[go: up one dir, main page]

JP3904923B2 - 制御装置 - Google Patents

制御装置 Download PDF

Info

Publication number
JP3904923B2
JP3904923B2 JP2001400988A JP2001400988A JP3904923B2 JP 3904923 B2 JP3904923 B2 JP 3904923B2 JP 2001400988 A JP2001400988 A JP 2001400988A JP 2001400988 A JP2001400988 A JP 2001400988A JP 3904923 B2 JP3904923 B2 JP 3904923B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
value
output
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001400988A
Other languages
English (en)
Other versions
JP2003195908A (ja
Inventor
裕司 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2001400988A priority Critical patent/JP3904923B2/ja
Priority to CA002394943A priority patent/CA2394943C/en
Priority to DE2002614095 priority patent/DE60214095T8/de
Priority to CNB021611173A priority patent/CN100470033C/zh
Priority to ES02016664T priority patent/ES2271160T3/es
Priority to US10/201,894 priority patent/US6985809B2/en
Priority to EP20020016664 priority patent/EP1279820B1/en
Publication of JP2003195908A publication Critical patent/JP2003195908A/ja
Application granted granted Critical
Publication of JP3904923B2 publication Critical patent/JP3904923B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0205Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system
    • G05B13/0255Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system the criterion being a time-optimal performance criterion
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0205Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system
    • G05B13/026Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system using a predictor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/141Introducing closed-loop corrections characterised by the control or regulation method using a feed-forward control element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1415Controller structures or design using a state feedback or a state space representation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/142Controller structures or design using different types of control law in combination, e.g. adaptive combined with PID and sliding mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1423Identification of model or controller parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Feedback Control In General (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、制御対象への制御入力をΔΣ変調アルゴリズムなどに基づいて算出することにより、制御対象の出力を目標値に収束させるように制御する制御装置に関する。
【0002】
【従来の技術】
従来、この種の制御装置として、例えば特開2001−154704号公報に記載されたものが知られている。この制御装置は、制御対象の出力を検出し、その検出結果をアナログ量の検出信号として出力する検出手段と、上位装置から入力されるアナログ量の目標値と検出信号との偏差を演算する偏差演算手段と、演算された偏差を1ビットデジタル信号に変換する変換手段と、変換手段からの1ビットデジタル信号を補償し、操作信号として出力する補償手段とを備えている(同公報の図6参照)。
【0003】
この制御装置では、偏差演算手段により、検出信号と目標値との偏差(アナログ量)が演算され、この演算偏差は、変換手段でのΔΣ変調によって1ビットデジタル信号に変換され、さらに補償手段により補償された後、操作信号として制御対象に入力される。以上の構成により、制御対象の出力と目標値との偏差を打ち消すように、偏差と逆位相の操作量が生成され、制御対象に入力される。その結果、制御対象の出力が目標値に収束するようにフィードバック制御される。
【0004】
【発明が解決しようとする課題】
上記従来の制御装置によれば、制御対象の動特性が比較的大きな位相遅れやむだ時間などを有している場合、それに起因して、制御対象への入力信号の入力後、入力信号を反映する出力信号が制御対象から出力されるまでに時間がかかり、制御対象の入出力間での制御タイミングのずれを生じる。その結果、制御系が不安定になってしまうおそれがある。例えば、内燃機関の燃料噴射量を入力として、内燃機関の排気ガスの空燃比を制御する場合、燃料噴射が実際に行われてから、排気ガスの空燃比の状態が実際に変化するまでに時間を要するため、空燃比制御の安定性および制御性が低下し、触媒で浄化された排気ガスの特性が不安定な状態になってしまうことがある。
【0005】
本発明は、上記課題を解決するためになされたもので、制御対象が位相遅れやむだ時間などが比較的大きい動特性を示す場合でも、制御対象の入出力間での制御タイミングのずれを解消することができ、それにより、制御の安定性および制御性を向上させることができる制御装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
この目的を達成するために、請求項1に係る制御装置1は、予測アルゴリズム(式(6),(7))に基づき、制御対象の出力を表す値(出力偏差VO2)の予測値PREVO2を算出する予測値算出手段(ECU2、状態予測器22、ステップ33)と、Δ変調アルゴリズム、ΔΣ変調アルゴリズムおよびΣΔ変調アルゴリズムのうちのいずれか1つの変調アルゴリズムに基づき、算出された予測値PREVO2に応じて、制御対象の出力を制御するための、制御対象への制御入力(目標空燃比KCMD)を算出する制御入力算出手段(ECU2、ADSMコントローラ20、ステップ38)と、を備え、予測値算出手段は、予測アルゴリズムに基づき、算出された制御入力(目標空燃比KCMD)と制御対象に入力された制御入力を反映する値(LAFセンサ14の出力KACT)との少なくとも一方、および制御対象の出力(酸素濃度センサ15の出力Vout)に応じて、予測値PREVO2を算出し、制御対象の出力は、内燃機関3の排気通路(排気管7)の触媒(第1触媒装置8a)よりも下流側に配置され、触媒を通過した後の排気ガスの空燃比を検出する下流側空燃比センサ(酸素濃度センサ15)の出力Voutであり、制御対象の出力を表す値は、下流側空燃比センサの出力Voutと所定の目標値Vopとの偏差である出力偏差VO2であり、制御対象への制御入力は、内燃機関3に供給される混合気の目標空燃比KCMDであり、制御対象に入力された制御入力を反映する値は、排気通路の触媒(第1触媒装置8a)よりも上流側に配置され、触媒を通過する前の排気ガスの空燃比を検出する上流側空燃比センサ(LAFセンサ14)の出力KACTであり、予測値算出手段は、予測アルゴリズムに基づき、内燃機関に供給された混合気の目標空燃比KCMDおよび上流側空燃比センサの出力KACTの少なくとも一方と、下流側空燃比センサの出力Voutとに応じて、出力偏差VO2の予測値PREVO2を算出し、制御入力算出手段は、1つの変調アルゴリズムに基づき、算出された出力偏差の予測値に応じて、下流側空燃比センサの出力Voutを所定の目標値Vopに収束させるための、内燃機関に供給すべき混合気の目標空燃比KCMDを算出する空燃比算出手段(ECU2、ステップ38)で構成されており、算出された出力偏差の予測値PREVO2に補正係数(ゲインKRDSM)を乗算する乗算手段(ECU2、ステップ195)と、補正係数を、出力偏差の予測値が所定値(値0)以上のときに、所定値未満のときよりも小さい値に設定する補正係数設定手段(ECU2、ステップ192〜194)と、をさらに備え、空燃比算出手段は、1つの変調アルゴリズムに基づき、補正係数が乗算された出力偏差の予測値に応じて、混合気の目標空燃比KCMDを算出することを特徴とする。
【0007】
この制御装置によれば、Δ変調アルゴリズム、ΔΣ変調アルゴリズムおよびΣΔ変調アルゴリズムのうちのいずれか1つの変調アルゴリズムに基づき、制御対象の出力を表す値の予測値に応じて、制御入力が算出されるので、このような予測値を、例えば制御対象の位相遅れやむだ時間などの動特性を反映させた値として算出することにより、制御対象の入出力間での制御タイミングのずれを解消することが可能になる。その結果、制御の安定性の確保および制御性の向上が可能になる(なお、本明細書における、「予測値の算出」および「制御入力の算出」などの「算出」は、プログラムにより演算することに限らず、ハードウエアによりそれらを表す電気信号を生成することを含む)。また、予測値を、制御入力の状態を反映させながら算出することができ、その分、予測値の算出精度(予測精度)を高めることができる。その結果、制御の安定性を確保でき、制御性を向上させることができる。
【0008】
さらに、所定の目標値と下流側空燃比センサの出力との偏差である出力偏差の予測値が、内燃機関に供給された混合気の目標空燃比、上流側空燃比センサの出力および下流側空燃比センサの出力に応じて算出されるとともに、このように算出された出力偏差の予測値に応じて、下流側空燃比センサの出力を所定の目標値に収束させるための混合気の目標空燃比が、1つの変調アルゴリズムに基づき、算出される。制御入力が以上のように算出されるので、所定の目標値を適切に設定することにより、排気ガスの空燃比を、触媒による排気ガスの浄化状態が良好な状態になるように制御することができ、その結果、触媒で浄化された排気ガスの特性(以下「触媒後排気ガス特性」という)を向上させることができる。また、予測値が、触媒よりも上流側に設けた上流側空燃比センサの出力に応じて算出されるので、触媒に実際に供給される排気ガスの空燃比の状態を予測値により適切に反映させることができ、その分、予測値の算出精度を向上させることができる。
【0009】
以上に加えて、混合気の目標空燃比が、補正係数を乗算した出力偏差の予測値に応じて算出されるとともに、この補正係数が、出力偏差の予測値が所定値以上のときに、所定値未満のときよりも小さい値に設定されるので、出力偏差の予測値の所定値に対する大小関係に応じて、下流側空燃比センサの出力を目標値に収束させる収束速度を変更することができる。したがって、例えばこの所定値を値0に設定した場合、出力偏差の予測値が値0以上のとき、すなわち下流側空燃比センサの出力が目標値よりも大きいことで、目標空燃比をリーン側に変更すべきときには、リッチ側に変更するときよりも収束速度が小さく設定されることにより、リーンバイアスによるNOx排出量の抑制効果を得ることができる。一方、目標空燃比をリッチ側に変更すべきときには、リーン側に変更するときよりも収束速度が大きい値に設定されることにより、触媒のNOx浄化率を十分に回復させることができる
【0010】
請求項2に係る制御装置1は、予測アルゴリズム(式(6))に基づき、制御対象の出力を表す値(出力偏差VO2)の予測値PREVO2を算出する予測値算出手段(ECU2、状態予測器22)と、Δ変調アルゴリズム、ΔΣ変調アルゴリズムおよびΣΔ変調アルゴリズムのうちのいずれか1つの変調アルゴリズムに基づき、算出された予測値PREVO2に応じて、制御対象の出力を制御するための、制御対象への制御入力(目標空燃比KCMD)を算出する制御入力算出手段(ECU2、ADSMコントローラ20)と、を備え、予測値算出手段は、予測アルゴリズムに基づき、算出された制御入力(目標空燃比KCMD)および制御対象の出力(酸素濃度センサ15の出力Vout)に応じて、予測値PREVO2を算出し、制御対象の出力は、内燃機関の排気通路の触媒(第2触媒装置8b)よりも下流側に配置され、触媒を通過した後の排気ガスの空燃比を検出する空燃比センサ(酸素濃度センサ15)の出力Voutであり、制御対象の出力を表す値は、空燃比センサの出力Voutと所定の目標値Vopとの偏差である出力偏差VO2であり、制御対象への制御入力は、内燃機関に供給される混合気の目標空燃比KCMDであり、予測値算出手段は、予測アルゴリズムに基づき、内燃機関に供給された混合気の目標空燃比および空燃比センサの出力に応じて、出力偏差の予測値PREVO2を算出し、制御入力算出手段は、1つの変調アルゴリズムに基づき、算出された出力偏差の予測値PREVO2に応じて、空燃比センサの出力Voutを所定の目標値Vopに収束させるための、内燃機関に供給すべき混合気の目標空燃比を算出する空燃比算出手段(ECU2)で構成されており、算出された出力偏差の予測値PREVO2に補正係数(ゲインKRDSM)を乗算する乗算手段(ECU2)と、補正係数を、出力偏差の予測値が所定値(値0)以上のときに、所定値未満のときよりも小さい値に設定する補正係数設定手段(ECU2)と、をさらに備え、空燃比算出手段は、1つの変調アルゴリズムに基づき、補正係数が乗算された出力偏差の予測値に応じて、混合気の目標空燃比KCMDを算出することを特徴とする。
【0011】
この制御装置によれば、Δ変調アルゴリズム、ΔΣ変調アルゴリズムおよびΣΔ変調アルゴリズムのうちのいずれか1つの変調アルゴリズムに基づき、制御対象の出力を表す値の予測値に応じて、制御入力が算出されるので、このような予測値を、例えば制御対象の位相遅れやむだ時間などの動特性を反映させた値として算出することにより、制御対象の入出力間での制御タイミングのずれを解消することが可能になる。その結果、制御の安定性の確保および制御性の向上が可能になる。また、予測値を、制御入力の状態を反映させながら算出することができ、その分、予測値の算出精度(予測精度)を高めることができる。その結果、制御の安定性を確保でき、制御性を向上させることができる。
【0012】
さらに、所定の目標値と空燃比センサの出力との偏差である出力偏差の予測値が、内燃機関に供給された混合気の目標空燃比および空燃比センサの出力に応じて算出されるとともに、このように算出された出力偏差の予測値に応じて、空燃比センサの出力を所定の目標値に収束させるための混合気の目標空燃比が、1つの変調アルゴリズムに基づき、算出される。制御入力が以上のように算出されるので、所定の目標値を適切に設定することにより、排気ガスの空燃比を、触媒による排気ガスの浄化状態が良好な状態になるように制御することができ、その結果、触媒後排気ガス特性を向上させることができる。また、単一の空燃比センサを用いるだけでよいので、このような制御装置を比較的、安価に実現することができる。
【0013】
以上に加えて、混合気の目標空燃比が、補正係数を乗算した出力偏差の予測値に応じて算出されるとともに、この補正係数が、出力偏差の予測値が所定値以上のときに、所定値未満のときよりも小さい値に設定されるので、出力偏差の予測値の所定値に対する大小関係に応じて、空燃比センサの出力を目標値に収束させる収束速度を変更することができる。したがって、例えばこの所定値を値0に設定した場合、出力偏差の予測値が値0以上のとき、すなわち空燃比センサの出力が目標値よりも大きいことで、目標空燃比をリーン側に変更すべきときには、リッチ側に変更するときよりも収束速度が小さく設定されることにより、リーンバイアスによるNOx排出量の抑制効果を得ることができる。一方、目標空燃比をリッチ側に変更すべきときには、リーン側に変更するときよりも収束速度が大きい値に設定されることにより、触媒のNOx浄化率を十分に回復させることができる。
【0014】
請求項3に係る発明は、請求項1または2に記載の制御装置において、空燃比算出手段は、補正係数が乗算された出力偏差の予測値を、1つの変調アルゴリズムを適用した変調アルゴリズムで変調することにより、第1の変調値(DSM信号値DSMSGNS)を算出するとともに、算出された第1の変調値に所定のゲイン(KDSM)を乗算した値に基づき、混合気の目標空燃比KCMD(適応目標空燃比KCMDSLD)を算出することを特徴とする。
【0015】
一般に、ΔΣ変調アルゴリズム、ΣΔ変調アルゴリズムおよびΔ変調アルゴリズムの各々は、制御対象のゲインが値1であるとして制御入力を決定するものであるので、制御対象の実際のゲインが値1と異なる場合には、制御入力が適切な値に算出されなくなることで、制御性が低下することがある。例えば、制御対象の実際のゲインが値1よりも大きい場合には、制御入力が必要以上に大きい値として算出されるため、オーバーゲインの状態になってしまうおそれがある。これに対して、この制御装置によれば、補正係数が乗算された出力偏差の予測値を、1つの変調アルゴリズムを適用した変調アルゴリズムで変調することにより、第1の変調値が算出されるとともに、この第1の変調値に所定のゲインを乗算した値に基づき、混合気の目標空燃比が算出されるので、この所定のゲインを適切に設定することにより、良好な制御性を確保することができる。
【0016】
請求項4に係る発明は、請求項1または2に記載の制御装置において、空燃比算出手段は、補正係数が乗算された出力偏差の予測値を、1つの変調アルゴリズムを適用した変調アルゴリズムで変調することにより、第2の変調値(ΔΣ変調制御量DKCMDDSM)を算出するとともに、算出された第2の変調値に所定値(基準値FLAFBASE)を加算した値に基づき、混合気の目標空燃比KCMD(適応目標空燃比KCMDSLD)を算出することを特徴とする。
【0017】
一般に、Δ変調アルゴリズム、ΔΣ変調アルゴリズムおよびΣΔ変調アルゴリズムはいずれも、値0を中心とした正負反転型の制御入力しか算出できない。これに対して、この制御装置によれば、補正係数が乗算された出力偏差の予測値を、1つの変調アルゴリズムを適用した変調アルゴリズムで変調することにより、第2の変調値が算出されるとともに、この第2の変調値に所定値を加算した値に基づき、混合気の目標空燃比が算出されるので、混合気の目標空燃比を、値0を中心として正負反転する値だけでなく、所定値を中心として所定幅の増減を繰り返す値として算出することができ、制御の自由度を高めることができる。
【0018】
請求項5に係る制御装置1は、Δ変調アルゴリズム、ΔΣ変調アルゴリズムおよびΣΔ変調アルゴリズムのうちのいずれか1つの変調アルゴリズムと、制御対象をモデル化した制御対象モデル(式(1))とに基づき、制御対象の出力(酸素濃度センサ15の出力Vout)を制御するための、制御対象への制御入力(目標空燃比KCMD)を算出する制御入力算出手段(ECU2、ADSMコントローラ20)を備え、制御対象モデルは、離散時間系モデルとして構成されており、制御対象モデルのモデルパラメータ(同定値a1’,a2 ' ,b1 ' )を、算出された制御入力(目標空燃比KCMD)と制御対象に入力された制御入力を反映する値(LAFセンサ14の出力KACT)との一方と、制御対象の出力(酸素濃度センサ15の出力Vout)とに応じて、逐次同定する同定手段(ECU2、オンボード同定器23)をさらに備え、制御対象の出力は、内燃機関の排気通路の触媒(第1触媒装置8a)よりも下流側に配置され、触媒を通過した後の排気ガスの空燃比を検出する下流側空燃比センサ(酸素濃度センサ15)の出力Voutであり、制御対象への制御入力は、内燃機関に供給される混合気の目標空燃比KCMDであり、制御対象に入力された制御入力を反映する値は、内燃機関の排気通路の触媒よりも上流側に配置され、触媒を通過する前の排気ガスの空燃比を検出する上流側空燃比センサ(LAFセンサ14)の出力KACTであり、制御対象モデルは、下流側空燃比センサの出力を表す値(出力偏差VO2)と、目標空燃比を表す値(空燃比偏差DKCMD)および上流側空燃比センサの出力を表す値(LAF出力偏差DKACT)の一方とを変数とするモデルであり、同定手段は、下流側空燃比センサの出力を表す値に乗算されるモデルパラメータa1,a2と、目標空燃比を表す値および上流側空燃比センサの出力を表す値の一方に乗算されるモデルパラメータb1とを、上流側空燃比センサの出力および目標空燃比の一方と、下流側空燃比センサの出力とに応じて逐次同定し、制御入力算出手段は、1つの変調アルゴリズムおよび制御対象モデルに基づき、下流側空燃比センサの出力を所定の目標値に収束させるための、内燃機関に供給すべき混合気の目標空燃比を算出する空燃比算出手段(ECU2)で構成されており、内燃機関の運転状態(吸気管内絶対圧PBA、エンジン回転数NE)を検出する運転状態検出手段(ECU2、吸気管内絶対圧センサ11、クランク角センサ13)をさらに備え、空燃比算出手段は、目標空燃比の混合気が内燃機関に供給されてから下流側空燃比センサの出力に反映されるまでの予測時間dtを、検出された内燃機関の運転状態に応じて算出する予測時間算出手段(ECU2、ステップ80,81)と、算出された予測時間dtに応じて、制御対象モデルを適用した予測アルゴリズムに基づき、目標空燃比を表す値の予測値PREVO2を算出する予測値算出手段(ECU2、ステップ33)と、1つの変調アルゴリズムに基づき、算出された予測値に応じて目標空燃比KCMDを算出する目標空燃比算出手段(ECU2)と、を備え、予測値PREVO2に補正係数(ゲインKRDSM)を乗算する乗算手段(ECU2、ステップ195)と、補正係数を、予測値が所定値(値0)以上のときに、所定値未満のときよりも小さい値に設定する補正係数設定手段(ECU2、ステップ192〜194)と、をさらに備え、目標空燃比算出手段は、1つの変調アルゴリズムに基づき、補正係数が乗算された予測値に応じて、混合気の目標空燃比KCMDを算出することを特徴とする。
【0019】
この制御装置によれば、Δ変調アルゴリズム、ΔΣ変調アルゴリズムおよびΣΔ変調アルゴリズムのうちのいずれか1つの変調アルゴリズムと、制御対象をモデル化した制御対象モデルとに基づき、制御入力が算出されるので、この制御対象モデルを、制御対象の位相遅れやむだ時間などの動特性が適切に反映されたものとして定義することにより、制御入力を制御対象の動特性を反映させた値として算出することが可能になり、その結果、制御の安定性の確保および制御性の向上が可能になる。また、モデルパラメータが、上流側空燃比センサの出力および目標空燃比の一方と、下流側空燃比センサの出力とに応じて逐次同定される、すなわちリアルタイムに同定されるとともに、そのようにモデルパラメータが同定される制御対象モデルおよび1つの変調アルゴリズムに基づいて、内燃機関に供給すべき混合気の目標空燃比が算出される。これにより、触媒および両空燃比センサの特性が環境の変化によってばらついたり、経年変化したりしている場合でも、それらの影響を回避しながら、下流側空燃比センサの出力を所定の目標値に収束させることができる。また、モデルパラメータが、触媒よりも上流側に設けた上流側空燃比センサの出力に応じて同定されるので、触媒に実際に供給される排気ガスの状態をより的確に反映させながら、モデルパラメータを同定することができ、それにより、モデルパラメータの同定精度を向上させることができる。以上により、内燃機関に供給された混合気に対する排気ガスの応答遅れおよびむだ時間などに起因する、空燃比制御の制御タイミングのずれを適切に補正することができ、触媒後排気ガス特性を向上させることができる。
【0020】
さらに、目標空燃比の混合気が内燃機関に供給されてから下流側空燃比センサの出力に反映されるまでの予測時間が、検出された内燃機関の運転状態に応じて算出され、算出された予測時間に応じて、目標空燃比を表す値の予測値が算出されるとともに、算出された予測値に応じて目標空燃比が算出されるので、制御対象の入出力間の応答遅れやむだ時間、すなわち内燃機関に供給された混合気に対する下流側空燃比センサの出力の間の応答遅れやむだ時間を反映させながら、目標空燃比を算出することができ、それにより、空燃比制御の制御タイミングのずれをより一層、確実に解消することができる。
【0021】
以上に加えて、混合気の目標空燃比が、補正係数を乗算した出力偏差の予測値に応じて算出されるとともに、この補正係数が、出力偏差の予測値が所定値以上のときに、所定値未満のときよりも小さい値に設定されるので、出力偏差の予測値の所定値に対する大小関係に応じて、下流側空燃比センサの出力を目標値に収束させる収束速度を変更することができる。したがって、例えばこの所定値を値0に設定した場合、出力偏差の予測値が値0以上のとき、すなわち下流側空燃比センサの出力が目標値よりも大きいことで、目標空燃比をリーン側に変更すべきときには、リッチ側に変更するときよりも収束速度が小さく設定されることにより、リーンバイアスによるNOx排出量の抑制効果を得ることができる。一方、目標空燃比をリッチ側に変更すべきときには、リーン側に変更するときよりも収束速度が大きい値に設定されることにより、触媒のNOx浄化率を十分に回復させることができる
【0022】
請求項6に係る制御装置1は、Δ変調アルゴリズム、ΔΣ変調アルゴリズムおよびΣΔ変調アルゴリズムのうちのいずれか1つの変調アルゴリズムと、制御対象をモデル化した制御対象モデル(式(1))とに基づき、制御対象の出力(酸素濃度センサ15の出力Vout)を制御するための、制御対象への制御入力(目標空燃比KCMD)を算出する制御入力算出手段(ECU2、ADSMコントローラ20)を備え、制御対象モデルは、離散時間系モデルとして構成されており、制御対象モデルのモデルパラメータ(同定値a1’,a2 ' ,b1 ' )を、算出された制御入力(目標空燃比KCMD)および制御対象の出力(酸素濃度センサ15の出力Vout)に応じて、逐次同定する同定手段(ECU2、オンボード同定器23)をさらに備え、制御対象の出力は、内燃機関の排気通路の触媒(第2触媒装置8b)よりも下流側に配置され、触媒を通過した後の排気ガスの空燃比を検出する空燃比センサ(酸素濃度センサ15)の出力Voutであり、制御対象への制御入力は、内燃機関に供給される混合気の目標空燃比KCMDであり、制御対象モデルは、空燃比センサの出力を表す値(出力偏差VO2)および目標空燃比KCMDを表す値を変数とするモデルであり、同定手段は、空燃比センサの出力を表す値に乗算されるモデルパラメータa1,a2と、目標空燃比を表す値に乗算されるモデルパラメータb1を、空燃比センサの出力および混合気の目標空燃比に応じて逐次同定し、制御入力算出手段は、1つの変調アルゴリズムおよび制御対象モデルに基づき、空燃比センサの出力Voutを所定の目標値Vopに収束させるための、内燃機関に供給すべき混合気の目標空燃比KCMDを算出する空燃比算出手段(ECU2)で構成されており、内燃機関の運転状態(吸気管内絶対圧PBA、エンジン回転数NE)を検出する運転状態検出手段(ECU2、吸気管内絶対圧センサ11、クランク角センサ13)をさらに備え、空燃比算出手段は、目標空燃比の混合気が内燃機関に供給されてから空燃比センサの出力に反映されるまでの予測時間dtを、検出された内燃機関の運転状態に応じて算出する予測時間算出手段(ECU2)と、算出された予測時間dtに応じて、制御対象モデルを適用した予測アルゴリズムに基づき、目標空燃比を表す値の予測値PREVO2を算出する予測値算出手段(ECU2)と、1つの変調アルゴリズムに基づき、算出された予測値に応じて目標空燃比KCMDを算出する目標空燃比算出手段(ECU2)と、を備え、予測値PREVO2に補正係数(ゲインKRDSM)を乗算する乗算手段(ECU2)と、補正係数を、予測値が所定値(値0)以上のときに、所定値未満のときよりも小さい値に設定する補正係数設定手段(ECU2)と、をさらに備え、目標空燃比算出手段は、1つの変調アルゴリズムに基づき、補正係数が乗算された予測値に応じて、混合気の目標空燃比KCMDを算出することを特徴とする。
【0023】
この制御装置によれば、Δ変調アルゴリズム、ΔΣ変調アルゴリズムおよびΣΔ変調アルゴリズムのうちのいずれか1つの変調アルゴリズムと、制御対象をモデル化した制御対象モデルとに基づき、制御入力が算出されるので、この制御対象モデルを、制御対象の位相遅れやむだ時間などの動特性が適切に反映されたものとして定義することにより、制御入力を制御対象の動特性を反映させた値として算出することが可能になり、その結果、制御の安定性の確保および制御性の向上が可能になる。また、制御対象モデルのモデルパラメータが、目標空燃比および空燃比センサの出力に応じて逐次同定される、すなわちリアルタイムに同定されるとともに、そのようにモデルパラメータが同定される制御対象モデルおよび1つの変調アルゴリズムに基づいて、内燃機関に供給すべき混合気の目標空燃比が算出される。これにより、触媒および空燃比センサの特性が環境の変化によってばらついたり、経年変化したりしている場合でも、それらの影響を回避しながら、空燃比センサの出力を所定の目標値に収束させることができる。以上により、内燃機関に供給された混合気に対する排気ガスの応答遅れおよびむだ時間などに起因する、空燃比制御の制御タイミングのずれを適切に補正することができ、触媒後排気ガス特性を向上させることができる。さらに、単一の空燃比センサを用いるだけでよいので、このような制御装置を比較的、安価に実現することができる。
【0024】
さらに、目標空燃比の混合気が内燃機関に供給されてから空燃比センサの出力に反映されるまでの予測時間が、検出された内燃機関の運転状態に応じて算出され、算出された予測時間に応じて、目標空燃比を表す値の予測値が算出されるとともに、算出された予測値に応じて目標空燃比が算出されるので、制御対象の入出力間の応答遅れやむだ時間、すなわち内燃機関に供給された混合気に対する空燃比センサの出力の間の応答遅れやむだ時間を反映させながら、目標空燃比を算出することができ、それにより、空燃比制御の制御タイミングのずれをより一層、確実に解消することができる。
【0025】
以上に加えて、混合気の目標空燃比が、補正係数を乗算した出力偏差の予測値に応じて算出されるとともに、この補正係数が、出力偏差の予測値が所定値以上のときに、所定値未満のときよりも小さい値に設定されるので、出力偏差の予測値の所定値に対する大小関係に応じて、空燃比センサの出力を目標値に収束させる収束速度を変更することができる。したがって、例えばこの所定値を値0に設定した場合、出力偏差の予測値が値0以上のとき、すなわち空燃比センサの出力が目標値よりも大きいことで、目標空燃比をリーン側に変更すべきときには、リッチ側に変更するときよりも収束速度が小さく設定されることにより、リーンバイアスによるNOx排出量の抑制効果を得ることができる。一方、目標空燃比をリッチ側に変更すべきときには、リーン側に変更するときよりも収束速度が大きい値に設定されることにより、触媒のNOx浄化率を十分に回復させることができる。
【0026】
請求項7に係る発明は、請求項5または6に記載の制御装置において、目標空燃比算出手段は、補正係数が乗算された予測値を、1つの変調アルゴリズムを適用した変調アルゴリズムで変調することにより、第1の変調値(DSM信号値DSMSGNS)を算出するとともに、算出された第1の変調値に所定のゲイン(KDSM)を乗算した値に基づき、混合気の目標空燃比KCMD(適応目標空燃比KCMDSLD)を算出することを特徴とする。
【0027】
この制御装置によれば、請求項3に係る発明と同様の作用効果を得ることができる。
【0028】
請求項8に係る発明は、請求項5または6に記載の制御装置において、目標空燃比算出手段は、補正係数が乗算された予測値を、1つの変調アルゴリズムを適用した変調アルゴリズムで変調することにより、第2の変調値(ΔΣ変調制御量DKCMDDSM)を算出するとともに、算出された第2の変調値に所定値(基準値FLAFBASE)を加算した値に基づき、混合気の目標空燃比KCMD(適応目標空燃比KCMDSLD)を算出することを特徴とする
【0029】
この制御装置によれば、請求項4に係る発明と同様の作用効果を得ることができる。
【0132】
【発明の実施の形態】
以下、図面を参照しながら、本発明の第1実施形態に係る制御装置について説明する。この第1実施形態は、制御装置を内燃機関の空燃比を制御するものとして構成した例であり、図1は、この制御装置1およびこれを適用した内燃機関3の概略構成を示している。同図に示すように、この制御装置1は、ECU2を備えており、このECU2は、後述するように、内燃機関(以下「エンジン」という)3の運転状態に応じて、これに供給する混合気の空燃比を制御する。
【0133】
このエンジン3は、図示しない車両に搭載された直列4気筒型ガソリンエンジンであり、第1〜第4の4つの気筒#1〜#4を備えている。このエンジン3の吸気管4のスロットル弁5の近傍には、例えばポテンショメータなどで構成されたスロットル弁開度センサ10が設けられている。このスロットル弁開度センサ10は、スロットル弁5の開度(以下「スロットル弁開度」という)θTHを検出して、その検出信号をECU2に送る。
【0134】
さらに、吸気管4のスロットル弁5よりも下流側には、吸気管内絶対圧センサ11が設けられている。この吸気管内絶対圧センサ11(運転状態検出手段)は、例えば半導体圧力センサなどで構成され、吸気管4内の吸気管内絶対圧PBAを検出し、その検出信号をECU2に出力する。
【0135】
また、吸気管4は、インテークマニホールド4aの4つの分岐部4bを介して4つの気筒#1〜#4にそれぞれ接続されている。各分岐部4bには、各気筒の図示しない吸気ポートの上流側に、インジェクタ6が取り付けられている。各インジェクタ6は、エンジン3の運転時に、ECU2からの駆動信号によって、その開弁時間である最終燃料噴射量TOUTおよび噴射タイミングが制御される。
【0136】
一方、エンジン3の本体には、例えばサーミスタなどで構成された水温センサ12が取り付けられている。水温センサ12は、エンジン3のシリンダブロック内を循環する冷却水の温度であるエンジン水温TWを検出し、その検出信号をECU2に出力する。
【0137】
また、エンジン3のクランクシャフト(図示せず)には、クランク角センサ13が設けられている。このクランク角センサ13(運転状態検出手段)は、クランクシャフトの回転に伴い、いずれもパルス信号であるCRK信号およびTDC信号をECU2に出力する。
【0138】
CRK信号は、所定のクランク角(例えば30゜)ごとに1パルスが出力される。ECU2は、このCRK信号に応じ、エンジン3の回転数(以下「エンジン回転数」という)NEを算出する。また、TDC信号は、各気筒のピストン(図示せず)が吸気行程のTDC位置よりも若干、手前の所定のクランク角位置にあることを表す信号であり、所定クランク角ごとに1パルスが出力される。
【0139】
一方、排気管7(排気通路)のエキゾーストマニホールド7aよりも下流側には、上流側から順に第1および第2の触媒装置8a,8b(触媒)が間隔を存して設けられている。各触媒装置8は、NOx触媒と3元触媒を組み合わせたものであり、このNOx触媒は、図示しないが、イリジウム触媒(イリジウムを担持した炭化ケイ素ウイスカ粉末とシリカの焼成体)をハニカム構造の基材の表面に被覆し、その上にペロブスカイト型複酸化物(LaCoO3粉末とシリカの焼成体)をさらに被覆したものである。触媒装置8は、NOx触媒による酸化還元作用により、リーンバーン運転時の排気ガス中のNOxを浄化するとともに、3元触媒の酸化還元作用により、リーンバーン運転以外の運転時の排気ガス中のCO、HCおよびNOxを浄化する。なお、触媒装置8は、NOx触媒と3元触媒を組み合わせたものに限らず、排気ガス中のCO、HCおよびNOxを浄化できるものであればよい。例えば、触媒装置8を、ペロブスカイト型触媒などの非金属触媒および/または3元触媒などの金属触媒で構成してもよい。
【0140】
これらの第1および第2触媒装置8a,8bの間には、酸素濃度センサ(以下「O2センサ」という)15が取り付けられている。このO2センサ15(下流側空燃比センサ)は、ジルコニアおよび白金電極などで構成され、第1触媒装置8aの下流側の排気ガス中の酸素濃度に基づく出力VoutをECU2に送る。このO2センサ15の出力Vout(制御対象の出力)は、理論空燃比よりもリッチな混合気が燃焼したときには、ハイレベルの電圧値(例えば0.8V)となり、混合気がリーンのときには、ローレベルの電圧値(例えば0.2V)となるとともに、混合気が理論空燃比付近のときには、ハイレベルとローレベルの間の所定の目標値Vop(例えば0.6V)となる(図2参照)。
【0141】
また、第1触媒装置8aよりも上流側のエキゾーストマニホールド7aの集合部付近には、LAFセンサ14(上流側空燃比センサ)が取り付けられている。このLAFセンサ14は、O2センサ15と同様のセンサとリニアライザなどの検出回路とを組み合わせることによって構成されており、リッチ領域からリーン領域までの広範囲な空燃比の領域において排気ガス中の酸素濃度をリニアに検出し、その酸素濃度に比例する出力KACTをECU2に送る。この出力KACTは、空燃比の逆数に比例する当量比として表される。
【0142】
次に、図2を参照しながら、第1触媒装置8aの排気ガスの浄化率とO2センサ15の出力Vout(電圧値)との関係について説明する。同図は、第1触媒装置8aが、長時間の使用により浄化能力が低下した劣化状態と、浄化能力の高い未劣化状態の場合において、LAFセンサ14の出力KACTすなわちエンジン3に供給される混合気の空燃比が理論空燃比の付近で変化したときの、2つの第1触媒装置8aのHCおよびNOxの浄化率と、O2センサ15の出力Voutをそれぞれ測定した結果の一例を示している。同図において、破線で示すデータはいずれも、第1触媒装置8aが未劣化状態の場合の測定結果であり、実線で示すデータはいずれも、第1触媒装置8aが劣化状態の場合の測定結果である。また、LAFセンサ14の出力KACTが大きいほど、混合気の空燃比がよりリッチ側であることを示している。
【0143】
同図に示すように、第1触媒装置8aが劣化している場合には、未劣化状態の場合と比べて、排気ガスの浄化能力が低下していることにより、LAFセンサ14の出力KACTがよりリーン側の値KACT1のときに、O2センサ15の出力Voutが目標値Vopを横切っている。一方、第1触媒装置8aは、その劣化・未劣化状態にかかわらず、O2センサ15の出力Voutが目標値Vopにあるときに、HCおよびNOxを最も効率よく浄化する特性を有している。したがって、O2センサ15の出力Voutが目標値Vopになるように、混合気の空燃比を制御することにより、第1触媒装置8aによって排気ガスを最も効率よく浄化できることが判る。このため、後述する空燃比制御では、O2センサ15の出力Voutが目標値Vopに収束するように、目標空燃比KCMDが制御される。
【0144】
さらに、ECU2には、アクセル開度センサ16、大気圧センサ17、吸気温センサ18および車速センサ19などが接続されている。このアクセル開度センサ16は、車両の図示しないアクセルペダルの踏み込み量(以下「アクセル開度」という)APを検出し、その検出信号をECU2に出力する。また、大気圧センサ17、吸気温センサ18および車速センサ19はそれぞれ、大気圧PA、吸気温TAおよび車速VPを検出し、その検出信号をECU2に出力する。
【0145】
次に、ECU2(予測値算出手段や、制御入力算出手段、空燃比算出手段、運転状態検出手段、目標空燃比算出手段、乗算手段、補正係数設定手段、同定手段、予測時間算出手段)について説明する。
【0146】
このECU2は、I/Oインターフェース、CPU、RAMおよびROMなどからなるマイクロコンピュータから構成されており、前述した各種のセンサ10〜19の出力に応じて、エンジン3の運転状態を判別するとともに、ROMに予め記憶された制御プログラムやRAMに記憶されたデータなどに従って、後述する適応空燃比制御処理またはマップ検索処理を実行することにより、目標空燃比KCMD(制御入力)を算出する。さらに、後述するように、この目標空燃比KCMDに基づいて、インジェクタ6の最終燃料噴射量TOUTを気筒ごとに算出し、この算出した最終燃料噴射量TOUTに基づいた駆動信号で、インジェクタ6を駆動することにより、混合気の空燃比を制御する。
【0147】
図3に示すように、制御装置1は、目標空燃比KCMDを算出するADSMコントローラ20およびPRISMコントローラ21を備えており、両コントローラ20,21はいずれも、具体的には、ECU2により構成されている。
【0148】
以下、ADSMコントローラ20(制御入力算出手段)について説明する。このADSMコントローラ20は、以下に述べる適応予測型ΔΣ変調制御(Adaptive prediction Delta Sigma Modulation Control:以下「ADSM」という)処理の制御アルゴリズムにより、O2センサ15の出力Voutを目標値Vopに収束させるための目標空燃比KCMDを算出するものであり、状態予測器22、オンボード同定器23およびDSMコントローラ24により構成されている。なお、このADSM処理の具体的なプログラムについては、後述する。
【0149】
まず、状態予測器22(予測値算出手段)について説明する。この状態予測器22は、以下に述べる予測アルゴリズムにより、出力偏差VO2の予測値PREVO2を予測(算出)するものである。本実施形態では、制御対象への制御入力を混合気の目標空燃比KCMDとし、制御対象の出力をO2センサ15の出力Voutとし、インジェクタ6を含むエンジン3の吸気系から、第1触媒装置8aを含む排気系の第1触媒装置8aの下流側のO2センサ15までの系を、制御対象と見なすとともに、この制御対象を、下式(1)に示すように、離散時間系モデルであるARXモデル(auto-regressive model with exogeneous input:外部入力を持つ自己回帰モデル)としてモデル化する。
【0150】
VO2(k)=a1・VO2(k-1)+a2・VO2(k-2)+b1・DKCMD(k-dt) ……(1)
ここで、VO2は、O2センサ15の出力Voutと前述した目標値Vopとの偏差(Vout−Vop)である出力偏差を表し、DKCMDは、目標空燃比KCMD(=φop)と基準値FLAFBASEとの偏差(KCMD−FLAFBASE)である空燃比偏差を表し、記号kは、各データのサンプリングサイクルの順番を表している。この基準値FLAFBASEは、所定の一定値に設定される。また、a1,a2,b1はモデルパラメータを表しており、オンボード同定器23により、後述するように逐次同定される。
【0151】
さらに、上記式(1)のdtは、目標空燃比KCMDの混合気がインジェクタ6により吸気系に供給されてから、O2センサ15の出力Voutに反映されるまでの予測時間を表しており、下式(2)のように定義される。
dt=d+d'+dd ……(2)
ここで、dは、LAFセンサ14からO2センサ15までの排気系のむだ時間を、d'は、インジェクタ6からLAFセンサ14までの空燃比操作系のむだ時間を、ddは、排気系と空燃比操作系との間の位相遅れ時間をそれぞれ表している(なお、後述する適応空燃比制御処理の制御プログラムでは、ADSM処理とPRISM処理とに切り換えて目標空燃比KCMDを算出する処理を行うため、位相遅れ時間dd=0に設定されている)。
【0152】
以上のように、制御対象モデルを、出力偏差VO2の時系列データおよび空燃比偏差DKCMDで構成した理由は以下による。すなわち、一般に、制御対象モデルでは、制御対象の入出力と所定値との偏差を、入出力を表す変数として定義した場合の方が、入出力の絶対値を変数として定義した場合よりも、モデルパラメータをより正確に同定または定義できることで、制御対象モデルの動特性を制御対象の実際の動特性に適合させることができるという事実が知られている。したがって、本実施形態の制御装置1のように、制御対象モデルを、出力偏差VO2の時系列データおよび空燃比偏差DKCMDで構成することにより、O2センサ15の出力Voutおよび目標空燃比KCMDの絶対値を変数とする場合と比べて、制御対象の実際の動特性に対する制御対象モデルの動特性の適合性を向上させることができ、それにより予測値PREVO2の算出精度を向上させることができる。
【0153】
また、予測値PREVO2は、目標空燃比KCMDの混合気が吸気系に供給されてから予測時間dtが経過した後の出力偏差VO2(k+dt)を予測した値であり、上記式(1)に基づき、予測値PREVO2の算出式を導出すると、下式(3)が得られる。
Figure 0003904923
【0154】
この式(3)では、出力偏差VO2(k)の未来値に相当するVO2(k+dt−1),VO2(k+dt−2)の算出が必要となり、実際にプログラム化するのは困難である。そのため、マトリクスA、Bを、モデルパラメータa1,a2,b1を用いて図4に示す式(4)、(5)のように定義するとともに、上式(3)の漸化式を繰り返し用いることにより、上式(3)を変形すると、図4に示す式(6)が得られる。予測アルゴリズムすなわち予測値PREVO2の算出式として、この式(6)を用いた場合、予測値PREVO2が、出力偏差VO2および空燃比偏差DKCMDにより算出される。
【0155】
次に、LAF出力偏差DKACTを、LAFセンサ14の出力KACT(=φin)と基準値FLAFBASEとの偏差(KACT−FLAFBASE)として定義すると、DKACT(k)=DKCMD(k−d')の関係が成立するので、この関係を図4の式(6)に適用すると、図4に示す式(7)が得られる。
【0156】
以上の式(6)または式(7)により算出される予測値PREVO2を用い、後述するように目標空燃比KCMDを算出することによって、制御対象の入出力間の応答遅れやむだ時間を適切に補償しながら、目標空燃比KCMDを算出することができる。特に、予測アルゴリズムとして、上記式(7)を用いた場合、予測値PREVO2が、出力偏差VO2、LAF出力偏差DKACTおよび目標空燃比KCMDにより算出されるので、第1触媒装置8aに実際に供給される排気ガスの空燃比の状態が反映された値として、予測値PREVO2を算出でき、その算出精度すなわち予測精度を上記式(6)を用いた場合よりも向上させることができる。また、式(7)を用いた場合において、d'≦1と見なせるときには、空燃比偏差DKCMDを用いることなく、出力偏差VO2およびLAF出力偏差DKACTのみにより、予測値PREVO2を算出できる。本実施形態では、LAFセンサ14がエンジン3に設けられているので、予測アルゴリズムとして上記式(7)を採用する。
【0157】
なお、前述した式(1)の制御対象モデルは、DKACT(k)=DKCMD(k−d')の関係を適用することにより、出力偏差VO2およびLAF出力偏差DKACTを変数とするモデルとして定義することも可能である。
【0158】
次に、オンボード同定器23(同定手段)について説明する。このオンボード同定器23は、以下に述べる逐次型同定アルゴリズムにより、前述した式(1)のモデルパラメータa1,a2,b1を同定(算出)するものである。具体的には、図5に示す(8),(9)により、モデルパラメータのベクトルθ(k)を算出する。同図の式(8)において、KP(k)は、ゲイン係数のベクトルであり、ide_f(k)は同定誤差フィルタ値である。また、式(9)におけるθ(k)Tは、θ(k)の転置行列を表し、a1'(k)、a2'(k)およびb1'(k)は、後述するリミット処理を施す前のモデルパラメータを表している。なお、以下の説明では、「ベクトル」という表記を適宜、省略する。
【0159】
上記式(8)の同定誤差フィルタ値ide_f(k)は、図5に示す式(11)〜(13)により算出される同定誤差ide(k)に、図5の式(10)に示す移動平均フィルタリング処理を施した値である。図5の式(10)のnは、移動平均フィルタリング処理のフィルタ次数(1以上の整数)を表しており、式(12)のVO2HAT(k)は、出力偏差VO2の同定値を表している。
【0160】
この同定誤差フィルタ値ide_f(k)を用いる理由は以下による。すなわち、本実施形態の制御対象は、目標空燃比KCMDを制御入力とし、O2センサ15の出力Voutを制御対象の出力とするものであり、その周波数特性としてはローパス特性を有している。このようなローパス特性を有する制御対象では、オンボード同定器23の同定アルゴリズム、具体的には後述する重み付き最小2乗法アルゴリズムの周波数重み特性に起因して、制御対象の高周波特性が強調された状態で、モデルパラメータが同定されるため、制御対象モデルのゲイン特性が制御対象の実際のゲイン特性よりも低くなる傾向を示す。その結果、制御装置1によりADSM処理またはPRISM処理が実行された際、オーバーゲイン状態になることで、制御系が発散状態になり、不安定になる可能性がある。
【0161】
したがって、本実施形態では、重み付き最小2乗法アルゴリズムの周波数重み特性を適切に補正し、制御対象モデルのゲイン特性を、制御対象の実際のゲイン特性に一致させるために、上記同定誤差ide(k)に移動平均フィルタリング処理を施した同定誤差フィルタ値ide_f(k)を用いるとともに、後述するように、移動平均フィルタリング処理のフィルタ次数nを、排気ガスボリュームAB_SVに応じて設定している。
【0162】
さらに、前述した図5の式(8)のゲイン係数のベクトルKP(k)は、図5の式(14)により算出される。この式(14)のP(k)は、図5の式(15)で定義される3次の正方行列である。
【0163】
以上のような同定アルゴリズムでは、式(15)の重みパラメータλ1、λ2の設定により、以下の4つの同定アルゴリズムのうちの1つが選択される。
すなわち、
λ1=1,λ2=0 ;固定ゲインアルゴリズム
λ1=1,λ2=1 ;最小2乗法アルゴリズム
λ1=1,λ2=λ ;漸減ゲインアルゴリズム
λ1=λ,λ2=1 ;重み付き最小2乗法アルゴリズム
ただし、λは、0<λ<1に設定される所定値。
【0164】
本実施形態では、これらの4つの同定アルゴリズムのうちの重み付き最小2乗法アルゴリズムを採用する。これは、重みパラメータλ1の値をエンジン3の運転状態、具体的には排気ガスボリュームAB_SVに応じて設定することにより、同定精度と、モデルパラメータの最適値への収束速度とを適切に設定できることによる。例えば、低負荷運転状態のときには、それに応じて重みパラメータλ1の値を値1に近い値に設定することで、すなわち最小2乗法アルゴリズムに近いアルゴリズムに設定することで、良好な同定精度を確保できるとともに、高負荷運転状態のときには、それに応じて重みパラメータλ1の値を低負荷運転状態のときよりも小さい値に設定することにより、モデルパラメータを迅速に最適値に収束させることができる。以上のように、重みパラメータλ1の値を排気ガスボリュームAB_SVに応じて設定することにより、同定精度と、モデルパラメータの最適値への収束速度とを適切に設定することができ、それにより、触媒後排気ガス特性を向上させることができる。
【0165】
以上の式(8)〜(15)の同定アルゴリズムにおいて、前述したDKACT(k)=DKCMD(k−d')の関係を適用すると、図6に示す式(16)〜(23)の同定アルゴリズムが得られる。本実施形態では、LAFセンサ14がエンジン3に設けられているので、これらの式(16)〜(23)を用いる。これらの式(16)〜(23)を用いた場合、前述した理由により、モデルパラメータを、第1触媒装置8aに実際に供給される排気ガスの空燃比の状態がより反映された値として同定することができ、それにより、上記式(8)〜(15)の同定アルゴリズムを用いた場合よりも、モデルパラメータの同定精度を向上させることができる。
【0166】
また、このオンボード同定器23では、以上の同定アルゴリズムにより算出されたモデルパラメータa1'(k)、a2'(k)およびb1'(k)に、後述するリミット処理を施すことにより、モデルパラメータa1(k)、a2(k)およびb1(k)が算出される。さらに、前述した状態予測器22では、このようにリミット処理を施した後のモデルパラメータa1(k)、a2(k)およびb1(k)に基づき、予測値PREVO2が算出される。
【0167】
次に、DSMコントローラ24について説明する。このDSMコントローラ24は、ΔΣ変調アルゴリズムを応用した制御アルゴリズムにより、状態予測器22で算出された予測値PREVO2に基づき、制御入力φop(k)(=目標空燃比KCMD)を生成(算出)するとともに、これを制御対象に入力することにより、制御対象の出力としてのO2センサ15の出力Voutを目標値Vopに収束させるように制御するものである。
【0168】
まず、一般的なΔΣ変調アルゴリズムについて説明する。図7は、ΔΣ変調アルゴリズムを適用したコントローラ26により、制御対象27を制御する制御系の構成を示している。同図に示すように、このコントローラ26では、差分器26aにより、参照信号r(k)と遅延素子26bで遅延されたDSM信号u(k−1)との偏差として偏差信号δ(k)が生成される。次に、積分器26cにより、偏差積分値σd(k)が、偏差信号δ(k)と遅延素子26dで遅延された偏差積分値σd(k−1)との和の信号として生成される。次いで、量子化器26e(符号関数)により、DSM信号u(k)が、この偏差積分値σd(k)を符号化した信号として生成される。そして、以上のように生成されたDSM信号u(k)が制御対象27に入力されることにより、出力信号 y(k)が制御対象27から出力される。
【0169】
以上のΔΣ変調アルゴリズムは、以下の数式(24)〜(26)で表される。
δ(k)=r(k)−u(k−1) ……(24)
σd(k)=σd(k−1)+δ(k) ……(25)
u(k)=sgn(σd(k)) ……(26)
ただし、符号関数sgn(σd(k))の値は、σd(k)≧0のときにはsgn(σd(k))=1となり、σd(k)<0のときにはsgn(σd(k))=−1となる(なお、σd(k)=0のときに、sgn(σd(k))=0と設定してもよい)。
【0170】
図8は、以上の制御系の制御シミュレーション結果を示している。同図に示すように、正弦波状の参照信号r(k)を制御系に入力した場合、DSM信号u(k)が矩形波状の信号として生成され、これを制御対象27に入力することにより、参照信号r(k)と異なる振幅で同じ周波数の、ノイズを有するものの全体として同様の波形の出力信号y(k)が、制御対象27から出力される。このように、ΔΣ変調アルゴリズムの特性は、参照信号r(k)から生成されたDSM信号u(k)を制御対象27に入力したときに、制御対象27の出力y(k)が、参照信号r(k)に対して、異なる振幅で同じ周波数の、全体として同様の波形の信号となるような値として、DSM信号u(k)を生成できるという点にある。言い換えれば、DSM信号u(k)を、参照信号r(k)が制御対象27の実際の出力y(k)に再現されるような値として、生成(算出)できるという点にある。
【0171】
DSMコントローラ24は、このようなΔΣ変調アルゴリズムの特性を利用し、O2センサ15の出力Voutを目標値Vopに収束させるための制御入力φop(k)を算出するものである。その原理について説明すると、例えば図9に1点鎖線で示すように、出力偏差VO2が値0に対して揺らいでいる場合(すなわち、O2センサ15の出力Voutが目標値Vopに対して揺らいでいる場合)、出力偏差VO2を値0に収束させる(すなわち出力Voutを目標値Vopに収束させる)には、図9に破線で示す、出力偏差VO2を打ち消すような逆位相波形の出力偏差VO2*が生じるように、制御入力φop(k)を生成すればよい。
【0172】
しかし、前述したように、本実施形態の制御対象では、制御入力φop(k)としての目標空燃比KCMDが制御対象に入力されてからO2センサ15の出力Voutに反映されるまでに、予測時間dt分の時間遅れが発生するため、現在の出力偏差VO2に基づいて、制御入力φop(k)を算出した場合の出力偏差VO2#は、図9に実線で示すように、出力偏差VO2*に対して遅れを生じ、それにより、制御タイミングのずれが生じてしまう。したがって、これを補償するために、本実施形態のADSMコントローラ20におけるDSMコントローラ24では、出力偏差VO2の予測値PREVO2を用いることにより、制御入力φop(k)が、制御タイミングのずれを生じることなく、現在の出力偏差VO2を打ち消すような出力偏差(逆位相波形の出力偏差VO2*と同様の出力偏差)を生じさせる信号として生成される。
【0173】
具体的には、このDSMコントローラ24では、図10に示すように、反転増幅器24aにより、参照信号r(k)が、値−1、参照信号用のゲインGdおよび予測値PREVO2(k)を互いに乗算した信号として生成される。次に、差分器24bにより、この参照信号r(k)と遅延素子24cで遅延されたDSM信号u''(k−1)との偏差として偏差信号δ(k)が生成される。
【0174】
次いで、積分器24dにより、偏差積分値σd(k)が、偏差信号δ(k)と遅延素子24eで遅延された偏差積分値σd(k−1)との和の信号として生成され、次に、量子化器24f(符号関数)により、DSM信号u''(k)が、この偏差積分値σd(k)を符号化した値として生成される。そして、増幅器24gにより、増幅DSM信号u(k)がDSM信号u''(k)を所定のゲインFdで増幅した値として生成され、次に、加算器24hにより、この増幅DSM信号u(k)を所定の基準値FLAFBASEに加算した値として、制御入力φop(k)が生成される。
【0175】
以上のDSMコントローラ24の制御アルゴリズムは、以下の式(27)〜(32)で表される。
r(k)=−1・Gd・PREVO2(k) ……(27)
δ(k)=r(k)−u''(k−1) ……(28)
σd(k)=σd(k−1)+δ(k) ……(29)
u''(k)=sgn(σd(k)) ……(30)
u(k)=Fd・u''(k) ……(31)
φop(k)=FLAFBASE+u(k) ……(32)
ここで、Gd,Fdはゲインを表す。また、符号関数sgn(σd(k))の値は、σd(k)≧0のときにはsgn(σd(k))=1となり、σd(k)<0のときにはsgn(σd(k))=−1となる(なお、σd(k)=0のときに、sgn(σd(k))=0と設定してもよい)。
【0176】
このDSMコントローラ24では、以上の式(27)〜(32)に示す制御アルゴリズムにより、前述したように、制御入力φop(k)が、制御タイミングのずれを生じることなく、出力偏差VO2を打ち消すような出力偏差VO2*を生じさせる値として算出される。すなわち、制御入力φop(k)が、O2センサ15の出力Voutを目標値Vopに収束させることができる値として算出される。また、制御入力φop(k)が、増幅DSM信号u(k)を所定の基準値FLAFBASEに加算した値として算出されるので、制御入力φop(k)を値0を中心して正負反転する値だけでなく、基準値FLAFBASEを中心として増減を繰り返す値として算出できる。これにより、通常のΔΣ変調アルゴリズムと比べて、制御の自由度を高めることができる。
【0177】
次に、前記PRISMコントローラ21について説明する。このPRISMコントローラ21は、以下に述べるオンボード同定型スライディングモード制御処理(以下「PRISM処理」という)の制御アルゴリズムにより、O2センサ15の出力Voutを目標値Vopに収束させるための目標空燃比KCMDを算出するものであり、状態予測器22、オンボード同定器23およびスライディングモードコントローラ(以下「SLDコントローラ」という)25により構成されている。なお、このPRISM処理の具体的なプログラムについては後述する。
【0178】
このPRISMコントローラ21のうちの状態予測器22およびオンボード同定器23については、既に説明したので、ここではSLDコントローラ25についてのみ説明する。このSLDコントローラ25は、スライディングモード制御アルゴリズムに基づいてスライディングモード制御を行うものであり、以下、一般的なスライディングモード制御アルゴリズムについて説明する。このスライディングモード制御アルゴリズムでは、前述した式(1)の離散時間系モデルを制御対象モデルとして用いるため、切換関数σは、下式(33)に示すように、出力偏差VO2の時系列データの線形関数として設定される。
σ(k)=S1・VO2(k)+S2・VO2(k−1) ……(33)
ここで、S1,S2は、−1<(S2/S1)<1の関係が成立するように設定される所定の係数である。
【0179】
一般にスライディングモード制御アルゴリズムでは、切換関数σが2つの状態変数(本実施形態では出力偏差VO2の時系列データ)で構成されている場合、2つの状態変数で構成される位相空間は、これらをそれぞれ縦軸および横軸とする2次元の位相平面となるため、この位相平面上において、σ=0を満たす2つの状態変数の値の組み合わせは、切換直線と呼ばれる直線上に載ることになる。したがって、制御対象への制御入力を、2つの状態変数の組み合わせが切換直線上に収束する(載る)ように適切に決定することにより、2つの状態変数をいずれも、値0になる平衡点に収束(スライディング)させることができる。さらに、スライディングモード制御アルゴリズムでは、切換関数σの設定により、状態変数の動特性、より具体的には収束挙動や収束速度を指定することができる。例えば、本実施形態のように、切換関数σが2つの状態変数で構成されている場合には、切換直線の傾きを値1に近づけると、状態変数の収束速度が遅くなる一方、値0に近づけると、収束速度が速くなる。
【0180】
本実施形態では、前記式(33)に示すように、切換関数σが出力偏差VO2の2つの時系列データ、すなわち出力偏差VO2の今回値VO2(k)および前回値VO2(k−1)により構成されているので、これらの今回値VO2(k)および前回値VO2(k−1)の組み合わせを切換直線上に収束させるように、制御対象への制御入力すなわち目標空燃比KCMDを設定すればよい。具体的には、制御量Usl(k)を、基準値FLAFBASEとの和が目標空燃比KCMDとなる値として定義すると、今回値VO2(k)および前回値VO2(k−1)の組み合わせを切換直線上に収束させるための制御量Usl(k)は、適応スライディングモード制御アルゴリズムにより、図11に示す式(34)のように、等価制御入力Ueq(k)、到達則入力Urch(k)および適応則入力Uadp(k)の総和として設定される。
【0181】
この等価制御入力Ueq(k)は、出力偏差VO2の今回値VO2(k)および前回値VO2(k−1)の組み合わせを切換直線上に拘束しておくためのものであり、具体的には、図11に示す式(35)のように定義される。また、到達則入力Urch(k)は、外乱やモデル化誤差などにより、出力偏差VO2の今回値VO2(k)および前回値VO2(k−1)の組み合わせが切換直線上から外れた際に、これらを切換直線上に収束させるためのものであり、具体的には、図11に示す式(36)のように定義される。この式(36)において、Fはゲインを表す。
【0182】
さらに、適応則入力Uadp(k)は、制御対象の定常偏差、モデル化誤差および外乱の影響を抑制しながら、出力偏差VO2の今回値VO2(k)および前回値VO2(k−1)の組み合わせを、切換超平面上に確実に収束させるためのものであり、具体的には、図11に示す式(37)のように定義される。この式(37)において、Gはゲインを、ΔTは制御周期をそれぞれ表す。
【0183】
本実施形態のPRISMコントローラ21のSLDコントローラ25では、前述したように、出力偏差VO2に代えて予測値PREVO2を用いるので、PREVO2(k)≒VO2(k+dt)の関係を適用することにより、以上の式(33)〜(37)のアルゴリズムを、図12に示す式(38)〜(42)に書き換えて用いる。この式(38)におけるσPREは、予測値PREVO2を用いたときの切換関数(以下「予測切換関数」という)の値である。すなわち、このSLDコントローラ25では、以上のアルゴリズムで算出される制御量Usl(k)を基準値FLAFBASEに加算することによって、目標空燃比KCMDが算出される。
【0184】
以下、ECU2により実行される燃料噴射量の算出処理について、図13を参照しながら説明する。なお、以下の説明では、今回値であることを示す記号(k)を適宜、省略する。図13は、この制御処理のメインルーチンを示しており、本処理は、TDC信号の入力に同期して割り込み実行される。この処理では、後述する適応空燃比制御処理、またはマップ検索処理により算出された目標空燃比KCMDを用いることによって、燃料噴射量TOUTが気筒ごとに算出される。
【0185】
まず、ステップ1(図では「S1」と略す。以下同じ)において、前述した各種のセンサ10〜19の出力を読み込むとともに、読み込んだデータをRAM内に記憶する。
【0186】
次に、ステップ2に進み、基本燃料噴射量Timを算出する。この処理では、エンジン回転数NEおよび吸気管内絶対圧PBAに応じて、図示しないマップを検索することにより、基本燃料噴射量Timを算出する。
【0187】
次いで、ステップ3に進み、総補正係数KTOTALを算出する。この総補正係数KTOTALは、各種の運転パラメータ(例えば吸気温TAや、大気圧PA、エンジン水温TW、アクセル開度APなど)に応じて、各種のテーブルやマップを検索することで各種の補正係数を算出するとともに、これらの各種の補正係数を互いに乗算することにより、算出される。
【0188】
次に、ステップ4に進み、適応制御フラグF_PRISMONの設定処理を実行する。この処理の内容は図示しないが、具体的には、以下の(a)〜(f)の条件がいずれも成立しているときには、適応空燃比制御処理で算出された目標空燃比KCMDを使用する条件が成立しているとして、それを表すために、適応制御フラグF_PRISMONが「1」にセットされる。一方、(a)〜(f)の条件のうちの少なくとも1つが成立していないときには、適応制御フラグF_PRISMONが「0」にセットされる。
(a)LAFセンサ14およびO2センサ15がいずれも活性化していること。
(b)エンジン3がリーンバーン運転中でないこと。
(c)スロットル弁5が全開状態でないこと。
(d)点火時期の遅角制御中でないこと。
(e)フューエルカット運転中でないこと。
(f)エンジン回転数NEおよび吸気管内絶対圧PBAがいずれも、所定の範囲囲内の値であること。
【0189】
次に、ステップ5に進み、ステップ4で設定された適応制御フラグF_PRISMONが「1」であるか否かを判別する。この判別結果がYESのときには、ステップ6に進み、目標空燃比KCMDを、後述する適応空燃比制御処理で算出された適応目標空燃比KCMDSLDに設定する。
【0190】
一方、ステップ5の判別結果がNOのときには、ステップ7に進み、目標空燃比KCMDをマップ値KCMDMAPに設定する。このマップ値KCMDMAPは、エンジン回転数NEおよび吸気管内絶対圧PBAに応じて、図示しないマップを検索することにより、算出される。
【0191】
以上のステップ6または7に続くステップ8では、オブザーバフィードバック補正係数#nKLAFを気筒ごとに算出する。このオブザーバフィードバック補正係数#nKLAFは、気筒ごとの実際の空燃比のばらつきを補正するためのものであり、具体的には、オブザーバによりLAFセンサ14の出力KACTから気筒ごとの実際の空燃比を推定し、これらの推定した空燃比に応じて、PID制御により算出される。なお、このオブザーバフィードバック補正係数#nKLAFの記号#nは、気筒の番号#1〜#4を表すものであり、これは、後述する要求燃料噴射量#nTCYLおよび最終燃料噴射量#nTOUTにおいても同様である。
【0192】
次いで、ステップ9に進み、フィードバック補正係数KFBを算出する。このフィードバック補正係数KFBは、具体的には、以下のように算出される。すなわち、LAFセンサ14の出力KACTと目標空燃比KCMDとの偏差に応じて、PID制御によりフィードバック係数KLAFを算出する。また、図示しないSelf Tuning Regulator 型の適応制御器によりフィードバック補正係数KSTRを算出し、これを目標空燃比KCMDで除算することにより、フィードバック補正係数kstrを算出する。そして、エンジン3の運転状態に応じて、これらの2つのフィードバック係数KLAFおよびフィードバック補正係数kstrの一方を、フィードバック補正係数KFBとして設定する。
【0193】
次いで、ステップ10に進み、補正目標空燃比KCMDMを算出する。この補正目標空燃比KCMDMは、空燃比A/Fの変化による充填効率の変化を補償するためのものであり、前述したステップ6または7で算出された目標空燃比KCMDに応じて、図示しないテーブルを検索することにより算出される。
【0194】
次に、ステップ11に進み、以上のように算出した基本燃料噴射量Tim、総補正係数KTOTAL、オブザーバフィードバック補正係数#nKLAF、フィードバック補正係数KFB、および補正目標空燃比KCMDMを用い、下式(43)により、気筒ごとの要求燃料噴射量#nTCYLを算出する。
Figure 0003904923
【0195】
次に、ステップ12に進み、要求燃料噴射量#nTCYLを付着補正することにより、最終燃料噴射量#nTOUTを算出する。この最終燃料噴射量#nTOUTは、具体的には、今回の燃焼サイクルでインジェクタ6から噴射された燃料が燃焼室の内壁面に付着する割合などを、運転状態に応じて算出し、そのように算出した割合に基づいて、要求燃料噴射量#nTCYLを補正することにより、算出される。
【0196】
次いで、ステップ13に進み、以上のように算出した最終燃料噴射量#nTOUTに基づく駆動信号を、対応する気筒のインジェクタ6に出力した後、本処理を終了する。
【0197】
次に、図14および図15を参照しながら、ADSM処理およびPRISM処理を含む適応空燃比制御処理について説明する。この処理は、所定の周期(例えば10msec)で実行される。また、この処理では、エンジン3の運転状態に応じて、ADSM処理、PRISM処理、またはスライディングモード制御量DKCMDSLDを所定値SLDHOLDに設定する処理により、目標空燃比KCMDが算出される。
【0198】
この処理では、まず、ステップ20において、F/C後判定処理を実行する。この処理の内容は図示しないが、この処理では、フューエルカット運転中は、それを表すためにF/C後判定フラグF_AFCが「1」にセットされ、フューエルカット運転の終了後、所定時間X_TM_AFCが経過したときには、それを表すためにF/C後判定フラグF_AFCが「0」にセットされる。
【0199】
次に、ステップ21に進み、車速VPに基づいて、エンジン3を搭載した車両が発進したか否かを判定する発進判定処理を実行する。図16に示すように、この処理では、まず、ステップ49において、アイドル運転フラグF_IDLEが「1」であるか否かを判別する。このアイドル運転フラグF_IDLEは、アイドル運転中であるときに「1」に、それ以外のときに「0」にセットされる。
【0200】
この判別結果がYESで、アイドル運転中であるときには、ステップ50に進み、車速VPが所定車速VSTART(例えば1km/h)より小さいか否かを判別する。この判別結果がYESで、停車中であるときには、ステップ51に進み、ダウンカウント式の第1発進判定タイマのタイマ値TMVOTVSTを第1所定時間TVOTVST(例えば3msec)に設定する。
【0201】
次いで、ステップ52に進み、ダウンカウント式の第2発進判定タイマのタイマ値TMVSTを、上記第1所定時間TVOTVSTよりも長い第2所定時間TVST(例えば500msec)に設定する。次いで、ステップ53,54において、第1および第2発進フラグF_VOTVST,F_VSTをいずれも「0」にセットした後、本処理を終了する。
【0202】
一方、ステップ49または50の判別結果がNOのとき、すなわちアイドル運転中でないか、または車両が発進したときには、ステップ55に進み、第1発進判定タイマのタイマ値TMVOTVSTが値0より大きいか否かを判別する。この判別結果がYESで、アイドル運転の終了後または車両の発進後、第1所定時間TVOTVSTが経過していないときには、第1発進モード中であるとして、ステップ56に進み、それを表すために第1発進フラグF_VOTVSTを「1」にセットする。
【0203】
一方、ステップ55の判別結果がNOで、アイドル運転の終了後または車両の発進後、第1所定時間TVOTVSTが経過したときには、第1発進モードが終了したとして、ステップ57に進み、第1発進フラグF_VOTVSTを「0」にセットする。
【0204】
ステップ56または57に続くステップ58では、第2発進判定タイマのタイマ値TMVSTが値0より大きいか否かを判別する。この判別結果がYESで、アイドル運転の終了後または車両の発進後、第2所定時間TVSTが経過していないときには、第2発進モード中であるとして、ステップ59に進み、それを表すために第2発進フラグF_VSTを「1」にセットした後、本処理を終了する。
【0205】
一方、ステップ59の判別結果がNOで、アイドル運転の終了後または車両の発進後、第2所定時間TVSTが経過したときには、第2発進モードが終了したとして、前記ステップ54を実行した後、本処理を終了する。
【0206】
図14に戻り、ステップ21に続くステップ22では、状態変数の設定処理を実行する。図示しないが、この処理では、RAM内に記憶されている、目標空燃比KCMD、LAFセンサ14の出力KACTおよび出力偏差VO2の時系列データをいずれも、1サンプリングサイクル分ずつ過去側にシフトさせる。その後、KCMD、KACTおよびVO2の時系列データの最新の値と、基準値FLAFBASEと、後述する適応補正項FLAFADPとに基づき、KCMD、KACTおよびVO2の今回値を算出する。
【0207】
次に、ステップ23に進み、PRISM/ADSM処理の実行判定処理を行う。この処理は、PRISM処理またはADSM処理の実行条件が成立しているか否かを判定するものであり、具体的には、図17に示すフローチャートのように実行される。
【0208】
すなわち、図17のステップ60〜63において、以下の(g)〜(j)の条件がいずれも成立しているときには、PRISM処理またはADSM処理を実行すべき運転状態にあるとして、それを表すために、ステップ64で、PRISM/ADSM実行フラグF_PRISMCALを「1」にセットした後、本処理を終了する。一方、(g)〜(j)の条件の少なくとも1つが成立していないときには、PRISM処理またはADSM処理を実行すべき運転状態にないとして、それを表すために、ステップ65で、PRISM/ADSM実行フラグF_PRISMCALを「0」にセットした後、本処理を終了する。
(g)O2センサ15が活性化していること。
(h)LAFセンサ14が活性化していること。
(i)エンジン3がリーンバーン運転中でないこと。
(j)点火時期の遅角制御中でないこと。
【0209】
図14に戻り、ステップ23に続くステップ24では、同定器演算の実行判定処理を行う。この処理は、オンボード同定器23によるパラメータ同定の実行条件が成立しているか否かを判定するものであり、具体的には、図18に示すフローチャートのように実行される。
【0210】
すなわち、図18のステップ70および71の判別結果がいずれもNOのとき、言い換えれば、スロットル弁開度θTHが全開状態でなく、かつフューエルカット運転中でないときには、パラメータ同定を実行すべき運転状態であるとして、ステップ72に進み、同定実行フラグF_IDCALを「1」にセットした後、本処理を終了する。一方、ステップ70または71の判別結果がYESのときには、パラメータ同定を実行すべき運転状態にないとして、ステップ73に進み、同定実行フラグF_IDCALを「0」にセットした後、本処理を終了する。
【0211】
図14に戻り、ステップ24に続くステップ25では、各種パラメータ(排気ガスボリュームAB_SVなど)を算出する。この処理の具体的な内容は、後述する。
【0212】
次に、ステップ26に進み、前記ステップ23で設定されたPRISM/ADSM実行フラグF_PRISMCALが「1」であるか否かを判別する。この判別結果がYESで、PRISM処理またはADSM処理の実行条件が成立しているときには、ステップ27に進み、前記ステップ24で設定された同定実行フラグF_IDCALが「1」であるか否かを判別する。
【0213】
この判別結果がYESで、オンボード同定器23によるパラメータ同定を実行すべき運転状態のときには、ステップ28に進み、パラメータ初期化フラグF_IDRSETが「1」であるか否かを判別する。この判別結果がNOで、RAMに記憶されているモデルパラメータa1,a2,b1の初期化が不要であるときには、後述するステップ31に進む。
【0214】
一方、この判別結果がYESで、モデルパラメータa1,a2,b1の初期化が必要であるときには、ステップ29に進み、モデルパラメータa1,a2,b1を、それぞれの初期値に設定した後、それを表すためにステップ30に進み、パラメータ初期化フラグF_IDRSETを「0」にセットする。
【0215】
このステップ30または28に続くステップ31では、オンボード同定器23の演算を実行し、モデルパラメータa1,a2,b1を同定した後、後述する図15のステップ32に進む。このオンボード同定器23の演算の具体的な内容については、後述する。
【0216】
一方、ステップ27の判別結果がNOで、パラメータ同定を実行すべき運転状態でないときには、以上のステップ28〜31をスキップして、図15のステップ32に進む。ステップ27または31に続くステップ32では、モデルパラメータa1,a2,b1として、同定値または所定値を選択する。この処理の内容は図示しないが、具体的には、前記ステップ24で設定された同定実行フラグF_IDCALが「1」のときには、モデルパラメータa1,a2,b1をステップ31で同定された同定値に設定する。一方、同定実行フラグF_IDCALが「0」のときには、モデルパラメータa1,a2,b1を所定値に設定する。
【0217】
次に、ステップ33に進み、後述するように、状態予測器22の演算を実行し、予測値PREVO2を算出する。その後、ステップ34に進み、後述するように、制御量Uslを算出する。
【0218】
次いで、ステップ35に進み、SLDコントローラ25の安定判別を実行する。この処理の内容は図示しないが、具体的には、予測切換関数σPREの値に基づき、SLDコントローラ25によるスライディングモード制御が安定状態にあるか否かを判別する。
【0219】
次に、ステップ36および37において、後述するように、SLDコントローラ25およびDSMコントローラ24により、スライディングモード制御量DKCMDSLDおよびΔΣ変調制御量DKCMDDSMをそれぞれ算出する。
【0220】
次いで、ステップ38に進み、後述するように、SLDコントローラ25により算出されたスライディングモード制御量DKCMDSLD、またはDSMコントローラ24により算出されたΔΣ変調制御量DKCMDDSMを用いて、適応目標空燃比KCMDSLDを算出する。この後、ステップ39に進み、後述するように、適応補正項FLAFADPを算出した後、本処理を終了する。
【0221】
一方、図14に戻り、前記ステップ26の判別結果がNOで、PRISM処理およびADSM処理の実行条件がいずれも成立していないときには、ステップ40に進み、パラメータ初期化フラグF_IDRSETを「1」にセットする。次に、図15のステップ41に進み、スライディングモード制御量DKCMDSLDを所定値SLDHOLDにセットする。次いで、前述したステップ38,39を実行した後、本処理を終了する。
【0222】
次に、図19を参照しながら、前述したステップ25の各種パラメータを算出する処理について説明する。この処理では、まず、ステップ80において、下式(44)により、排気ガスボリュームAB_SV(空間速度の推定値)を算出する。
AB_SV=(NE/1500)・PBA・X_SVPRA ……(44)
ここで、X_SVPRAは、エンジン排気量に基づいて決定される所定の係数である。
【0223】
次に、ステップ81に進み、前述した空燃比操作系のむだ時間KACT_D(=d')、排気系のむだ時間CAT_DELAY(=d)および予測時間dtを算出する。具体的には、ステップ80で算出された排気ガスボリュームAB_SVに応じて、図20に示すテーブルを検索することにより、むだ時間KACT_D,CAT_DELAYをそれぞれ算出するとともに、これらの和(KACT_D+CAT_DELAY)を予測時間dtとして設定する。すなわち、この制御プログラムでは、位相遅れ時間ddが値0に設定される。
【0224】
このテーブルでは、排気ガスボリュームAB_SVが大きいほど、むだ時間KACT_D,CAT_DELAYがより小さい値に設定されている。これは、排気ガスボリュームAB_SVが大きいほど、排気ガスの流速が大きくなることで、むだ時間KACT_D,CAT_DELAYが短くなることによる。以上のように、むだ時間KACT_D,CAT_DELAYおよび予測時間dtが、排気ガスボリュームに応じて算出されるので、これらを用いて算出した出力偏差VO2の予測値PREVO2に基づき、後述する適応目標空燃比KCMDSLDを算出することにより、制御対象の入出力間の制御タイミングのずれを解消することができる。また、モデルパラメータa1,a2,b1が、上記むだ時間CAT_DELAYを用いて同定されるので、制御対象モデルの動特性を、制御対象の実際の動特性に適合させることができ、それにより、制御対象の入出力間の制御タイミングのずれをさらに解消することができる。
【0225】
次に、ステップ82に進み、同定アルゴリズムの重みパラメータλ1,λ2の値を算出する。具体的には、重みパラメータλ2を値1に設定すると同時に、重みパラメータλ1を、排気ガスボリュームAB_SVに応じて、図21に示すテーブルを検索することにより算出する。
【0226】
このテーブルでは、排気ガスボリュームAB_SVが大きいほど、重みパラメータλ1がより小さい値に設定されており、言い換えれば、排気ガスボリュームAB_SVが小さいほど、重みパラメータλ1がより大きくかつ値1により近い値に設定されている。これは、排気ガスボリュームAB_SVが大きいほど、言い換えれば高負荷運転状態であるほど、モデルパラメータの同定をより迅速に行う必要があるので、重みパラメータλ1をより小さく設定することによって、モデルパラメータの最適値への収束速度を高めるためである。これに加えて、排気ガスボリュームAB_SVが小さいほど、すなわち低負荷運転状態であるほど、空燃比が変動しやすくなり、触媒後排気ガス特性が不安定になりやすいことで、モデルパラメータの良好な同定精度を確保する必要があるので、重みパラメータλ1を値1に近づける(最小2乗法アルゴリズムに近づける)ことによって、モデルパラメータの同定精度をより高めるためである。
【0227】
次に、ステップ83に進み、モデルパラメータa1,a2の値を制限するための下限値X_IDA2Lと、モデルパラメータb1の値を制限するための下限値X_IDB1Lおよび上限値X_IDB1Hとを、排気ガスボリュームAB_SVに応じて、図22に示すテーブルを検索することにより算出する。
【0228】
このテーブルでは、下限値X_IDA2Lは、排気ガスボリュームAB_SVが大きいほど、より大きい値に設定されている。これは、排気ガスボリュームAB_SVの変化に応じたむだ時間の増減に伴い、制御系が安定状態となるモデルパラメータa1,a2の組み合わせが変化することによる。また、下限値X_IDB1Lおよび上限値X_IDB1Hも、排気ガスボリュームAB_SVが大きいほど、より大きい値に設定されている。これは、排気ガスボリュームAB_SVが大きいほど、触媒前空燃比(第1触媒装置8aよりも上流側の排気ガスの空燃比)がO2センサ15の出力Voutに及ぼす影響の度合、すなわち制御対象のゲインがより大きくなることによる。
【0229】
次いで、ステップ84に進み、移動平均フィルタリング処理のフィルタ次数nを算出した後、本処理を終了する。この処理では、フィルタ次数nを、排気ガスボリュームAB_SVに応じて、図23に示すテーブルを検索することにより、算出する。
【0230】
このテーブルでは、排気ガスボリュームAB_SVが大きいほど、フィルタ次数nがより小さい値に設定されている。これは、以下の理由による。すなわち、前述したように、排気ガスボリュームAB_SVが変化すると、制御対象の周波数特性、特にゲイン特性が変化するので、制御対象モデルのゲイン特性を、制御対象の実際のゲイン特性に一致させるためには、重み付き最小2乗法アルゴリズムの周波数重み特性を、排気ガスボリュームAB_SVに応じて適切に補正する必要がある。したがって、移動平均フィルタリング処理のフィルタ次数nを、上記テーブルのように排気ガスボリュームAB_SVに応じて設定することにより、排気ガスボリュームAB_SVの変化にかかわらず、一定の同定重みを同定アルゴリズムにおいて確保できるとともに、制御対象モデルと制御対象との間で互いのゲイン特性を一致させることができ、これにより、同定精度を向上させることができる。
【0231】
次に、図24を参照しながら、前記ステップ31のオンボード同定器23の演算処理について説明する。同図に示すように、この処理では、まず、ステップ90において、前述した式(22)より、ゲイン係数KP(k)を算出する。次に、ステップ91に進み、前述した式(20)より、出力偏差VO2の同定値VO2HAT(k)を算出する。
【0232】
次いで、ステップ92に進み、前述した式(18)(19)より、同定誤差フィルタ値ide_f(k)を算出する。次に、ステップ93に進み、前述した式(16)より、モデルパラメータのベクトルθ(k)を算出した後、ステップ94に進み、モデルパラメータのベクトルθ(k)の安定化処理を実行する。この処理については後述する。
【0233】
次いで、ステップ95に進み、前述した式(23)より、正方行列P(k)の次回値P(k+1)を算出する。この次回値P(k+1)は、次回のループでの算出において、正方行列P(k)の値として用いられる。
【0234】
以下、図25を参照しながら、上記ステップ94におけるモデルパラメータのベクトルθ(k)の安定化処理について説明する。同図に示すように、まず、ステップ100で、3つのフラグF_A1STAB,F_A2STAB,F_B1STABをいずれも「0」にセットする。
【0235】
次に、ステップ101に進み、後述するように、a1'&a2'のリミット処理を実行する。次いで、ステップ102で、後述するように、b1'のリミット処理を実行した後、本処理を終了する。
【0236】
以下、図26を参照しながら、上記ステップ101のa1'&a2'のリミット処理について説明する。同図に示すように、まず、ステップ110において、前記ステップ93で算出したモデルパラメータの同定値a2'が、前記図19のステップ83で算出された下限値X_IDA2L以上であるか否かを判別する。この判別結果がNOのときには、ステップ111に進み、制御系を安定化させるために、モデルパラメータa2を下限値X_IDA2Lに設定すると同時に、モデルパラメータa2の安定化を実行したことを表すために、フラグF_A2STABを「1」にセットする。一方、この判別結果がYESで、a2'≧X_IDA2Lのときには、ステップ112に進み、モデルパラメータa2を同定値a2'に設定する。
【0237】
これらのステップ111または112に続くステップ113では、前記ステップ93で算出したモデルパラメータの同定値a1'が、所定の下限値X_IDA1L(例えば値−2以上で値0より小さい一定値)以上であるか否かを判別する。この判別結果がNOのときには、ステップ114に進み、制御系を安定化させるために、モデルパラメータa1を下限値X_IDA1Lに設定すると同時に、モデルパラメータa1の安定化を実行したことを表すために、フラグF_A1STABを「1」にセットする。
【0238】
一方、ステップ113の判別結果がYESのときには、ステップ115に進み、同定値a1'が、所定の上限値X_IDA1H(例えば値2)以下であるか否かを判別する。この判別結果がYESで、X_IDA1L≦a1'≦X_IDA1Hのときには、ステップ116に進み、モデルパラメータa1を同定値a1'に設定する。一方、この判別結果がNOで、X_IDA1H<a1'のときには、ステップ117に進み、モデルパラメータa1を上限値X_IDA1Hに設定すると同時に、モデルパラメータa1の安定化を実行したことを表すために、フラグF_A1STABを「1」にセットする。
【0239】
これらのステップ114、116または117に続くステップ118では、以上のように算出したモデルパラメータa1の絶対値と、モデルパラメータa2との和(|a1|+a2)が、所定の判定値X_A2STAB(例えば値0.9)以下であるか否かを判別する。この判別結果がYESのときには、モデルパラメータa1,a2の組み合わせが、制御系の安定性を確保できる範囲(図27にハッチングで示す規制範囲)内にあるとして、そのまま本処理を終了する。
【0240】
一方、ステップ118の判別結果がNOのときには、ステップ119に進み、モデルパラメータa1が、判定値X_A2STABから下限値X_IDA2Lを減算した値(X_A2STAB−X_IDA2L)以下であるか否かを判別する。この判別結果がYESのときには、ステップ120に進み、モデルパラメータa2を、判定値X_A2STABからモデルパラメータa1の絶対値を減算した値(X_A2STAB−|a1|)に設定すると同時に、モデルパラメータa2の安定化を実行したことを表すために、フラグF_A2STABを「1」にセットした後、本処理を終了する。
【0241】
一方、ステップ119の判別結果がNOで、a1>(X_A2STAB−X_IDA2L)のときには、ステップ121に進み、制御系を安定化させるために、モデルパラメータa1を、判定値X_A2STABから下限値X_IDA2Lを減算した値(X_A2STAB−X_IDA2L)に設定し、モデルパラメータa2を下限値X_IDA2Lに設定する。これと同時に、モデルパラメータa1,a2の安定化を実行したことを表すために、フラグF_A1STAB,F_A2STABをいずれも「1」にセットする。その後、本処理を終了する。
【0242】
前述したように、逐次型の同定アルゴリズムでは、制御対象の入出力が定常状態になると、自己励起条件の不足化に起因して、同定されたモデルパラメータの絶対値が増大する、いわゆるドリフト現象が発生しやすくなることで、制御系が不安定になったり、振動状態になったりすることがある。また、その安定限界も、エンジン3の運転状態に応じて変化する。例えば、低負荷運転状態のときには、排気ガスボリュームAB_SVが小さくなることで、供給された混合気に対する排気ガスの応答遅れやむだ時間などが大きくなり、それにより、O2センサ15の出力Voutが振動状態になりやすい。
【0243】
これに対して、以上のa1'&a2'のリミット処理では、モデルパラメータa1,a2の組み合わせが、図27にハッチングで示す規制範囲内の値に収まるように設定されるとともに、この規制範囲を決定する下限値X_IDA2Lが、排気ガスボリュームAB_SVに応じて設定されるので、この規制範囲をエンジン3の運転状態の変化、すなわち制御対象の動特性の変化に伴う安定限界の変化が反映された適切な安定限界の範囲として設定することができ、そのような規制範囲内に収まるように規制されたモデルパラメータa1,a2を用いることにより、上記ドリフト現象の発生を回避でき、制御系の安定性を確保することができる。これに加えて、モデルパラメータa1,a2の組み合わせを、制御系の安定性を確保できる上記規制範囲内の値として設定することにより、モデルパラメータa1およびモデルパラメータa2を単独で規制した場合における、制御系の不安定な状態の発生を回避できる。以上により、制御系の安定性を向上させることができ、触媒後排気ガス特性を向上させることができる。
【0244】
次に、図28を参照しながら、前記ステップ102のb1'のリミット処理について説明する。同図に示すように、この処理では、ステップ130において、前記ステップ93で算出されたモデルパラメータの同定値b1'が、前記図19のステップ83で算出された下限値X_IDB1L以上であるか否かを判別する。
【0245】
この判別結果がYESで、b1'≧X_IDB1Lのときには、ステップ1311に進み、モデルパラメータの同定値b1'が、前記図19のステップ83で算出された上限値X_IDB1H以下であるか否かを判別する。この判別結果がYESで、X_IDB1L≦b1'≦X_IDB1Hのときには、ステップ132に進み、モデルパラメータb1を同定値b1'に設定した後、本処理を終了する。
【0246】
一方、ステップ131の判別結果がNOで、b1'>X_IDB1Hのときには、ステップ133に進み、モデルパラメータb1を上限値X_IDB1Hに設定すると同時に、それを表すためにフラグF_B1LMTを「1」にセットした後、本処理を終了する。
【0247】
一方、ステップ130の判別結果がNOで、b1'<X_IDB1Lのときには、ステップ134に進み、モデルパラメータb1を下限値X_IDB1Lに設定すると同時に、それを表すためにフラグF_B1LMTを「1」にセットした後、本処理を終了する。
【0248】
以上のb1'のリミット処理を実行することにより、モデルパラメータb1を、X_IDB1L以上かつX_IDB1H以下の規制範囲内の値に制限することができ、それにより、逐次型の同定アルゴリズムによるドリフト現象の発生を回避できる。さらに、前述したように、これらの上下限値X_IDB1H,X_IDB1Lが、排気ガスボリュームAB_SVに応じて設定されるので、規制範囲をエンジン3の運転状態の変化、すなわち制御対象の動特性の変化に伴う安定限界の変化が反映された適切な安定限界の範囲として、設定することができ、そのような規制範囲内に規制されたモデルパラメータb1を用いることにより、制御系の安定性を確保することができる。以上により、制御系の安定性を向上させることができ、触媒後排気ガス特性を向上させることができる。
【0249】
次に、図29を参照しながら、前述したステップ33の状態予測器22の演算処理について説明する。この処理では、まず、ステップ140において、前述した式(7)の行列要素α1,α2,βi,βjを算出する。次いで、ステップ141に進み、ステップ140で算出した行列要素α1,α2,βi,βjを式(7)に適用することにより、出力偏差VO2の予測値PREVO2を算出した後、本処理を終了する。
【0250】
次に、図30を参照しながら、前述したステップ34の制御量Uslを算出する処理について説明する。この処理では、まず、ステップ150において、前述した図12の式(38)により、予測切換関数σPREを算出する。
【0251】
次に、ステップ151に進み、予測切換関数σPREの積算値SUMSIGMAを算出する。この処理では、図31に示すように、まず、ステップ160において、下記の3つの条件(l)〜(n)のうちの少なくとも1つが成立しているか否かを判別する。
(l)適応制御フラグF_PRISMONが「1」であること。
(m)後述する積算値保持フラグF_SS_HOLDが「0」であること。
(n)後述するADSM実行フラグF_KOPRが「0」であること。
【0252】
このステップ160の判別結果がYESのとき、すなわち積算値SUMSIGMAの算出条件が成立しているときには、ステップ161に進み、積算値SUMSIGMAの今回値SUMSIGMA(k)を、前回値SUMSIGMA(k−1)に、制御周期ΔTと予測切換関数σPREとの積を加算した値[SUMSIGMA(k−1)+ΔT・σPRE]に設定する。
【0253】
次いで、ステップ162に進み、ステップ161で算出した今回値SUMSIGMA(k)が所定の下限値SUMSLより大きいか否かを判別する。この判別結果がYESのときには、ステップ162に進み、今回値SUMSIGMA(k)が所定の上限値SUMSHより小さいか否かを判別する。この判別結果がYESで、SUMSL<SUMSIGMA(k)<SUMSHのときには、そのまま本処理を終了する。
【0254】
一方、ステップ163の判別結果がNOで、SUMSIGMA(k)≧SUMSHのときには、ステップ164に進み、今回値SUMSIGMA(k)を上限値SUMSHに設定した後、本処理を終了する。一方、ステップ162の判別結果がNOで、SUMSIGMA(k)≦SUMSLのときには、ステップ165に進み、今回値SUMSIGMA(k)を下限値SUMSLに設定した後、本処理を終了する。
【0255】
一方、ステップ160の判別結果がNOのとき、すなわち3つの条件(l)〜(n)がいずれも不成立で、積算値SUMSIGMAの算出条件が不成立であるときには、ステップ166に進み、今回値SUMSIGMA(k)を前回値SUMSIGMA(k−1)に設定する。すなわち、積算値SUMSIGMAをホールドする。この後、本処理を終了する。
【0256】
図30に戻り、ステップ151に続くステップ152〜154において、前述した図12の式(40)〜(42)により、等価制御入力Ueq、到達則入力Urchおよび適応則入力Uadpをそれぞれ算出する。
【0257】
次に、ステップ155に進み、これらの等価制御入力Ueq、到達則入力Urchおよび適応則入力Uadpの和を、制御量Uslとして設定した後、本処理を終了する。
【0258】
次に、図32,33を参照しながら、前述した図15のステップ36のスライディングモード制御量DKCMDSLDの算出処理について説明する。この処理では、まず、ステップ170において、制御量Uslのリミット値算出処理を実行する。この処理では、その詳細は説明は省略するが、前述したステップ35のコントローラの安定判別処理の判別結果と、後述する制御量Uslの適応上下限値Usl_ah,Usl_alとに基づいて、非アイドル運転用の上下限値Usl_ahf,Usl_alfと、アイドル運転用の上下限値Usl_ahfi,Usl_alfiとをそれぞれ算出する。
【0259】
次いで、ステップ171に進み、アイドル運転フラグF_IDLEが「0」であるか否かを判別する。この判別結果がYESで、アイドル運転中でないときには、ステップ171に進み、前述した図30の処理で算出された制御量Uslが、非アイドル運転用の下限値Usl_alf以下であるか否かを判別する。
【0260】
この判別結果がNOで、Usl>Usl_alfのときには、ステップ173に進み、制御量Uslが非アイドル運転用の上限値Usl_ahf以上であるか否かを判別する。この判別結果がNOで、Usl_alf<Usl<Usl_ahfのときには、ステップ174に進み、スライディングモード制御量DKCMDSLDを制御量Uslに設定すると同時に、積算値保持フラグF_SS_HOLDを「0」にセットする。
【0261】
次いで、ステップ175に進み、適応下限値の今回値Usl_al(k)を、前回値Usl_al(k−1)に所定の減少側値X_AL_DECを加算した値[Usl_al(k−1)+X_AL_DEC]に設定すると同時に、適応上限値の今回値Usl_ah(k)を、前回値Usl_ah(k−1)から所定の減少側値X_AL_DECを減算した値[Usl_al(k−1)−X_AL_DEC]に設定した後、本処理を終了する。
【0262】
一方、ステップ173の判別結果がYESで、Usl≧Usl_ahfのときには、ステップ176に進み、スライディングモード制御量DKCMDSLDを非アイドル運転用の適応上限値Usl_ahfに設定すると同時に、積算値保持フラグF_SS_HOLDを「1」にセットする。
【0263】
次いで、ステップ177に進み、始動後タイマのタイマ値TMACRが所定時間X_TMAWASTより小さいこと、またはF/C後判定フラグF_AFCが「1」であることが成立しているか否かを判別する。この始動後タイマは、エンジン3の始動後の経過時間を計時するアップカウント式のタイマである。
【0264】
この判別結果がYESのとき、すなわち、エンジン始動後、所定時間X_TMAWASTが経過していないか、またはフューエルカット運転の終了後、所定時間X_TM_AFCが経過していないときには、そのまま本処理を終了する。
【0265】
一方、ステップ177の判別結果がNOのとき、すなわち、エンジン始動後、所定時間X_TMAWASTが経過し、かつフューエルカット運転の終了後、所定時間X_TM_AFCが経過したときには、ステップ178に進み、適応下限値の今回値Usl_al(k)を、前回値Usl_al(k−1)に減少側値X_AL_DECを加算した値[Usl_al(k−1)+X_AL_DEC]に設定すると同時に、適応上限値の今回値Usl_ah(k)を、前回値Usl_ah(k−1)に所定の増大側値X_AL_INCを加算した値[Usl_ah(k−1)+X_AL_INC]に設定した後、本処理を終了する。
【0266】
一方、ステップ172の判別結果がYESで、Usl≦Usl_alfのときには、ステップ179に進み、スライディングモード制御量DKCMDSLDを非アイドル運転用の適応下限値Usl_alfに設定すると同時に、積算値保持フラグF_SS_HOLDを「1」にセットする。
【0267】
次いで、ステップ180に進み、第2発進フラグF_VSTが「1」であるか否かを判別する。この判別結果がYESで、車両の発進後、第2所定時間TVSTが経過しておらず、第2発進モード中であるときには、そのまま本処理を終了する。
【0268】
一方、ステップ180の判別結果がNOで、車両の発進後、第2所定時間TVSTが経過し、第2発進モードが終了したときには、ステップ181に進み、適応下限値の今回値Usl_al(k)を、前回値Usl_al(k−1)から増大側値X_AL_INCを減算した値[Usl_al(k−1)−X_AL_INC]に設定すると同時に、適応上限値の今回値Usl_ah(k)を、前回値Usl_ah(k−1)から減少側値X_AL_DECを減算した値[Usl_ah(k−1)−X_AL_DEC]に設定する。その後、本処理を終了する。
【0269】
一方、ステップ171の判別結果がNOで、アイドル運転中であるときには、図33のステップ182に進み、制御量Uslが、アイドル運転用の下限値Usl_alfi以下であるか否かを判別する。この判別結果がNOで、Usl>Usl_alfiのときには、ステップ183に進み、制御量Uslがアイドル運転用の上限値Usl_ahfi以上であるか否かを判別する。
【0270】
この判別結果がNOで、Usl_alfi<Usl<Usl_ahfiのときには、ステップ184に進み、スライディングモード制御量DKCMDSLDを制御量Uslに設定すると同時に、積算値保持フラグF_SS_HOLDを「0」にセットした後、本処理を終了する。
【0271】
一方、ステップ183の判別結果がYESで、Usl≧Usl_ahfiのときには、ステップ185に進み、スライディングモード制御量DKCMDSLDをアイドル運転用の上限値Usl_ahfiに設定すると同時に、積算値保持フラグF_SS_HOLDを「1」にセットした後、本処理を終了する。
【0272】
一方、ステップ182の判別結果がYESで、Usl≦Usl_alfiのときには、ステップ186に進み、スライディングモード制御量DKCMDSLDをアイドル運転用の下限値Usl_alfiに設定すると同時に、積算値保持フラグF_SS_HOLDを「1」にセットした後、本処理を終了する。
【0273】
次に、図34を参照しながら、前述した図15のステップ37のΔΣ変調制御量DKCMDDSMを算出する処理について説明する。同図に示すように、この処理では、まず、ステップ190において、RAMに記憶されている、前回のループで算出されたDSM信号値の今回値DSMSGNS(k)[=u''(k)]を、前回値DSMSGNS(k−1)[=u''(k−1)]として設定する。
【0274】
次に、ステップ191に進み、RAMに記憶されている、前回のループで算出された偏差積分値の今回値DSMSIGMA(k)[=σd(k)]を、前回値DSMSIGMA(k−1)[=σd(k−1)]として設定する。
【0275】
次いで、ステップ192に進み、出力偏差の予測値PREVO2(k)が値0以上であるか否かを判別する。この判別結果がYESのときには、エンジン3が混合気の空燃比をリーン側に変更すべき運転状態にあるとして、ステップ193に進み、参照信号値用のゲインKRDSM(=Gd)を、リーン化用の値KRDSMLに設定した後、後述するステップ195に進む。
【0276】
一方、ステップ192の判別結果がNOのときには、エンジン3が混合気の空燃比をリッチ側に変更すべき運転状態にあるとして、ステップ194に進み、参照信号値用のゲインKRDSMを、リーン化用の値KRDSMLよりも大きいリッチ化用の値KRDSMRに設定した後、ステップ195に進む。
【0277】
このように、リーン化用の値KRDSMLおよびリッチ化用の値KRDSMRが互いに異なる値に設定されている理由は、以下による。すなわち、混合気の空燃比をリーン側に変更する際には、第1触媒装置8aのNOx浄化率を確保すべく、リーンバイアスによるNOx排出量の抑制効果を得るために、リーン化用の値KRDSMLをリッチ化用の値KRDSMRよりも小さい値に設定することで、O2センサ15の出力Voutの目標値Vopへの収束速度がリッチ側への変更時よりも遅くなるように、空燃比を制御する。一方、混合気の空燃比をリッチ側に変更する際には、第1および第2触媒装置8a,8bのNOx浄化率を十分に回復させるため、リッチ化用の値KRDSMRをリーン化用の値KRDSMLよりも大きい値に設定することで、O2センサ15の出力Voutの目標値Vopへの収束速度がリーン側への変更時よりも速くなるように、空燃比を制御する。以上により、混合気の空燃比をリッチ側およびリーン側に変更する際、良好な触媒後排気ガス特性を確保することができる。
【0278】
ステップ193または194に続くステップ195では、値−1、参照信号値用のゲインKRDSMおよび予測値の今回値PREVO2(k)を互いに乗算した値から、上記ステップ190で算出したDSM信号値の前回値DSMSGNS(k−1)を減算した値[−1・KRDSM・PREVO2(k)−DSMSGNS(k−1)]を、偏差信号値DSMDELTA[=δ(k)]として設定する。この処理は、前述した式(27),(28)に相当する。
【0279】
次いで、ステップ196に進み、偏差積分値の今回値DSMSIGMA(k)を、ステップ191で算出した前回値DSMSIGMA(k−1)と、ステップ195で算出した偏差信号値DSMDELTAとの和[DSMSIGMA(k−1)+DSMDELTA]に設定する。この処理は、前述した式(29)に相当する。
【0280】
次に、ステップ197〜199において、ステップ196で算出した偏差積分値の今回値DSMSIGMA(k)が値0以上のときには、DSM信号値の今回値DSMSGNS(k)を値1に設定し、偏差積分値の今回値DSMSIGMA(k)が値0よりも小さいときには、DSM信号値の今回値DSMSGNS(k)を値−1に設定する。以上のステップ197〜199の処理は、前述した式(30)に相当する。
【0281】
次いで、ステップ200において、排気ガスボリュームAB_SVに応じて、図35に示すテーブルを検索することにより、DSM信号値用のゲインKDSM(=Fd)を算出する。同図に示すように、このゲインKDSMは、排気ガスボリュームAB_SVが小さいほど、より大きな値に設定されている。これは、排気ガスボリュームAB_SVが小さいほど、すなわちエンジン3の運転負荷が小さい状態であるほど、O2センサ15の出力Voutの応答性が低下するので、それを補償するためである。このようにゲインKSDMを設定することにより、ΔΣ変調制御量DKCMDDSMを、例えばオーバーゲイン状態などを回避しながら、エンジン3の運転状態に応じて適切に算出することができ、それにより、触媒後排気ガス特性を向上させることができる。
【0282】
なお、このゲインKDSMの算出に用いるテーブルは、ゲインKDSMが排気ガスボリュームAB_SVに応じて設定されている上記テーブルに限らず、エンジン3の運転負荷状態を表すパラメータ(例えば基本燃料噴射時間Tim)に応じてゲインKDSMが予め設定されているものであればよい。また、触媒装置8a,8bの劣化判別器が設けられている場合には、この劣化判別器で判別された触媒装置8a,8bの劣化度合が大きいほど、ゲインDSMをより小さい値に補正するようにしてもよい。
【0283】
次に、ステップ201に進み、ΔΣ変調制御量DKCMDDSMを、DSM信号値用のゲインKDSMと、DSM信号値の今回値DSMSGNS(k)とを互いに乗算した値[KDSM・DSMSGNS(k)]に設定した後、本処理を終了する。この処理が、前述した式(31)に相当する。
【0284】
次に、図36を参照しながら、前述した図15のステップ38の適応目標空燃比KCMDSLDを算出する処理について説明する。同図に示すように、この処理では、まず、ステップ210において、アイドル運転フラグF_IDLEが「1」であること、およびアイドル時ADSM実行フラグF_SWOPRIが「1」であることがいずれも成立しているか否かを判別する。このアイドル時ADSM実行フラグF_SWOPRIは、エンジン3がアイドル運転中で、かつADSM処理を実行すべき運転状態のときに「1」に、それ以外のときに「0」にセットされる。
【0285】
この判別結果がYESのとき、すなわちエンジン3がアイドル運転中でADSM処理により適応目標空燃比KCMDSLDを算出すべき運転状態のときには、ステップ211に進み、適応目標空燃比KCMDSLDを、基準値FLAFBASEにΔΣ変調制御量DKCMDDSMを加算した値[FLAFBASE+DKCMDDSM]に設定する。この処理が、前述した式(32)に相当する。
【0286】
次いで、ステップ212に進み、ADSM処理を実行したことを表すために、ADSM実行済みフラグF_KOPRを「1」に設定した後、本処理を終了する。
【0287】
一方、ステップ210の判別結果がNOのときには、ステップ213に進み、触媒/O2センサフラグF_FCATDSMが「1」であるか否かを判別する。この触媒/O2センサフラグF_FCATDSMは、以下の4つの条件(o)〜(r)のうちの少なくとも1つが成立しているときに「1」に、それ以外は「0」にセットされる。
(o)第1触媒装置8aの触媒容量が所定値以上であること。
(p)第1触媒装置8aの貴金属含有量が所定値以上であること。
(q)LAFセンサ14がエンジン3の排気管7に設けられていないこと。
(r)O2センサ15が第2触媒装置8bよりも下流に設けられていること。
【0288】
この判別結果がYESのときには、ステップ214に進み、第1発進フラグF_VOTVST、および発進後ADSM実行フラグF_SWOPRVSTがいずれも「1」であるか否かを判別する。この発進後ADSM実行フラグF_SWOPRVSTは、車両の発進後で、かつエンジン3がADSM処理を実行すべき運転状態のときに「1」に、それ以外のときに「0」にセットされる。
【0289】
この判別結果がYESのとき、すなわち車両の発進後、第1所定時間TVOTVSTが経過し、かつADSM処理を実行すべき運転状態のときには、前述したように、ステップ211,212を実行した後、本処理を終了する。
【0290】
一方、ステップ214の判別結果がNOのときには、ステップ215に進み、排気ガスボリュームAB_SVが所定値OPRSVH以下であること、および小排気時ADSM実行フラグF_SWOPRSVが「1」であることがいずれも成立しているか否かを判別する。小排気時ADSM実行フラグF_SWOPRSVは、エンジン3の排気ガスボリュームAB_SVが小さい状態で、かつエンジン3がADSM処理を実行すべき運転状態のときに「1」に、それ以外のときに「0」にセットされる。
【0291】
この判別結果がYESのとき、すなわち排気ガスボリュームAB_SVが小さく、かつエンジン3がADSM処理を実行すべき運転状態のときには、前述したように、ステップ211,212を実行した後、本処理を終了する。
【0292】
一方、ステップ215の判別結果がNOのときには、エンジン3がPRISM処理を実行すべき運転状態であるとして、ステップ216に進み、適応目標空燃比KCMDSLDを、基準値FLAFBASEに適応補正項FLAFADPおよびスライディングモード制御量DKCMDSLDを加算した値[FLAFBASE+FLAFADP+DKCMDSLD]に設定する。次いで、ステップ217に進み、PRISM処理を実行したことを表すために、ADSM実行済みフラグF_KOPRを「0」にセットした後、本処理を終了する。
【0293】
一方、前記ステップ213の判別結果がNOのとき、すなわち前述した4つの条件(o)〜(r)がいずれも成立していないときには、ステップ214,215をスキップし、前述したステップ216,217を実行した後、本処理を終了する。以上のように、この適応目標空燃比KCMDSLDの算出処理では、適応目標空燃比KCMDSLDが、エンジン3の運転状態に応じて、ADSM処理またはPRISM処理に切り換えて算出される。
【0294】
次に、図37を参照しながら、図15のステップ39の適応補正項FLAFADPの算出処理について説明する。同図に示すように、この処理では、まず、ステップ220において、出力偏差VO2が所定の範囲(ADL<VO2<ADH)内の値であるか否かを判別する。この判別結果がYESのとき、すなわち出力偏差VO2が小さく、O2センサ15の出力Voutが目標値Vopの近傍にあるときには、ステップ221に進み、適応則入力Uadpが所定の下限値NRLより小さいか否かを判別する。
【0295】
この判別結果がNOで、Uadp≧NRLのときには、ステップ222に進み、適応則入力Uadpが所定の上限値NRHより大きいか否かを判別する。この判別結果がNOで、NRL≦Uadp≦NRHのときには、ステップ223に進み、適応補正項の今回値FLAFADP(k)を前回値FLAFADP(k−1)に設定する。すなわち、適応補正項FLAFADPの値をホールドする。この後、本処理を終了する。
【0296】
一方、ステップ222の判別結果がYESで、Uadp>NRHのときには、ステップ224に進み、適応補正項の今回値FLAFADP(k)を、前回値FLAFADP(k−1)に所定の更新値X_FLAFDLTを加算した値[FLAFADP(k−1)+X_FLAFDLT]に設定した後、本処理を終了する。
【0297】
一方、ステップ221の判別結果がYESで、Uadp<NRLのときには、ステップ225に進み、適応補正項の今回値FLAFADP(k)を、前回値FLAFADP(k−1)から所定の更新値X_FLAFDLTを減算した値[FLAFADP(k−1)−X_FLAFDLT]に設定した後、本処理を終了する。
【0298】
以上のように、第1実施形態の制御装置1によれば、目標空燃比KCMDを制御入力とし、O2センサ15の出力Voutを出力とする、位相遅れやむだ時間などが比較的大きい動特性を有する制御対象において、制御対象の入出力間での制御タイミングのずれを適切に解消することができ、それにより、制御の安定性および制御性を向上させることができ、触媒後排気ガス特性を向上させることができる。
【0299】
以下、本発明の第2〜第8実施形態に係る制御装置について説明する。なお、以下の各実施形態の説明では、上述した第1実施形態と同じまたは同等の構成要素については、同一の参照番号を付し、その説明は適宜、省略するものとする。
【0300】
まず、図38を参照しながら、第2実施形態の制御装置について説明する。同図に示すように、この第2実施形態の制御装置1は、第1実施形態の制御装置1と比べて、オンボード同定器23のみが異なっている。具体的には、第1実施形態のオンボード同定器23では、KACT、Voutおよびφop(KCMD)に基づいて、モデルパラメータa1,a2,b1が算出されるのに対して、本実施形態のオンボード同定器23では、Voutおよびφopに基づいて、モデルパラメータa1,a2,b1が算出される。
【0301】
すなわち、このオンボード同定器23では、第1実施形態の図6の式(16)〜(23)に示す同定アルゴリズムに代えて、前述した図5の式(8)〜(15)に示す同定アルゴリズムにより、モデルパラメータの同定値a1',a2',b1'が算出されるとともに、これらに前述した図26,28のリミット処理を施すことにより、モデルパラメータa1,a2,b1が算出される。このオンボード同定器23の演算処理の具体的なプログラムは、図示しないが、第1実施形態ものとほぼ同様に構成される。以上のような本実施形態の制御装置1によれば、第1実施形態の制御装置1と同様の効果を得ることができる。
【0302】
次に、図39を参照しながら、第3実施形態の制御装置について説明する。同図に示すように、この第3実施形態の制御装置1は、第1実施形態の制御装置1と比べて、状態予測器22のみが異なっている。具体的には、第1実施形態の状態予測器22では、a1、a2、b1、KACT、Voutおよびφop(KCMD)に基づいて、予測値PREVO2が算出されるのに対して、本実施形態のオンボード同定器23では、a1、a2、b1、Voutおよびφopに基づいて、予測値PREVO2が算出される。
【0303】
すなわち、この状態予測器22では、第1実施形態の図4の式(7)に示す予測アルゴリズムに代えて、同図の式(6)に示す予測アルゴリズムにより、出力偏差VO2の予測値PREVO2が算出される。この状態予測器22の演算処理の具体的なプログラムは、図示しないが、第1実施形態のものとほぼ同様に構成される。この制御装置1によれば、第1実施形態の制御装置1と同様の効果を得ることができる。
【0304】
次に、図40を参照しながら、第4実施形態の制御装置について説明する。同図に示すように、この第4実施形態の制御装置1は、第1実施形態の制御装置1と比べると、ADSMコントローラ20、PRISMコントローラ21およびオンボード同定器23に代えて、スケジュール型DSMコントローラ20A、スケジュール型状態予測スライディングモードコントローラ21Aおよびパラメータスケジューラ28(モデルパラメータ設定手段)を用いることで、モデルパラメータa1,a2,b1を算出する点のみが異なっている。
【0305】
このパラメータスケジューラ28では、まず、前述した式(44)により、エンジン回転数NEおよび吸気管内絶対圧PBAに基づいて、排気ガスボリュームAB_SVが算出される。次いで、図41に示すテーブルにより、排気ガスボリュームAB_SVに応じて、モデルパラメータa1,a2,b1が算出される。
【0306】
このテーブルでは、モデルパラメータa1は、排気ガスボリュームAB_SVが大きいほど、より小さい値に設定されており、これとは逆に、モデルパラメータa2,b1は、排気ガスボリュームAB_SVが大きいほど、より大きい値に設定されている。これは、排気ガスボリュームAB_SVの増大に伴い、制御対象の出力すなわちO2センサ15の出力Voutが安定化する一方、排気ガスボリュームAB_SVの減少に伴い、O2センサ15の出力Voutが振動的になることによる。
【0307】
スケジュール型DSMコントローラ20Aは、以上のように算出されたモデルパラメータa1,a2,b1を用い、前述した第1実施形態と同様のDSMコントローラ24により目標空燃比KCMDを算出する。また、スケジュール型状態予測スライディングモードコントローラ21Aも、以上のように算出されたモデルパラメータa1,a2,b1を用い、前述した第1実施形態と同様のSLDコントローラ25により目標空燃比KCMDを算出する。
【0308】
この制御装置1によれば、第1実施形態の制御装置1と同様の効果を得ることができる。これに加えて、パラメータスケジューラ28を用いることにより、オンボード同定器23を用いる場合と比べて、モデルパラメータa1,a2,b1を、より迅速に算出することができる。これにより、制御の応答性を向上させることができ、良好な触媒後排気ガス特性をより迅速に確保することができる。
【0309】
次に、図42を参照しながら、第5実施形態の制御装置について説明する。この第5実施形態の制御装置1は、第1実施形態の制御装置1のDSMコントローラ24に代えて、SDMコントローラ29を用いる点のみが異なっている。このSDMコントローラ29は、ΣΔ変調アルゴリズムを適用した制御アルゴリズムにより、予測値PREVO2(k)に基づいて、制御入力φop(k)を算出するものである。
【0310】
すなわち、同図に示すように、このSDMコントローラ29では、反転増幅器29aにより、参照信号r(k)が、値−1、参照信号用のゲインGdおよび予測値PREVO2(k)を互いに乗算した信号として生成される。次に、積分器29bにより、参照信号積分値σdr(k)が、遅延素子29cで遅延された参照信号積分値σdr(k−1)と参照信号r(k)との和の信号として生成される。一方、積分器29dにより、SDM信号積分値σdu(k)が、遅延素子29eで遅延されたSDM信号積分値σdu(k−1)と、遅延素子29jで遅延されたSDM信号u''(k−1)との和の信号として生成される。そして、差分器29fにより、参照信号積分値σdr(k)とSDM信号積分値σdu(k)との偏差信号δ''(k)が生成される。
【0311】
次いで、量子化器29g(符号関数)により、SDM信号u''(k)が、この偏差信号δ''(k)を符号化した値として生成される。そして、増幅器29hにより、増幅SDM信号u(k)がSDM信号u''(k)を所定のゲインFdで増幅した値として生成され、次に、加算器29iにより、この増幅SDM信号u(k)を所定の基準値FLAFBASEに加算した値として、制御入力φop(k)が生成される。
【0312】
以上のSDMコントローラ29の制御アルゴリズムは、以下の式(45)〜(51)で表される。
r(k)=−1・Gd・PREVO2(k) ……(45)
σdr(k)=σdr(k−1)+r(k) ……(46)
σdu(k)=σdu(k−1)+u''(k−1) ……(47)
δ''(k)=σdr(k)−σdu(k) ……(48)
u''(k)=sgn(δ''(k)) ……(49)
u(k)=Fd・u''(k) ……(50)
φop(k)=FLAFBASE+u(k) ……(51)
ここで、Gd,Fdはゲインを表す。また、符号関数sgn(δ''(k))の値は、δ''(k)≧0のときにはsgn(δ''(k))=1となり、δ''(k)<0のときにはsgn(δ''(k))=−1となる(なお、δ''(k)=0のときに、sgn(δ''(k))=0と設定してもよい)。
【0313】
以上のSDMコントローラ29の制御アルゴリズムにおけるΣΔ変調アルゴリズムの特性は、ΔΣ変調アルゴリズムと同様に、SDM信号u(k)を、これを制御対象に入力した際、参照信号r(k)が制御対象の出力に再現されるような値として、生成(算出)できるという点にある。すなわち、SDMコントローラ29は、前述したDSMコントローラ24と同様の制御入力φop(k)を生成できるという特性を備えている。したがって、このSDMコントローラ29を用いる本実施形態の制御装置1によれば、第1実施形態の制御装置1と同様の効果を得ることができる。なお、SDMコントローラ29の具体的なプログラムは図示しないが、DSMコントローラ24とほぼ同様に構成される。
【0314】
次に、図43を参照しながら、第6実施形態の制御装置について説明する。この第6実施形態の制御装置1は、第1実施形態の制御装置1のDSMコントローラ24に代えて、DMコントローラ30を用いる点のみが異なっている。このDMコントローラ30は、Δ変調アルゴリズムを適用した制御アルゴリズムにより、予測値PREVO2(k)に基づいて、制御入力φop(k)を算出するものである。
【0315】
すなわち、同図に示すように、このDMコントローラ30では、反転増幅器30aにより、参照信号r(k)が、値−1、参照信号用のゲインGdおよび予測値PREVO2(k)を互いに乗算した信号として生成される。一方、積分器30bにより、DM信号積分値σdu(k)が、遅延素子30cで遅延されたDM信号積分値σdu(k−1)と、遅延素子30hで遅延されたDM信号u''(k−1)との和の信号として生成される。そして、差分器30dにより、参照信号r(k)とDM信号積分値σdu(k)との偏差信号δ''(k)が生成される。
【0316】
次いで、量子化器30e(符号関数)により、DM信号u''(k)が、この偏差信号δ''(k)を符号化した値として生成される。そして、増幅器30fにより、増幅DM信号u(k)がDM信号u''(k)を所定のゲインFdで増幅した値として生成され、次に、加算器30gにより、この増幅DM信号u(k)を所定の基準値FLAFBASEに加算した値として、制御入力φop(k)が生成される。
【0317】
以上のDMコントローラ30の制御アルゴリズムは、以下の式(52)〜(57)で表される。
r(k)=−1・Gd・PREVO2(k) ……(52)
σdu(k)=σdu(k−1)+u''(k−1) ……(53)
δ''(k)=r(k)−σdu(k) ……(54)
u''(k)=sgn(δ''(k)) ……(55)
u(k)=Fd・u''(k) ……(56)
φop(k)=FLAFBASE+u(k) ……(57)
ここで、Gd,Fdはゲインを表す。また、符号関数sgn(δ''(k))の値は、δ''(k)≧0のときにはsgn(δ''(k))=1となり、δ''(k)<0のときにはsgn(δ''(k))=−1となる(なお、δ''(k)=0のときに、sgn(δ''(k))=0と設定してもよい)。
【0318】
以上のDMコントローラ30の制御アルゴリズムすなわちΔ変調アルゴリズムの特性は、ΔΣ変調アルゴリズムおよびΣΔ変調アルゴリズムと同様に、DM信号u(k)を制御対象に入力した際、参照信号r(k)が制御対象の出力に再現されるような値として、DM信号u(k)を生成(算出)できるという点にある。すなわち、DMコントローラ30は、前述したDSMコントローラ24およびSDMコントローラ29と同様の制御入力φop(k)を生成できるという特性を備えている。したがって、このDMコントローラ30を用いる本実施形態の制御装置1によれば、第1実施形態の制御装置1と同様の効果を得ることができる。なお、DMコントローラ30の具体的なプログラムは図示しないが、DSMコントローラ24とほぼ同様に構成される。
【0319】
次に、図44および図45を参照しながら、第7実施形態の制御装置について説明する。図44に示すように、この第7実施形態の制御装置1は、第1実施形態の制御装置1と比べて、LAFセンサ14がエンジン3に設けられていないとともに、O2センサ15が第2触媒装置8bよりも下流側に設けられている点のみが異なっている。
【0320】
また、LAFセンサ14を備えていないため、この制御装置1では、図45に示すように、オンボード同定器23により、O2センサ15の出力Voutおよび制御入力φop(目標空燃比KCMD)に基づいて、モデルパラメータa1,a2,b1が算出される。すなわち、このオンボード同定器23では、前述した図5の式(8)〜(15)に示す同定アルゴリズムにより、モデルパラメータの同定値a1',a2',b1'が算出されるとともに、これらに前述したリミット処理を施すことにより、モデルパラメータa1,a2,b1が算出される。
【0321】
さらに、状態予測器22により、モデルパラメータa1,a2,b1、O2センサ15の出力Voutおよび制御入力φopに基づいて、出力偏差VO2の予測値PREVO2が算出される。すなわち、この状態予測器22では、図4の式(6)に示す予測アルゴリズムにより、出力偏差VO2の予測値PREVO2が算出される。なお、これらの状態予測器22およびオンボード同定器23の演算処理の具体的なプログラムは、図示しないが、第1実施形態のものとほぼ同様に構成され、それら以外のプログラムも、第1実施形態のものと同様に構成される。
【0322】
以上のような本実施形態の制御装置1によれば、第1実施形態の制御装置1と同様の効果を得ることができる。特に、前述したように、図34のステップ192〜194において、参照信号値用のゲインKRDSMを、排気ガスをリーン側に制御する場合と、リッチ側に制御する場合とで互いに異なる値に設定し、目標空燃比KCMDの目標値Vopへの収束速度を変更することにより、本実施形態のようなO2センサ15のみで空燃比を制御する場合においても、混合気の空燃比をリッチ側およびリーン側に変更する際、良好な触媒後排気ガス特性を確実に得ることができる。これに加えて、LAFセンサ14を用いることなく、良好な触媒後排気ガス特性を確保できるので、その分、製造コストを削減することができる。
【0323】
次に、図46を参照しながら、第8実施形態の制御装置について説明する。同図に示すように、この第8実施形態の制御装置1は、上記第7実施形態の制御装置1において、ADSMコントローラ20、PRISMコントローラ21およびオンボード同定器23を、前記第4実施形態のスケジュール型DSMコントローラ20A、スケジュール型状態予測スライディングモードコントローラ21Aおよびパラメータスケジューラ28に置き換えたものであり、これらのコントローラ20A,21Aおよびパラメータスケジューラ28は、第4実施形態のものと同様に構成されている。この制御装置1によれば、上記第7実施形態の制御装置1と同様の効果を得ることができる。これに加えて、パラメータスケジューラ28を用いることにより、オンボード同定器23を用いる場合と比べて、モデルパラメータa1,a2,b1を、より迅速に算出することができる。これにより、制御の応答性を向上させることができ、良好な触媒後排気ガス特性をより迅速に確保することができる。
【0324】
なお、以上の各実施形態は、本発明の制御装置を内燃機関3の空燃比を制御するものとして構成した例であるが、本発明はこれに限らず、他の任意の制御対象を制御する制御装置に広く適用可能であることは言うまでもない。また、ADSMコントローラ20およびPRISMコントローラ21を、実施形態のプログラムに代えて、電気回路により構成してもよい。
【0325】
【発明の効果】
以上のように、本発明の制御装置によれば、制御対象が位相遅れやむだ時間などが比較的大きい動特性を示す場合でも、制御対象の入出力間での制御タイミングのずれを解消することができ、それにより、制御の安定性および制御性を向上させることができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係る制御装置およびこれを適用した内燃機関の概略構成を示す図である。
【図2】劣化状態および未劣化状態の第1触媒装置を用いた場合において、LAFセンサの出力KACTに対する、両第1触媒装置のHCおよびNOxの浄化率と、O2センサ15の出力Voutとをそれぞれ測定した結果の一例を示す図である。
【図3】第1実施形態の制御装置のADSMコントローラおよびPRISMコントローラの構成を示すブロック図である。
【図4】状態予測器の予測アルゴリズムの数式の一例を示す図である。
【図5】オンボード同定器の同定アルゴリズムの数式の一例を示す図である。
【図6】オンボード同定器の同定アルゴリズムの数式の他の一例を示す図である。
【図7】ΔΣ変調を実行するコントローラおよびこれを備えた制御系の構成を示すブロック図である。
【図8】図7の制御系の制御結果の一例を示すタイミングチャートである。
【図9】第1実施形態のADSMコントローラによる適応予測型ΔΣ変調制御の原理を説明するためのタイミングチャートである。
【図10】ADSMコントローラのうちのDSMコントローラの構成を示すブロック図である。
【図11】スライディングモード制御アルゴリズムの数式を示す図である。
【図12】PRISMコントローラのスライディングモード制御アルゴリズムの数式を示す図である。
【図13】内燃機関の燃料噴射制御処理を示すフローチャートである。
【図14】適応空燃比制御処理を示すフローチャートである。
【図15】図14の続きを示すフローチャートである。
【図16】図14のステップ21における発進判定処理を示すフローチャートである。
【図17】図14のステップ23におけるPRISM/ADSM処理の実行判定処理を示すフローチャートである。
【図18】図14のステップ24における同定器演算の実行判定処理を示すフローチャートである。
【図19】図14のステップ25における各種パラメータの算出処理を示すフローチャートである。
【図20】むだ時間CAT_DELAY,KACT_Dの算出に用いるテーブルの一例を示す図である。
【図21】重みパラメータλ1の算出に用いるテーブルの一例を示す図である。
【図22】モデルパラメータa1,a2,b1の値を制限するリミット値X_IDA2L,X_IDB1L,X_IDB1Hの算出に用いるテーブルの一例を示す図である。
【図23】フィルタ次数nの算出に用いるテーブルの一例を示す図である。
【図24】図14のステップ31における同定器の演算処理を示すフローチャートである。
【図25】図24のステップ94におけるθ(k)の安定化処理を示すフローチャートである。
【図26】図25のステップ101におけるa1'&a2'のリミット処理を示すフローチャートである。
【図27】図26の処理によりa1'&a2'の組み合わせが規制される規制範囲を示す図である。
【図28】図25のステップ102におけるb1'のリミット処理を示すフローチャートである。
【図29】図15のステップ33の状態予測器の演算処理を示すフローチャートである。
【図30】図15のステップ34の制御量Uslの算出処理を示すフローチャートである。
【図31】図30のステップ151の予測切換関数σPREの積算値算出処理を示すフローチャートである。
【図32】図15のステップ36のスライディングモード制御量DKCMDSLDの算出処理を示すフローチャートである。
【図33】図32の続きを示すフローチャートである。
【図34】図15のステップ37のΔΣ変調制御量DKCMDDSMの算出処理を示すフローチャートである。
【図35】KDSMの算出に用いるテーブルの一例を示す図である。
【図36】図15のステップ38の適応目標空燃比KCMDSLDの算出処理を示すフローチャートである。
【図37】図15のステップ39の適応補正項FLAFADPの算出処理を示すフローチャートである。
【図38】第2実施形態の制御装置の概略構成を示すブロック図である。
【図39】第3実施形態の制御装置の概略構成を示すブロック図である。
【図40】第4実施形態の制御装置の概略構成を示すブロック図である。
【図41】第4実施形態の制御装置のパラメータスケジューラにおいて、モデルパラメータの算出に用いるテーブルの一例を示す図である。
【図42】第5実施形態の制御装置のSDMコントローラの概略構成を示すブロック図である。
【図43】第6実施形態の制御装置のDMコントローラの概略構成を示すブロック図である。
【図44】第7実施形態に係る制御装置およびこれを適用した内燃機関の概略構成を示す図である。
【図45】第7実施形態の制御装置の構成を示すブロック図である。
【図46】第8実施形態の制御装置の構成を示すブロック図である。
【符号の説明】
1 制御装置
2 ECU(予測値算出手段、制御入力算出手段、空燃比算出手段、 転状態検出手段、目標空燃比算出手段、乗算手段、補正係数設定手 段、同定手段、予測時間算出手段
3 内燃機関
7 排気管(排気通路)
8a 第1触媒装置(触媒)
8b 第2触媒装置(触媒)
11 吸気管内絶対圧センサ(運転状態検出手段)
13 クランク角センサ(運転状態検出手段)
14 LAFセンサ(上流側空燃比センサ)
15 酸素濃度センサ(空燃比センサ、下流側空燃比センサ)
20 ADSMコントローラ(制御入力算出手段)
22 状態予測器(予測値算出手段)
23 オンボード同定器(同定手段)
NE エンジン回転数(運転状態を表すパラメータ)
PBA 吸気管内絶対圧(運転状態を表すパラメータ)
KACT LAFセンサの出力(上流側空燃比センサの出力)
DKACT LAF出力偏差(上流側空燃比センサの出力を表す値)
KCMD 目標空燃
DKCMD 空燃比偏差(目標空燃比を表す値)
FLAFBASE 基準値(所定値)
KCMDSLD 適応目標空燃比(目標空燃比)
DSMSGNS DSM信号値(第1の変調値)
KDSM ゲイン
DKCMDDSM ΔΣ変調制御量(第2の変調値)
KCMDSLD 適応目標空燃比(目標空燃比)
Vout 酸素濃度センサの出力(下流側空燃比センサの出力、空燃比センサ の出力
Vop 目標値
VO2 出力偏差(下流側空燃比センサの出力を表す値、空燃比センサの出 力を表す値)
dt 予測時間
a1' モデルパラメータの同定値
a2' モデルパラメータの同定値
b1' モデルパラメータの同定値

Claims (8)

  1. 予測アルゴリズムに基づき、制御対象の出力を表す値の予測値を算出する予測値算出手段と、
    Δ変調アルゴリズム、ΔΣ変調アルゴリズムおよびΣΔ変調アルゴリズムのうちのいずれか1つの変調アルゴリズムに基づき、前記算出された予測値に応じて、前記制御対象の出力を制御するための、前記制御対象への制御入力を算出する制御入力算出手段と、
    を備え、
    前記予測値算出手段は、前記予測アルゴリズムに基づき、前記算出された制御入力と前記制御対象に入力された制御入力を反映する値との少なくとも一方、および前記制御対象の出力に応じて、前記予測値を算出し、
    前記制御対象の出力は、内燃機関の排気通路の触媒よりも下流側に配置され、当該触媒を通過した後の排気ガスの空燃比を検出する下流側空燃比センサの出力であり、
    前記制御対象の出力を表す値は、前記下流側空燃比センサの出力と所定の目標値との偏差である出力偏差であり、
    前記制御対象への制御入力は、前記内燃機関に供給される混合気の目標空燃比であり、
    前記制御対象に入力された制御入力を反映する値は、前記排気通路の前記触媒よりも上流側に配置され、当該触媒を通過する前の排気ガスの空燃比を検出する上流側空燃比センサの出力であり、
    前記予測値算出手段は、前記予測アルゴリズムに基づき、前記内燃機関に供給された混合気の目標空燃比および前記上流側空燃比センサの出力の少なくとも一方と、前記下流側空燃比センサの出力とに応じて、前記出力偏差の予測値を算出し、
    前記制御入力算出手段は、前記1つの変調アルゴリズムに基づき、前記算出された出力偏差の予測値に応じて、前記下流側空燃比センサの出力を前記所定の目標値に収束させるための、前記内燃機関に供給すべき混合気の目標空燃比を算出する空燃比算出手段で構成されており、
    前記算出された前記出力偏差の予測値に補正係数を乗算する乗算手段と、
    当該補正係数を、前記出力偏差の予測値が所定値以上のときに、所定値未満のときよりも小さい値に設定する補正係数設定手段と、をさらに備え、
    前記空燃比算出手段は、前記1つの変調アルゴリズムに基づき、前記補正係数が乗算された前記出力偏差の予測値に応じて、前記混合気の目標空燃比を算出することを特徴とする制御装置。
  2. 予測アルゴリズムに基づき、制御対象の出力を表す値の予測値を算出する予測値算出手段と、
    Δ変調アルゴリズム、ΔΣ変調アルゴリズムおよびΣΔ変調アルゴリズムのうちのいずれか1つの変調アルゴリズムに基づき、前記算出された予測値に応じて、前記制御対象の出力を制御するための、前記制御対象への制御入力を算出する制御入力算出手段と、
    を備え、
    前記予測値算出手段は、前記予測アルゴリズムに基づき、前記算出された制御入力および前記制御対象の出力に応じて、前記予測値を算出し、
    前記制御対象の出力は、内燃機関の排気通路の触媒よりも下流側に配置され、当該触媒を通過した後の排気ガスの空燃比を検出する空燃比センサの出力であり、
    前記制御対象の出力を表す値は、前記空燃比センサの出力と所定の目標値との偏差である出力偏差であり、
    前記制御対象への制御入力は、前記内燃機関に供給される混合気の目標空燃比であり、
    前記予測値算出手段は、前記予測アルゴリズムに基づき、前記内燃機関に供給された混合気の目標空燃比および前記空燃比センサの出力に応じて、前記出力偏差の予測値を算出し、
    前記制御入力算出手段は、前記1つの変調アルゴリズムに基づき、前記算出された出力偏差の予測値に応じて、前記空燃比センサの出力を前記所定の目標値に収束させるための、前記内燃機関に供給すべき混合気の目標空燃比を算出する空燃比算出手段で構成されて おり、
    前記算出された前記出力偏差の予測値に補正係数を乗算する乗算手段と、
    当該補正係数を、前記出力偏差の予測値が所定値以上のときに、所定値未満のときよりも小さい値に設定する補正係数設定手段と、をさらに備え、
    前記空燃比算出手段は、前記1つの変調アルゴリズムに基づき、前記補正係数が乗算された前記出力偏差の予測値に応じて、前記混合気の目標空燃比を算出することを特徴とする制御装置。
  3. 前記空燃比算出手段は、前記補正係数が乗算された前記出力偏差の予測値を、前記1つの変調アルゴリズムを適用した変調アルゴリズムで変調することにより、第1の変調値を算出するとともに、当該算出された第1の変調値に所定のゲインを乗算した値に基づき、前記混合気の目標空燃比を算出することを特徴とする請求項1または2に記載の制御装置。
  4. 前記空燃比算出手段は、前記補正係数が乗算された前記出力偏差の予測値を、前記1つの変調アルゴリズムを適用した変調アルゴリズムで変調することにより、第2の変調値を算出するとともに、当該算出された第2の変調値に所定値を加算した値に基づき、前記混合気の目標空燃比を算出することを特徴とする請求項1または2に記載の制御装置。
  5. Δ変調アルゴリズム、ΔΣ変調アルゴリズムおよびΣΔ変調アルゴリズムのうちのいずれか1つの変調アルゴリズムと、制御対象をモデル化した制御対象モデルとに基づき、前記制御対象の出力を制御するための、前記制御対象への制御入力を算出する制御入力算出手段を備え、
    前記制御対象モデルは、離散時間系モデルとして構成されており、
    前記制御対象モデルのモデルパラメータを、前記算出された制御入力と前記制御対象に入力された制御入力を反映する値との一方と、前記制御対象の出力とに応じて、逐次同定する同定手段をさらに備え、
    前記制御対象の出力は、内燃機関の排気通路の触媒よりも下流側に配置され、当該触媒を通過した後の排気ガスの空燃比を検出する下流側空燃比センサの出力であり、
    前記制御対象への制御入力は、前記内燃機関に供給される混合気の目標空燃比であり、
    前記制御対象に入力された制御入力を反映する値は、前記内燃機関の前記排気通路の前記触媒よりも上流側に配置され、当該触媒を通過する前の排気ガスの空燃比を検出する上流側空燃比センサの出力であり、
    前記制御対象モデルは、前記下流側空燃比センサの出力を表す値と、前記目標空燃比を表す値および前記上流側空燃比センサの出力を表す値の一方とを変数とするモデルであり、
    前記同定手段は、前記下流側空燃比センサの出力を表す値に乗算されるモデルパラメータと、前記目標空燃比を表す値および前記上流側空燃比センサの出力を表す値の一方に乗算されるモデルパラメータとを、前記上流側空燃比センサの出力および前記目標空燃比の一方と、前記下流側空燃比センサの出力とに応じて逐次同定し、
    前記制御入力算出手段は、前記1つの変調アルゴリズムおよび前記制御対象モデルに基づき、前記下流側空燃比センサの出力を所定の目標値に収束させるための、前記内燃機関に供給すべき混合気の目標空燃比を算出する空燃比算出手段で構成されており、
    前記内燃機関の運転状態を検出する運転状態検出手段をさらに備え、
    前記空燃比算出手段は、
    前記目標空燃比の混合気が前記内燃機関に供給されてから前記下流側空燃比センサの出力に反映されるまでの予測時間を、前記検出された内燃機関の運転状態に応じて算出する予測時間算出手段と、
    当該算出された予測時間に応じて、前記制御対象モデルを適用した予測アルゴリズムに基づき、前記目標空燃比を表す値の予測値を算出する予測値算出手段と、
    前記1つの変調アルゴリズムに基づき、当該算出された予測値に応じて前記目標空燃比を算出する目標空燃比算出手段と、
    を備え、
    前記予測値に補正係数を乗算する乗算手段と、
    当該補正係数を、前記予測値が所定値以上のときに、所定値未満のときよりも小さい値に設定する補正係数設定手段と、をさらに備え、
    前記目標空燃比算出手段は、前記1つの変調アルゴリズムに基づき、前記補正係数が乗算された前記予測値に応じて、前記混合気の目標空燃比を算出することを特徴とする制御装置。
  6. Δ変調アルゴリズム、ΔΣ変調アルゴリズムおよびΣΔ変調アルゴリズムのうちのいずれか1つの変調アルゴリズムと、制御対象をモデル化した制御対象モデルとに基づき、前記制御対象の出力を制御するための、前記制御対象への制御入力を算出する制御入力算出手段を備え、
    前記制御対象モデルは、離散時間系モデルとして構成されており、
    前記制御対象モデルのモデルパラメータを、前記算出された制御入力および前記制御対象の出力に応じて、逐次同定する同定手段をさらに備え、
    前記制御対象の出力は、内燃機関の排気通路の触媒よりも下流側に配置され、当該触媒を通過した後の排気ガスの空燃比を検出する空燃比センサの出力であり、
    前記制御対象への制御入力は、前記内燃機関に供給される混合気の目標空燃比であり、
    前記制御対象モデルは、前記空燃比センサの出力を表す値および前記目標空燃比を表す値を変数とするモデルであり、
    前記同定手段は、前記空燃比センサの出力を表す値に乗算されるモデルパラメータと、前記目標空燃比を表す値に乗算されるモデルパラメータを、前記空燃比センサの出力および前記混合気の目標空燃比に応じて逐次同定し、
    前記制御入力算出手段は、前記1つの変調アルゴリズムおよび前記制御対象モデルに基づき、前記空燃比センサの出力を所定の目標値に収束させるための、前記内燃機関に供給すべき混合気の目標空燃比を算出する空燃比算出手段で構成されており、
    前記内燃機関の運転状態を検出する運転状態検出手段をさらに備え、
    前記空燃比算出手段は、
    前記目標空燃比の混合気が前記内燃機関に供給されてから前記空燃比センサの出力に反映されるまでの予測時間を、前記検出された内燃機関の運転状態に応じて算出する予測時間算出手段と、
    当該算出された予測時間に応じて、前記制御対象モデルを適用した予測アルゴリズムに基づき、前記目標空燃比を表す値の予測値を算出する予測値算出手段と、
    前記1つの変調アルゴリズムに基づき、当該算出された予測値に応じて前記目標空燃比を算出する目標空燃比算出手段と、
    を備え、
    前記予測値に補正係数を乗算する乗算手段と、
    当該補正係数を、前記予測値が所定値以上のときに、所定値未満のときよりも小さい値に設定する補正係数設定手段と、をさらに備え、
    前記目標空燃比算出手段は、前記1つの変調アルゴリズムに基づき、前記補正係数が乗算された前記予測値に応じて、前記混合気の目標空燃比を算出することを特徴とする制御装置。
  7. 前記目標空燃比算出手段は、前記補正係数が乗算された予測値を、前記1つの変調アルゴリズムを適用した変調アルゴリズムで変調することにより、第1の変調値を算出するとともに、当該算出された第1の変調値に所定のゲインを乗算した値に基づき、前記混合気の目標空燃比を算出することを特徴とする請求項5または6に記載の制御装置。
  8. 前記目標空燃比算出手段は、前記補正係数が乗算された予測値を、前記1つの変調アルゴリズムを適用した変調アルゴリズムで変調することにより、第2の変調値を算出するとともに、当該算出された第2の変調値に所定値を加算した値に基づき、前記混合気の目標空燃比を算出することを特徴とする請求項5または6に記載の制御装置
JP2001400988A 2001-07-25 2001-12-28 制御装置 Expired - Fee Related JP3904923B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2001400988A JP3904923B2 (ja) 2001-12-28 2001-12-28 制御装置
CA002394943A CA2394943C (en) 2001-12-28 2002-07-24 Control apparatus, control method, and engine control unit
CNB021611173A CN100470033C (zh) 2001-12-28 2002-07-25 控制装置、控制方法和发动机控制单元
ES02016664T ES2271160T3 (es) 2001-07-25 2002-07-25 Aparato de control, metodo de control y unidad de control de motor.
DE2002614095 DE60214095T8 (de) 2001-07-25 2002-07-25 Steuereinrichtung, Steuerverfahren und Motorsteuereinheit
US10/201,894 US6985809B2 (en) 2001-12-28 2002-07-25 Control apparatus, control method, and engine control unit
EP20020016664 EP1279820B1 (en) 2001-07-25 2002-07-25 Control apparatus, control method, and engine control unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001400988A JP3904923B2 (ja) 2001-12-28 2001-12-28 制御装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006077638A Division JP4240325B2 (ja) 2006-03-20 2006-03-20 制御装置

Publications (2)

Publication Number Publication Date
JP2003195908A JP2003195908A (ja) 2003-07-11
JP3904923B2 true JP3904923B2 (ja) 2007-04-11

Family

ID=19189704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001400988A Expired - Fee Related JP3904923B2 (ja) 2001-07-25 2001-12-28 制御装置

Country Status (4)

Country Link
US (1) US6985809B2 (ja)
JP (1) JP3904923B2 (ja)
CN (1) CN100470033C (ja)
CA (1) CA2394943C (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012251434A (ja) * 2011-05-31 2012-12-20 Honda Motor Co Ltd 内燃機関の判定装置

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3973922B2 (ja) * 2002-02-15 2007-09-12 本田技研工業株式会社 制御装置
JP4028334B2 (ja) * 2002-09-12 2007-12-26 本田技研工業株式会社 制御装置
JP4121914B2 (ja) * 2003-08-08 2008-07-23 本田技研工業株式会社 制御装置
JP4181006B2 (ja) 2003-10-03 2008-11-12 本田技研工業株式会社 Δς変調アルゴリズムを用いてプラントを制御する制御装置
JP2005207357A (ja) 2004-01-26 2005-08-04 Honda Motor Co Ltd エンジンの可変容量流体ポンプ
EP1574695A3 (en) 2004-03-12 2011-08-31 Honda Motor Co., Ltd. A control apparatus for controlling a plant by using a delta-sigma modulation algorithm
JP4459674B2 (ja) 2004-03-23 2010-04-28 本田技研工業株式会社 変調アルゴリズムを用いたプラントの制御装置
DE102004041216A1 (de) * 2004-07-14 2006-02-02 Robert Bosch Gmbh Verfahren zur Kopplung eines Steuergeräts mit einem Programm zur Modellierung einer Wirkkettendiagnose
DE102004046874A1 (de) * 2004-09-28 2006-04-13 Robert Bosch Gmbh Verfahren zum Betreiben eines Verwaltungssystems von Funktionsmodulen
WO2006049169A1 (ja) * 2004-11-02 2006-05-11 Honda Motor Co., Ltd. プラントおよび内燃機関の制御装置
JP4726541B2 (ja) * 2004-12-06 2011-07-20 日立オートモティブシステムズ株式会社 内燃機関の空燃比制御装置
JP4286880B2 (ja) * 2007-04-25 2009-07-01 本田技研工業株式会社 制御パラメータを探索するためのプログラム
JP2008123549A (ja) * 2008-02-04 2008-05-29 Honda Motor Co Ltd 制御装置
JP4630354B2 (ja) * 2008-05-28 2011-02-09 本田技研工業株式会社 Δς変調アルゴリズムを用いてプラントを制御する制御装置
WO2011142038A1 (ja) * 2010-05-10 2011-11-17 トヨタ自動車株式会社 内燃機関の制御装置
EP2615282B1 (en) * 2010-09-09 2016-08-31 Toyota Jidosha Kabushiki Kaisha Air-fuel ratio control device
JP5400743B2 (ja) * 2010-10-18 2014-01-29 本田技研工業株式会社 制御装置
JP5140138B2 (ja) * 2010-11-04 2013-02-06 本田技研工業株式会社 制御装置
JP5616274B2 (ja) * 2011-03-31 2014-10-29 本田技研工業株式会社 空燃比制御装置
CN102985674B (zh) * 2011-07-11 2015-07-15 丰田自动车株式会社 内燃机的控制装置
US10202927B2 (en) * 2011-10-05 2019-02-12 Robert Bosch Gmbh Fueling strategy for controlled-autoignition engines
JP5883140B2 (ja) * 2012-07-17 2016-03-09 本田技研工業株式会社 内燃機関の制御装置
US9534547B2 (en) 2012-09-13 2017-01-03 GM Global Technology Operations LLC Airflow control systems and methods
US9429085B2 (en) 2013-04-23 2016-08-30 GM Global Technology Operations LLC Airflow control systems and methods using model predictive control
US9732688B2 (en) 2014-03-26 2017-08-15 GM Global Technology Operations LLC System and method for increasing the temperature of a catalyst when an engine is started using model predictive control
US9797318B2 (en) 2013-08-02 2017-10-24 GM Global Technology Operations LLC Calibration systems and methods for model predictive controllers
US9920697B2 (en) 2014-03-26 2018-03-20 GM Global Technology Operations LLC Engine control systems and methods for future torque request increases
US9784198B2 (en) 2015-02-12 2017-10-10 GM Global Technology Operations LLC Model predictive control systems and methods for increasing computational efficiency
US9765703B2 (en) 2013-04-23 2017-09-19 GM Global Technology Operations LLC Airflow control systems and methods using model predictive control
US9587573B2 (en) 2014-03-26 2017-03-07 GM Global Technology Operations LLC Catalyst light off transitions in a gasoline engine using model predictive control
US9605615B2 (en) 2015-02-12 2017-03-28 GM Global Technology Operations LLC Model Predictive control systems and methods for increasing computational efficiency
US9714616B2 (en) 2014-03-26 2017-07-25 GM Global Technology Operations LLC Non-model predictive control to model predictive control transitions
US9399959B2 (en) 2014-03-26 2016-07-26 GM Global Technology Operations LLC System and method for adjusting a torque capacity of an engine using model predictive control
US9435274B2 (en) 2014-03-26 2016-09-06 GM Global Technology Operations LLC System and method for managing the period of a control loop for controlling an engine using model predictive control
US9863345B2 (en) 2012-11-27 2018-01-09 GM Global Technology Operations LLC System and method for adjusting weighting values assigned to errors in target actuator values of an engine when controlling the engine using model predictive control
US9528453B2 (en) 2014-11-07 2016-12-27 GM Global Technologies Operations LLC Throttle control systems and methods based on pressure ratio
US9388758B2 (en) * 2014-03-26 2016-07-12 GM Global Technology Operations LLC Model predictive control systems and methods for future torque changes
US9599049B2 (en) 2014-06-19 2017-03-21 GM Global Technology Operations LLC Engine speed control systems and methods
US9347381B2 (en) 2014-03-26 2016-05-24 GM Global Technology Operations LLC Model predictive control systems and methods for internal combustion engines
US9541019B2 (en) 2014-03-26 2017-01-10 GM Global Technology Operations LLC Estimation systems and methods with model predictive control
US9927784B2 (en) 2014-12-04 2018-03-27 At&T Intellectual Property I, L.P. Ubiquitous computing methods and apparatus
US9938908B2 (en) 2016-06-14 2018-04-10 GM Global Technology Operations LLC System and method for predicting a pedal position based on driver behavior and controlling one or more engine actuators based on the predicted pedal position
CN110174844B (zh) * 2019-07-03 2021-08-10 西北工业大学 一种远程操控系统的广义阶滑模预测控制方法
CN110813032B (zh) * 2019-09-28 2022-05-27 中国人民解放军63605部队 一种四氧化二氮废液的智能化自调控吸收装置
CN112879167B (zh) * 2019-11-29 2022-01-28 中国航发商用航空发动机有限责任公司 发动机闭环控制系统及方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5070846A (en) * 1990-11-26 1991-12-10 General Motors Corporation Method for estimating and correcting bias errors in a software air meter
US5266907A (en) 1991-06-25 1993-11-30 Timeback Fll Continuously tuneable frequency steerable frequency synthesizer having frequency lock for precision synthesis
JP2678985B2 (ja) 1991-09-18 1997-11-19 本田技研工業株式会社 内燃エンジンの空燃比制御装置
JPH05289703A (ja) 1992-04-07 1993-11-05 Nissan Motor Co Ltd パラメータ同定装置
US5497329A (en) 1992-09-23 1996-03-05 General Motors Corporation Prediction method for engine mass air flow per cylinder
EP0682304B1 (fr) 1994-05-11 1999-12-29 CSEM Centre Suisse d'Electronique et de Microtechnique S.A. - Recherche et Développement Microsystème à faible consommation d'énergie
JP3315814B2 (ja) * 1994-06-09 2002-08-19 トヨタ自動車株式会社 車両用制御装置,クラッチのスリップ制御装置およびアイドル回転数制御装置
US5467185A (en) 1994-07-15 1995-11-14 General Electric Company Emissions control for internal combustion engine
US5992383A (en) * 1996-05-28 1999-11-30 U.S. Philips Corporation Control unit having a disturbance predictor, a system controlled by such a control unit, an electrical actuator controlled by such a control unit, and throttle device provided with such an actuator
JP3484074B2 (ja) * 1998-05-13 2004-01-06 本田技研工業株式会社 プラントの制御装置
US6535153B1 (en) * 1999-02-04 2003-03-18 Med-El Electromedizinische Gerate Ges.M.B.H. Adaptive sigma-delta modulation with one-bit quantization
JP2001154704A (ja) 1999-11-26 2001-06-08 Prime Motion:Kk フィードバック制御システム
JP4354068B2 (ja) * 2000-02-02 2009-10-28 本田技研工業株式会社 内燃機関の排ガスの空燃比制御装置
JP3680217B2 (ja) * 2000-06-26 2005-08-10 トヨタ自動車株式会社 内燃機関の空燃比制御装置
US6633793B2 (en) * 2001-08-13 2003-10-14 Promos Technologies Method to reduce lot-to-lot variation of array threshold voltage in a DRAM device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012251434A (ja) * 2011-05-31 2012-12-20 Honda Motor Co Ltd 内燃機関の判定装置

Also Published As

Publication number Publication date
US20030125865A1 (en) 2003-07-03
US6985809B2 (en) 2006-01-10
CA2394943C (en) 2007-09-25
CA2394943A1 (en) 2003-06-28
CN1443933A (zh) 2003-09-24
CN100470033C (zh) 2009-03-18
JP2003195908A (ja) 2003-07-11

Similar Documents

Publication Publication Date Title
JP3904923B2 (ja) 制御装置
JP3973922B2 (ja) 制御装置
JP3922980B2 (ja) 制御装置
JP3926703B2 (ja) 制御装置
JP3998136B2 (ja) 内燃機関の空燃比制御装置
JP3880861B2 (ja) 内燃機関の空燃比制御装置
JP4028334B2 (ja) 制御装置
JPH1182118A (ja) 多気筒エンジンの空燃比制御装置
JP4439508B2 (ja) 制御装置
JP4277958B2 (ja) 内燃機関の空燃比制御装置
JP4277959B2 (ja) 制御装置
JP4240325B2 (ja) 制御装置
EP1279820B1 (en) Control apparatus, control method, and engine control unit
JP2008169849A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070110

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140119

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees