[go: up one dir, main page]

JP3923954B2 - Consolidation permeability test apparatus and test method - Google Patents

Consolidation permeability test apparatus and test method Download PDF

Info

Publication number
JP3923954B2
JP3923954B2 JP2004106070A JP2004106070A JP3923954B2 JP 3923954 B2 JP3923954 B2 JP 3923954B2 JP 2004106070 A JP2004106070 A JP 2004106070A JP 2004106070 A JP2004106070 A JP 2004106070A JP 3923954 B2 JP3923954 B2 JP 3923954B2
Authority
JP
Japan
Prior art keywords
cell
water
specimen
triaxial
consolidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004106070A
Other languages
Japanese (ja)
Other versions
JP2005291862A (en
Inventor
淳紀 沼田
雅行 筒井
昇 染谷
達也 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tobishima Corp
Original Assignee
Tobishima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tobishima Corp filed Critical Tobishima Corp
Priority to JP2004106070A priority Critical patent/JP3923954B2/en
Publication of JP2005291862A publication Critical patent/JP2005291862A/en
Application granted granted Critical
Publication of JP3923954B2 publication Critical patent/JP3923954B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

本発明は圧密透水試験装置に係り、ベントナイト混合土やロックフィルダムのコア材など、難透水性の飽和地盤の透水性と圧密特性とを同時に計測可能な圧密透水試験装置とその試験方法に関する。   The present invention relates to a consolidation permeability test apparatus, and more particularly to a consolidation permeability test apparatus capable of simultaneously measuring the permeability and consolidation characteristics of a hardly permeable saturated ground such as bentonite mixed soil or rockfill dam core material.

最終処分場の遮水層等に用いられているベントナイト混合土やロックフィルダムのコア材は透水性がきわめて小さく、供試体による透水性や圧密特性の解析を行うためには、透水性の低い土質の変形性能と透水性能を実地盤に近い応力状態で高精度に把握し、確認する必要がある。このため、コアを採取して行われる室内試験においても、対象となる地盤の応力状態等を正確に再現した試験を行う必要があり、そのために種々の試験が規定され、あるいは提案されている。   The bentonite mixed soil and rockfill dam core material used for the water-impervious layer at the final disposal site have extremely low water permeability, and in order to analyze the water permeability and consolidation characteristics of the specimen, Therefore, it is necessary to grasp and confirm the deformation performance and water permeability performance in a stress state close to the actual ground with high accuracy. For this reason, even in an indoor test performed by collecting a core, it is necessary to perform a test that accurately reproduces the stress state of the target ground, and various tests have been defined or proposed for this purpose.

たとえば、公知の三軸圧縮試験装置を用いる透水試験法では、現場の応力状態での透水試験が行え、供試体を覆うゴムスリーブを介して側圧を作用させるので、供試体側面からの漏水を防止できるとともに、背圧を作用させることにより供試体の飽和度を高めることができる(非特許文献1)。また、同様の構成を有し、同様の効果を期待した透水試験装置として特許文献1がある。   For example, in the water permeability test method using a well-known triaxial compression test apparatus, a water permeability test can be performed in a stress state on the site, and a side pressure is applied via a rubber sleeve covering the specimen, preventing water leakage from the side of the specimen. In addition, the degree of saturation of the specimen can be increased by applying back pressure (Non-Patent Document 1). Moreover, there exists patent document 1 as a water-permeable test apparatus which has the same structure and anticipated the same effect.

ところで、上述の三軸試験機を用いて圧密試験や透水試験を行なう場合、1個の供試体に対して、それぞれ別工程で供試体をから排水される水量を計測して圧密量や透水量を計測するため、透水試験段階で供試体に体積変化が生じても、この体積変化分を計測することができないという問題がある。また、ベントナイト混合土のように吸水時に体積膨張するような土や不飽和土に対しても体積変化量を計測し、引き続き同一供試体を用いて透水試験をすることは想定していなかった。ところが、難透水性材料の圧密透水試験では、等方圧密応力(−0.1〜1.0Mpa)を段階的に変化させて、圧密過程〜透水過程を長期間にわたって繰返す試験が実施される。そこで、それぞれの過程において、供試体内から排水される水の出入りを計測するとともに、透水試験中の吸水膨張時および不飽和土の体積変化量を計測することが重要である。この体積変化は透水試験結果に影響を与えるため、透水試験実施中に生じる供試体の体積変化量を精度良く計測する必要がある。   By the way, when performing a consolidation test or a water permeability test using the above-described triaxial testing machine, the amount of water discharged from the test body in a separate process is measured for each specimen, and the amount of consolidation or the water permeability is measured. Therefore, there is a problem that even if a volume change occurs in the specimen at the water permeability test stage, the volume change cannot be measured. In addition, it was not assumed that the volume change amount was measured even for soils such as bentonite mixed soil that would expand in volume upon water absorption or unsaturated soils, and that the same specimen was used for the subsequent water permeability test. However, in the consolidation water permeability test of a hardly water permeable material, an isotropic consolidation stress (−0.1 to 1.0 Mpa) is changed stepwise, and a test in which the consolidation process to the water permeability process are repeated over a long period of time is performed. Therefore, in each process, it is important to measure the amount of water drained from the specimen, and to measure the volume change of unsaturated soil during water absorption expansion during the water permeability test. Since this volume change affects the results of the water permeability test, it is necessary to accurately measure the volume change amount of the specimen generated during the water permeability test.

これに対して、従来の三軸試験機では圧密時間が長期に及ぶ不飽和土等の試験を想定して、その体積変化量を測定する方法が種々提案されている(非特許文献2)。この三軸試験機では、圧力円筒(外セル)内に内セルを設け、その内部を水で満たした状態で供試体を収容し、試験時における供試体の体積変化を、内セルに形成された上部口元部における水位変化として非接触型変位計等で計測して供試体の体積変化を求めるものである。   On the other hand, in the conventional triaxial testing machine, various methods have been proposed for measuring the volume change amount assuming a test of unsaturated soil or the like whose consolidation time is long (Non-Patent Document 2). In this triaxial testing machine, an inner cell is provided in a pressure cylinder (outer cell), the specimen is accommodated with the inside filled with water, and the volume change of the specimen during the test is formed in the inner cell. The volume change of the specimen is obtained by measuring the water level change at the upper mouth portion with a non-contact displacement meter or the like.

特開2001−183285公報。JP 2001-183285A. 地盤工学会編,「土質試験の方法と解説−第一回改訂版−」,社団法人地盤工学会刊,平成12年3月20日,pp.417Edited by Geotechnical Society, “Method and Explanation of Soil Testing-First Revised Edition”, published by Geotechnical Society of Japan, March 20, 2000, pp. 417 地盤工学会編,「土質試験の方法と解説−第一回改訂版−」,社団法人地盤工学会刊,平成12年3月20日,pp.512Edited by Geotechnical Society, “Method and Explanation of Soil Testing-First Revised Edition”, published by Geotechnical Society of Japan, March 20, 2000, pp. 512

ところが、上述のような二重セルにより体積変化を、内セルの水位変化として非接触型変位計等で計測するには、圧力が負荷される内セルの口元部分の自由水面に金属部を有するフロートを浮かべ、渦電流型等の非接触型距離計測センサ等が用いられていた。このため、フロートに金属板を取り付けなければならなかったり、渦電流型のセンサの測長(測定範囲)が10〜20mm程度と短く、上述のような三軸セルにおいて内セル構造を想定した場合、既存の三軸試験機に組み込むことが難しいため、三軸セル内に収容された内セルにおける水位の変化を高精度で計測する簡易な構造の計測手段が求められていた。そこで、本発明の目的は上述した従来の技術が有する問題点を解消し、不飽和土の体積変化を精度良く計測すると同時に透水試験を行えるようにした圧密透水試験装置と同装置による試験方法を提供することにある。   However, in order to measure the volume change by the double cell as described above as a water level change of the inner cell with a non-contact displacement meter or the like, a metal portion is provided on the free water surface of the mouth portion of the inner cell to which pressure is applied. A non-contact type distance measuring sensor such as an eddy current type is used with a float. For this reason, a metal plate must be attached to the float, or the eddy current type sensor has a short length (measurement range) of about 10 to 20 mm, and an internal cell structure is assumed in the above triaxial cell. Since it is difficult to incorporate into an existing triaxial testing machine, there has been a demand for a measuring device having a simple structure that can measure a change in the water level in the inner cell accommodated in the triaxial cell with high accuracy. Accordingly, an object of the present invention is to solve the problems of the above-described conventional technology, and to provide a consolidated permeation test apparatus capable of measuring a volume change of unsaturated soil with high accuracy and simultaneously performing a permeation test, and a test method using the apparatus. It is to provide.

上記目的を達成するために、本発明は支持部上に設置される三軸セルと、該三軸セル内に満たされたセル液の自由液面を圧源から供給された圧気で加圧して、該三軸セル内の拘束圧を制御可能な第1の圧力制御手段と、前記三軸セル内に収容固定され、上面の一部の自由液面を介して前記三軸セル内のセル液の拘束圧と等しい状態のセル液で内部が満たされる内セルと、所定形状に整形され、側面からの通水が防止された供試体内を、上下方向のみ均等に透水可能な通水部を介して前記内セル内に固定保持する供試体保持手段と、第2の圧力制御手段で制御され、前記通水部に通水可能な水供給手段とを備えた圧密透水試験装置であって、前記内セルは、上面の一部に前記内セルの直径に対して十分細径に形成され、筒内部に前記セル液の自由液面が位置し、該筒内部を上下動可能に浮遊するフロートが収容された開放筒部を有し、前記三軸セルの上方に設置され、前記三軸セルの上蓋の一部に形成された光透過蓋部を介して、前記フロートに計測レーザー光を照射、反射させ、該反射光を該装置で検知して前記フロートの上下変位量を計測する半導体レーザー変位計と、前記三軸セル下方に設置され、前記供試体内を透水し、前記三軸セル外に排出された排出水を貯水する計量タンクと、該計量タンク内の貯水排出水の質量を計測する排出水質量計測手段とを備えたことを特徴とする。 In order to achieve the above object, the present invention pressurizes a triaxial cell installed on a support portion and a free liquid level of a cell liquid filled in the triaxial cell with pressurized air supplied from a pressure source. A first pressure control means capable of controlling the restraining pressure in the triaxial cell; and a cell liquid in the triaxial cell which is housed and fixed in the triaxial cell and is partially fixed on the upper surface of the triaxial cell. The inner cell filled with the cell liquid in a state equal to the confining pressure of the inner cell, and a water passage that can be evenly permeated only in the vertical direction in the test body that has been shaped into a predetermined shape and prevented water from passing from the side. A compact permeation test apparatus comprising a specimen holding means fixedly held in the inner cell, and a water supply means controlled by a second pressure control means and capable of passing water through the water passage section, The inner cell is formed on a part of the upper surface with a sufficiently small diameter with respect to the diameter of the inner cell, and the inner portion of the cell liquid is formed inside the cylinder. And the liquid level position, has an open tubular portion float is accommodated floating inside the tube vertically movably, the disposed above the triaxial cell, formed in a part of the upper cover of the triaxial cell A semiconductor laser displacement meter for measuring the amount of vertical displacement of the float by irradiating and reflecting the measurement laser light on the float through the light transmitting lid and detecting the reflected light by the device, and the triaxial cell A measuring tank which is installed below and permeates the specimen and stores the discharged water discharged outside the triaxial cell; and a discharged water mass measuring means which measures the mass of the stored discharged water in the measuring tank; It is provided with.

上述の圧密透水試験装置により、通常の供試体の圧密に伴う体積変化量を計測すると同時に、透水試験を行い、あるいは吸水膨張する不飽和土供試体の吸水膨張に伴う体積変化量を測定し、さらに同供試体を用いて圧密に伴う体積変化量を測定しながら、透水試験を行うことが可能である。   By measuring the volume change accompanying the consolidation of the normal specimen by the above-mentioned consolidation permeability test apparatus, simultaneously performing the water permeability test or measuring the volume change accompanying the water absorption expansion of the unsaturated soil specimen that absorbs and expands, Furthermore, it is possible to conduct a water permeability test while measuring the amount of volume change accompanying consolidation using the specimen.

本発明によれば、透水試験中において、吸水膨張、不飽和土の体積変化量を同時に計測することが可能となり、さらに同一供試体により、圧密と拘束圧の異なる条件での透水試験を実施することができる等、精度の高い圧密透水試験を効率よく実施できるという効果を奏する。   According to the present invention, during the water permeability test, it is possible to simultaneously measure the water absorption expansion and the volume change of the unsaturated soil, and the water permeability test is performed with the same specimen under different conditions of consolidation and restraint pressure. It is possible to perform a highly accurate consolidation permeation test efficiently.

以下、本発明の圧密透水試験装置の実施するための最良の形態として、以下の実施例について添付図面を参照して説明する。   Hereinafter, as the best mode for carrying out the consolidated water permeability test apparatus of the present invention, the following examples will be described with reference to the accompanying drawings.

図1は、公知の三軸圧縮試験機1(以下、三軸試験機1と呼ぶ。)を示しており、安定した支持脚11上に設置された三軸セル10内に、供試体保持手段30(後述)を介して固定保持されて収容された供試体31に、想定した拘束圧状態を設定可能な第1の圧力制御手段としてのレギュレータ2と、供試体31の間隙水圧、背圧、透水圧を設定調整可能な第2の圧力制御手段としてのレギュレータ3と、各部の圧力を計測可能な各種圧力計4,5,6及びタンク7,8とを備えている。   FIG. 1 shows a known triaxial compression tester 1 (hereinafter referred to as triaxial tester 1), and a specimen holding means is placed in a triaxial cell 10 installed on a stable support leg 11. The specimen 2 fixedly held via 30 (described later) and accommodated in the specimen 31 is a regulator 2 as a first pressure control means capable of setting an assumed restraint pressure state, and the pore water pressure, back pressure, A regulator 3 as a second pressure control means capable of setting and adjusting the water permeation pressure, various pressure gauges 4, 5 and 6 and tanks 7 and 8 capable of measuring the pressure of each part are provided.

本発明では、三軸セル10は、下方に所定の空間を有する支持脚11で支持された底板12と、底板12上に水密状態を保持して設置される透明な合成樹脂製の円筒側壁13と、円筒側壁13を水密可能に閉塞する上蓋14とから構成されている。   In the present invention, the triaxial cell 10 includes a bottom plate 12 supported by a support leg 11 having a predetermined space below, and a cylindrical side wall 13 made of a transparent synthetic resin that is installed on the bottom plate 12 while maintaining a watertight state. And an upper lid 14 that closes the cylindrical side wall 13 so as to be watertight.

さらに三軸セル10の内部には、内セル20が収容固定されている。この内セル20は、三軸セル10の底板12上面に着脱可能に設置される透明な合成樹脂製の円筒側壁21と、この円筒側壁21の上部に着脱自在に連結される上蓋22とから構成されている。この上蓋22の中央部には、内セル20の直径に比し、十分に細い直径の開放筒23が上方に向いて連接されている。そしてこの内セル20内に所定の供試体保持手段30で保持された供試体31が収容設置されるようになっている。本実施例では、公知の三軸試験供試体と同様に、供試体31は直径10cm×高さ5cmの円筒形に整形され、この供試体31を、供試体保持手段30としてのペデスタイル32上に載置し、上面にキャップ33をセットするとともに、供試体31側面にゴムスリーブ34を密着させ、側面からの通水を防止した状態で、所定の圧密透水試験が行われる。以下、内セル20が収容されている三軸セル10を、内セル20に対して「外セル10」と呼ぶ。   Further, the inner cell 20 is housed and fixed inside the triaxial cell 10. The inner cell 20 is composed of a transparent synthetic resin cylindrical side wall 21 detachably installed on the upper surface of the bottom plate 12 of the triaxial cell 10 and an upper lid 22 detachably connected to the upper part of the cylindrical side wall 21. Has been. An open cylinder 23 having a sufficiently narrow diameter compared to the diameter of the inner cell 20 is connected to the center of the upper lid 22 so as to face upward. A specimen 31 held by a predetermined specimen holding means 30 is accommodated and installed in the inner cell 20. In this embodiment, like the known triaxial test specimen, the specimen 31 is shaped into a cylindrical shape having a diameter of 10 cm and a height of 5 cm, and this specimen 31 is placed on the pedestal style 32 as the specimen holding means 30. In addition, the cap 33 is set on the upper surface, the rubber sleeve 34 is brought into close contact with the side surface of the specimen 31, and water is prevented from passing from the side surface, and a predetermined consolidation water permeability test is performed. Hereinafter, the triaxial cell 10 in which the inner cell 20 is accommodated is referred to as the “outer cell 10” with respect to the inner cell 20.

本発明では、供試体31の圧密透水試験を行うために、供試体31に接触するペデスタイル32上面とキャップ33下面とに通水部としての所定厚のポーラスストーン35,37が装着され、ペデスタイル32のポーラスストーン35にはペデスタイル32内を貫通して形成された水供給管36が連結されている。同様にキャップ33のポーラスストーン37にはキャップ33内を貫通して形成された排水管38が連結されている。   In the present invention, in order to perform a consolidated water permeability test of the specimen 31, porous stones 35 and 37 having a predetermined thickness are attached to the upper surface of the pedestal 32 and the lower surface of the cap 33 that are in contact with the specimen 31, and A water supply pipe 36 penetrating the pedestal style 32 is connected to the style 32 porous stone 35. Similarly, a drain pipe 38 formed through the cap 33 is connected to the porous stone 37 of the cap 33.

以下、透水試験時に供試体31に供給され、供試体31内を透水して排水される水の経路について、図1を参照して説明する。ペデスタイル32側の水供給管36は三軸試験機1の図示しない圧源から第2の圧力制御手段としてのレギュレータ3を介して水圧調整可能な水供給タンク7に連通しており、透水試験用の水は、水供給経路上の圧力計6、開閉弁9により調整自在に供給されるようになっている。一方、キャップ33側に取り付けられた排水管37は内セル20内から底板12を貫通して外セル10外まで延長され、経路上の三方弁39を介して、排水量計測手段としての計量タンク40と、三軸試験機1側の受けタンク8とに切り替え可能に連通されている。キャリブレーション及び透水試験のタイミングに応じて適宜三方弁39は切り替えられる。   Hereinafter, a route of water that is supplied to the specimen 31 during the water permeability test and drains through the specimen 31 will be described with reference to FIG. The water supply pipe 36 on the side of the pedestal 32 communicates from a pressure source (not shown) of the triaxial testing machine 1 to a water supply tank 7 whose water pressure can be adjusted via a regulator 3 as a second pressure control means. The water for use is supplied in an adjustable manner by a pressure gauge 6 and an on-off valve 9 on the water supply path. On the other hand, the drainage pipe 37 attached to the cap 33 side extends from the inner cell 20 through the bottom plate 12 to the outside of the outer cell 10, and via a three-way valve 39 on the path, a measuring tank 40 as a drainage amount measuring means. And a receiving tank 8 on the triaxial testing machine 1 side so as to be switchable. The three-way valve 39 is appropriately switched according to the timing of calibration and water permeability test.

次に、内セル20内に収容保持された供試体31に作用させる拘束圧の圧力制御手段について図1を参照して説明する。
図1に示したように、外セル10内には内セル20が収容固定されているが、外セル10のセル液15は内セル20の上端の開放筒23の高さ位置まで満たされている。さらに、内セル20内にも内部に供試体31がセットされた状態でセル液24が開放筒23の高さの半分程度まで満たされている。したがって、外セル10のセル液圧と内セル20のセル液圧とは、外セル10の上部空間と内セルとが連通した状態にあり、等しい液圧(拘束圧)に設定される。このとき、開放筒23内には、開放筒23の内径よりわずかに小さい外径を有する円筒形状のフロート25が収容されている。このフロート25はセル液24より比重が小さいため、図2に拡大して示したように、開放筒23内で開放筒23内面に接しない程度に浮遊した状態にある。外セル10及び内セル20内に満たされるセル液15,24としては、本実施例では、非圧縮性液体としてのシリコーンオイルが用いられている。十分な非圧縮性、非揮発性が確認され、取り扱いが容易で安全な液体であれば、他の種々の液体を用いることもできる。また、後述するように貯水された計量タンク40からの蒸発の防止を図れれば、脱気水も用いることができる。
Next, the restraint pressure control means that acts on the specimen 31 accommodated and held in the inner cell 20 will be described with reference to FIG.
As shown in FIG. 1, the inner cell 20 is accommodated and fixed in the outer cell 10, but the cell liquid 15 in the outer cell 10 is filled up to the height of the open cylinder 23 at the upper end of the inner cell 20. Yes. Further, the cell solution 24 is filled in the inner cell 20 to about half the height of the open cylinder 23 with the specimen 31 set therein. Therefore, the cell fluid pressure of the outer cell 10 and the cell fluid pressure of the inner cell 20 are in a state where the upper space of the outer cell 10 and the inner cell communicate with each other, and are set to the same fluid pressure (restraint pressure). At this time, a cylindrical float 25 having an outer diameter slightly smaller than the inner diameter of the open cylinder 23 is accommodated in the open cylinder 23. Since the float 25 has a specific gravity smaller than that of the cell liquid 24, the float 25 floats in the open cylinder 23 so as not to contact the inner surface of the open cylinder 23 as shown in an enlarged view in FIG. 2. In the present embodiment, silicone oil as an incompressible liquid is used as the cell liquids 15 and 24 filled in the outer cell 10 and the inner cell 20. Various other liquids can be used as long as sufficient incompressibility and non-volatility are confirmed, and the liquid is easy to handle and safe. Further, deaerated water can also be used if it is possible to prevent evaporation from the stored measuring tank 40 as will be described later.

また、外セル10の上蓋14には、図示しない圧源からレギュレータ2を介して圧力配管18が配管されている。この圧力配管18を介して外セル10の上部空間を所定圧気状態にすることで外セル10内のセル液15および開放筒23を介して伝達される内セル20内のセル液24の液圧を所定拘束圧に設定することができる。このときの外セル10、内セル20内の液圧(供試体拘束圧)は圧力計4,5で確認することができる。   In addition, a pressure pipe 18 is connected to the upper cover 14 of the outer cell 10 via a regulator 2 from a pressure source (not shown). The liquid pressure of the cell liquid 15 in the inner cell 20 and the cell liquid 15 in the outer cell 10 transmitted through the open cylinder 23 by bringing the upper space of the outer cell 10 into a predetermined pressure state through the pressure pipe 18. Can be set to a predetermined restraint pressure. At this time, the fluid pressure (specimen restraint pressure) in the outer cell 10 and the inner cell 20 can be confirmed with the pressure gauges 4 and 5.

一方、透水試験時に供試体保持手段30を通じ、供試体31内を透水して外セル10外に排出された水は、三方弁39で排水経路が切り替えられ、計量タンク40内に貯留される。この計量タンク40は電子秤41上に設置されており、計量タンク40内に排出された水の質量が逐次計量できるようになっている。また、計量タンク40に貯留された水の表面には所定層厚のシリコーンオイル被膜42が形成されており、長期にわたる計測においても排出水が蒸発するのを防止することができる。さらに計量タンク40と電子秤41全体は風防ケース42内に収容されており、計量時のデータ変動を最小限に抑えることができる。   On the other hand, the water discharged through the specimen 31 through the specimen holding means 30 during the water permeability test and discharged outside the outer cell 10 is switched in the drainage path by the three-way valve 39 and stored in the measuring tank 40. The measuring tank 40 is installed on an electronic balance 41 so that the mass of water discharged into the measuring tank 40 can be sequentially measured. In addition, a silicone oil film 42 having a predetermined layer thickness is formed on the surface of the water stored in the measuring tank 40, and it is possible to prevent the discharged water from evaporating even during long-term measurement. Further, the entire measuring tank 40 and the electronic balance 41 are accommodated in the windshield case 42, so that data fluctuation during measurement can be minimized.

ここで、本発明における供試体の体積変化量の計測手段の構成について、図2を参照して説明する。本発明では、図2に示したように、内セル20の上蓋22の一部に設けられた開放筒23内のほぼ中間高さにセル液24の液面が位置し、その内部に喫水が全高の半分の位置となるようにフロート25が浮いた状態で収容されている。本実施例では、開放筒23は高さ6cm、内径4cmに設定され、その内部に収容されたフロート25は、高さ0.7cm、外径3.8cmの扁平円板形状からなる比重0.90〜0.95のポリプロピレン樹脂成形品からなる。なお、この開放筒23、フロート25の形状は内セル20の寸法、供試体の体積変化量の計測精度等、求められた仕様に応じて適宜設定することができることはいうまでもない。   Here, the configuration of the means for measuring the volume change amount of the specimen in the present invention will be described with reference to FIG. In the present invention, as shown in FIG. 2, the liquid level of the cell liquid 24 is located at a substantially intermediate height in the open cylinder 23 provided in a part of the upper cover 22 of the inner cell 20, and the draft is contained therein. The float 25 is accommodated in a floating state so as to be at a half of the total height. In this embodiment, the open cylinder 23 is set to a height of 6 cm and an inner diameter of 4 cm, and the float 25 housed therein has a specific gravity of 0. 7 cm and a flat disk shape having an outer diameter of 3.8 cm. It consists of a 90-0.95 polypropylene resin molded product. Needless to say, the shapes of the open cylinder 23 and the float 25 can be appropriately set according to required specifications such as the dimensions of the inner cell 20 and the measurement accuracy of the volume change amount of the specimen.

一方、同図に示したように、外セル10の上蓋中央部分には、所定直径の円形開口14aが形成され、円形開口14aの下面側に光透過蓋としてのガラス板蓋16が固着されている。このガラス板蓋16は外セル10内が所定加圧状態とされても、曲げ変形しない程度の板厚と剛性とを有している。一方、外セル10の上方には、図1に全体を示した公知のレーザー変位計45がスタンド48(図1)を介して設置されている。このレーザー変位計45は、内部の発光部46から照射された半導体レーザーLが図1、図2に示したように、内セル20の開放筒23内に浮いているフロート25の上面25aに合焦され、その反射光が同変位計45の受光部47に設けられた受光素子(図示せず)で受光され、形成された三角形状に応じた位置(変位)計測が行われる。なお、本実施例では、測定距離としては0.5m程度に設定でき、対象(フロート上面25a)の変位測定精度が50μm程度のレーザー変位計が用いられている。本実施例では、開放筒23の内径は4cmに設定されており、フロート25の上下方向の変位を連続計測することにより、内セル20内に収容された供試体31の体積変化量を連続して算出できる。   On the other hand, as shown in the figure, a circular opening 14a having a predetermined diameter is formed in the central portion of the upper cover of the outer cell 10, and a glass plate cover 16 as a light transmitting cover is fixed to the lower surface side of the circular opening 14a. Yes. The glass plate lid 16 has a plate thickness and rigidity enough to prevent bending deformation even when the outer cell 10 is in a predetermined pressure state. On the other hand, a known laser displacement meter 45 shown in FIG. 1 as a whole is installed above the outer cell 10 via a stand 48 (FIG. 1). As shown in FIGS. 1 and 2, the laser displacement meter 45 is aligned with the upper surface 25a of the float 25 floating in the open cylinder 23 of the inner cell 20, as shown in FIGS. The reflected light is received by a light receiving element (not shown) provided in the light receiving portion 47 of the displacement meter 45, and position (displacement) measurement corresponding to the formed triangular shape is performed. In this embodiment, a laser displacement meter is used in which the measurement distance can be set to about 0.5 m, and the displacement measurement accuracy of the target (float upper surface 25a) is about 50 μm. In this embodiment, the inner diameter of the open cylinder 23 is set to 4 cm, and by continuously measuring the vertical displacement of the float 25, the volume change amount of the specimen 31 accommodated in the inner cell 20 is continuously measured. Can be calculated.

供試体31の体積変化量の計測手段の構成において、測定対象のフロート25までの測定距離、及び計測精度が仕様に合えば、半導体レーザーを利用したレーザー変位計45に代えて、他の公知の光学式変位計を使用することもできる。また、外セル10の上蓋12に取り付けられたガラス板蓋16も、所定の剛性、光透過性を確保でき、計測光を精度良く透過させる材質であれば、各種の透明合成樹脂材料を使用することができる。   In the configuration of the means for measuring the volume change amount of the specimen 31, if the measurement distance to the float 25 to be measured and the measurement accuracy meet the specifications, instead of the laser displacement meter 45 using a semiconductor laser, other known methods An optical displacement meter can also be used. Also, the glass plate lid 16 attached to the upper lid 12 of the outer cell 10 is also made of various transparent synthetic resin materials as long as it can secure predetermined rigidity and light transmission and can accurately transmit measurement light. be able to.

以下、本発明の圧密透水試験装置によって、遮水層(ベントナイト混合土)やロックフィルダムのコア材などの、難透水性材料の和透水性と圧密特性、種々の拘束圧下における吸水膨張特性、不飽和土の圧縮特性および吸水膨張後や不飽和土の圧縮後の透水性を計測するための一連の試験方法について、図3,図4を参照して説明する。
本装置では大きく、不飽和土の圧縮試験、吸水膨張試験を行った後に、圧密・透水試験を行うことができる。すなわち、難透水性の不飽和土試料を所定形状の供試体31に整形し、初期寸法を測定した後に、図1に示したように、三軸試験機1の支持脚11上のベデスタイル32にセットし、キャップ33、ゴムスリーブ34を装着して所定の配管を接続した状態で、内セル20内に収容する。外セル10を組み立てた後に、外セル10、内セル20をセル液15,24で満たした状態で三軸試験機1の操作による不飽和圧縮試験を行う。このとき図示しない圧源からの圧力調整をレギュレータ2を介して行って所定サイクルでの拘束圧の載荷・除荷を繰り返す。その間における内セル20内に収容された不飽和供試体の体積変化は、内セル20上部の開放筒23での液位変化としてフロート25の上下変位量を計測することで知ることができる。その後、設定された載荷除荷サイクル分だけ繰り返され、この間の圧縮特性を把握することができる。
In the following, the water permeability and consolidation characteristics of poorly permeable materials, such as water-impervious layers (bentonite mixed soil) and rock fill dam core materials, water absorption and expansion characteristics under various restraint pressures, A series of test methods for measuring the compression characteristics of saturated soil and water permeability after water absorption expansion and after compression of unsaturated soil will be described with reference to FIGS.
This apparatus is large and can perform a consolidation / water permeability test after performing a compression test and a water absorption expansion test on unsaturated soil. That is, after forming a hardly water-permeable unsaturated soil sample into a specimen 31 having a predetermined shape and measuring the initial dimensions, as shown in FIG. 1, the bedded style 32 on the support leg 11 of the triaxial testing machine 1 is formed. The cap 33 and the rubber sleeve 34 are attached, and a predetermined pipe is connected, and is accommodated in the inner cell 20. After the outer cell 10 is assembled, an unsaturated compression test is performed by operating the triaxial testing machine 1 in a state where the outer cell 10 and the inner cell 20 are filled with the cell solutions 15 and 24. At this time, pressure adjustment from a pressure source (not shown) is performed via the regulator 2, and loading / unloading of the restraining pressure in a predetermined cycle is repeated. The volume change of the unsaturated specimen accommodated in the inner cell 20 during that time can be known by measuring the vertical displacement of the float 25 as the liquid level change in the open cylinder 23 above the inner cell 20. After that, it is repeated for the set loading / unloading cycle, and the compression characteristic during this period can be grasped.

また、不飽和な供試体に通水して完全飽和化することにより、この間における供試体の吸水膨張特性の試験も行うこともできる。この場合、供試体通水時におけるフロート25の上下変位量を計測することにより、吸水膨張状態を確認できる。   Moreover, the water absorption expansion | swelling characteristic test of the test piece in the meantime can also be performed by letting water pass to an unsaturated test piece and complete saturation. In this case, the water absorption and expansion state can be confirmed by measuring the amount of vertical displacement of the float 25 when the specimen passes through.

さらに圧密透水試験を行う。この圧密透水試験は、所定の拘束圧増(減)分による載荷除荷サイクルを設定し、各拘束圧載荷除荷サイクルにおける供試体の圧密体積変化量を、圧密排水され、電子秤上の計量タンクに貯水された排水量及び、内セル20の開放筒23内のフロート25の上下変位量を計測することにより求める。さらに供給タンクからの供試体の通水を行い、電子秤41上の計量タンク40に貯水された透水量及び、内セル20の開放筒23内のフロート25の上下変位量を計測することにより透水試験時に生じる供試体の体積変化を計測する。この秤41による排水量(透水量)の計測、レーザ変位計45によるフロート25の変位量の計測を、各拘載荷除荷時において行うことで、対象となる難透水性材料の圧密透水特性を精度良く把握することができる。   Furthermore, a consolidation water permeability test is performed. In this consolidation water permeability test, a loading / unloading cycle is set for a specified restraint pressure increase (decrease), and the amount of change in the consolidation volume of the specimen in each restraint pressure loading / unloading cycle is consolidated and drained and measured on an electronic scale. It is obtained by measuring the amount of drainage stored in the tank and the amount of vertical displacement of the float 25 in the open cylinder 23 of the inner cell 20. Further, water is passed through the specimen from the supply tank, and the amount of water stored in the measuring tank 40 on the electronic balance 41 and the amount of vertical displacement of the float 25 in the open cylinder 23 of the inner cell 20 are measured. Measure the volume change of the specimen that occurs during the test. By measuring the amount of water drainage (water permeability) with the scale 41 and the displacement of the float 25 with the laser displacement meter 45 at the time of unloading each restraint load, the compact water permeability characteristics of the target poorly permeable material can be accurately obtained. I can grasp it well.

本発明の圧密透水試験装置の一実施例を示した概略構成図。The schematic block diagram which showed one Example of the consolidated water permeability test apparatus of this invention. 図1に示した装置の変位量測定部を拡大して示した模式拡大図。The model enlarged view which expanded and showed the displacement measuring part of the apparatus shown in FIG. 本発明の試験装置による試験方法の手順を示したフローチャート(その1)Flow chart showing the procedure of a test method using the test apparatus of the present invention (part 1) 本発明の試験装置による試験方法の手順を示したフローチャート(その2)The flowchart which showed the procedure of the test method by the testing apparatus of this invention (the 2)

符号の説明Explanation of symbols

1 三軸圧縮試験機
2 第1の圧力制御手段(レギュレータ)
3 第2の圧縮制御手段(レギュレータ)
10 三軸セル(外セル)
15,24 セル液
20 内セル
23 開放筒
25 フロート
30 供試体保持手段
31 供試体
35,37 通水部(ポーラスストーン)
40 計量タンク
41 電子秤
45 レーザー変位計
1 Triaxial compression tester 2 First pressure control means (regulator)
3 Second compression control means (regulator)
10 Triaxial cell (outer cell)
15, 24 Cell solution 20 Inner cell 23 Open cylinder 25 Float 30 Specimen holding means 31 Specimens 35, 37 Water flow part (porous stone)
40 Weighing tank 41 Electronic scale 45 Laser displacement meter

Claims (3)

支持部上に設置される三軸セルと、該三軸セル内に満たされたセル液の自由液面を圧源から供給された圧気で加圧して、該三軸セル内の拘束圧を制御可能な第1の圧力制御手段と、前記三軸セル内に収容固定され、上面の一部の自由液面を介して前記三軸セル内のセル液の拘束圧と等しい状態のセル液で内部が満たされる内セルと、所定形状に整形され、側面からの通水が防止された供試体内を、上下方向のみ均等に透水可能な通水部を介して前記内セル内に固定保持する供試体保持手段と、第2の圧力制御手段で制御され、前記通水部に通水可能な水供給手段とを備えた圧密透水試験装置であって、
前記内セルは、上面の一部に前記内セルの直径に対して十分細径に形成され、筒内部に前記セル液の自由液面が位置し、該筒内部を上下動可能に浮遊するフロートが収容された開放筒部を有し、
前記三軸セルの上方に設置され、前記三軸セルの上蓋の一部に形成された光透過蓋部を介して、前記フロートに計測レーザー光を照射、反射させ、該反射光を該装置で検知して前記フロートの上下変位量を計測する半導体レーザー変位計と、
前記三軸セル下方に設置され、前記供試体内を透水し、前記三軸セル外に排出された排出水を貯水する計量タンクと、該計量タンク内の排出水の質量を計測する排出水質量計測手段とを備えたことを特徴とする圧密透水試験装置。
Control the restraint pressure in the triaxial cell by pressurizing the free liquid level of the triaxial cell installed on the support and the cell liquid filled in the triaxial cell with the pressure supplied from the pressure source. A first pressure control means capable of being accommodated and fixed in the triaxial cell, and inside the cell liquid in a state equal to the restraining pressure of the cell liquid in the triaxial cell via a part of the free liquid surface of the upper surface And an inner cell that is shaped into a predetermined shape and that is prevented from passing water from the side surface, is fixedly held in the inner cell through a water passage portion that can be evenly permeable only in the vertical direction. A compact permeation test apparatus comprising: a specimen holding means; and a water supply means controlled by a second pressure control means and capable of passing water through the water passage portion,
The inner cell is formed in a part of the upper surface with a sufficiently small diameter with respect to the diameter of the inner cell, the free liquid level of the cell liquid is located inside the cylinder, and the float floats up and down in the cylinder. Has an open cylinder portion in which is accommodated,
The float is irradiated with and reflected by the measurement laser beam through a light transmitting lid part formed on a part of the upper lid of the triaxial cell , which is installed above the triaxial cell, and the reflected light is reflected by the apparatus. A semiconductor laser displacement meter that detects and measures the vertical displacement of the float ; and
A measuring tank that is installed below the triaxial cell and permeates the specimen and stores the discharged water discharged outside the triaxial cell , and a discharged water mass that measures the mass of the discharged water in the measuring tank. A consolidated water permeability test apparatus comprising a measuring means .
請求項1に記載の圧密透水試験装置により、前記供試体の圧密に伴う体積変化量を計測すると同時に、透水試験を行うことを特徴とする圧密透水試験方法。   A consolidation / permeability test method characterized in that, by the consolidation / permeability test apparatus according to claim 1, a volume change amount associated with the consolidation of the specimen is measured, and at the same time, a permeability test is performed. 請求項1に記載の圧密透水試験装置により、吸水膨張する不飽和土供試体の吸水膨張に伴う体積変化量を測定し、さらに同供試体を用いて圧密に伴う体積変化量を測定しながら、透水試験を行うことを特徴とする圧密透水試験方法。   By measuring the volume change accompanying the water absorption expansion of the unsaturated soil specimen that absorbs and expands by using the consolidation water permeability test apparatus according to claim 1, and further measuring the volume change accompanying the consolidation using the specimen, A consolidated water permeability test method characterized by performing a water permeability test.
JP2004106070A 2004-03-31 2004-03-31 Consolidation permeability test apparatus and test method Expired - Fee Related JP3923954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004106070A JP3923954B2 (en) 2004-03-31 2004-03-31 Consolidation permeability test apparatus and test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004106070A JP3923954B2 (en) 2004-03-31 2004-03-31 Consolidation permeability test apparatus and test method

Publications (2)

Publication Number Publication Date
JP2005291862A JP2005291862A (en) 2005-10-20
JP3923954B2 true JP3923954B2 (en) 2007-06-06

Family

ID=35324957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004106070A Expired - Fee Related JP3923954B2 (en) 2004-03-31 2004-03-31 Consolidation permeability test apparatus and test method

Country Status (1)

Country Link
JP (1) JP3923954B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101915725A (en) * 2010-09-03 2010-12-15 中国科学院武汉岩土力学研究所 A core clamping pressure vessel
CN102353596A (en) * 2011-08-30 2012-02-15 上海交通大学 Stress path automatic controlling triaxial apparatus
CN103091372A (en) * 2013-02-07 2013-05-08 浙江大学 On-board seepage flow and outflow concentration real-time monitoring device and method of geotechnical centrifuge
CN103869054A (en) * 2014-03-25 2014-06-18 安徽理工大学 Pressurized grouting test device and method for rock specimens
CN104390883A (en) * 2014-11-10 2015-03-04 西南石油大学 Novel adsorption and desorption experiment device and novel adsorption and desorption experiment method
CN105806763A (en) * 2016-03-16 2016-07-27 中国地质大学(武汉) Visualized test device for hot dry rock crack seepage and heat exchange process
CN106053878A (en) * 2016-07-15 2016-10-26 浙江科技学院 Observation device for microscopic flow field in particle pore in liquidation and observation method thereof
CN106596379A (en) * 2016-12-26 2017-04-26 立方通达实业(天津)有限公司 Bidirectional consolidation permeameter
CN106771615A (en) * 2016-11-25 2017-05-31 江苏科技大学 A kind of soil body electrical conductance and permeability multipurpose test system and method for testing
CN106761730A (en) * 2016-12-20 2017-05-31 安徽理工大学 A kind of fast demountable clamps component and its confined pressure experimental provision
CN108106969A (en) * 2017-11-14 2018-06-01 中国石油天然气股份有限公司 Experimental system and method for measuring diffusion of pressure wave in core
CN109374415A (en) * 2018-09-19 2019-02-22 中国石油集团川庆钻探工程有限公司 Multi-crack three-dimensional space induced stress testing method
CN109507085A (en) * 2018-12-29 2019-03-22 水利部交通运输部国家能源局南京水利科学研究院 Simulate the true triaxial experimental provision and its method of the multidirectional seepage flow of earth rock material
CN110095347A (en) * 2019-05-05 2019-08-06 三峡大学 Three axis tensilometer of strain controlling formula unsaturated soil
CN111238953A (en) * 2019-03-22 2020-06-05 湘潭大学 Observation device for rock dense core derivation process
US10809175B1 (en) 2020-06-04 2020-10-20 Prince Mohammad Bin Fahd University Device and method for soil hydraulic permeability measurement

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4765548B2 (en) * 2005-10-25 2011-09-07 株式会社ブリヂストン Permeability test apparatus and permeability test method
CN100408996C (en) * 2005-11-08 2008-08-06 河海大学 Triaxial rheometer for measuring the rheological properties of soil
JP4840812B2 (en) * 2006-08-21 2011-12-21 国立大学法人 香川大学 Permeability tester and method
CN101221162B (en) * 2008-01-28 2011-08-31 四川大学 Soft rock large deformation three axis creep test transverse strain measuring extensometer and method
CN101915718B (en) * 2010-08-20 2012-01-11 中国科学院武汉岩土力学研究所 Multifunctional soil consolidation and penetration test device and test method thereof
CN102033034B (en) * 2010-10-29 2012-05-02 四川大学 Soil horizontal permeability coefficient measuring instrument
KR101241705B1 (en) 2010-12-14 2013-03-11 연세대학교 산학협력단 Method for tri-axial compression test of unsaturated soils and intermediate soils
CN102175583B (en) * 2010-12-31 2012-11-07 中国科学院武汉岩土力学研究所 Temperature-controllable three-axis soil permeability test device
KR101302742B1 (en) * 2011-08-12 2013-08-30 한국지질자원연구원 Apparatus for water permeability and consolidation test
CN102539244A (en) * 2012-02-21 2012-07-04 上海大学 Unsaturated soil anisotropic consolidation test device
CN102706728B (en) * 2012-05-21 2014-07-30 中国科学院武汉岩土力学研究所 Multifunctional unsaturated soil triaxial test device capable of circularly applying suction and method thereof
CN102735551A (en) * 2012-06-06 2012-10-17 中国科学院地质与地球物理研究所 A lever type soft rock/hard soil uniaxial compression deformation test device
CN102735800A (en) * 2012-06-27 2012-10-17 兰州大学 Measurement apparatus for swelling force change of buffer backfill material along with water absorption change, and measurement method thereof
JP6024960B2 (en) * 2012-10-22 2016-11-16 清水建設株式会社 Measurement test method for water absorption expansion characteristics
CN103018152A (en) * 2012-12-20 2013-04-03 湖南科技大学 Indoor grouting testing device under simulation of complex stress effect and testing method thereof
US9453829B2 (en) 2013-12-23 2016-09-27 Shijiazhuang Tiedao University Soil property test device
CN103792175B (en) * 2014-03-03 2016-04-06 中国科学院地质与地球物理研究所 A kind of unsaturation Rock And Soil determines head inverse osmosis method of testing
CN103792174B (en) * 2014-03-03 2016-02-10 中国科学院地质与地球物理研究所 Under a kind of loading environment, Rock And Soil determines head supply formula seepage flow test device
CN103808643B (en) * 2014-03-03 2016-04-06 中国科学院地质与地球物理研究所 Vertical seepage tests method under soil body one-dimensional consolidation condition
CN103776750A (en) * 2014-03-05 2014-05-07 上海市城市建设设计研究总院 Automatic tester for variable head permeability of soil
CN103940664A (en) * 2014-05-13 2014-07-23 中国矿业大学 Device and method for identifying hard soil fracture microstructure under triaxial test conditions
CN104089867B (en) * 2014-07-15 2016-04-27 安徽理工大学 A kind of Rock And Soil water absorption test device
CN104596905B (en) * 2014-12-31 2017-05-24 西南石油大学 Device and method for measuring permeability of rock in fracturing process
KR101723288B1 (en) * 2015-03-04 2017-04-04 충북대학교 산학협력단 Apparatus and Method for expansion rate of ground
CN104677815B (en) * 2015-03-06 2017-03-01 西南石油大学 True triaxial Rock parameter measurement system
CN104713801B (en) * 2015-04-10 2017-06-16 重庆大学 The big rock sample gas absorption desorption experimental apparatus of different size and method
CN104819926B (en) * 2015-05-20 2017-05-10 河海大学 Multi-field coupled penetration test device and test method for fractured rock
CN104964881B (en) * 2015-06-30 2017-08-25 昆明理工大学 A triaxial rheological experimental device for measuring the mechanical properties of tailings materials
CN104990857A (en) * 2015-07-23 2015-10-21 重庆大学 Detection method and device of coal rock permeability under true tri-axial environment
KR101675368B1 (en) * 2015-08-10 2016-11-11 한국건설기술연구원 Apparatus and Method for Freezing and Thawing of Soil Specimen
CN105136582A (en) * 2015-09-24 2015-12-09 中国矿业大学 Testing system and testing method of outburst-preventing bedrock buckling failure model of karst tunnel
CN105300867B (en) * 2015-10-12 2019-01-15 中国地质大学(武汉) Ground heat diffusion properties test device under the conditions of a kind of fluid structurecoupling
CN105738214B (en) * 2016-03-01 2019-01-15 龙岩学院 A kind of performance testing device and its application method of mine roof material reinforced material
CN105954175B (en) * 2016-07-18 2018-11-27 中南大学 Experimental rig and method for testing engineering material water permeability
CN106596366A (en) * 2016-11-03 2017-04-26 温州大学 High water content soft clay consolidation osmosis test device
CN107422097B (en) * 2017-05-23 2023-09-12 北京交通大学 Device for measuring soil consolidation performance and expansion force
CN108362622B (en) * 2018-02-08 2020-05-22 成都理工大学 True triaxial clamp holder for keeping rock stress to realize seepage in different directions
CN109060526A (en) * 2018-07-05 2018-12-21 沈阳工业大学 Thief zone sand-pebble layer earth pressure balanced shield, EPBS consolidates permeability experimental facility and method
CN109709020B (en) * 2019-01-24 2023-11-07 中南大学 Air permeability test system and test method for unsaturated frozen soil
CN110160925B (en) * 2019-03-19 2024-02-23 云南省城乡建设投资有限公司 Geotechnical test pneumatic consolidation permeameter and test monitoring method thereof
CN109991099A (en) * 2019-04-29 2019-07-09 中交天津港湾工程研究院有限公司 A kind of ultra-soft soil large-scale consolidation test device and test method
CN109975195B (en) * 2019-04-30 2024-04-05 郑州大学 Test device and method for measuring void fraction of stone chip sample and controlling void fraction of stone chip sample
CN111912757B (en) * 2019-05-10 2023-07-25 中国石油天然气股份有限公司 Shale parameter measuring device
CN110595985A (en) * 2019-10-29 2019-12-20 中南大学 A geotextile performance testing system and method for compacting grouting soil nails
CN111707538B (en) * 2020-08-03 2021-05-11 中南大学 Rock true triaxial stress-seepage test device and method
CN111929346B (en) * 2020-08-13 2022-09-20 辽宁工程技术大学 A kind of multifunctional electroosmotic experiment instrument and using method thereof
CN113176391A (en) * 2021-03-29 2021-07-27 中国电建集团西北勘测设计研究院有限公司 Soil testing device
CN113049366A (en) * 2021-04-15 2021-06-29 浙江理工大学 Sample sealing method and device for domestic garbage soil triaxial test
CN114739816A (en) * 2021-06-30 2022-07-12 中国铁道科学研究院集团有限公司 Coarse-grained soil filler major diameter triaxial test device
CN114252389B (en) 2021-12-20 2024-02-06 中国矿业大学 Borehole wall pressure corrosion test system
CN114295468B (en) * 2022-01-07 2023-07-21 中国石油大学(华东) A variable head soft clay consolidation model test box and its application method
CN114414375B (en) * 2022-01-21 2024-01-12 武汉大学 Device and method for lateral limit compression test of rock-fill material with controllable drainage rate
CN114993917B (en) * 2022-06-15 2023-05-16 江苏科技大学 Device and method for continuously testing gas permeability coefficient of unsaturated soil under variable suction
CN115060636B (en) * 2022-06-17 2024-09-17 山东大学 Gap rate test method for stone filling roadbed
CN115266532A (en) * 2022-08-05 2022-11-01 河北工业大学 Deep damaged rock water absorption testing arrangement
CN115078225B (en) * 2022-08-22 2022-11-15 黑龙江省水利水电勘测设计研究院 In-situ infiltration testing system and testing method thereof
CN116359474B (en) * 2023-05-17 2024-10-25 中铁隧道局集团路桥工程有限公司 Device and method for measuring load expansion rate capable of measuring confining pressure
CN117388151B (en) * 2023-12-08 2024-03-26 中铁十八局集团第五工程有限公司 Ground permeability detection equipment and method for highway engineering

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61119726U (en) * 1985-01-14 1986-07-28
JPS6370712A (en) * 1986-09-12 1988-03-30 Tokyo Electric Power Co Inc:The Tester for consolidation and water permeation
JPS63205521A (en) * 1987-02-20 1988-08-25 Sumitomo Electric Ind Ltd liquid level light sensor
JP2764613B2 (en) * 1989-06-23 1998-06-11 株式会社竹中工務店 Laboratory test equipment for in-situ ground stress using in-situ ground frozen samples
JPH10206303A (en) * 1997-01-23 1998-08-07 Fujita Corp Triaxial test apparatus and method
JPH10300558A (en) * 1997-05-01 1998-11-13 Tokyo Keiso Co Ltd Device for measuring liquid level
JP2001349813A (en) * 2000-06-07 2001-12-21 Ohbayashi Corp Water cutoff structure for testing water permeation, effective stress, hydraulic fracturing or the like in lock bed tester

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101915725A (en) * 2010-09-03 2010-12-15 中国科学院武汉岩土力学研究所 A core clamping pressure vessel
CN101915725B (en) * 2010-09-03 2011-12-28 中国科学院武汉岩土力学研究所 Rock core clamping pressure vessel
CN102353596A (en) * 2011-08-30 2012-02-15 上海交通大学 Stress path automatic controlling triaxial apparatus
CN103091372A (en) * 2013-02-07 2013-05-08 浙江大学 On-board seepage flow and outflow concentration real-time monitoring device and method of geotechnical centrifuge
CN103869054A (en) * 2014-03-25 2014-06-18 安徽理工大学 Pressurized grouting test device and method for rock specimens
CN103869054B (en) * 2014-03-25 2017-01-04 安徽理工大学 Grouting test device with pressure and test method for rock sample
CN104390883A (en) * 2014-11-10 2015-03-04 西南石油大学 Novel adsorption and desorption experiment device and novel adsorption and desorption experiment method
CN105806763A (en) * 2016-03-16 2016-07-27 中国地质大学(武汉) Visualized test device for hot dry rock crack seepage and heat exchange process
CN106053878A (en) * 2016-07-15 2016-10-26 浙江科技学院 Observation device for microscopic flow field in particle pore in liquidation and observation method thereof
CN106053878B (en) * 2016-07-15 2018-09-21 浙江科技学院 Thin sight flow observation device and its observation procedure when liquefaction in pellet pores
CN106771615A (en) * 2016-11-25 2017-05-31 江苏科技大学 A kind of soil body electrical conductance and permeability multipurpose test system and method for testing
CN106771615B (en) * 2016-11-25 2019-09-03 江苏科技大学 A multifunctional testing device and testing method for soil electrical conductivity and permeability
CN106761730A (en) * 2016-12-20 2017-05-31 安徽理工大学 A kind of fast demountable clamps component and its confined pressure experimental provision
CN106596379A (en) * 2016-12-26 2017-04-26 立方通达实业(天津)有限公司 Bidirectional consolidation permeameter
CN108106969A (en) * 2017-11-14 2018-06-01 中国石油天然气股份有限公司 Experimental system and method for measuring diffusion of pressure wave in core
CN109374415A (en) * 2018-09-19 2019-02-22 中国石油集团川庆钻探工程有限公司 Multi-crack three-dimensional space induced stress testing method
CN109507085A (en) * 2018-12-29 2019-03-22 水利部交通运输部国家能源局南京水利科学研究院 Simulate the true triaxial experimental provision and its method of the multidirectional seepage flow of earth rock material
CN109507085B (en) * 2018-12-29 2021-05-28 水利部交通运输部国家能源局南京水利科学研究院 True triaxial experimental device and method for simulating multidirectional seepage of soil and rock materials
CN111238953A (en) * 2019-03-22 2020-06-05 湘潭大学 Observation device for rock dense core derivation process
CN111238953B (en) * 2019-03-22 2021-06-22 湘潭大学 A device for observing the process of rock compaction and nucleation
CN110095347A (en) * 2019-05-05 2019-08-06 三峡大学 Three axis tensilometer of strain controlling formula unsaturated soil
CN110095347B (en) * 2019-05-05 2022-02-01 三峡大学 Strain control type unsaturated soil three-axis stretching instrument
US10809175B1 (en) 2020-06-04 2020-10-20 Prince Mohammad Bin Fahd University Device and method for soil hydraulic permeability measurement

Also Published As

Publication number Publication date
JP2005291862A (en) 2005-10-20

Similar Documents

Publication Publication Date Title
JP3923954B2 (en) Consolidation permeability test apparatus and test method
CN201876408U (en) Multifunctional permeameter
JP3381991B2 (en) Water permeability measuring apparatus and water permeability measuring method using the same
US4955237A (en) Method and apparatus for measurement of in-situ horizontal stress by freezing of the ground in-situ
CN201716256U (en) Soil mass permeability testing device
CN103913557B (en) A kind of rock free swelling rate and Water ratio determination apparatus and using method thereof
CN103645128B (en) A kind of unsaturation rock-soil material stress infiltration measuring instrument
CN110286074A (en) Simultaneous determination of undisturbed soil permeability coefficient - effective porosity - water supply
US5373727A (en) Miniporopermeameter
CN204086061U (en) For the analyzer of concrete surface water-intake rate test
CN102735819A (en) Infiltrometer
CN109060637A (en) Unsaturated soil apparatus for measuring permeability coefficient
CN208847582U (en) Earth Pressure Balance Shield Consolidation and Infiltration Experimental Device for High Permeability Sand and Pebble Formation
JP3978411B2 (en) Permeability test equipment
JP2007147315A (en) Triaxial consolidation permeability test device and test method
CN101865811B (en) A Method for Measuring the Permeability Coefficient of Unsaturated Soil
CN205301271U (en) Geosynthetic material becomes silted up and blocks up test instrument
CN103033460B (en) The determinator of soil body horizontal osmotic coefficient and method thereof
US20220307965A1 (en) French press permeameter
CN204789259U (en) Device of test silt osmotic coefficient
US3892126A (en) Method and apparatus for facilitating testing the liquid absorptivity of soil
Luo et al. Watertable fluctuation-induced variability in the water retention curve: Sand column experiments
CN203772852U (en) Rock free swelling ratio and water absorption determining device for laboratories
Li et al. Development of a modified axis translation technique for measuring SWCCs for gravel soils at very low suctions
CN211179453U (en) Closed-loop full-curve geotechnical permeability test system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070222

R150 Certificate of patent or registration of utility model

Ref document number: 3923954

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees