[go: up one dir, main page]

JP3908120B2 - Manufacturing method of high strength stainless steel for elastic substrate of load sensor - Google Patents

Manufacturing method of high strength stainless steel for elastic substrate of load sensor Download PDF

Info

Publication number
JP3908120B2
JP3908120B2 JP2002242962A JP2002242962A JP3908120B2 JP 3908120 B2 JP3908120 B2 JP 3908120B2 JP 2002242962 A JP2002242962 A JP 2002242962A JP 2002242962 A JP2002242962 A JP 2002242962A JP 3908120 B2 JP3908120 B2 JP 3908120B2
Authority
JP
Japan
Prior art keywords
elastic substrate
load sensor
stainless steel
phase
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002242962A
Other languages
Japanese (ja)
Other versions
JP2004083937A (en
Inventor
純一 濱田
利行 末廣
淳 大谷
好実 加田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2002242962A priority Critical patent/JP3908120B2/en
Publication of JP2004083937A publication Critical patent/JP2004083937A/en
Application granted granted Critical
Publication of JP3908120B2 publication Critical patent/JP3908120B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、荷重応答性に優れた荷重センサーの弾性基板などに適した高耐力ステンレス鋼およびその製造方法に関するものである。
【0002】
【従来の技術】
一般に荷重センサーは、セラミックス製の歪抵抗素子と金属製の弾性基板から成る伸縮部位に外力を伝達する操作部位が荷重を伝える構造になっている。荷重は操作部位から弾性基板に伝わり、弾性基板の変形に応じて歪抵抗素子の抵抗値が変化して2次元方向の荷重を検知するものである。
【0003】
従来、荷重センサーにおける弾性基板には金属材料が使用されているが、弾性基板の耐力が低い場合に、過大な荷重が瞬間的に作用した時、弾性基板が塑性変形してしまい、荷重を正確に測定できない問題点があった。特開平8−145819には耐力が低い材料を用いても信頼性が高い荷重センサーが記載されているが、弾性基板そのものの特性向上すなわち高耐力化ができれば、従来の構造においても荷重応答性が高く、信頼性が高い荷重センサーとなる。
【0004】
弾性基板の高耐力化の方法としては、鋼製造時に冷間加工を施す方法があるが、製造工程が増える欠点がある。また、加工硬化により高耐力化させても、セラミックや樹脂からなる歪抵抗素子との接合のために熱処理が施されることが一般的であり、その際に歪みが除去されて軟化してしまい、耐力が低下してしまう。
【0005】
【発明が解決しようとする課題】
本発明の目的は、既知技術の問題点を解決し、荷重センサーの弾性基板などに適した高耐力ステンレス鋼を提供することにある。
【0006】
【課題を解決するための手段】
上記課題を解決するために、本発明者らは荷重センサーの弾性基板に要求される特性について、金属組織学、材質制御の観点から詳細な研究を行った結果、センサー製造の熱処理時においてσ相を析出させることにより、高耐力化することを可能にしたものであり、その要旨は、
(1)質量%にて、C:0.01〜0.10%、Cr:15〜30%、Ni:5〜25%、Mo:0.5〜8%、N:0.10〜0.20%、残部がFeおよび不可避的不純物から成るステンレス鋼を、600〜900℃で10min以上の熱処理を施すことにより、σ相を1〜40%存在させ、前記熱処理は、荷重センサー製造時に、他部材と結合するための熱処理において行うことを特徴とする荷重センサーの弾性基板用高耐力ステンレス鋼の製造方法。
【0007】
【発明の実施の形態】
以下に本発明の限定理由について説明する。
【0008】
荷重センサーの荷重応答性を向上させるためには、歪抵抗素子の抵抗値の応答性を向上させる必要があり、そのためには弾性基板の機械的性質における耐力が高い方が良い。耐力が低いと塑性変形により正確な荷重が測定できず、瞬間的な応答性が悪くなる。そこで、弾性基板において、金属間化合物を生成させることにより耐力を上げることが有効であることを見出し、耐力を増す金属間化合物としてσ相に着目した。
【0009】
図1は、オーステナイト系ステンレス鋼に熱処理を種々の条件で付与してσ相を析出させた場合の、σ相の生成量と耐力の関係を示す。σ相生成量の測定は、断面組織観察を行い、σ相の生成面積率を画像解析装置にて、500倍で10視野測定し、平均値を求めた。また、耐力は、JIS13号B試験片を採取して圧延方向に平行な方向の引張試験を行った際の0.2%耐力値である。
【0010】
σ相の増加により耐力の向上は著しく、1%以上の生成により耐力値が600N/mm2以上となる。一般的に荷重センサーの荷重応答性は弾性基板の耐力により支配され、600N/mm2以上あると十分な荷重応答性が得られるため、σ相の下限を1%にした。一方、σ相は鋼材の脆化を引き起こすが、荷重センサーにおける弾性基板はハウジング構造により外部から保護されるため、ある程度のσ相の増加は許容される。しかしながら、σ相が40%超になると著しく脆化して、センサー組立時の衝撃に耐えられない場合がある他、荷重センサーのハウジング構造を強化する必要があるため、上限を40%とした。
【0011】
σ相の形成は、主にFe、Cr、Moが主組成であり、これらの元素を含むステンレス鋼の使用が良い。以下、好ましい成分組成について説明する。
【0012】
Cは、耐食性を劣化させる他、σ相生成を抑制する元素であるため低い方が望ましいが、過度な低減はベース耐力の低減や精錬コストの増加をもたらすため、0.01〜0.10%とした。更に、製造コストや製造性を考慮すると、C量は0.02〜0.05%が望ましい。
【0013】
Crは、σ相生成を促進する元素である他、耐食性や耐酸化を向上させる元素であるため、多い方が望ましいが、過度な添加は製造コスト高をもたらすため、15〜30%とした。更に、センサー製造時の熱処理時のスケール生成抑制や耐食性、更に製造コストを考慮すると、Cr量は22〜27%が望ましい。
【0014】
Niは、耐食性や耐酸化性確保のために添加されるが、過度の添加はコストの増加をまねくことから、5〜25%とした。更に、センサー製造時における熱処理時のスケール生成抑制や耐食性、更に鋼の製造性を考慮すると、Ni量は5〜20%が望ましい。
【0015】
Moは、σ相生成を促進する元素であり、また耐食性を向上させる元素であるため、多い方が望ましいが、過度な添加はコスト増加や脆くなることによる生産性の低下をもたらすため、0.5〜8%とした。更に耐酸化性や製造コストを考慮すると、1.5〜3.5%が望ましい。
【0016】
Nは、耐食性や耐力を向上させる元素であるため、多い方が望ましいが、過度な添加はコスト増加や生産性の低下をもたらすため、更に過度な添加はσ相生成を抑制する他、製造コストや生産性を考慮すると、N量は0.10〜0.20%が望ましい。
【0017】
図2は、ステンレス鋼の熱処理温度とσ相生成量の関係を示す。これより、900℃超ではσ相が固溶してしまい、必要量が得られないため、上限を900℃とした。また600℃未満では、σ相よりもCr窒化物や炭化物が安定析出して、σ相生成量が減少するため、下限を600℃した。このσ相生成熱処理は、弾性基板として加工された後に行えばよく、例えば荷重センサーの他部材と結合するための熱処理において行えば、効率的に高耐力化できる。また、この熱処理の雰囲気はいかなる雰囲気でもよく、加熱条件や冷却条件は関係ない。また、熱処理時間は総時間であり、繰り返し熱処理でもσ相は生成可能であるため、600〜900℃における保定時間の総時間が10min以上であればよい。
【0018】
【実施例】
表1示す成分組成のステンレス鋼を溶製、鋳造後、熱間圧延、熱延板連続焼鈍・酸洗を施し、2.0mm厚まで冷間圧延し、連続焼鈍−酸洗、調質圧延を施して製品とした。この製品を表1に示す条件で熱処理を行った。
【0019】
上記の様にして得られたサンプルについて、σ相生成量と耐力を測定した。測定方法は先述した方法と同様である。
【0020】
表1から明らかなように、σ相が1〜40%存在し、σ相に加えて成分組成が請求項に記載の範囲であり、且つ熱処理条件が請求項の範囲であるNo.3〜12は、比較例と比べて耐力が更に高いことがわかる。
【0021】
【表1】

Figure 0003908120
【0022】
【発明の効果】
以上の説明から明らかなように、本発明によれば荷重センサーの弾性基板において高耐力が得られ、新規設備を必要とせず、効率的に荷重応答性に優れた荷重センサーを提供することができる。そして、家電、自動車、重機、建築物などの必要部位において、検知精度が著しく優れた測定が可能となる。
【図面の簡単な説明】
【図1】ステンレス鋼におけるσ相生成量と耐力の関係を示す図である。
【図2】ステンレス鋼における熱処理条件とσ相生成量の関係を示す図である[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-strength stainless steel suitable for an elastic substrate of a load sensor having excellent load response and a method for manufacturing the same.
[0002]
[Prior art]
In general, a load sensor has a structure in which an operation part for transmitting an external force transmits a load to an expansion / contraction part composed of a ceramic strain resistance element and a metal elastic substrate. The load is transmitted from the operation site to the elastic substrate, and the resistance value of the strain resistance element changes according to the deformation of the elastic substrate to detect the load in the two-dimensional direction.
[0003]
Conventionally, a metal material is used for the elastic substrate in the load sensor, but when the elastic substrate has low proof stress, when the excessive load is applied instantaneously, the elastic substrate is plastically deformed, and the load is accurately measured. There was a problem that could not be measured. Japanese Patent Application Laid-Open No. 8-145819 describes a load sensor that has high reliability even when a material having low yield strength is used. The load sensor is high and reliable.
[0004]
As a method for increasing the yield strength of an elastic substrate, there is a method of performing cold working at the time of steel production, but there is a drawback that the number of production steps increases. In addition, even if the yield strength is increased by work hardening, heat treatment is generally performed for bonding to a strain resistance element made of ceramic or resin, and strain is removed and softened at that time. The proof stress will be reduced.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a high-strength stainless steel suitable for an elastic substrate of a load sensor and the like by solving the problems of the known techniques.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the present inventors conducted detailed studies on the characteristics required for the elastic substrate of the load sensor from the viewpoints of metallography and material control. It is possible to increase the yield strength by precipitating
(1) In mass%, C: 0.01-0.10%, Cr: 15-30%, Ni: 5-25%, Mo: 0.5-8%, N: 0.10-0. 20%, the stainless steel balance being Fe and unavoidable impurities, by heat treatment of more than 10min at 600 to 900 ° C., in the presence of σ-phase 1-40%, the heat treatment is at load sensor manufacturing, other A method for producing high-strength stainless steel for an elastic substrate of a load sensor, which is performed in a heat treatment for bonding to a member .
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The reason for limitation of the present invention will be described below.
[0008]
In order to improve the load responsiveness of the load sensor, it is necessary to improve the responsiveness of the resistance value of the strain resistance element. For that purpose, it is better that the proof stress in the mechanical properties of the elastic substrate is high. If the proof stress is low, an accurate load cannot be measured due to plastic deformation, and the instantaneous response will deteriorate. Therefore, it was found effective to increase the yield strength by generating an intermetallic compound in the elastic substrate, and attention was paid to the σ phase as an intermetallic compound for increasing the yield strength.
[0009]
FIG. 1 shows the relationship between the amount of σ phase produced and the yield strength when heat treatment is applied to austenitic stainless steel under various conditions to precipitate the σ phase. The amount of sigma phase produced was measured by observing the cross-sectional structure, and the sigma phase production area ratio was measured 10 times at 500 times with an image analyzer, and the average value was obtained. The proof stress is a 0.2% proof stress value when a JIS No. 13 B test piece is collected and a tensile test in a direction parallel to the rolling direction is performed.
[0010]
The yield strength is remarkably improved by the increase of the σ phase, and the yield value becomes 600 N / mm 2 or more by the generation of 1% or more. In general, the load responsiveness of the load sensor is governed by the yield strength of the elastic substrate, and when it is 600 N / mm 2 or more, sufficient load responsiveness is obtained, so the lower limit of the σ phase is set to 1%. On the other hand, the σ phase causes embrittlement of the steel material, but since the elastic substrate in the load sensor is protected from the outside by the housing structure, a certain increase in the σ phase is allowed. However, if the sigma phase exceeds 40%, it becomes extremely brittle and may not be able to withstand the impact during sensor assembly, and it is necessary to strengthen the load sensor housing structure, so the upper limit was made 40%.
[0011]
The formation of the σ phase is mainly composed of Fe, Cr, and Mo, and stainless steel containing these elements is preferably used. Hereinafter, a preferable component composition will be described.
[0012]
C is an element that suppresses the corrosion resistance and also suppresses the formation of the σ phase, so a lower value is desirable. However, excessive reduction leads to a decrease in base yield strength and an increase in refining cost, so 0.01 to 0.10% It was. Furthermore, considering the manufacturing cost and manufacturability, the C content is preferably 0.02 to 0.05%.
[0013]
Since Cr is an element that promotes the generation of σ phase and is an element that improves corrosion resistance and oxidation resistance, a larger amount is desirable, but excessive addition brings about a high manufacturing cost, so the content was made 15 to 30%. Furthermore, considering the suppression of scale formation during the heat treatment during sensor production, corrosion resistance, and the production cost, the Cr content is preferably 22 to 27%.
[0014]
Ni is added to ensure corrosion resistance and oxidation resistance, but excessive addition leads to an increase in cost, so it was made 5 to 25%. Furthermore, considering the suppression of scale formation and corrosion resistance during heat treatment during sensor manufacture, and the steel manufacturability, the Ni content is preferably 5 to 20%.
[0015]
Mo is an element that promotes the generation of the σ phase and is an element that improves the corrosion resistance. Therefore, a larger amount is desirable, but excessive addition causes a decrease in productivity due to an increase in cost and brittleness. 5-8%. Furthermore, if considering oxidation resistance and manufacturing cost, 1.5 to 3.5% is desirable.
[0016]
N is an element that improves the corrosion resistance and strength, but who often desirable, since excessive addition result in reduced cost increases and productivity, yet excessive addition suppresses σ phase formation other, manufacturing cost In consideration of productivity, the N amount is preferably 0.10 to 0.20%.
[0017]
FIG. 2 shows the relationship between the heat treatment temperature of stainless steel and the amount of σ phase produced. From this, when the temperature exceeds 900 ° C., the σ phase is dissolved, and the necessary amount cannot be obtained, so the upper limit is set to 900 ° C. Further, when the temperature is lower than 600 ° C., Cr nitride and carbide are more stably precipitated than the σ phase, and the amount of σ phase generated decreases, so the lower limit is set to 600 ° C. This σ-phase generation heat treatment may be performed after being processed as an elastic substrate. For example, if the heat treatment is performed for bonding with other members of the load sensor, the yield strength can be increased efficiently. The atmosphere for this heat treatment may be any atmosphere, regardless of heating conditions and cooling conditions. Further, the heat treatment time is the total time, and the σ phase can be generated even by repeated heat treatment, so the total holding time at 600 to 900 ° C. may be 10 min or more.
[0018]
【Example】
Stainless steel having the composition shown in Table 1 is melted and cast, then hot-rolled, hot-rolled sheet continuous annealing / pickling is performed, cold-rolled to 2.0 mm thickness, continuous annealing-pickling, temper rolling. To give a product. This product was heat-treated under the conditions shown in Table 1.
[0019]
With respect to the sample obtained as described above, the amount of σ phase produced and the yield strength were measured. The measuring method is the same as the method described above.
[0020]
As apparent from Table 1, there σ phase 1 to 40% component composition in addition to the σ phase is in the range of claim 1, and heat treatment conditions is in the range of claim 2 No. It can be seen that 3 to 12 have higher proof stress than the comparative example .
[0021]
[Table 1]
Figure 0003908120
[0022]
【The invention's effect】
As is clear from the above description, according to the present invention, a high yield strength can be obtained in the elastic substrate of the load sensor, a new sensor can be efficiently provided without a new facility, and an excellent load response can be provided. . And it becomes possible to perform measurement with remarkably excellent detection accuracy in necessary parts such as home appliances, automobiles, heavy machinery, and buildings.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between the amount of σ phase produced and the yield strength in stainless steel.
FIG. 2 is a graph showing the relationship between heat treatment conditions and sigma phase generation in stainless steel.

Claims (1)

質量%にて、C:0.01〜0.10%、Cr:15〜30%、Ni:5〜25%、Mo:0.5〜8%、N:0.10〜0.20%、残部がFeおよび不可避的不純物から成るステンレス鋼を、600〜900℃で10min以上の熱処理を施すことにより、σ相を1〜40%存在させ、前記熱処理は、荷重センサー製造時に、他部材と結合するための熱処理において行うことを特徴とする荷重センサーの弾性基板用高耐力ステンレス鋼の製造方法。In mass%, C: 0.01 to 0.10%, Cr: 15 to 30%, Ni: 5 to 25%, Mo: 0.5 to 8%, N: 0.10 to 0.20%, Stainless steel with the balance consisting of Fe and unavoidable impurities is subjected to heat treatment at 600 to 900 ° C. for 10 min or longer to cause 1 to 40% of σ phase, and the heat treatment is combined with other members at the time of load sensor production. A method for producing a high-strength stainless steel for an elastic substrate of a load sensor, characterized in that the heat-treatment is performed in a heat treatment .
JP2002242962A 2002-08-23 2002-08-23 Manufacturing method of high strength stainless steel for elastic substrate of load sensor Expired - Lifetime JP3908120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002242962A JP3908120B2 (en) 2002-08-23 2002-08-23 Manufacturing method of high strength stainless steel for elastic substrate of load sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002242962A JP3908120B2 (en) 2002-08-23 2002-08-23 Manufacturing method of high strength stainless steel for elastic substrate of load sensor

Publications (2)

Publication Number Publication Date
JP2004083937A JP2004083937A (en) 2004-03-18
JP3908120B2 true JP3908120B2 (en) 2007-04-25

Family

ID=32051848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002242962A Expired - Lifetime JP3908120B2 (en) 2002-08-23 2002-08-23 Manufacturing method of high strength stainless steel for elastic substrate of load sensor

Country Status (1)

Country Link
JP (1) JP3908120B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6115935B2 (en) * 2013-01-25 2017-04-19 セイコーインスツル株式会社 Aging heat treated material made of duplex stainless steel, diaphragm, pressure sensor, diaphragm valve using the same, and method for producing duplex stainless steel
JP5837894B2 (en) * 2013-01-31 2015-12-24 博文 大塚 Load cell
JP7130358B2 (en) * 2017-08-23 2022-09-05 セイコーインスツル株式会社 Metal elastic element and diaphragm using the same
JP6783343B2 (en) * 2019-04-12 2020-11-11 日鉄ステンレス株式会社 Austenitic stainless steel and its manufacturing method

Also Published As

Publication number Publication date
JP2004083937A (en) 2004-03-18

Similar Documents

Publication Publication Date Title
JP5462281B2 (en) Stainless austenitic low Ni steel alloy
JP3288497B2 (en) Austenitic stainless steel
JP3371423B2 (en) Heat resistant alloy wire
JP4498847B2 (en) Austenitic high Mn stainless steel with excellent workability
JP2696584B2 (en) Ferrite heat-resistant stainless steel with excellent low-temperature toughness, weldability and heat resistance
RU2443796C1 (en) Ferritic stainless steel with excellent heat resistance and viscosity
JP4221518B2 (en) Ferritic heat resistant steel
SE512626C2 (en) Austenitic, high manganese steel for electronic panels and automobile mfr.
CN110088323B (en) Article comprising a duplex stainless steel and use thereof
TW201718903A (en) Ferrite-based stainless steel
JP3908120B2 (en) Manufacturing method of high strength stainless steel for elastic substrate of load sensor
EP1207214B1 (en) Soft Cr-containing steel
JP4327030B2 (en) Low Ni austenitic stainless steel with excellent overhanging and rust resistance
JP2004218013A (en) Ferritic stainless steel for automotive exhaust system equipment
JP4369596B2 (en) Heat resistant ferritic stainless steel
JP2014019925A (en) Ni SAVING TYPE AUSTENITIC STAINLESS STEEL
JP2006274391A (en) Stainless steel for strain detection sensor substrate
JPH11117019A (en) Production of heat resistant parts
JP2019019366A (en) Ferritic stainless steel and heat resistant member
JP2001158943A (en) Heat resistant bolt
JP2007197806A (en) Austenitic stainless steel and springs made of that steel
JPH08246106A (en) High strength and high yield strength austenitic stainless steel wire excellent in stress corrosion cracking resistance and manufacturing method thereof
JP3744083B2 (en) Heat-resistant alloy with excellent cold workability
JP4615120B2 (en) Ni-based alloy having uniform structure and method for producing the same
JPH0633206A (en) Method for heat-treating ni-base alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040811

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050216

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060606

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061116

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070117

R150 Certificate of patent or registration of utility model

Ref document number: 3908120

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140126

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term