JP3908120B2 - Manufacturing method of high strength stainless steel for elastic substrate of load sensor - Google Patents
Manufacturing method of high strength stainless steel for elastic substrate of load sensor Download PDFInfo
- Publication number
- JP3908120B2 JP3908120B2 JP2002242962A JP2002242962A JP3908120B2 JP 3908120 B2 JP3908120 B2 JP 3908120B2 JP 2002242962 A JP2002242962 A JP 2002242962A JP 2002242962 A JP2002242962 A JP 2002242962A JP 3908120 B2 JP3908120 B2 JP 3908120B2
- Authority
- JP
- Japan
- Prior art keywords
- elastic substrate
- load sensor
- stainless steel
- phase
- heat treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Heat Treatment Of Articles (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、荷重応答性に優れた荷重センサーの弾性基板などに適した高耐力ステンレス鋼およびその製造方法に関するものである。
【0002】
【従来の技術】
一般に荷重センサーは、セラミックス製の歪抵抗素子と金属製の弾性基板から成る伸縮部位に外力を伝達する操作部位が荷重を伝える構造になっている。荷重は操作部位から弾性基板に伝わり、弾性基板の変形に応じて歪抵抗素子の抵抗値が変化して2次元方向の荷重を検知するものである。
【0003】
従来、荷重センサーにおける弾性基板には金属材料が使用されているが、弾性基板の耐力が低い場合に、過大な荷重が瞬間的に作用した時、弾性基板が塑性変形してしまい、荷重を正確に測定できない問題点があった。特開平8−145819には耐力が低い材料を用いても信頼性が高い荷重センサーが記載されているが、弾性基板そのものの特性向上すなわち高耐力化ができれば、従来の構造においても荷重応答性が高く、信頼性が高い荷重センサーとなる。
【0004】
弾性基板の高耐力化の方法としては、鋼製造時に冷間加工を施す方法があるが、製造工程が増える欠点がある。また、加工硬化により高耐力化させても、セラミックや樹脂からなる歪抵抗素子との接合のために熱処理が施されることが一般的であり、その際に歪みが除去されて軟化してしまい、耐力が低下してしまう。
【0005】
【発明が解決しようとする課題】
本発明の目的は、既知技術の問題点を解決し、荷重センサーの弾性基板などに適した高耐力ステンレス鋼を提供することにある。
【0006】
【課題を解決するための手段】
上記課題を解決するために、本発明者らは荷重センサーの弾性基板に要求される特性について、金属組織学、材質制御の観点から詳細な研究を行った結果、センサー製造の熱処理時においてσ相を析出させることにより、高耐力化することを可能にしたものであり、その要旨は、
(1)質量%にて、C:0.01〜0.10%、Cr:15〜30%、Ni:5〜25%、Mo:0.5〜8%、N:0.10〜0.20%、残部がFeおよび不可避的不純物から成るステンレス鋼を、600〜900℃で10min以上の熱処理を施すことにより、σ相を1〜40%存在させ、前記熱処理は、荷重センサー製造時に、他部材と結合するための熱処理において行うことを特徴とする荷重センサーの弾性基板用高耐力ステンレス鋼の製造方法。
【0007】
【発明の実施の形態】
以下に本発明の限定理由について説明する。
【0008】
荷重センサーの荷重応答性を向上させるためには、歪抵抗素子の抵抗値の応答性を向上させる必要があり、そのためには弾性基板の機械的性質における耐力が高い方が良い。耐力が低いと塑性変形により正確な荷重が測定できず、瞬間的な応答性が悪くなる。そこで、弾性基板において、金属間化合物を生成させることにより耐力を上げることが有効であることを見出し、耐力を増す金属間化合物としてσ相に着目した。
【0009】
図1は、オーステナイト系ステンレス鋼に熱処理を種々の条件で付与してσ相を析出させた場合の、σ相の生成量と耐力の関係を示す。σ相生成量の測定は、断面組織観察を行い、σ相の生成面積率を画像解析装置にて、500倍で10視野測定し、平均値を求めた。また、耐力は、JIS13号B試験片を採取して圧延方向に平行な方向の引張試験を行った際の0.2%耐力値である。
【0010】
σ相の増加により耐力の向上は著しく、1%以上の生成により耐力値が600N/mm2以上となる。一般的に荷重センサーの荷重応答性は弾性基板の耐力により支配され、600N/mm2以上あると十分な荷重応答性が得られるため、σ相の下限を1%にした。一方、σ相は鋼材の脆化を引き起こすが、荷重センサーにおける弾性基板はハウジング構造により外部から保護されるため、ある程度のσ相の増加は許容される。しかしながら、σ相が40%超になると著しく脆化して、センサー組立時の衝撃に耐えられない場合がある他、荷重センサーのハウジング構造を強化する必要があるため、上限を40%とした。
【0011】
σ相の形成は、主にFe、Cr、Moが主組成であり、これらの元素を含むステンレス鋼の使用が良い。以下、好ましい成分組成について説明する。
【0012】
Cは、耐食性を劣化させる他、σ相生成を抑制する元素であるため低い方が望ましいが、過度な低減はベース耐力の低減や精錬コストの増加をもたらすため、0.01〜0.10%とした。更に、製造コストや製造性を考慮すると、C量は0.02〜0.05%が望ましい。
【0013】
Crは、σ相生成を促進する元素である他、耐食性や耐酸化を向上させる元素であるため、多い方が望ましいが、過度な添加は製造コスト高をもたらすため、15〜30%とした。更に、センサー製造時の熱処理時のスケール生成抑制や耐食性、更に製造コストを考慮すると、Cr量は22〜27%が望ましい。
【0014】
Niは、耐食性や耐酸化性確保のために添加されるが、過度の添加はコストの増加をまねくことから、5〜25%とした。更に、センサー製造時における熱処理時のスケール生成抑制や耐食性、更に鋼の製造性を考慮すると、Ni量は5〜20%が望ましい。
【0015】
Moは、σ相生成を促進する元素であり、また耐食性を向上させる元素であるため、多い方が望ましいが、過度な添加はコスト増加や脆くなることによる生産性の低下をもたらすため、0.5〜8%とした。更に耐酸化性や製造コストを考慮すると、1.5〜3.5%が望ましい。
【0016】
Nは、耐食性や耐力を向上させる元素であるため、多い方が望ましいが、過度な添加はコスト増加や生産性の低下をもたらすため、更に過度な添加はσ相生成を抑制する他、製造コストや生産性を考慮すると、N量は0.10〜0.20%が望ましい。
【0017】
図2は、ステンレス鋼の熱処理温度とσ相生成量の関係を示す。これより、900℃超ではσ相が固溶してしまい、必要量が得られないため、上限を900℃とした。また600℃未満では、σ相よりもCr窒化物や炭化物が安定析出して、σ相生成量が減少するため、下限を600℃した。このσ相生成熱処理は、弾性基板として加工された後に行えばよく、例えば荷重センサーの他部材と結合するための熱処理において行えば、効率的に高耐力化できる。また、この熱処理の雰囲気はいかなる雰囲気でもよく、加熱条件や冷却条件は関係ない。また、熱処理時間は総時間であり、繰り返し熱処理でもσ相は生成可能であるため、600〜900℃における保定時間の総時間が10min以上であればよい。
【0018】
【実施例】
表1示す成分組成のステンレス鋼を溶製、鋳造後、熱間圧延、熱延板連続焼鈍・酸洗を施し、2.0mm厚まで冷間圧延し、連続焼鈍−酸洗、調質圧延を施して製品とした。この製品を表1に示す条件で熱処理を行った。
【0019】
上記の様にして得られたサンプルについて、σ相生成量と耐力を測定した。測定方法は先述した方法と同様である。
【0020】
表1から明らかなように、σ相が1〜40%存在し、σ相に加えて成分組成が請求項1に記載の範囲であり、且つ熱処理条件が請求項2の範囲であるNo.3〜12は、比較例と比べて耐力が更に高いことがわかる。
【0021】
【表1】
【0022】
【発明の効果】
以上の説明から明らかなように、本発明によれば荷重センサーの弾性基板において高耐力が得られ、新規設備を必要とせず、効率的に荷重応答性に優れた荷重センサーを提供することができる。そして、家電、自動車、重機、建築物などの必要部位において、検知精度が著しく優れた測定が可能となる。
【図面の簡単な説明】
【図1】ステンレス鋼におけるσ相生成量と耐力の関係を示す図である。
【図2】ステンレス鋼における熱処理条件とσ相生成量の関係を示す図である[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-strength stainless steel suitable for an elastic substrate of a load sensor having excellent load response and a method for manufacturing the same.
[0002]
[Prior art]
In general, a load sensor has a structure in which an operation part for transmitting an external force transmits a load to an expansion / contraction part composed of a ceramic strain resistance element and a metal elastic substrate. The load is transmitted from the operation site to the elastic substrate, and the resistance value of the strain resistance element changes according to the deformation of the elastic substrate to detect the load in the two-dimensional direction.
[0003]
Conventionally, a metal material is used for the elastic substrate in the load sensor, but when the elastic substrate has low proof stress, when the excessive load is applied instantaneously, the elastic substrate is plastically deformed, and the load is accurately measured. There was a problem that could not be measured. Japanese Patent Application Laid-Open No. 8-145819 describes a load sensor that has high reliability even when a material having low yield strength is used. The load sensor is high and reliable.
[0004]
As a method for increasing the yield strength of an elastic substrate, there is a method of performing cold working at the time of steel production, but there is a drawback that the number of production steps increases. In addition, even if the yield strength is increased by work hardening, heat treatment is generally performed for bonding to a strain resistance element made of ceramic or resin, and strain is removed and softened at that time. The proof stress will be reduced.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a high-strength stainless steel suitable for an elastic substrate of a load sensor and the like by solving the problems of the known techniques.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the present inventors conducted detailed studies on the characteristics required for the elastic substrate of the load sensor from the viewpoints of metallography and material control. It is possible to increase the yield strength by precipitating
(1) In mass%, C: 0.01-0.10%, Cr: 15-30%, Ni: 5-25%, Mo: 0.5-8%, N: 0.10-0. 20%, the stainless steel balance being Fe and unavoidable impurities, by heat treatment of more than 10min at 600 to 900 ° C., in the presence of σ-phase 1-40%, the heat treatment is at load sensor manufacturing, other A method for producing high-strength stainless steel for an elastic substrate of a load sensor, which is performed in a heat treatment for bonding to a member .
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The reason for limitation of the present invention will be described below.
[0008]
In order to improve the load responsiveness of the load sensor, it is necessary to improve the responsiveness of the resistance value of the strain resistance element. For that purpose, it is better that the proof stress in the mechanical properties of the elastic substrate is high. If the proof stress is low, an accurate load cannot be measured due to plastic deformation, and the instantaneous response will deteriorate. Therefore, it was found effective to increase the yield strength by generating an intermetallic compound in the elastic substrate, and attention was paid to the σ phase as an intermetallic compound for increasing the yield strength.
[0009]
FIG. 1 shows the relationship between the amount of σ phase produced and the yield strength when heat treatment is applied to austenitic stainless steel under various conditions to precipitate the σ phase. The amount of sigma phase produced was measured by observing the cross-sectional structure, and the sigma phase production area ratio was measured 10 times at 500 times with an image analyzer, and the average value was obtained. The proof stress is a 0.2% proof stress value when a JIS No. 13 B test piece is collected and a tensile test in a direction parallel to the rolling direction is performed.
[0010]
The yield strength is remarkably improved by the increase of the σ phase, and the yield value becomes 600 N / mm 2 or more by the generation of 1% or more. In general, the load responsiveness of the load sensor is governed by the yield strength of the elastic substrate, and when it is 600 N / mm 2 or more, sufficient load responsiveness is obtained, so the lower limit of the σ phase is set to 1%. On the other hand, the σ phase causes embrittlement of the steel material, but since the elastic substrate in the load sensor is protected from the outside by the housing structure, a certain increase in the σ phase is allowed. However, if the sigma phase exceeds 40%, it becomes extremely brittle and may not be able to withstand the impact during sensor assembly, and it is necessary to strengthen the load sensor housing structure, so the upper limit was made 40%.
[0011]
The formation of the σ phase is mainly composed of Fe, Cr, and Mo, and stainless steel containing these elements is preferably used. Hereinafter, a preferable component composition will be described.
[0012]
C is an element that suppresses the corrosion resistance and also suppresses the formation of the σ phase, so a lower value is desirable. However, excessive reduction leads to a decrease in base yield strength and an increase in refining cost, so 0.01 to 0.10% It was. Furthermore, considering the manufacturing cost and manufacturability, the C content is preferably 0.02 to 0.05%.
[0013]
Since Cr is an element that promotes the generation of σ phase and is an element that improves corrosion resistance and oxidation resistance, a larger amount is desirable, but excessive addition brings about a high manufacturing cost, so the content was made 15 to 30%. Furthermore, considering the suppression of scale formation during the heat treatment during sensor production, corrosion resistance, and the production cost, the Cr content is preferably 22 to 27%.
[0014]
Ni is added to ensure corrosion resistance and oxidation resistance, but excessive addition leads to an increase in cost, so it was made 5 to 25%. Furthermore, considering the suppression of scale formation and corrosion resistance during heat treatment during sensor manufacture, and the steel manufacturability, the Ni content is preferably 5 to 20%.
[0015]
Mo is an element that promotes the generation of the σ phase and is an element that improves the corrosion resistance. Therefore, a larger amount is desirable, but excessive addition causes a decrease in productivity due to an increase in cost and brittleness. 5-8%. Furthermore, if considering oxidation resistance and manufacturing cost, 1.5 to 3.5% is desirable.
[0016]
N is an element that improves the corrosion resistance and strength, but who often desirable, since excessive addition result in reduced cost increases and productivity, yet excessive addition suppresses σ phase formation other, manufacturing cost In consideration of productivity, the N amount is preferably 0.10 to 0.20%.
[0017]
FIG. 2 shows the relationship between the heat treatment temperature of stainless steel and the amount of σ phase produced. From this, when the temperature exceeds 900 ° C., the σ phase is dissolved, and the necessary amount cannot be obtained, so the upper limit is set to 900 ° C. Further, when the temperature is lower than 600 ° C., Cr nitride and carbide are more stably precipitated than the σ phase, and the amount of σ phase generated decreases, so the lower limit is set to 600 ° C. This σ-phase generation heat treatment may be performed after being processed as an elastic substrate. For example, if the heat treatment is performed for bonding with other members of the load sensor, the yield strength can be increased efficiently. The atmosphere for this heat treatment may be any atmosphere, regardless of heating conditions and cooling conditions. Further, the heat treatment time is the total time, and the σ phase can be generated even by repeated heat treatment, so the total holding time at 600 to 900 ° C. may be 10 min or more.
[0018]
【Example】
Stainless steel having the composition shown in Table 1 is melted and cast, then hot-rolled, hot-rolled sheet continuous annealing / pickling is performed, cold-rolled to 2.0 mm thickness, continuous annealing-pickling, temper rolling. To give a product. This product was heat-treated under the conditions shown in Table 1.
[0019]
With respect to the sample obtained as described above, the amount of σ phase produced and the yield strength were measured. The measuring method is the same as the method described above.
[0020]
As apparent from Table 1, there σ phase 1 to 40% component composition in addition to the σ phase is in the range of claim 1, and heat treatment conditions is in the range of claim 2 No. It can be seen that 3 to 12 have higher proof stress than the comparative example .
[0021]
[Table 1]
[0022]
【The invention's effect】
As is clear from the above description, according to the present invention, a high yield strength can be obtained in the elastic substrate of the load sensor, a new sensor can be efficiently provided without a new facility, and an excellent load response can be provided. . And it becomes possible to perform measurement with remarkably excellent detection accuracy in necessary parts such as home appliances, automobiles, heavy machinery, and buildings.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between the amount of σ phase produced and the yield strength in stainless steel.
FIG. 2 is a graph showing the relationship between heat treatment conditions and sigma phase generation in stainless steel.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002242962A JP3908120B2 (en) | 2002-08-23 | 2002-08-23 | Manufacturing method of high strength stainless steel for elastic substrate of load sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002242962A JP3908120B2 (en) | 2002-08-23 | 2002-08-23 | Manufacturing method of high strength stainless steel for elastic substrate of load sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004083937A JP2004083937A (en) | 2004-03-18 |
JP3908120B2 true JP3908120B2 (en) | 2007-04-25 |
Family
ID=32051848
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002242962A Expired - Lifetime JP3908120B2 (en) | 2002-08-23 | 2002-08-23 | Manufacturing method of high strength stainless steel for elastic substrate of load sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3908120B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6115935B2 (en) * | 2013-01-25 | 2017-04-19 | セイコーインスツル株式会社 | Aging heat treated material made of duplex stainless steel, diaphragm, pressure sensor, diaphragm valve using the same, and method for producing duplex stainless steel |
JP5837894B2 (en) * | 2013-01-31 | 2015-12-24 | 博文 大塚 | Load cell |
JP7130358B2 (en) * | 2017-08-23 | 2022-09-05 | セイコーインスツル株式会社 | Metal elastic element and diaphragm using the same |
JP6783343B2 (en) * | 2019-04-12 | 2020-11-11 | 日鉄ステンレス株式会社 | Austenitic stainless steel and its manufacturing method |
-
2002
- 2002-08-23 JP JP2002242962A patent/JP3908120B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2004083937A (en) | 2004-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5462281B2 (en) | Stainless austenitic low Ni steel alloy | |
JP3288497B2 (en) | Austenitic stainless steel | |
JP3371423B2 (en) | Heat resistant alloy wire | |
JP4498847B2 (en) | Austenitic high Mn stainless steel with excellent workability | |
JP2696584B2 (en) | Ferrite heat-resistant stainless steel with excellent low-temperature toughness, weldability and heat resistance | |
RU2443796C1 (en) | Ferritic stainless steel with excellent heat resistance and viscosity | |
JP4221518B2 (en) | Ferritic heat resistant steel | |
SE512626C2 (en) | Austenitic, high manganese steel for electronic panels and automobile mfr. | |
CN110088323B (en) | Article comprising a duplex stainless steel and use thereof | |
TW201718903A (en) | Ferrite-based stainless steel | |
JP3908120B2 (en) | Manufacturing method of high strength stainless steel for elastic substrate of load sensor | |
EP1207214B1 (en) | Soft Cr-containing steel | |
JP4327030B2 (en) | Low Ni austenitic stainless steel with excellent overhanging and rust resistance | |
JP2004218013A (en) | Ferritic stainless steel for automotive exhaust system equipment | |
JP4369596B2 (en) | Heat resistant ferritic stainless steel | |
JP2014019925A (en) | Ni SAVING TYPE AUSTENITIC STAINLESS STEEL | |
JP2006274391A (en) | Stainless steel for strain detection sensor substrate | |
JPH11117019A (en) | Production of heat resistant parts | |
JP2019019366A (en) | Ferritic stainless steel and heat resistant member | |
JP2001158943A (en) | Heat resistant bolt | |
JP2007197806A (en) | Austenitic stainless steel and springs made of that steel | |
JPH08246106A (en) | High strength and high yield strength austenitic stainless steel wire excellent in stress corrosion cracking resistance and manufacturing method thereof | |
JP3744083B2 (en) | Heat-resistant alloy with excellent cold workability | |
JP4615120B2 (en) | Ni-based alloy having uniform structure and method for producing the same | |
JPH0633206A (en) | Method for heat-treating ni-base alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040811 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20050216 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20050302 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20050307 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060309 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060418 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060606 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20060606 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20061010 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061116 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20061208 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070116 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070117 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3908120 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110126 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120126 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120126 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130126 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130126 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140126 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |