が優れていても、炭素繊維をカットする工程においては集束性が悪く、水を付与する等の処置を施さなければ作業性が低下するものや、逆に、炭素繊維をカットする工程においては作業性が良好であっても、炭素繊維とセメント等の混練工程での分散性が劣るものや、さらにはその複合材の強度の発現性が悪いというような種々の不都合な問題があった。
【0007】
本発明は、上記のような従来の諸問題に鑑みなされたものであって、その目的とするところは、炭素繊維をカットする工程においては繊維の集束性に優れ、さらには作業性にも優れ、なお且つ炭素繊維とセメント等の混練工程においても分散性に優れ、しかもセメント系複合材の強度の発現性に優れる炭素繊維束を提供することにある。
【0008】
【課題を解決するための手段】
上記の目的は、以下に示す本発明によって達成される。
すなわち本発明は、炭素繊維束にグリセリン、ジグリセリン、トリグリセリンからなる群より選ばれる一種または二種以上を、0.5〜10重量%の範囲内で付着せしめてなり、且つJIS−L1018剛軟性測定法(45°カンチレバー法)に拠り測定したドレープ性が、10〜25cmの範囲内にあることを特徴とするセメント補強用炭素繊維束を開示するものである。
【0009】
また本発明は、前記炭素繊維束の炭素繊維が、ポリアクリロニトリルまたはピッチを主成分とするプレカーサーを焼成してなり、且つ、弾性率3t/mm2以上、強度50kg/mm2以上であるセメント補強用炭素繊維束、ならびに前記セメントが、ポルトランドセメント、白色ポルトランドセメント、アルミナセメントを含む水硬性セメントであるセメント補強用炭素繊維束をも開示するものである。
【0010】
【発明の実施の形態】
次に本発明の実施態様について説明する。
本発明において用いられる炭素繊維は、ポリアクリロニトリル(以下PANと略記)またはピッチを主成分とするプレカーサーを焼成してなる弾性率3t/mm2 以上、強度50kg/mm2 以上の炭素繊維であり、好ましくは弾性率20t/mm2 以上、強度100kg/mm2 以上の炭素繊維である。
【0011】
一般に、これらの炭素繊維は、数千本〜数万本の単繊維からなるプレカーサーを1本の束状態に集合し焼成して作製される。焼成上がりの炭素繊維は、一般にその工程中で電解やオゾン処理等により表面処理されたり、サイジング剤で処理された後にボビンに巻取られて製品となる。
【0012】
これら製品は、使用目的によってさらに表面処理を施す場合もあるが、セメント補強用には束状態で得られた炭素繊維を一定の長さ、通常は1〜30mmの長さに切断し、チョップ状にして用いる。この炭素繊維を切断する工程において炭素繊維収束性が良くないと、束中の炭素繊維が分散し、ローラー等に巻き付き操作性を著しく阻害することになる。一方、収束性を良くし、束中の炭素繊維の分散性を極度に制限すると切断時の操作性(カット性)は良くなるが、切断後の炭素繊維束をセメントと混合する場合、その分散性が悪くなり結果として、炭素繊維のセメント中での偏在が起こり、強度の低い複合材になってしまう。
【0013】
これらの相反する諸問題を矛盾なく解決するために、発明者は収束剤の種類、付着量、さらに収束した炭素繊維束の物性を検討した。その結果、収束剤としては水と比較的良く混合することができ、且つ、ある程度の粘性を有するものが好ましく、且つまた、環境負荷の小さいものとして、グリセリン、ジグリセリン、トリグリセリン等が好ましく、特にコストの面からグリセリンが好ましいことが判明した。
【0014】
また、その付着量は12,000本(12K)の炭素繊維束で測定して0.5〜10wt%の範囲が好ましく、さらに好ましくは1〜5wt%の範囲であることがわかった。
【0015】
炭素繊維束へのグリセリン等の付与は、所定濃度のグリセリン等の水溶液中に炭素繊維束を浸漬させ、該炭素繊維束を150℃で5分間の加熱乾燥を施して水分を蒸発させることにより行ったが、この方法に限定されるものではない。また、グリセリン等の付着量は、上記の処理を施した炭素繊維束を温水で洗浄し、付着したグリセリン等を除去して、その前後の重量変化より求めた。
【0016】
また、カット性ならびにセメントへの分散性の評価は、発明者の検討によれば、JIS−L1018剛軟性測定法(45°カンチレバー法)を炭素繊維束に適用して測定することにより可能であることがわかった。
【0017】
すなわち、グリセリン等を所定量付着させた12Kの炭素繊維束を長さ25〜30cmの範囲で切断し、この炭素繊維束を測定治具上でゆっくりと水平にスライドさせ、炭素繊維束が水平方向から45°の角度に折れ曲がる時点において、折点から炭素繊維束先端までの長さを測定し、ドレープ性とした。この測定を1試料に付き10回行いその平均値を求めた。この値が小さければ、早く炭素繊維束は折れ曲がり、カット性は悪くなる。一方、この値が大きければ炭素繊維束の自己保持性が高く、収束性に優れるが、セメントへの分散性が悪くなる。
【0018】
発明者の検討によれば、ドレープ性が10〜25cmのものがカット性、分散性の面から好ましく、さらには15〜20cmの範囲のものがより好ましいことが判明した。
【0019】
本発明において、炭素繊維束の対象となるセメントは、ポルトランドセメント、白色ポルトランドセメント、アルミナセメント等の水硬性セメントである。
【0020】
【実施例】
以下、本発明を実施例により具体的に説明する。なお、グリセリン等付着量ならびにドレープ性は前記に説明した方法により測定した。
【0021】
[実施例1〜4、比較例1,2]
ストランド法で測定した引張り強度が450kg/mm2 、引張り弾性率が24t/mm2 のPAN系炭素繊維束(12K)をグリセリンの濃度が異なるグリセリン水溶液に浸漬し、150℃で5分間の加熱乾燥処理を施したときのグリセリン付着量(重量%)が、それぞれ0.5、1.5、5、10、および15になるように調整した。その後この炭素繊維束を6mmの長さにカットした。
そのカット性およびドレープ性の測定結果を表1に示す。
【0022】
水、早強ポルトランドセメント、粉末珪石A3号(細骨材)、メチルセルロース(増粘剤)、減水剤のそれぞれを、80:200:120:1:1の重量比に配合した混合物をモルタルミキサーに入れて一旦攪拌する。その後、6mmの長さにカットした炭素繊維束を体積比で1.0%加えて攪拌し、繊維の分散状態を確認した。試験結果を表1に示す。
【0023】
【表1】
ただしカット性「○」は巻き付き等が殆ど発生しないことを、同「△」は巻き付き等が数回発生することを、同「×」は巻き付き等が頻繁に発生することを、また分散状態「○」は繊維が比較的均一に分散していることを、同「△」は繊維束が一部認められることを、同「×」は繊維束が沢山認められることをそれぞれ表わす。
【0024】
[実施例5]
実施例1で用いたPAN系炭素繊維束をグリセリン水溶液に浸漬し、150℃で5分間の加熱乾燥処理を施したときのグリセリン付着量が5重量%になるように調整した。その後この炭素繊維束を6mmの長さにカットした。また、この炭素繊維束のドレープ性は19.1cmであった。
【0025】
水、早強ポルトランドセメント、粉末珪石A3号(細骨材)、メチルセルロース(増粘剤)、減水剤のそれぞれを、80:200:120:1:1の重量比に配合した混合物をモルタルミキサーに入れて一旦攪拌する。その後、6mmの長さにカットした炭素繊維束を体積比で0.5%加えて再び攪拌し、4×4×16cmの型枠に流し込んで成形した。養生は水中30℃で7日間行った。このサンプルの曲げ強度は164kg/cm2 であった。試験結果を表2に示す。
【0026】
[実施例6]
炭素繊維束の体積比を0.75%とした以外は、実施例5と同様の条件で成形した。このサンプルの曲げ強度は201kg/cm2 であった。試験結果を表2に示す。
【0027】
[実施例7]
炭素繊維束の体積比を1.0%とした以外は、実施例5と同様の条件で成形した。このサンプルの曲げ強度は315kg/cm2 であった。試験結果を表2に示す。
【0028】
[比較例3]
炭素繊維を配合しないこと以外は、実施例5と同様の条件で成形した。このサンプルの曲げ強度は53kg/cm2 であった。試験結果を表2に示す。
【0029】
【表2】
【0030】
【発明の効果】
本発明により、炭素繊維を適正に処理することによって、炭素繊維束のカット工程等においては繊維が集束し、作業性に優れ、且つ炭素繊維束とセメント等の混練工程においては分散性に優れ、しかもセメント系複合材の強度を向上せしめるセメント補強用炭素繊維束が提供され、壁材、石綿セメント代替材料、構造材料等の建築材料、土木材料として優れた性能を発揮する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a carbon fiber bundle for cement reinforcement having excellent workability such as cutting, dispersibility in cement, and good strength development as a cement-based composite material.
[0002]
[Prior art]
Conventionally, kneaded materials using cement hydraulic powder are widely used for various building materials and civil engineering materials. In order to reinforce such a kneaded material and prevent the occurrence of cracks, it is widely practiced to blend fiber materials such as glass fibers. However, since glass fiber as a reinforcing fiber is inferior in alkali resistance, it has a defect that the strength of the glass fiber itself deteriorates in cement.
[0003]
For this reason, alkali-resistant glass has been studied as a reinforcing material. However, even when alkali-resistant glass is used, there is a problem that the strength decreases when used for a long time in an alkaline environment such as cement.
[0004]
Therefore, carbon fibers having excellent heat resistance and chemical resistance are attracting attention. However, when carbon fiber is added to and mixed with cement, it is difficult to disperse uniformly, and if a strong agitation is performed to obtain a more uniform dispersion, the fibers may be cut or fiber fluff called fiber balls may be reinforced. A sufficient effect as a material could not be exhibited.
[0005]
Various improvements have been attempted to solve this problem. For example, a method of attaching a surfactant to a fiber reinforcing material (see JP-A-60-96554), a method of sulfonating carbon fiber (JP-A-60-96554) No. 60-137860), a method of mixing a water reducing agent into cement (see JP-A-61-236646), a method of performing latex coating on carbon fibers (see JP-A-62-108755), alkali metal or alkali Method of mixing earth metal chloride (see JP 1-181852), method of mixing sulfuric acid or thiosulfate (see JP 1-118153), carbon fiber treated with silane coupling agent and interface A method of attaching an activator (see Japanese Patent Laid-Open No. 3-150421), a method of applying an aminosilane coupling agent treatment to carbon fiber (Japanese Patent Laid-Open No. 3-150241) 50242 No. reference), and the like have been proposed.
[0006]
[Problems to be solved by the invention]
However, in the conventional treatment method as described above, even if the dispersibility in the kneading process of carbon fiber and cement is good, and even if the strength development of the composite material is excellent, in the process of cutting the carbon fiber Convergence is poor and workability is reduced unless treatment such as adding water is performed, and conversely, in the process of cutting carbon fiber, even if workability is good, carbon fiber and cement, etc. There have been various disadvantageous problems such as inferior dispersibility in the kneading step and poor strength development of the composite material.
[0007]
The present invention has been made in view of the conventional problems as described above. The object of the present invention is excellent in fiber convergence in a process of cutting carbon fiber, and also in workability. In addition, another object of the present invention is to provide a carbon fiber bundle that is excellent in dispersibility even in a kneading step of carbon fiber and cement, and that is excellent in strength development of a cementitious composite material.
[0008]
[Means for Solving the Problems]
The above object is achieved by the present invention described below.
That is, the present invention is such that one or more selected from the group consisting of glycerin, diglycerin and triglycerin is adhered to the carbon fiber bundle within a range of 0.5 to 10% by weight, and JIS-L1018 rigid Disclosed is a carbon fiber bundle for cement reinforcement characterized by a drape measured by a softness measurement method (45 ° cantilever method) in a range of 10 to 25 cm.
[0009]
In the present invention, the carbon fiber of the carbon fiber bundle is obtained by firing a precursor mainly composed of polyacrylonitrile or pitch, and has a modulus of elasticity of 3 t / mm 2 or more and a strength of 50 kg / mm 2 or more. use carbon fiber bundle, and the cement, in which Portland cement, white Portland cement, also the carbon fiber bundle cement reinforcing a hydraulic cement containing alumina cement disclosed.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described.
The carbon fiber used in the present invention is a carbon fiber having a modulus of elasticity of 3 t / mm 2 or more and a strength of 50 kg / mm 2 or more obtained by firing a precursor mainly composed of polyacrylonitrile (hereinafter abbreviated as PAN) or pitch. Preferably, the carbon fiber has an elastic modulus of 20 t / mm 2 or more and a strength of 100 kg / mm 2 or more.
[0011]
In general, these carbon fibers are produced by assembling precursors made of several thousand to several tens of thousands of single fibers into a single bundle state and firing. The baked carbon fiber is generally surface-treated by electrolysis or ozone treatment during the process, or treated with a sizing agent and then wound on a bobbin to obtain a product.
[0012]
These products may be further subjected to surface treatment depending on the purpose of use, but for cement reinforcement, carbon fibers obtained in a bundle state are cut into a certain length, usually 1-30 mm, and chopped. Used. If the carbon fiber convergence is not good in the step of cutting the carbon fibers, the carbon fibers in the bundle are dispersed, and the operability of the wrapping around a roller or the like is significantly inhibited. On the other hand, if the convergence is improved and the dispersibility of the carbon fibers in the bundle is extremely limited, the operability (cutability) at the time of cutting is improved, but when the carbon fiber bundle after cutting is mixed with cement, the dispersion As a result, the carbon fiber is unevenly distributed in the cement, resulting in a composite material having low strength.
[0013]
In order to solve these conflicting problems without contradiction, the inventor examined the type of sizing agent, the amount of adhesion, and the physical properties of the converged carbon fiber bundle. As a result, the sizing agent can be mixed with water relatively well, and preferably has a certain degree of viscosity, and preferably has a low environmental load, such as glycerin, diglycerin, triglycerin, In particular, it has been found that glycerin is preferable in terms of cost.
[0014]
Moreover, the adhesion amount measured by 12,000 (12K) carbon fiber bundles was found to be preferably in the range of 0.5 to 10 wt%, more preferably in the range of 1 to 5 wt%.
[0015]
Giving glycerin or the like to the carbon fiber bundle is performed by immersing the carbon fiber bundle in an aqueous solution of glycerin or the like having a predetermined concentration, and heating and drying the carbon fiber bundle at 150 ° C. for 5 minutes to evaporate water. However, it is not limited to this method. Moreover, the adhesion amount of glycerin etc. was calculated | required from the weight change before and behind that wash | cleaned the carbon fiber bundle which performed said process with warm water, removed the attached glycerin etc.
[0016]
In addition, according to the inventors' investigation, it is possible to evaluate cutability and dispersibility in cement by applying the JIS-L1018 stiffness measurement method (45 ° cantilever method) to a carbon fiber bundle. I understood it.
[0017]
That is, a 12K carbon fiber bundle to which a predetermined amount of glycerin or the like is attached is cut in a range of 25 to 30 cm in length, and this carbon fiber bundle is slowly slid horizontally on a measuring jig so that the carbon fiber bundle is horizontally oriented. At the time of bending at an angle of 45 °, the length from the break point to the tip of the carbon fiber bundle was measured, and drapeability was obtained. This measurement was performed 10 times per sample, and the average value was obtained. If this value is small, the carbon fiber bundle will be bent quickly, and the cut performance will be poor. On the other hand, if this value is large, the self-holding property of the carbon fiber bundle is high and the convergence property is excellent, but the dispersibility in cement is deteriorated.
[0018]
According to the inventor's investigation, it has been found that a drape property of 10 to 25 cm is preferable from the viewpoints of cutability and dispersibility, and that a range of 15 to 20 cm is more preferable.
[0019]
In the present invention, the cement to be carbon fiber bundles, Portland cement, white Portland cement, a hydraulic cement such as alumina cement.
[0020]
【Example】
Hereinafter, the present invention will be specifically described by way of examples. The adhesion amount of glycerin and the like and the drape property were measured by the method described above.
[0021]
[Examples 1 to 4, Comparative Examples 1 and 2]
A PAN-based carbon fiber bundle (12K) having a tensile strength measured by the strand method of 450 kg / mm 2 and a tensile elastic modulus of 24 t / mm 2 is immersed in a glycerin aqueous solution having a different glycerin concentration, and dried at 150 ° C. for 5 minutes. It adjusted so that the adhesion amount (weight%) of glycerol at the time of processing might be set to 0.5, 1.5, 5, 10, and 15, respectively. Thereafter, this carbon fiber bundle was cut into a length of 6 mm.
Table 1 shows the measurement results of the cut property and the drape property.
[0022]
A mixture of water, early-strength Portland cement, powdered silica A3 (fine aggregate), methylcellulose (thickener), and water reducing agent in a weight ratio of 80: 200: 120: 1: 1 is used as a mortar mixer. Add and stir once. Thereafter, a carbon fiber bundle cut to a length of 6 mm was added at a volume ratio of 1.0% and stirred to confirm the fiber dispersion state. The test results are shown in Table 1.
[0023]
[Table 1]
However, the cut property “◯” indicates that winding or the like hardly occurs, “△” indicates that winding or the like occurs several times, “×” indicates that winding or the like frequently occurs, and the dispersion state “ “◯” indicates that the fibers are relatively uniformly dispersed, “Δ” indicates that some fiber bundles are recognized, and “x” indicates that many fiber bundles are recognized.
[0024]
[Example 5]
The PAN-based carbon fiber bundle used in Example 1 was immersed in a glycerin aqueous solution and adjusted so that the amount of glycerin adhered when heated and dried at 150 ° C. for 5 minutes was 5% by weight. Thereafter, this carbon fiber bundle was cut into a length of 6 mm. Further, the drapeability of this carbon fiber bundle was 19.1 cm.
[0025]
A mixture of water, early-strength Portland cement, powdered silica A3 (fine aggregate), methylcellulose (thickener), and water reducing agent in a weight ratio of 80: 200: 120: 1: 1 is used as a mortar mixer. Add and stir once. Thereafter, a carbon fiber bundle cut to a length of 6 mm was added at a volume ratio of 0.5%, stirred again, poured into a 4 × 4 × 16 cm mold and molded. Curing was performed at 30 ° C. in water for 7 days. The bending strength of this sample was 164 kg / cm 2 . The test results are shown in Table 2.
[0026]
[Example 6]
Molding was performed under the same conditions as in Example 5 except that the volume ratio of the carbon fiber bundle was 0.75%. The bending strength of this sample was 201 kg / cm 2 . The test results are shown in Table 2.
[0027]
[Example 7]
Molding was performed under the same conditions as in Example 5 except that the volume ratio of the carbon fiber bundle was 1.0%. The bending strength of this sample was 315 kg / cm 2 . The test results are shown in Table 2.
[0028]
[Comparative Example 3]
Molding was performed under the same conditions as in Example 5 except that no carbon fiber was blended. The bending strength of this sample was 53 kg / cm 2 . The test results are shown in Table 2.
[0029]
[Table 2]
[0030]
【The invention's effect】
By properly treating the carbon fiber according to the present invention, the fibers are focused in the cutting process of the carbon fiber bundle, etc., and the workability is excellent, and the dispersibility is excellent in the kneading process of the carbon fiber bundle and cement, In addition, a carbon fiber bundle for cement reinforcement that improves the strength of the cementitious composite material is provided, and exhibits excellent performance as a building material such as a wall material, asbestos cement substitute material, structural material, and civil engineering material.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06099397A JP3936014B2 (en) | 1997-03-14 | 1997-03-14 | Carbon fiber bundle for cement reinforcement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06099397A JP3936014B2 (en) | 1997-03-14 | 1997-03-14 | Carbon fiber bundle for cement reinforcement |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10251047A JPH10251047A (en) | 1998-09-22 |
JP3936014B2 true JP3936014B2 (en) | 2007-06-27 |
Family
ID=13158478
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP06099397A Expired - Lifetime JP3936014B2 (en) | 1997-03-14 | 1997-03-14 | Carbon fiber bundle for cement reinforcement |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3936014B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4568891B2 (en) * | 1999-10-19 | 2010-10-27 | 清水建設株式会社 | Reinforced soil structure |
-
1997
- 1997-03-14 JP JP06099397A patent/JP3936014B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH10251047A (en) | 1998-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0599340B1 (en) | Carbon fibers for reinforcement of cement and cement composite material | |
RU2036886C1 (en) | Method for preparation of mixture for production of composite material products from composite materials | |
US5062897A (en) | Carbon fiber-reinforced hydraulic composite material | |
JP2816433B2 (en) | Carbon fiber for cement | |
JP3936014B2 (en) | Carbon fiber bundle for cement reinforcement | |
JP4451083B2 (en) | Mortar manufacturing method | |
JP2881256B2 (en) | Method for producing carbon fiber reinforced concrete or similar composition | |
JP2660143B2 (en) | Carbon fiber and cement composite for cement reinforcement | |
CN107572932A (en) | A kind of mortar and preparation method thereof | |
JPH1179804A (en) | Carbon fiber-reinforced concrete | |
JP2752871B2 (en) | Carbon fiber and cement composite for cement reinforcement | |
JPH10167792A (en) | Fiber-reinforced cement composition and production of cement cured product | |
CN112028514A (en) | A kind of toughening method of ultra-high performance concrete | |
JP3348971B2 (en) | Bundled fiber for cement reinforcement | |
JP2934886B2 (en) | Carbon fiber for cement reinforcement | |
JP3355588B2 (en) | Cellulose fiber-containing cement composition | |
JP4743358B2 (en) | Glass fiber mixed concrete | |
JPS63162559A (en) | Manufacture of carbon fiber reinforced hydraulic composite material | |
JPS6096554A (en) | Manufacture of cementitious composite body | |
JPH11292582A (en) | Fibrous strand | |
JP2004137119A (en) | Cement-based fiber composite material | |
JPH07233591A (en) | Hydraulic compound material of carbon short fiber-chopped strand reinforced with carbon short fibers | |
JP3084139B2 (en) | Fiber reinforced hydraulic molding | |
JP2001287975A (en) | Cement modifier | |
JP2756068B2 (en) | Carbon fiber and cement composite for cement reinforcement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040305 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060726 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060802 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061002 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20061002 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20061002 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070307 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070322 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100330 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110330 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120330 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120330 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130330 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130330 Year of fee payment: 6 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130330 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130330 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140330 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |