[go: up one dir, main page]

JP3920115B2 - Measuring method of bottle can - Google Patents

Measuring method of bottle can Download PDF

Info

Publication number
JP3920115B2
JP3920115B2 JP2002064366A JP2002064366A JP3920115B2 JP 3920115 B2 JP3920115 B2 JP 3920115B2 JP 2002064366 A JP2002064366 A JP 2002064366A JP 2002064366 A JP2002064366 A JP 2002064366A JP 3920115 B2 JP3920115 B2 JP 3920115B2
Authority
JP
Japan
Prior art keywords
bottle
screw
thread
measurement
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002064366A
Other languages
Japanese (ja)
Other versions
JP2003262511A (en
Inventor
正実 田顔
信雄 鈴木
勝志 高津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurashiki Spinning Co Ltd
Altemira Can Co Ltd
Original Assignee
Kurashiki Spinning Co Ltd
Universal Can Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurashiki Spinning Co Ltd, Universal Can Corp filed Critical Kurashiki Spinning Co Ltd
Priority to JP2002064366A priority Critical patent/JP3920115B2/en
Publication of JP2003262511A publication Critical patent/JP2003262511A/en
Application granted granted Critical
Publication of JP3920115B2 publication Critical patent/JP3920115B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Image Analysis (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Image Processing (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、測定検査方法に係り、特にアルミニウムやその合金からなるボトル缶を測定する技術に関する。
【0002】
【従来の技術】
金属製のボトル缶(以下、単にボトル缶と略称す)は、アルミニウムやアルミニウム合金からなる金属板を絞り加工(Drawing)と、次いで行われるしごき加工(Ironing)とによって形成されるため、一般にDI缶と呼ばれている。
【0003】
このようなボトル缶は、現在、飲料用の缶として広く使われており、金属板から有底筒状の缶胴に形成された後、その上部が縮径(ネックイン加工)されることによって缶胴の径より小さな口金が形成され、その後、口金にキャップを被着するためのねじ部が形成される。
【0004】
【発明が解決しようとする課題】
ところで、近年、ボトル缶の需要が高まるにつれ、より高品質より均一化を図るため、ボトル缶を測定することが要求されている。
ところが、アルミニウム製等のようなボトル缶は、円筒形状であるので、周囲の位置が明確に区別されておらず、また柔軟性を有する薄肉でかつDI加工されていて、しかも缶胴をネックイン加工することによって口金を形成した後、口金にねじ部を設けるので、缶胴の軸線と口金の軸線とにずれを生じることが余儀なくされ、そのため、形成されたねじ部にばらつきが生じる、即ち、ねじ部のねじ山やねじ谷にばらつきが生じる問題があった。
この問題を解消するためには、ボトル缶のねじ部を検査し、この検査結果に基づいてねじ部の加工を修正することが考えられるが、一般の二次元形状測定機を用いた手動による方法以外検査するための有効適切な方法が提供されていないのが実情であった。
【0005】
この発明は、このような事情を考慮してなされたもので、その目的は、ボトル缶のねじ部を確実に測定検査することができ、ボトル缶の品質を高めることが可能な測定検査方法を提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するために、この発明は以下の手段を提案している。
請求項1に係る発明は、外周面にねじ部が形成された口金を有する金属製のボトル缶を測定台上にセットし、該ボトル缶をその軸線を中心として回転させつつ、該ボトル缶の側方から撮像手段により該ボトル缶の輪郭線を撮像し、その撮像データに基づいて前記ねじ部を測定検査するボトル缶の測定検査方法であって、A.前記ねじ部のねじ始まり部が前記輪郭線上に現れた状態にて該ねじ始まり部に対応する部分に計測領域を設定し、B.ボトル缶の回転に伴って変位するねじ山突端及びねじ谷の座標を求めつつ、一定間隔おきに前記計測領域を該ねじ山突端及びねじ谷に追従して変位させ、C.前記ねじ山突端及びねじ谷の座標データに基づきねじ部を測定検査することを特徴とする。
【0007】
この発明に係る測定検査方法によれば、ボトル缶の回転に伴って変位するねじ山突端及びねじ谷の座標を求めつつ、一定間隔おきに前記計測領域を該ねじ山突端及びねじ谷に追従して変位させると、計測領域によりねじ山突端及びねじ谷の座標データが得られ、その座標データに基づいてねじ部を測定検査するので、ボトル缶のねじ部を確実に測定検査することができ、ねじ部の測定検査を良好に行うことができる。
【0008】
請求項2に係る発明は、請求項1記載の測定検査方法において、前記ねじ山突端及びねじ谷の座標データに基づいてねじ歪みを測定検査することを特徴とする。
【0009】
この発明に係る測定検査方法によれば、ねじ山突端及びねじ谷の座標データに基づいてねじ歪みを測定検査するので、ねじ歪みの検査を良好に行うことができる。
【0010】
請求項3に係る発明は、請求項1記載の測定検査方法において、前記ねじ山突端及びねじ谷の座標データに基づいてねじの傾斜角度を測定検査することを特徴とする。
【0011】
この発明に係る測定検査方法によれば、ボトル缶のねじ部の傾斜角度も確実に測定することができるので、ねじ部の傾斜角度の測定検査を良好に行うことができる。
【0012】
請求項4に係る発明は、請求項1記載の測定検査方法において、前記ねじ山突端及びねじ谷の座標データにより検出された前記ねじ始まり部からねじ終り部までの前記ボトル缶の回転角度に基づいてねじ巻数を測定検査することを特徴とする。
【0013】
この発明に係る測定検査方法によれば、ねじ山突端及びねじ谷の座標データにより検出された前記ねじ始まり部からねじ終り部までの前記ボトル缶の回転角度に基づいてねじ巻数を測定するので、ねじ巻数の測定検査を良好に行うことができる。
【0014】
請求項5に係る発明は、請求項4記載のボトル缶の測定検査方法において、前記ボトル缶を、前記ねじ始まり部から規定のねじ巻数に基づいて前記ねじ部のねじ終わりが前記輪郭線に現れる近傍手前まで回転させ、その後、該ボトル缶を所定角度ずつ回転させつつねじ終わりを検出し、前記近傍手前までの回転角度及び前記所定角度ずつの回転累積角度基づいてねじ部の巻数を測定検査することを特徴とする。
【0015】
この発明に係る測定検査方法によれば、ボトル缶を、前記ねじ始まり部から規定のねじ巻数に基づいてねじ終わりが輪郭線上に現れる近傍手前まで回転させた後、ボトル缶を所定角度ずつ回転させつつねじ終わりを検出することで、ねじ部の巻数を測定検査するので、これによってもねじ部の巻数の測定検査を良好に行うことができる。
【0016】
【発明の実施の形態】
以下、図面を参照し、この発明の実施の形態について説明する。図1から図9はこの発明の一実施の形態に係る測定検査方法を適用した測定検査装置を示す図である。
この実施形態の測定検査方法を述べる前に、まず、測定するボトル缶について説明する。図9に示すボトル缶30は、アルミニウム製若しくはその合金製の板体をDI加工することによって有底筒状の缶胴31が形成され、次いでその缶胴31の先端開口部をネックイン加工して口金32が形成され、その後、口金32の周囲に図示しないキャップを被着するためのねじ部33が形成され、また先端部に開口部の形成壁を外方に折り返してカール部34が形成される。
【0017】
この場合、ボトル缶30の形成過程においては、下塗り塗装、文字塗装等が施され、かつ焼き付け処理される。図9において、符号35は、口金のねじ部33におけるねじ始まり部35を示している。このねじ始まり部35は、詳細に図示していないが、口金32の周囲に対し上部から下方に螺旋状に形成されたねじ部33において、そのねじ山とねじ谷とが規定の寸法をもつことでねじ部33として機能する有効ねじの始点部分をなしている。
【0018】
そして、図1に示す実施形態の測定検査装置は、上記ボトル缶30を測定するためのものであって、大別すると、ボトル缶30の供給部1と、供給部1から繰り出されたボトル缶30を測定位置に送り込む搬送機構3を備えている。
【0019】
供給部1にはボトル缶30を複数貯留するストッカー2が備えられ、ストッカー2は、図2に示すように、出口側が低くかつそれと反対側が高くなるように傾斜して設置されており、内部に例えば同一種類のボトル缶30を三段に重ねて貯留する第1貯留部2Aと、その上に、長さが違う等種類の異なるボトル缶30を三段に重ねて貯留する第2貯留部2Bとを有し、これら貯留部2A、2B内のボトル缶30が出口側に移動するようになっている。
【0020】
各貯留部2A、2Bには、図1のように長手方向に沿う位置決め板2cと押圧板2dとが設けられ、押圧板2dが前方にスライドしてボトル缶30の先端開口を位置決め板2cに押し付けることで、長さの異なるボトル缶30でもボトル缶30の先端を揃えた状態で貯留するようになっている。
また、供給部1には、図2に示すようにL字状に形成された搬出体2aが設けられ、搬出体2aが貯留部2A、2Bの出口側にて測定すべきボトル缶30を受け取った後、鎖線のように回転することで排出シュータ2bを介して繰り出し位置に繰り出すようにしている。搬出体2aは、各貯留部2A、2B間で昇降可能でかつ回動可能に構成されている。
【0021】
搬送機構3は、吸着部4と、ロボットハンド5と、マーカセンサ6を備え、供給部1からボトル缶30が繰り出されると、そのボトル缶30をシリンダ等の介添体(図示せず)を介して吸着部4に押し出し、吸着部4がボトル缶30を吸着した後、その状態で受け渡し位置7まで移動する。
【0022】
その際、吸着部4が受け渡し位置7に到達した時点で、ボトル缶30をその軸線周りに回転させ、マーカセンサ6がボトル缶30に設けられたマーク部36を検出することで、受け渡し位置7においてボトル缶30の周方向の位置が特定位置として位置決めされる。マーク部36は、ボトル缶30の口金32において、ねじ部33のねじ始まり部35の位置に予め設けられた着色体からなっている。吸着部4にはボトル缶30を軸線周りに回転させる回転機構が設けられ、マーカセンサ6がマーク部36を検出した時点で、ボトル缶30の回転を停止することで、ボトル缶30のマーク部36の位置を特定位置に位置決めさせ、これによってボトル缶30の周方向の位置が特定されるようになっている。
【0023】
ロボットハンド5は、受け渡し位置7にてボトル缶30を受け取ると、自身の姿勢を変えてボトル缶30を測定台8に載置する。従って、ロボットハンド5がボトル缶30を測定台8に載置すると、測定台8上におけるボトル缶30の周方向の位置が定まっている。
【0024】
測定台8は、図3のようにボトル缶30をその軸線周りに回転させる回転部9と、回転部9を昇降させる昇降部10とを備え、測定時、必要に応じボトル缶30を回転させたり昇降できるようにしている。この測定台8は、回転部9に吸着機構が設けられ、ロボットハンド5によってボトル缶30が送り込まれると、ボトル缶30を吸着機構の作動により回転部9に吸着し、しかもボトル缶30の軸線と回転部9の測定中心軸とが一致するようにしている。
【0025】
また、この測定検査装置は、図3に示すように、撮像カメラとして三台からなる第1〜第3カメラ11〜13と、測定すべきボトル缶30を照明する照明機構(符示せず)と、撮像データに基づいて画像処理することでボトル缶30を測定する画像処理部17とを備えている。
【0026】
撮像カメラの第1カメラ11は、測定個所数の多いメインとなる撮像データを得るためのもので、図1のようにボトル缶30と正対した位置に設置され、第2カメラ12は第1カメラ11と所定角度(例えば120度)α1隔てた位置にボトル缶30と正対して設置され、第3カメラ13は、ボトル缶30の開口部に設けられたカール部34の内径を撮像するため、ボトル缶30の上方位置に設置されている。
【0027】
この場合、第1カメラ11は、ボトル缶30の全長、首長、スカート高さ、カール幅の他、ねじ部33等多数の測定個所を撮像するためのものであり、第2カメラ12は、ボトル缶30のネック長を測定するためのものである。これら第1〜第3カメラ11〜13の各々は、例えばCCD等のような固体撮像素子により構成されている。
【0028】
照明機構は、第1〜第3照明器14〜16からなっている。第1及び第2照明器14、15は、第1及び第2カメラ11、12の各々がボトル缶30をシルエット像として撮像できるように設置されている。即ち、図1のように、第1照明器14は、測定台8上のボトル缶30を挟んで第1カメラ11と対向する位置に設置され、第2照明器15は、測定台8上のボトル缶30を挟んで第2カメラ12と対向する位置に設置されている。第3照明器16は、第1カメラ11の前方位置の周囲に設けられた環状をなしている。
【0029】
画像処理部17は、制御装置18に備えられている。制御装置18は、図3に示すように測定検査装置全体を制御するもので、入力部20により、測定検査に必要な各種のデータが入力されると、それに基づいて前述したストッカー2を備えた供給部1と、吸着部4及びロボットハンド5並びマーカセンサ6を備えた搬送装置3の各種駆動系と、測定台8の各種駆動系及び制御系とをそれぞれ駆動制御するようになっている。
【0030】
画像処理部17は、第1〜第3カメラ11〜13によって撮像された撮像データに基づいて、ボトル缶30の測定部位をそれぞれ測定するようになっている。
つまり、第1カメラ11によってボトル缶30における口金周辺部の撮像データが入力されると、それに基づいてボトル缶30のねじ部33を種々検査する他、ボトル缶30の全長、首長、ネック長、スカート高さ、ねじ山33の高さ等を測定するようになっている。それ以外として、画像処理部17は、第2カメラ12により第1カメラ11と異なる撮像距離でボトル缶30の口金周辺部の撮像データが入力されると、それに基づいてネック長を測定し、更に第3カメラ13によってボトル缶30の先端開口部の撮像データが入力されると、その撮像データからボトル缶30の口金32に設けられているカール部34の内径寸法を測定するようになっている。
【0031】
そして、画像処理部17による測定結果、測定内容が許容範囲内であれば、測定対象のボトル缶30が次の工程に搬出され、許容範囲外であれば、ロボットハンド5が測定対象のボトル缶30を不良処理工程へ搬出するようにしている。
【0032】
ところで、ボトル缶30のねじ部33を測定する際、ボトル缶30が円筒形状であって、周方向の任意の位置を特定することができないものとなっている。そこで、前記撮像カメラがボトル缶30を撮像する際、ボトル缶30に設けられているマーク部36を特定の位置に位置決めし、その位置決めされたマーク部36を基準として撮像することで、ボトル缶30の周方向の位置を特定するようにしている。
【0033】
そのため、この測定検査装置では、測定位置においては、第1カメラ11がボトル缶30を撮像したとき、ボトル缶30のマーク部36の位置が撮像画面上の左右いずれかの端部に配置されるように設定され、この実施形態では図4のように、撮像画面X上に現れているボトル缶30の輪郭線上の左端にマーク部36が、つまりねじ始まり部35が位置決めされるようになっている。
【0034】
即ち、ボトル缶30がロボットハンド5によって測定台8に載置されたとき、そのボトル缶30のねじ部33におけるねじ始まり部35が、図1のように第1カメラ11と正対する位置から90度の角度αで反時計方向にずれた位置となるように載置している。従って、第1カメラ11によってボトル缶30が撮像されると、その撮像画面Xの輪郭線上にはボトル缶30のねじ始まり部35が図4のようにボトル缶30の口金の左端に位置決めされる。
【0035】
このようにして測定台8に対し、ボトル缶30の周方向の位置を特定してセットすることにより、画像処理部17がボトル缶30のねじ部33について、ねじ歪み、ねじ傾斜角度及びねじ巻数を測定検査するようにしている。
【0036】
次に、この実施形態の測定検査装置による測定方法について説明する。
ボトル缶30の測定に際しては、供給部1のストッカー2から測定すべき種類のボトル缶30が一個繰り出されると、そのボトル缶30が搬送機構3の吸着部4に吸着され、吸着部4の移動によって受け渡し位置7に移動される。このとき、吸着部4が回転すると共に、ボトル缶30の口金32のねじ部33のねじ始まり部35に設けられているマーク部36をマーカセンサ6が検出することで、受け渡し位置7においてボトル缶30のマーク部36が周方向を特定位置にして位置決めされる。
【0037】
このように、ボトル缶30がマーク部36により周方向を特定位置として受け渡し位置7に到達された後、そのボトル缶30がロボットハンド5によって測定台8に載置されると、その状態でボトル缶30が測定されることとなる。このとき、測定台8は、ボトル缶30が載置されると、これを吸着することによってボトル缶30の軸線が測定中心軸に一致したままで固定する。
【0038】
そして、撮像カメラとしての第1〜第3カメラ11〜13が測定台8上のボトル缶30をそれぞれの設置位置から撮像すると、その撮像データが画像処理部17に出力されることとなる。その際、ボトル缶30が、図1のように第1カメラ11と正対する位置から90度の角度α1で反時計方向に移動した位置にマーク部36が位置決めされ、その位置がねじ始まり部35の位置であることから、第1カメラ11がボトル缶30を撮像すると、ボトル缶30の撮像データの左端に図4のようなねじ始まり部35が映し出され、第1カメラ11がボトル缶30のねじ始まり部35を基準として撮像する。
【0039】
その後、画像処理部17では、ねじ歪み測定検査が実行される。その際、画像処理部17は、測定検査に際し、予め、基準ゲージに基づいてボトル缶の天面高さ、計測領域Kを設定しておく。そして、第1カメラ11がボトル缶30を撮像してその撮像データが画像処理部17に入力され、画像処理部17は、測定すべきボトル缶30の天面L1の位置を設定すると共に、計測領域Kを決定する。
【0040】
そして、測定台8が所定の角度(例えば3.6度)ずつ回転し、画像処理部17がその角度ごとに撮像データを取り込む。即ち、画像処理部17は、最初の撮像データに基づき、計測領域K内のねじ始まり部35であるねじ山突端37a、ねじ谷37bの座標位置を測定し、次に、測定台8がねじ部33の巻方向に沿って所定の角度(3.6度)回転したときに同様にねじ山突端37a、ねじ谷37bの座標位置を測定し、順次これを繰り返す。この際、計測領域Kをねじ山突端37a、ねじ谷37bの変位に追従させて下方へ変位させる。そして、この測定をねじ部33のねじ終わりまで継続し、ねじ終わりにおいてボトル缶30の回転を停止する。ここで、ボトル缶30のねじ終わりは、ねじ山突端37aとねじ谷37bとの寸法差が一定値以下になったことをもって、ねじ終わりとして検出する。
【0041】
上記の測定において、第1カメラ11によってボトル缶30が撮像され、かつ各所定角度ごとの計測領域K内のねじ山突端37aの座標位置を測定することにより、これらのデータを最小二乗法で演算することで図6のようなねじ山基準線Oを求める。そして、このねじ山基準線Oからねじ山突端37aの最大値P1、最小値P2及び基準線Oの角度θを求める。これにより、ねじ山突端37aの最大値P1をねじ歪みの大きさとして検出すると共に、基準線Oの角度θによりねじ部33の傾斜角度(リード角)Qが得られることとなる。
【0042】
一方、ねじ部33の巻数を測定するには、ボトル缶30の輪郭線上に現れるねじ部33に対応する部分に計測領域Kを設定し、ボトル缶30を、規定のねじ巻数に基づいてねじ部33のねじ終わりが前記輪郭線に現れる近傍手前まで回転させ、その後、ボトル缶30を所定角度ずつ回転させつつねじ終わりを検出し、前記近傍手前までの回転角度及び前記所定角度ずつの回転累積角度に基づいてねじ部の巻数を測定する。
【0043】
以下、巻数測定の具体例について説明する。この例では、ボトル缶30のねじ部33の規定巻数が1.7回であるものとする。図8に示すように、ボトル缶30のねじ始まり部35(マーク部36)の位置を、カメラ11に対し90度の角度をもって輪郭線の左側端部に位置させた場合には(この位置を0度とする)、ボトル缶30の規定のねじ終わりEの位置は、反対側の輪郭線(180度位置)右端からα2=72゜の位置にある。
即ち、巻数を2倍して整数部と小数部とに分け、小数部に180゜を乗じるとα2が算出される。
1.7×2=3.4=3+0.4 …(1)
180°×0.4=72゜ …(2)
規定の巻数であれば、72゜回せば輪郭線上にねじ終わりEが現れるが、実際にはねじ終わりEの位置に誤差ある場合があるので、その手前、例えばその90%手前まで回し、そこから一定角度ずつ測定すればいずれかの測定位置でねじ終わりEを測定できることになる。
【0044】
即ち、ボトル缶30を72°の角度α2で反時計方向に一気に逆転させると、誤差等の関係からねじ終わりEの部分が通過してしまい、ねじ部33の有効な部分とねじ終わり部Eとの境界が判断できなくなるため、一定角度回転し、その位置から小刻みに測定してねじ終わりEの位置を検出するのである。
ここで、90%回転させるとすれば、
72°×0.9=64.8° …(3)
α3=64.8°となり、この位置まで回転させ、この位置から前述したと同様にして3.6°ずつ回転させ、その都度ねじ終わりEが現れたかどうかを判定しつつその回転させた回数をカウントし、ねじ終わりEが現れた時点で回転を停止する。
ここで、上記回数ごとの回転角度を積算し、例えば回数が3回であった場合には、
3.6°×3=10.8° …(4)
となり、従って巻数は、
(180°×3+64.8°+10.8°)/360°=1.71回
となり、規定の巻数1.7回に対して0.01回多い巻数であることが判断できる。
【0045】
このように、ボトル缶30を、規定のねじ巻数に基づいてねじ部33のねじ終わりが前記輪郭線に現れる近傍手前まで回転させ、その後、ボトル缶30を所定角度ずつ回転させつつねじ終わりを検出し、前記近傍手前までの回転角度及び前記所定角度ずつの回転累積角度に基づいてねじ部の巻数を測定することにより、巻数をねじ始まりから測定する必要が無く、巻数測定を迅速かつ的確に行うことができる。
なお、同様にしてボトル缶30を時計方向に回転させることにより測定することもできるのは勿論であるが、ねじ部33の巻数に応じ、ボトル缶輪郭線の左右のいずれかに寄っているのかに応じて選定する方が好ましい。
【0046】
かくして、この測定検査装置によれば、供給部1と搬送機構3と撮像カメラとしての第1〜第3カメラ11〜13と画像処理部17と制御装置19とを備えて構成されるので、ボトル缶30のねじ部33における種々の測定検査を確実に行うことができる。
【0047】
【発明の効果】
以上説明したように、請求項1に係る発明によれば、ボトル缶の回転に伴って変位するねじ山突端及びねじ谷の座標を求めることで得られたねじ山突端及びねじ谷の座標データに基づき、ねじ部を測定検査するので、ボトル缶のねじ部を確実に測定検査することができ、ねじ部の測定検査を良好に行うことができる効果が得られ、ボトル缶をより高品質かより均一化させることができる効果が得られる。
【0048】
請求項2に係る発明によれば、ねじ山突端及びねじ谷の座標データに基づきねじ歪みを測定検査するので、ねじ歪みの検査を良好に行うことができる効果が得られる。
【0049】
請求項3に係る発明によれば、ボトル缶のねじ部の傾斜角度も測定検査するので、ねじ部の傾斜角度の測定検査を良好に行うことができる効果が得られる。
【0050】
請求項4に係る発明によれば、ねじ山突端及びねじ谷の座標データにより検出された前記ねじ始まり部からねじ終り部までの前記ボトル缶の回転角度に基づいてねじ巻数を測定検査するので、ねじ巻数の測定検査を良好に行うことができる効果が得られる。
【0051】
請求項5に係る発明によれば、ボトル缶を、前記ねじ始まり部から規定のねじ巻数に基づいてねじ終わりが輪郭線上に現れる近傍手前まで回転させた後、ボトル缶を所定角度ずつ回転させつつねじ終わりを検出することでねじ部の巻数を測定検査するように構成したので、これによってもねじ部の巻数の測定検査を良好に行うことができる効果が得られ、しかも迅速に行える効果が得られる。
【図面の簡単な説明】
【図1】 この発明の一実施の形態に係る測定検査装置を示す図であって、ボトル缶の搬送経路を示す平面図である。
【図2】 供給部を示す説明用正面図である。
【図3】 図1の測定検査装置における要部を示す構成ブロック図である。
【図4】 撮像カメラによって撮像されたボトル缶を示す説明図である。
【図5】 ボトル缶のねじ部のねじ歪み検査時、ねじ部におけるねじ始まりのねじ山突端の座標を読み出す説明図である。
【図6】 ねじ部のねじ山突端の座標データに基いてねじ歪み、ねじの傾斜角度を求めるための説明図である。
【図7】 ボトル缶のねじ部におけるねじ山突端とねじ谷との差を求める説明図である。
【図8】 ねじ部の巻数に基づいて巻数の測定検査を行うための説明図である。
【図9】 ボトル缶の口金周辺を示す説明図である。
【符号の説明】
1 供給部
2 ストッカー
2A、2B 第1、第2貯留部
3 搬送機構
4 吸着部
5 ロボットハンド
6 マーカセンサ
7 受け渡し位置
8 測定台
9 回転部
10 昇降部
11 第1カメラ(撮像カメラ)
12 第2カメラ(撮像カメラ)
13 第3カメラ(撮像カメラ)
14 第1照明器(照明機構)
15 第2照明器(照明機構)
16 第3照明器(照明機構)
17 画像処理部
18 制御装置
20 入力部
30 ボトル缶
32 口金
33 ねじ部
34 カール部
35 ねじ始まり部
36 マーク部
37a ねじ山突端(ねじ山の頂部)
37b ねじ谷
E ねじ終わり
X 撮像画面
K 計測領域
Δ ねじ山(突端)とねじ谷との差
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a measurement and inspection method, and more particularly to a technique for measuring a bottle can made of aluminum or an alloy thereof.
[0002]
[Prior art]
A metal bottle can (hereinafter simply referred to as a bottle can) is generally formed by drawing a metal plate made of aluminum or an aluminum alloy and then performing an ironing process (Ironing). It is called a can.
[0003]
Such a bottle can is currently widely used as a beverage can, and after being formed into a bottomed cylindrical can body from a metal plate, the upper part is reduced in diameter (neck-in processing). A base smaller than the diameter of the can body is formed, and then a screw portion for attaching a cap to the base is formed.
[0004]
[Problems to be solved by the invention]
By the way, in recent years, as the demand for bottle cans increases, it is required to measure bottle cans in order to achieve higher quality and uniformity.
However, since the bottle can made of aluminum or the like has a cylindrical shape, the peripheral position is not clearly distinguished, is flexible and thin, and is DI-processed. Since the screw part is provided in the die after forming the die by processing, it is forced to cause a deviation between the axis of the can body and the axis of the die, and thus the formed screw part varies, that is, There has been a problem in that the thread and thread valley of the thread portion vary.
To solve this problem, it is conceivable to inspect the screw part of the bottle can and correct the processing of the screw part based on the inspection result. However, a manual method using a general two-dimensional shape measuring machine In fact, there is no effective and appropriate method for inspection.
[0005]
The present invention has been made in consideration of such circumstances, and its purpose is to provide a measurement and inspection method capable of reliably measuring and inspecting the screw portion of the bottle can and improving the quality of the bottle can. It is to provide.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention proposes the following means.
According to the first aspect of the present invention, a metal bottle can having a base having a threaded portion formed on the outer peripheral surface is set on a measurement table, and the bottle can is rotated about its axis while the bottle can is rotated. A method for measuring and inspecting a bottle can by imaging an outline of the bottle can from the side and measuring and inspecting the screw portion based on the image data. B. setting a measurement region in a portion corresponding to the screw start portion in a state where the screw start portion of the screw portion appears on the contour line; C. obtaining the coordinates of the thread tip and the thread valley displaced with the rotation of the bottle can, and displacing the measurement region at regular intervals to follow the thread tip and the thread valley; The threaded portion is measured and inspected based on the coordinate data of the thread protrusion end and the thread valley.
[0007]
According to the measurement and inspection method according to the present invention, while obtaining the coordinates of the thread tip and the thread valley that are displaced along with the rotation of the bottle can, the measurement region is tracked to the thread tip and the thread valley at regular intervals. When it is displaced, the coordinate data of the thread tip and thread valley is obtained by the measurement area, and the thread part is measured and inspected based on the coordinate data, so the thread part of the bottle can can be reliably measured and inspected, The threaded portion can be satisfactorily measured and inspected.
[0008]
According to a second aspect of the present invention, in the measurement / inspection method according to the first aspect, the screw strain is measured and inspected based on the coordinate data of the thread tip and the thread valley.
[0009]
According to the measurement / inspection method of the present invention, the screw strain is measured and inspected based on the coordinate data of the thread tip and the thread valley, so that the screw strain can be inspected satisfactorily.
[0010]
According to a third aspect of the present invention, in the measurement / inspection method according to the first aspect, the inclination angle of the screw is measured and inspected based on the coordinate data of the thread ridge end and the thread valley.
[0011]
According to the measurement / inspection method according to the present invention, the inclination angle of the threaded portion of the bottle can can be reliably measured, so that the measurement / inspection of the inclination angle of the threaded portion can be favorably performed.
[0012]
The invention according to claim 4 is the measurement and inspection method according to claim 1, wherein, in the rotational angle of the bottle can from the thread tip and the thread-starting portion which is more detected coordinate data of the thread root to thread the end portion Based on the above, the number of screw turns is measured and inspected.
[0013]
According to measurement and inspection method according to the present invention, since measuring the screw turns in accordance with the rotational angle of said bottle can from the thread-starting part more is detected in the coordinate data of the thread tip and thread root to thread the end portion Thus, it is possible to satisfactorily perform a measurement inspection of the number of screw turns.
[0014]
According to a fifth aspect of the present invention, in the bottle can measurement and inspection method according to the fourth aspect , the screw end of the screw portion appears on the contour line based on a prescribed number of screw turns from the screw start portion. rotated to near the front, then while rotating the bottle cans by a predetermined angle to detect the end screw, measurement and inspection of the number of turns of the screw portion, based on the cumulative revolution angle of each rotation angle and the predetermined angle to the vicinity of the front It is characterized by doing.
[0015]
According to the measurement and inspection method according to the present invention, the bottle can is rotated from the screw start portion to a position near the end where the screw end appears on the contour line based on the prescribed number of screw turns, and then the bottle can is rotated by a predetermined angle. However, since the number of turns of the screw portion is measured and inspected by detecting the end of the screw, the measurement and inspection of the number of turns of the screw portion can be performed satisfactorily.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. 1 to 9 are diagrams showing a measurement / inspection apparatus to which a measurement / inspection method according to an embodiment of the present invention is applied.
Before describing the measurement and inspection method of this embodiment, first, a bottle can to be measured will be described. A bottle can 30 shown in FIG. 9 is formed by subjecting a plate made of aluminum or an alloy thereof to DI processing to form a bottomed cylindrical can body 31, and then neck-in the tip opening of the can body 31. After that, a base 32 is formed, and then a screw portion 33 for attaching a cap (not shown) around the base 32 is formed, and a wall for forming an opening is folded outward at the tip portion to form a curled portion 34. Is done.
[0017]
In this case, in the formation process of the bottle can 30, undercoating, character coating, and the like are performed and a baking process is performed. In FIG. 9, the code | symbol 35 has shown the screw | thread start part 35 in the screw part 33 of a nozzle | cap | die. Although this screw start portion 35 is not shown in detail, in the screw portion 33 formed spirally downward from the upper part with respect to the periphery of the base 32, the screw thread and the screw valley have predetermined dimensions. The starting point portion of the effective screw functioning as the screw portion 33 is formed.
[0018]
And the measurement inspection apparatus of embodiment shown in FIG. 1 is for measuring the said bottle can 30, Comprising: When it divides roughly, the bottle can 30 drawn | fed out from the supply part 1 of the bottle can 30 and the supply part 1 A transport mechanism 3 for feeding 30 to the measurement position is provided.
[0019]
The supply unit 1 is provided with a stocker 2 for storing a plurality of bottle cans 30, and as shown in FIG. 2, the stocker 2 is installed so as to be inclined so that the outlet side is low and the opposite side is high. For example, the 1st storage part 2A which accumulates and stores the same kind of bottle cans 30 in three stages, and the second storage part 2B which stores the different types of bottle cans 30 in different lengths on the first storage part 2B. The bottle cans 30 in the storage units 2A and 2B are moved to the outlet side.
[0020]
As shown in FIG. 1, a positioning plate 2c and a pressing plate 2d along the longitudinal direction are provided in each of the storage portions 2A and 2B, and the pressing plate 2d slides forward so that the front end opening of the bottle can 30 is moved to the positioning plate 2c. By pressing, the bottle cans 30 having different lengths are stored with the tips of the bottle cans 30 aligned.
Further, the supply unit 1 is provided with an unloading body 2a formed in an L shape as shown in FIG. 2, and the unloading body 2a receives a bottle can 30 to be measured on the outlet side of the storage units 2A and 2B. After that, by rotating like a chain line, it is fed to the feeding position via the discharge shooter 2b. The carry-out body 2a is configured to be movable up and down and rotatable between the storage portions 2A and 2B.
[0021]
The transport mechanism 3 includes an adsorption unit 4, a robot hand 5, and a marker sensor 6. When the bottle can 30 is unwound from the supply unit 1, the bottle can 30 is passed through an intermediate body (not shown) such as a cylinder. Then, after the suction part 4 sucks the bottle can 30, it moves to the delivery position 7 in that state.
[0022]
At that time, when the suction part 4 reaches the delivery position 7, the bottle can 30 is rotated around its axis, and the marker sensor 6 detects the mark part 36 provided on the bottle can 30, thereby delivering the delivery position 7. The position in the circumferential direction of the bottle can 30 is positioned as the specific position. The mark portion 36 is made of a colored body provided in advance at the position of the screw start portion 35 of the screw portion 33 in the base 32 of the bottle can 30. The suction part 4 is provided with a rotation mechanism for rotating the bottle can 30 around the axis, and when the marker sensor 6 detects the mark part 36, the rotation of the bottle can 30 is stopped, thereby the mark part of the bottle can 30. The position of 36 is positioned at a specific position, whereby the circumferential position of the bottle can 30 is specified.
[0023]
When the robot hand 5 receives the bottle can 30 at the delivery position 7, the robot hand 5 changes its posture and places the bottle can 30 on the measuring table 8. Therefore, when the robot hand 5 places the bottle can 30 on the measurement table 8, the circumferential position of the bottle can 30 on the measurement table 8 is determined.
[0024]
As shown in FIG. 3, the measuring table 8 includes a rotating unit 9 that rotates the bottle can 30 around its axis, and an elevating unit 10 that raises and lowers the rotating unit 9, and rotates the bottle can 30 as necessary during measurement. Can be moved up and down. In the measuring table 8, an adsorption mechanism is provided in the rotating unit 9, and when the bottle can 30 is fed by the robot hand 5, the bottle can 30 is adsorbed to the rotating unit 9 by the operation of the adsorption mechanism, and the axis of the bottle can 30. And the measurement center axis of the rotating unit 9 are made to coincide with each other.
[0025]
In addition, as shown in FIG. 3, the measurement and inspection apparatus includes first to third cameras 11 to 13 that are three imaging cameras, and an illumination mechanism (not shown) that illuminates the bottle can 30 to be measured. The image processing unit 17 that measures the bottle can 30 by performing image processing based on the imaging data.
[0026]
The first camera 11 of the imaging camera is for obtaining main imaging data having a large number of measurement points, and is installed at a position facing the bottle can 30 as shown in FIG. The camera 11 is installed in a position facing the bottle can 30 at a predetermined angle (for example, 120 degrees) α1, and the third camera 13 images the inner diameter of the curled portion 34 provided in the opening of the bottle can 30. The bottle can 30 is installed above the can.
[0027]
In this case, the first camera 11 is for imaging a large number of measurement points such as the total length, neck length, skirt height, curl width, and threaded portion 33 of the bottle can 30, and the second camera 12 is used for the bottle 12. This is for measuring the neck length of the can 30. Each of the first to third cameras 11 to 13 is configured by a solid-state imaging device such as a CCD.
[0028]
The illumination mechanism includes first to third illuminators 14 to 16. The first and second illuminators 14 and 15 are installed so that each of the first and second cameras 11 and 12 can capture the bottle can 30 as a silhouette image. That is, as shown in FIG. 1, the first illuminator 14 is installed at a position facing the first camera 11 across the bottle can 30 on the measurement table 8, and the second illuminator 15 is on the measurement table 8. It is installed at a position facing the second camera 12 across the bottle can 30. The third illuminator 16 has an annular shape provided around the front position of the first camera 11.
[0029]
The image processing unit 17 is provided in the control device 18. As shown in FIG. 3, the control device 18 controls the entire measurement / inspection device. When various data necessary for measurement / inspection are input by the input unit 20, the control device 18 includes the stocker 2 described above. Various supply systems of the conveying device 3 provided with the supply unit 1, the suction unit 4 and the robot hand 5 and the marker sensor 6, and various drive systems and control systems of the measurement table 8 are respectively driven and controlled.
[0030]
The image processing unit 17 measures the measurement site of the bottle can 30 based on the imaging data captured by the first to third cameras 11 to 13.
That is, when the imaging data of the peripheral part of the cap in the bottle can 30 is input by the first camera 11, the threaded portion 33 of the bottle can 30 is variously inspected based on the data, and the total length, neck length, neck length, The skirt height, the height of the thread 33, and the like are measured. Otherwise, the image processing unit 17 measures the neck length based on the imaging data of the peripheral part of the mouthpiece of the bottle can 30 when the second camera 12 is input at an imaging distance different from that of the first camera 11. When imaging data of the front end opening of the bottle can 30 is input by the third camera 13, the inner diameter dimension of the curled portion 34 provided on the base 32 of the bottle can 30 is measured from the imaging data. .
[0031]
If the measurement result by the image processing unit 17 indicates that the measurement content is within the allowable range, the bottle can 30 to be measured is carried out to the next step. 30 is carried out to the defect processing step.
[0032]
By the way, when measuring the threaded portion 33 of the bottle can 30, the bottle can 30 has a cylindrical shape, and an arbitrary position in the circumferential direction cannot be specified. Therefore, when the imaging camera captures an image of the bottle can 30, the mark portion 36 provided on the bottle can 30 is positioned at a specific position, and the bottle can is imaged based on the positioned mark portion 36. 30 positions in the circumferential direction are specified.
[0033]
Therefore, in this measurement and inspection apparatus, when the first camera 11 images the bottle can 30 at the measurement position, the position of the mark portion 36 of the bottle can 30 is arranged at either the left or right end on the imaging screen. In this embodiment, as shown in FIG. 4, the mark portion 36, that is, the screw start portion 35 is positioned at the left end on the outline of the bottle can 30 appearing on the imaging screen X. Yes.
[0034]
That is, when the bottle can 30 is placed on the measuring table 8 by the robot hand 5, the screw start portion 35 in the screw portion 33 of the bottle can 30 is 90 from the position facing the first camera 11 as shown in FIG. It is placed so as to be shifted counterclockwise at an angle α of degrees. Therefore, when the bottle can 30 is imaged by the first camera 11, the screw start portion 35 of the bottle can 30 is positioned on the left end of the base of the bottle can 30 on the outline of the imaging screen X as shown in FIG. 4. .
[0035]
In this way, the position of the bottle can 30 in the circumferential direction is specified and set with respect to the measurement table 8, so that the image processing unit 17 performs screw distortion, a screw inclination angle, and the number of screw turns for the screw portion 33 of the bottle can 30. I am trying to measure and inspect.
[0036]
Next, a measurement method using the measurement inspection apparatus of this embodiment will be described.
When measuring the bottle can 30, when one kind of bottle can 30 to be measured is fed from the stocker 2 of the supply unit 1, the bottle can 30 is adsorbed by the adsorption unit 4 of the transport mechanism 3, and the adsorption unit 4 moves. To move to the delivery position 7. At this time, the suction portion 4 rotates and the marker sensor 6 detects the mark portion 36 provided on the screw start portion 35 of the screw portion 33 of the base 32 of the bottle can 30, so that the bottle can at the delivery position 7. Thirty mark portions 36 are positioned with the circumferential direction as a specific position.
[0037]
As described above, when the bottle can 30 is placed on the measuring table 8 by the robot hand 5 after the bottle can 30 has reached the delivery position 7 with the circumferential direction as the specific position by the mark portion 36, the bottle can be in that state. The can 30 will be measured. At this time, when the bottle can 30 is placed, the measuring table 8 is fixed by adsorbing the bottle can 30 while the axis of the bottle can 30 coincides with the measurement central axis.
[0038]
And if the 1st-3rd cameras 11-13 as an imaging camera image the bottle can 30 on the measurement stand 8 from each installation position, the imaging data will be output to the image process part 17. FIG. At that time, the mark portion 36 is positioned at a position where the bottle can 30 is moved counterclockwise at an angle α1 of 90 degrees from the position facing the first camera 11 as shown in FIG. 4, when the first camera 11 images the bottle can 30, a screw start portion 35 as shown in FIG. 4 is displayed at the left end of the image data of the bottle can 30, and the first camera 11 Imaging is performed with the screw start portion 35 as a reference.
[0039]
Thereafter, the image processing unit 17 executes a screw strain measurement inspection. At that time, the image processing unit 17 sets the height of the top surface of the bottle can and the measurement region K based on the reference gauge in advance for the measurement inspection. And the 1st camera 11 images the bottle can 30, The imaging data are input into the image process part 17, and while setting the position of the top | upper surface L1 of the bottle can 30 to be measured, the image process part 17 is measured. Region K is determined.
[0040]
Then, the measurement table 8 rotates by a predetermined angle (for example, 3.6 degrees), and the image processing unit 17 captures imaging data for each angle. That is, the image processing unit 17 measures the coordinate positions of the screw thread tip 37a and the screw valley 37b, which are the screw start portions 35 in the measurement region K, based on the first imaging data. Similarly, when rotating by a predetermined angle (3.6 degrees) along the winding direction of 33, the coordinate positions of the thread tip 37a and the thread valley 37b are measured, and this is sequentially repeated. At this time, the measurement region K is displaced downward by following the displacement of the thread tip 37a and the thread valley 37b. Then, this measurement is continued until the screw end of the screw portion 33, and the rotation of the bottle can 30 is stopped at the screw end. Here, the screw end of the bottle can 30 is detected as the screw end when the dimensional difference between the screw thread tip 37a and the screw valley 37b becomes a certain value or less.
[0041]
In the above measurement, the bottle can 30 is imaged by the first camera 11 and the coordinate position of the thread protrusion 37a in the measurement region K for each predetermined angle is measured to calculate these data by the least square method. As a result, a thread reference line O as shown in FIG. 6 is obtained. Then, the maximum value P1, the minimum value P2, and the angle θ of the reference line O of the thread protrusion end 37a are obtained from the thread reference line O. As a result, the maximum value P1 of the screw thread protrusion 37a is detected as the magnitude of the screw strain, and the inclination angle (lead angle) Q of the screw portion 33 is obtained from the angle θ of the reference line O.
[0042]
On the other hand, in order to measure the number of turns of the threaded portion 33, a measurement region K is set in a portion corresponding to the threaded portion 33 appearing on the contour line of the bottle can 30, and the bottle can 30 is moved to the threaded portion based on the prescribed number of screw turns. The screw end of 33 is rotated to the near side where the outline appears, and then the screw end is detected while rotating the bottle can 30 by a predetermined angle, and the rotation angle to the near side and the rotation accumulated angle by the predetermined angle are detected. The number of turns of the thread portion is measured based on the above.
[0043]
Hereinafter, specific examples of the winding number measurement will be described. In this example, it is assumed that the specified number of turns of the threaded portion 33 of the bottle can 30 is 1.7 times. As shown in FIG. 8, when the position of the screw start portion 35 (mark portion 36) of the bottle can 30 is positioned at the left end of the contour line at an angle of 90 degrees with respect to the camera 11 (this position is The position of the specified screw end E of the bottle can 30 is at a position of α2 = 72 ° from the right end of the opposite contour line (180 degree position).
That is, the number of turns is doubled to be divided into an integer part and a decimal part, and α2 is calculated by multiplying the decimal part by 180 °.
1.7 × 2 = 3.4 = 3 + 0.4 (1)
180 ° × 0.4 = 72 ° (2)
If the specified number of turns is turned 72 °, the screw end E appears on the contour line. However, since there may be an error in the position of the screw end E, turn it to the front, for example 90% before, and from there If the measurement is performed at a constant angle, the screw end E can be measured at any measurement position.
[0044]
That is, when the bottle can 30 is reversely rotated counterclockwise at an angle α2 of 72 °, the portion of the screw end E passes due to an error or the like, and the effective portion of the screw portion 33 and the screw end portion E Therefore, the position of the screw end E is detected by measuring from the position in small increments.
If we rotate 90% here,
72 ° × 0.9 = 64.8 ° (3)
α3 = 64.8 °, rotated to this position, rotated from this position by 3.6 ° in the same manner as described above, and each time the number of rotations is determined while determining whether the screw end E has appeared. The rotation is stopped when the screw end E appears.
Here, the rotation angle for each number of times is integrated, for example, when the number of times is 3,
3.6 ° × 3 = 10.8 ° (4)
Therefore, the number of turns is
(180 ° × 3 + 64.8 ° + 10.8 °) /360°=1.71 times, and it can be determined that the number of turns is 0.01 times greater than the prescribed number of turns 1.7.
[0045]
In this way, the bottle can 30 is rotated to a position just before the end of the screw portion 33 appears on the contour line based on the prescribed number of screw turns, and then the end of the screw is detected while rotating the bottle can 30 by a predetermined angle. Then, by measuring the number of turns of the screw portion based on the rotation angle up to the near side and the rotation accumulated angle by the predetermined angle, it is not necessary to measure the number of turns from the beginning of the screw, and the number of turns is measured quickly and accurately. be able to.
In addition, it can of course be measured by rotating the bottle can 30 in the same manner in the same manner. It is preferable to select according to.
[0046]
Thus, according to this measurement and inspection apparatus, since it is configured to include the supply unit 1, the transport mechanism 3, the first to third cameras 11 to 13 as imaging cameras, the image processing unit 17, and the control device 19, the bottle Various measurement inspections on the threaded portion 33 of the can 30 can be reliably performed.
[0047]
【The invention's effect】
As described above, according to the first aspect of the present invention, the coordinate data of the thread tip and the thread valley obtained by obtaining the coordinates of the thread tip and the thread valley displaced with the rotation of the bottle can are obtained. Based on the fact that the thread part is measured and inspected, the threaded part of the bottle can can be reliably measured and inspected, and the effect that the threaded part can be measured and inspected well can be obtained. The effect which can be made uniform is acquired.
[0048]
According to the second aspect of the present invention, since the screw strain is measured and inspected based on the coordinate data of the screw thread tip and the thread valley, an effect that the screw strain can be inspected satisfactorily is obtained.
[0049]
According to the invention which concerns on Claim 3, since the inclination angle of the thread part of a bottle can is also measured and inspected, the effect which can perform the measurement inspection of the inclination angle of a thread part favorably is acquired.
[0050]
According to the invention according to claim 4, since the screw turns to measurement and inspection in accordance with the rotational angle of said bottle can from the thread-starting part more is detected in the coordinate data of the thread tip and thread root to thread the end portion The effect that the measurement inspection of the number of screw windings can be performed well is obtained.
[0051]
According to the invention which concerns on Claim 5, after rotating a bottle can from the said screw | thread start part to the near front which a screw end appears on a contour line based on the prescribed number of screw turns, Since it is configured to measure and inspect the number of turns of the threaded part by detecting the end of the screw, this also has the effect of being able to perform a good measurement and inspection of the number of turns of the threaded part, and also has the effect of being able to perform quickly. It is done.
[Brief description of the drawings]
FIG. 1 is a diagram showing a measurement / inspection apparatus according to an embodiment of the present invention, and is a plan view showing a conveyance path of a bottle can.
FIG. 2 is an explanatory front view showing a supply unit.
3 is a configuration block diagram showing a main part of the measurement / inspection apparatus of FIG. 1. FIG.
FIG. 4 is an explanatory diagram showing a bottle can imaged by an imaging camera.
FIG. 5 is an explanatory diagram for reading out the coordinates of a screw thread protrusion at the beginning of a screw in the screw portion at the time of screw strain inspection of the screw portion of the bottle can.
FIG. 6 is an explanatory diagram for obtaining screw strain and a tilt angle of a screw based on coordinate data of a screw thread tip of a screw portion.
FIG. 7 is an explanatory diagram for obtaining a difference between a thread ridge end and a thread valley in a thread portion of a bottle can.
FIG. 8 is an explanatory diagram for performing a measurement inspection of the number of turns based on the number of turns of a threaded portion.
FIG. 9 is an explanatory view showing the periphery of a base of a bottle can.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Supply part 2 Stocker 2A, 2B 1st, 2nd storage part 3 Conveyance mechanism 4 Adsorption part 5 Robot hand 6 Marker sensor 7 Delivery position 8 Measurement stand 9 Rotation part 10 Lifting part 11 1st camera (imaging camera)
12 Second camera (imaging camera)
13 Third camera (imaging camera)
14 First illuminator (illumination mechanism)
15 Second illuminator (illumination mechanism)
16 Third illuminator (illumination mechanism)
Reference Signs List 17 Image processing unit 18 Control device 20 Input unit 30 Bottle can 32 Base 33 Screw part 34 Curl part 35 Screw start part 36 Mark part 37a Thread tip (top of thread)
37b Screw Valley E End of Screw X Imaging Screen K Measurement Area Δ Difference between Thread (Tip) and Thread Valley

Claims (5)

外周面にねじ部が形成された口金を有する金属製のボトル缶を測定台上にセットし、該ボトル缶をその軸線を中心として回転させつつ、該ボトル缶の側方から撮像手段により該ボトル缶の輪郭線を撮像し、その撮像データに基づいて前記ねじ部を測定検査するボトル缶の測定検査方法であって、
A.前記ねじ部のねじ始まり部が前記輪郭線上に現れた状態にて該ねじ始まり部に対応する部分に計測領域を設定し、
B.ボトル缶の回転に伴って変位するねじ山突端及びねじ谷の座標を求めつつ、一定間隔おきに前記計測領域を該ねじ山突端及びねじ谷に追従して変位させ、
C.前記ねじ山突端及びねじ谷の座標データに基づきねじ部を測定検査することを特徴とするボトル缶の測定検査方法。
A metal bottle can having a base having a threaded portion formed on the outer peripheral surface is set on a measurement table, and the bottle can is rotated around its axis while the bottle can be imaged from the side of the bottle can by an imaging means. A bottle can measurement and inspection method for imaging a contour of a can and measuring and inspecting the screw portion based on the imaging data,
A. In the state where the screw start portion of the screw portion appears on the contour line, a measurement area is set in a portion corresponding to the screw start portion,
B. While determining the coordinates of the thread tip and thread valley that are displaced with the rotation of the bottle can, the measurement region is displaced following the thread tip and thread valley at regular intervals,
C. A method for measuring and inspecting a bottle can, wherein the thread portion is measured and inspected based on the coordinate data of the screw thread tip and the thread valley.
請求項1記載の測定検査方法において、
前記ねじ山突端及びねじ谷の座標データに基づいてねじ歪みを測定検査することを特徴とするボトル缶の測定検査方法。
The measurement and inspection method according to claim 1,
A method for measuring and inspecting a bottle can, wherein the screw distortion is measured and inspected based on the coordinate data of the screw thread tip and the thread valley.
請求項1記載の測定検査方法において、
前記ねじ山突端及びねじ谷の座標データに基づいてねじの傾斜角度を測定検査することを特徴とするボトル缶の測定検査方法。
The measurement and inspection method according to claim 1,
A bottle can measuring and inspecting method, comprising: measuring and inspecting an inclination angle of a screw based on the coordinate data of the screw thread tip and screw valley.
請求項1記載の測定検査方法において、
前記ねじ山突端及びねじ谷の座標データにより検出された前記ねじ始まり部からねじ終り部までの前記ボトル缶の回転角度に基づいてねじ巻数を測定検査することを特徴とするボトル缶の測定検査方法。
The measurement and inspection method according to claim 1,
Measurement and inspection of bottle cans, characterized in that the screw turns to measurement and inspection in accordance with the rotational angle of said bottle can from the thread tip and the thread-starting portion which is more detected coordinate data of the thread root to thread the end portion Method.
請求項4記載の測定検査方法において、
前記ボトル缶を、前記ねじ始まり部から規定のねじ巻数に基づいて前記ねじ部のねじ終わりが前記輪郭線に現れる近傍手前まで回転させ、その後、該ボトル缶を所定角度ずつ回転させつつねじ終わりを検出し、前記近傍手前までの回転角度及び前記所定角度ずつの回転累積角度基づいてねじ部の巻数を測定検査することを特徴とするボトル缶の測定検査方法。
In the measurement inspection method according to claim 4 ,
The bottle can is rotated from the screw start portion to a position near the end where the screw end of the screw portion appears in the contour line based on a predetermined number of screw turns, and then the screw end is rotated while rotating the bottle can by a predetermined angle. A method for measuring and inspecting a bottle can, comprising: detecting and measuring and inspecting the number of turns of a screw portion based on a rotation angle up to the near side and a rotation accumulation angle by the predetermined angle.
JP2002064366A 2002-03-08 2002-03-08 Measuring method of bottle can Expired - Fee Related JP3920115B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002064366A JP3920115B2 (en) 2002-03-08 2002-03-08 Measuring method of bottle can

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002064366A JP3920115B2 (en) 2002-03-08 2002-03-08 Measuring method of bottle can

Publications (2)

Publication Number Publication Date
JP2003262511A JP2003262511A (en) 2003-09-19
JP3920115B2 true JP3920115B2 (en) 2007-05-30

Family

ID=29197196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002064366A Expired - Fee Related JP3920115B2 (en) 2002-03-08 2002-03-08 Measuring method of bottle can

Country Status (1)

Country Link
JP (1) JP3920115B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009008637A (en) * 2007-06-29 2009-01-15 Japan Crown Cork Co Ltd Device for inspecting angle seamed with cap in bottle-cap assembly
KR20140053019A (en) * 2011-06-06 2014-05-07 구라시키 보세키 가부시키가이샤 Apparatus for inspecting bottle can thread

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007024769A (en) * 2005-07-20 2007-02-01 Universal Seikan Kk Measuring method of bottle can
JP4890333B2 (en) * 2007-04-09 2012-03-07 昭和アルミニウム缶株式会社 Thread shape inspection method and thread shape inspection device
JP5734104B2 (en) 2011-06-06 2015-06-10 倉敷紡績株式会社 Bottle can mouthpiece inspection device
JP5877657B2 (en) 2011-06-06 2016-03-08 倉敷紡績株式会社 Method and apparatus for inspecting base of bottle can
JP6360782B2 (en) * 2014-11-28 2018-07-18 東京技研工業株式会社 Inspection method of screws
CN109142394A (en) * 2018-10-12 2019-01-04 安徽海思达机器人有限公司 A kind of bottle trade mark detection device
CN111089538A (en) * 2020-01-03 2020-05-01 博众精工科技股份有限公司 Rivet visual detection device and method for riveting

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009008637A (en) * 2007-06-29 2009-01-15 Japan Crown Cork Co Ltd Device for inspecting angle seamed with cap in bottle-cap assembly
KR20140053019A (en) * 2011-06-06 2014-05-07 구라시키 보세키 가부시키가이샤 Apparatus for inspecting bottle can thread
KR101986389B1 (en) * 2011-06-06 2019-06-05 구라시키 보세키 가부시키가이샤 Apparatus for inspecting bottle can thread

Also Published As

Publication number Publication date
JP2003262511A (en) 2003-09-19

Similar Documents

Publication Publication Date Title
CN110935644B (en) A machine vision-based bearing needle roller size detection system and method
JP3920115B2 (en) Measuring method of bottle can
JP5655936B2 (en) Workpiece defect detection device
JP4190819B2 (en) Electronic component mounting apparatus and image recognition method selection method
EP2700903A1 (en) Tire surface shape measuring device and tire surface shape measuring method
JPH10224099A (en) Method for mounting circuit component and circuit component mounting system
KR19980063882A (en) Paste applicator
JP2017100796A (en) Container orientation detection device, container processing apparatus and container orientation detection method
WO1992005892A1 (en) Metal sheet bending machine
US9430849B2 (en) Apparatus and method for performing at least one geometric dimension of an object
US6831996B1 (en) Method for inspecting an automotive wheel and associated apparatus
JP2005072046A (en) Electronic component mounting equipment
JP5877657B2 (en) Method and apparatus for inspecting base of bottle can
JP3942922B2 (en) Bottle can measuring device and measuring method
JPH10334221A (en) Image acquisition device
JP6598954B1 (en) Appearance inspection apparatus and appearance inspection method
JP2731724B2 (en) Automatic work size measurement system
KR101993262B1 (en) Apparatus for micro ball mounting work
CN108230385A (en) One camera motion detection superelevation lamination, ultra-thin cigarette-brand quantitative approach and device
CN111051067B (en) Direct printing device for applying a circumferential printing pattern
JP3525760B2 (en) Surface profile measuring device
JP7351282B2 (en) Method for superimposing captured images of steel materials and method for detecting markings on steel materials
JP2587765B2 (en) Method and apparatus for measuring dimensions of mechanical parts
JPH10142133A (en) Hardness measuring device
JP2000100858A (en) Component mounting device and calibrating method of imaging offset in device thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050302

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060519

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070214

R150 Certificate of patent or registration of utility model

Ref document number: 3920115

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees