JP3901888B2 - Diamond-like carbon film coated plastic container manufacturing apparatus and manufacturing method thereof - Google Patents
Diamond-like carbon film coated plastic container manufacturing apparatus and manufacturing method thereof Download PDFInfo
- Publication number
- JP3901888B2 JP3901888B2 JP29980699A JP29980699A JP3901888B2 JP 3901888 B2 JP3901888 B2 JP 3901888B2 JP 29980699 A JP29980699 A JP 29980699A JP 29980699 A JP29980699 A JP 29980699A JP 3901888 B2 JP3901888 B2 JP 3901888B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- plastic container
- diamond
- disposed
- carbon film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000004033 plastic Substances 0.000 title claims description 160
- 229920003023 plastic Polymers 0.000 title claims description 160
- 229910052799 carbon Inorganic materials 0.000 title claims description 33
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims description 32
- 238000004519 manufacturing process Methods 0.000 title claims description 27
- 230000008878 coupling Effects 0.000 claims description 8
- 238000010168 coupling process Methods 0.000 claims description 8
- 238000005859 coupling reaction Methods 0.000 claims description 8
- 239000011248 coating agent Substances 0.000 claims description 5
- 238000000576 coating method Methods 0.000 claims description 5
- 239000007888 film coating Substances 0.000 claims description 5
- 238000009501 film coating Methods 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 3
- 239000007789 gas Substances 0.000 description 36
- 238000002474 experimental method Methods 0.000 description 22
- 238000000034 method Methods 0.000 description 16
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 14
- 239000001301 oxygen Substances 0.000 description 14
- 229910052760 oxygen Inorganic materials 0.000 description 14
- 235000013361 beverage Nutrition 0.000 description 11
- 229910052739 hydrogen Inorganic materials 0.000 description 11
- 239000001257 hydrogen Substances 0.000 description 11
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 10
- 238000011156 evaluation Methods 0.000 description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 238000010586 diagram Methods 0.000 description 9
- 230000035699 permeability Effects 0.000 description 9
- 230000004888 barrier function Effects 0.000 description 8
- 238000003860 storage Methods 0.000 description 8
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 5
- 235000014171 carbonated beverage Nutrition 0.000 description 5
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910003460 diamond Inorganic materials 0.000 description 3
- 239000010432 diamond Substances 0.000 description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 3
- 150000002894 organic compounds Chemical class 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 235000014101 wine Nutrition 0.000 description 3
- 229910003481 amorphous carbon Inorganic materials 0.000 description 2
- 235000013405 beer Nutrition 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001678 elastic recoil detection analysis Methods 0.000 description 2
- 239000003205 fragrance Substances 0.000 description 2
- 229910021385 hard carbon Inorganic materials 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Chemical compound CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 235000015205 orange juice Nutrition 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 238000001739 density measurement Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 235000015203 fruit juice Nutrition 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229940087305 limonene Drugs 0.000 description 1
- 235000001510 limonene Nutrition 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 235000019645 odor Nutrition 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 235000015040 sparkling wine Nutrition 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Landscapes
- Containers Having Bodies Formed In One Piece (AREA)
- Details Of Rigid Or Semi-Rigid Containers (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、酸素に鋭敏なビール、発泡酒、ワイン、高果汁飲料等の容器として使用可能な炭素膜コーティングプラスチック容器の製造装置に関する。
【0002】
【従来の技術】
一般に、プラスチック製の容器は、成形が容易である点、軽量である点および低コストである点等から、食品や医薬品等の様々な分野において、充填容器として広く使用されている。
【0003】
しかしながら、プラスチックは、よく知られているように、酸素や二酸化炭素等の低分子ガスを透過させる性質や低分子有機化合物を収着する性質を有している。このため、プラスチック容器はガラス製の容器等に比べて、その使用対象や使用形態について様々な制約を受ける。
【0004】
例えば、プラスチック容器をビール等の炭酸飲料やワイン等の充填容器として使用する場合には、酸素がプラスチックを透過して飲料を経時的に酸化させたり、炭酸飲料中の炭酸ガスがプラスチックを透過して容器の外部に放出されるために炭酸飲料の気が抜けてしまったりする。したがって、プラスチック容器は酸化を嫌う飲料や炭酸飲料の充填容器としては適していない。
【0005】
また、プラスチック容器をオレンジジュース等の香気成分を有する飲料の充填容器として使用する場合には、飲料に含まれる低分子有機化合物である香気成分(例えばオレンジジュースのリモネン等)がプラスチックに収着されるため、飲料の香気成分の組成のバランスが崩れて、その飲料の品質が劣化してしまう。したがって、プラスチック容器は香気成分を有する飲料の充填容器としては適していない。
【0006】
一方、近年になって特に資源のリサイクル化が叫ばれるようになり、使用済み容器の回収が問題になっている。プラスチック容器をリターナブル容器として使用する場合には、ガラス容器等と異なり、回収の際にプラスチック容器が環境中に放置されると、その間にカビ臭など種々の低分子有機化合物がプラスチックに収着されてしまう。このため、従来においては、プラスチック容器をリターナブル容器として使用する例は限られていた。
【0007】
しかしながら、上記のように、プラスチック容器は成形の容易性、軽量性および低コスト性等の特性を有しているので、プラスチック容器を炭酸飲料や香気成分を有する飲料等の充填容器として、また純度が要求される物質の充填容器として、さらにはリターナブル容器として使用できれば、非常に便利である。
【0008】
【発明が解決しようとする課題】
このような要求に応えうる容器として、特開平8−53117号公報には、プラスチック容器の内壁面にDLC(Diamond Like Carbon、以下、「ダイヤモンドライクカーボン」を「DLC」と表記する。)膜を形成した容器およびこのような容器の製造装置が開示されている。このDLC膜とは、iカーボン膜または水素化アモルファスカーボン膜(a−C:H)とも呼ばれる硬質炭素膜のことで、SP3結合を主体にしたアモルファスな炭素膜であり、非常に硬くて絶縁性に優れているとともに高い屈折率を有している。このようなDLC膜をプラスチック容器の内壁面に形成することにより、リターナブル容器として使用可能な容器を得ることができる。
【0009】
本発明は、酸素に鋭敏な飲料や発泡飲料の容器として適するDLC膜コーティングプラスチック容器、それを製造することができる製造装置及びその製造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明に係るDLC膜コーティングプラスチック容器の製造装置は、プラスチック容器(5)の外側に配置された外電極と、前記プラスチック容器(5)の内側に配置された内電極(11)と、前記プラスチック容器(5)内を減圧する真空手段と、前記真空手段によって減圧された前記プラスチック容器(5)の内側に炭素源の原料ガスを供給するガス供給手段(12等)と、前記ガス供給手段(12等)による前記原料ガスの供給後、前記外電極および前記内電極(11)の間に電圧を印加してプラズマを発生させることにより前記プラスチック容器(5)の内壁面にDLC膜を形成する電源装置(8,9)と、を備え、前記外電極は、前記プラスチック容器(5)の底部に沿って配置される第1の電極(4)と、前記プラスチック容器の胴部に沿って配置される第2の電極(3)と、前記第2の電極(3)の上方に設けられ、前記プラスチック容器(5)の肩部に沿って配置される第3の電極(2)と、を備えるとともに、前記第1の電極(4)の上端は前記プラスチック容器(5)の上下端の中央位置よりも下方に位置付けられており、かつ、前記第1の電極(4)と前記第2の電極(3)と前記第3の電極(2)とは上下同士でそれぞれ容量結合しており、かつ、前記電源装置(8,9)の出力が前記第1の電極(4)のみに接続されていることを特徴とする。
【0011】
本発明に係るDLC膜コーティングプラスチック容器の製造装置は、前記電源装置(8,9)は、容量結合によって、前記第2の電極(3)に前記第1の電極(4)よりも低い電力を印加する場合を包含する。
【0012】
この発明では、前記電源装置(8,9)は、容量結合によって、前記第2の電極(3)に前記第1の電極(4)よりも低い電力を印加するので、容器(5)の全体にわたり適切な厚みのDLC膜を形成できる。
【0013】
本発明に係るDLC膜コーティングプラスチック容器の製造装置は、プラスチック容器(5)の外側に配置された外電極と、前記プラスチック容器(5)の内側に配置された内電極(11)と、前記プラスチック容器(5)内を減圧する真空手段と、前記真空手段によって減圧された前記プラスチック容器(5)の内側に炭素源の原料ガスを供給するガス供給手段(12等)と、前記ガス供給手段による前記原料ガスの供給後、前記外電極および前記内電極(11)の間に電圧を印加してプラズマを発生させることにより前記プラスチック容器(5)の内壁面にDLC膜を形成する電源装置(8,9)と、を備え、前記外電極は、前記プラスチック容器(5)の底部に沿って配置される第1の電極(4)と、前記プラスチック容器(5)の胴部に沿って配置される第2の電極(3)と、前記プラスチック容器(5)の肩部に沿って配置される第3の電極(2)と、を備えるとともに、前記第1の電極(4)と前記第2の電極(3)と前記第3の電極(2)とは上下同士でそれぞれ容量結合しており、かつ、前記電源装置(8,9)の出力が前記第1の電極(4)のみに接続されていることを特徴とする。
【0014】
この発明では、外電極を第1の電極(4)と、第2の電極(3)と、第3の電極(2)と、に分割したので、各部位に適した電力を供給することができる。
【0015】
本発明に係るDLC膜コーティングプラスチック容器の製造装置は、前記電源装置(8,9)は、容量結合によって、前記第2の電極(3)に前記第1の電極(4)よりも低い電力を印加する場合を包含する。
【0016】
この発明では、前記電源装置(8,9)は、容量結合によって、前記第2の電極(3)に前記第1の電極(4)よりも低い電力を印加するので、容器(5)の全体にわたり適切な厚みのDLC膜を形成できる。
【0017】
さらに本発明に係るDLC膜コーティングプラスチック容器の製造装置は、プラスチック容器の外側に配置された外電極と、前記プラスチック容器の内側に配置された内電極と、前記プラスチック容器内を減圧する真空手段と、前記真空手段によって減圧された前記プラスチック容器の内側に炭素源の原料ガスを供給するガス供給手段と、前記ガス供給手段による前記原料ガスの供給後、前記外電極および前記内電極の間に電圧を印加してプラズマを発生させることにより前記プラスチック容器の内壁面にDLC膜を形成する電源装置と、を備え、前記外電極は、前記プラスチック容器の底部に沿って配置される第1の電極と、該第1の電極の上部に配置される第2の電極と、該第2の電極の上部に配置される2以上の電極と、を備えるとともに、前記外電極である各電極は上下同士でそれぞれ容量結合しており、かつ、前記電源装置の出力が前記第1の電極のみに接続されていることを特徴とする。
【0018】
本発明に係るDLC膜コーティングプラスチック容器の製造方法は、プラスチック容器の底部に沿って外電極の一部を構成する第1の電極を該プラスチック容器の外側に配置し、該プラスチック容器の胴部に沿って外電極の一部を構成する第2の電極を該プラスチック容器の外側に配置し、該プラスチック容器の肩部に沿って外電極の一部を構成する第3の電極を該プラスチック容器の外側に配置し、前記第1の電極と前記第2の電極と前記第3の電極とを上下同士でそれぞれ容量結合させ、該プラスチック容器の内側に内電極を配置し、該プラスチック容器内を排気した後、該プラスチック容器の内側に炭素源の原料ガスを供給し、前記第1の電極のみに電源装置の出力を接続して電力を供給することによって前記第1の電極、前記第2の電極と前記第3の電極、及び前記内電極との間に電圧を印加してプラズマを発生させ、前記プラスチック容器の内壁面にDLC膜を形成させることを特徴とする。
【0019】
本発明に係るDLC膜コーティングプラスチック容器の製造方法は、プラスチック容器の底部に沿って外電極の一部を構成する第1の電極を該プラスチック容器の外側に配置し、該プラスチック容器の外側に沿って該第1の電極の上部に外電極の一部を構成する第2の電極を配置し、該プラスチック容器の外側に沿って該第2の電極の上部に外電極の一部を構成する2以上の電極を配置し、前記外電極である各電極を上下同士でそれぞれ容量結合させ、該プラスチック容器の内側に内電極を配置し、該プラスチック容器内を排気した後、該プラスチック容器の内側に炭素源の原料ガスを供給し、前記第1の電極のみに電源装置の出力を接続して電力を供給することによって前記第1の電極、前記第2の電極と前記第2の電極の上部に配置した前記2以上の電極、及び前記内電極との間に電圧を印加してプラズマを発生させ、前記プラスチック容器の内壁面にDLC膜を形成させることを特徴とする。
【0020】
本発明に係るDLC膜コーティングプラスチック容器の製造方法は、容量結合によって、前記第1の電極以外の外電極に前記第1の電極よりも低い電力を印加する場合を包含する。
【0021】
なお、本発明の理解を容易にするために添付図面の参照符号を括弧書きにて付記するが、それにより本発明が図示の形態に限定されるものではない。
【0022】
【発明の実施の形態】
以下、図1〜図9を参照して、本発明によるDLC膜および炭素膜コーティングプラスチック容器の製造装置の実施形態について説明する。
【0023】
図1は、本装置の電極構成等を示す図である。図1に示すように、本装置は基台1と、基台1に取り付けられた肩部電極2および胴部電極3と、胴部電極3に対して着脱可能とされた底部電極4とを備える。図1に示すように、肩部電極2、胴部電極3および底部電極4は、それぞれプラスチック容器5の外形に即した形状の内壁面を有し、肩部電極2はプラスチック容器5の肩部に、胴部電極3はプラスチック容器5の胴部に、底部電極4はプラスチック容器5の底部に沿って、それぞれ配置される。肩部電極2、胴部電極3および底部電極4は、本装置の外電極を構成する。
【0024】
底部電極4を胴部電極3に対して取りつけたとき、基台1、肩部電極2、胴部電極3および底部電極4は、互いに気密的に取り付けられた状態となり、これらはプラスチック容器5を収納する収納部10を備える真空チャンバとして機能する。
【0025】
図1に示すように、肩部電極2および胴部電極3の間には絶縁体6が介装され、これにより肩部電極2と胴部電極3とが互いに電気的に絶縁されている。また、胴部電極3と底部電極4との間にはOリング7が介装され、底部電極4が取り付けられた場合に底部電極4と胴部電極3との間にわずかな間隙が形成される。これにより底部電極4と胴部電極3との間の気密性を確保しつつ、両電極間を電気的に絶縁するようにしている。
【0026】
収納部10には内電極11が設けられており、内電極11は収納部10に収容されたプラスチック容器5の内部に挿入される。内電極11は電気的にグランド電位に接続されている。
【0027】
内電極11は中空形状(筒状)に形成されるとともに、その下端には内電極11の内外を連通させる1つの吹き出し孔(不図示)が形成されている。なお、吹き出し孔を下端に設ける代わりに、内電極11の内外を放射方向に貫通する複数の吹き出し孔(不図示)を形成してもよい。内電極11には内電極11の内部と連通される管路12が接続されており、管路12を介して内電極11内に送り込まれた原料ガスが、この吹き出し孔を介してプラスチック容器5内に放出できるよう構成されている。なお、管路12は金属製であり導電性を有し、図1に示すように、管路12を利用して内電極11がグランド電位に接続されている。また、内電極11は管路12により支持されている。
【0028】
図1に示すように、底部電極4には整合器8を介して高周波発振器9の出力端が接続されている。高周波発振器9はグランド電位との間に高周波電圧を発生させ、これにより内電極11と底部電極4との間に高周波電圧が印加される。
【0029】
次に、本装置を用いてプラスチック容器5の内壁面にDLC(Diamond Like Carbon)膜を形成する場合の手順について説明する。
【0030】
プラスチック容器5はその底部が底部電極4の内面に接触するようにセットされ、底部電極4が上昇することにより、プラスチック容器5は収納部10に収納される。このとき収納部10に設けられた内電極11が、プラスチック容器5の口(上端の開口)を介してプラスチック容器5の内部に挿入される。
【0031】
底部電極4が所定の位置まで上昇して収納部10が密閉されたとき、プラスチック容器5の外周は肩部電極2、胴部電極3および底部電極4の内面に接触した状態となる。次いで、不図示の真空装置により、収納部10内の空気が基台1の排気口1Aを介して排気される。収納部10内が必要な真空度に到達するまで減圧された後、管路12を介して送られた原料ガス(例えば、脂肪族炭化水素類、芳香族炭化水素類等の炭素源ガス)が、内電極11の吹き出し孔からプラスチック容器5の内部に導入される。
【0032】
原料ガスの濃度が所定値になった後、高周波発振器9を動作させることにより内電極11と外電極との間に高周波電圧が印加され、プラスチック容器5内にプラズマが発生する。これによって、プラスチック容器5の内壁面にDLC膜が形成される。
【0033】
すなわち、このプラスチック容器5の内壁面におけるDLC膜の形成は、プラズマCVD法によって行われ、外電極と内電極11との間に発生したプラズマによって絶縁されている外電極の内壁面に電子が蓄積して、所定の電位降下が生じる。
【0034】
これによって、プラズマ中に存在する原料ガスである炭化水素の炭素および水素がそれぞれプラスにイオン化されて、外電極の内壁面に沿って延びるプラスチック容器5の内壁面にランダムに衝突し、近接する炭素原子同士や炭素原子と水素原子との結合、さらに一旦は結合していた水素原子の離脱(スパッタリング効果)によって、プラスチック容器5の内壁面に極めて緻密なDLCからなる硬質炭素膜が形成される。
【0035】
上記のように、高周波発振器9の出力端は整合器8を介して底部電極4のみに接続されている。また、底部電極4と胴部電極3との間には間隙が形成され、底部電極4と胴部電極3とは互いに電気的に絶縁されている。さらに、胴部電極3と肩部電極2との間には絶縁体6が介装されており、胴部電極3と肩部電極2とは互いに電気的に絶縁されている。したがって、胴部電極3および肩部電極2に印加される高周波電力は底部電極4に印加される高周波電力よりも小さなものとなる。ただし、底部電極4と胴部電極3との間、および胴部電極3と肩部電極2との間は、それぞれの間隙を介して容量結合しているため、胴部電極3および肩部電極2に対してもある程度の高周波電力が印加される。
【0036】
一般に、ボトル等のプラスチック容器の底部はその形状が複雑であり、DLC膜が充分な厚みに形成されにくい。また、製造上、底部は延伸が不充分となるため、プラスチック自体のガスバリア性が底部において低くなる。このため、DLC膜を形成した後においても、容器の底部のガスバリア性が低くなりがちである。
【0037】
本発明の発明者による実験によれば、プラスチック容器としてプラスチックボトルを用い、肩部電極2、胴部電極3および底部電極4に相当する外電極の全体に同一の高周波電力を印加した場合には、プラスチックボトルの口の部分から肩部にかけてDLC膜が厚くコーティングされ、胴部はこれよりも薄く、さらに底部の厚みは極端に薄かった。この場合、上記のように、底部ではプラスチック自体のガスバリア性が低いため、ボトル全体としてのガスバリア性が大きく低下してしまう。充分な厚みを得ようとすると、コーティングに必要な時間として20〜30秒間必要となり、製造コストが上昇してしまう。また、DLC膜が厚く形成された部分ではDLC膜の剥離が生じやすく、コーティング時間が長くなったり高周波電力を上昇させると、ボトルの変形が多く実用上問題であった。印加する高周波電力としては、400〜500W程度が適正な電力であった。
【0038】
また、容器内壁面に対するDLC膜の密着性が不充分であり、しかもDLC膜の緻密さも充分でなかった。
【0039】
したがって、外電極全体に均一の高周波電力を印加した場合には、元のプラスチックボトルに対して、ガスバリア性を約2〜6倍程度しか向上させることができなかった。
【0040】
これに対して、上記実施形態の製造装置によれば、プラスチック容器の底部に対し胴部や肩部よりも大きな高周波電力を印加することができるので、ボトル全体に均一な厚みのDLC膜を形成することが可能であり、さらにプラスチック自体のガスバリア性が低い底部ではより厚くDLC膜を形成することも可能である。したがって、容器全体としてのガスバリア性を効果的に向上させることができる。上記実施形態では、印加電力を1200〜1400Wに上昇させることができ、したがってコーティング時間の短縮による製造コストの低減が図られる。
【0041】
また、上記実施形態では、容器の口の部分や肩部の高周波電力を抑制しつつ底部に対しては充分な高周波電力を印加できるため、プラスチック容器の変形を抑止しつつ緻密でかつプラスチック容器の内壁面に対する密着性の良好なDLC膜を得ることができる。
【0042】
上記実施形態では、肩部電極2、胴部電極3および底部電極4を直流的には完全に絶縁するように構成しているが、各電極を抵抗性、あるいは容量性の素子等により互いに接続するようにしてもよい。要は、容器の各部分に応じて必要な大きさの高周波電力を印加できるようにすれば良く、例えば、肩部電極2、胴部電極3および底部電極4の各電極に対して、それぞれ別個に高周波電力を印加するように複数の高周波発振器を用意してもよいし、あるいは単一の高周波発振器の出力を複数の整合器を介してそれぞれの電極に接続するようにしてもよい。
【0043】
上記実施形態では、外電極を3つの部分に分割する場合を例示しているが、外電極を2つに分割してもよいし、4つ以上の部分に分割してもよい。
【0044】
また、上記実施形態では、底部にDLC膜が形成されにくいような形状の容器について説明したが、容器の形状に応じて、印加する高周波電力の分布を調整することにより、容器全体にわたり良好なDLC膜を形成することが可能となる。
【0045】
本発明による製造装置によれば、リターナブル容器として適したプラスチック容器を製造することができるが、本装置により製造されたプラスチック容器をワンウェイ用途(回収せず内容物を1回充填するだけで使い捨てする用途)に用いることもできる。
【0046】
−実施例1−
次に、上記装置を用いて、500mlのPETボトルの内壁面にDLC膜を形成したときの条件および評価結果について説明する。
【0047】
図2にプラズマCVDの条件およびPETボトル等の寸法形状を、図3にDLC膜を内壁面に形成したボトルの評価方法を、それぞれ示す。また、図4には原料ガスとしてトルエンを用いた場合の成膜条件および評価結果を、図5には原料ガスとしてアセチレンを用いた場合の成膜条件および評価結果を、それぞれ示す。
【0048】
図2(b)における「プラスチックボトルの寸法」の表中、「底部/肩+胴+底」とあるのは、底部電極4が対向する部分のボトル全体の高さに占める割合、すなわち、「ボトルの底から底部電極4の上端までの長さ」を「ボトルの高さ(ボトルの底から上端までの長さ)」で除した値をパーセントで示している。
【0049】
「プラスチックボトルの寸法」の表中、「700mlPETボトル」および「500mlPP(ポリプロピレン)ボトル」の欄は、実験対象として用意されているそれぞれの種類のボトルについて、500mlのPETボトルと同様の寸法および底部電極の部位を示している。なお、図4および図5は500mlPETボトルにおける成膜条件および評価結果のみを示している。
【0050】
図2(a)における「(7)外部電極の放電方法」中、「1全体」は、肩部電極2、胴部電極3および底部電極4を電気的に短絡し、これらの電極に同時に同一の高周波電力を印加した場合を示す。「2胴・底」は、胴部電極3および底部電極4を電気的に短絡するとともに、肩部電極2は胴部電極3から絶縁した状態において、胴部電極3および底部電極4に対して同時に同一の高周波電力を印加した場合を示す。「3底」は、本願発明に相当する方法であり、肩部電極2、胴部電極3および底部電極4を電気的に互いに絶縁した状態において底部電極4のみに高周波電力を印加した場合を示す。これらの放電方法は図4および図5に示す「放電方法」の欄に記載されている。
【0051】
図3の「(1)外観による評価」および「(2)容器の変形」における評価は、「○」が一番良好な状態を、「×」が一番悪い状態を、それぞれ表す。これらの評価結果は、図4および図5に示す表の所定欄にそれぞれ記載されている。
【0052】
−実施例2−
次に、図6を参照して、上記装置により500mlのPETボトルの内壁面に実施例1よりも薄いDLC膜を形成したときの条件および評価結果について説明する。実施例2では、プラズマ時間を比較的短い時間に設定することにより、形成されるDLC膜の膜厚を小さくしている。
【0053】
実験番号1〜6のプラズマ条件について、以下に述べる。原料ガスとしてアセチレンを用い、放電方法としては底部電極4に高周波電力を印加する方法を用いた。すなわち、肩部電極2、胴部電極3および底部電極4を電気的に互いに絶縁した状態において底部電極4のみに高周波電力を印加した。高周波電力は1300W、真空度は0.05torr(6.66Pa)、ガス流量は31cc/minである。なお、実験番号1はDLC膜の形成されていないPETボトルである。
【0054】
図6は実験番号1〜6のプラズマ時間、DLC膜の膜厚、および酸素透過度を示している。図7(a)および図7(b)は、PETボトルの形状を示している。
【0055】
図7に示すPETボトル100の高さ、すなわちPETボトル100の底から上端までの長さAは、207mmである。図7に示す他の各部の寸法は、B=68.5mm、C=35.4mm、D=88mm、E=2mm、F=22.43mm、G=24.94mm、H=33mm、J=67.7mm、K=26.16mm、L=66.5mm、M=21.4mm、N=46mmである。PETボトル100の壁面の厚みは0.4mmである。
【0056】
図6において膜厚の欄の数値では、PETボトル100の肩部、胴部、および底部におけるDLC膜の膜厚を測定し、その中での最低値および最高値の間をDLC膜の膜厚の範囲として示している。
【0057】
図6に示すように、DLC膜が形成されていない実験番号1のPETボトルでは、酸素透過度が0.033ml/日/容器であるのに対して、膜厚50〜75ÅのDLC膜が形成された実験番号2のPETボトルでは、容器(PETボトル)当りの酸素透過度が0.008ml/日である。このように、50〜75Å程度の薄いDLC膜を形成することにより、酸素透過度を1/4程度に減少させることができる。また、図6に示すように、よりDLC膜の膜厚の大きな実験番号3〜6のペットボトルではさらに酸素透過度が低下している。このように、50〜400Å程度の比較的膜厚の小さなDLC膜を形成することによって、酸素透過度を効果的に低下させることができる。
【0058】
実験番号2〜6のように、薄いDLC膜をPETボトルの内壁面に形成した場合には、以下のような利点がある。まず第1に、DLC膜は僅かに黄色に着色しており、膜厚が大きくなると次第に色が黒くなり、容器の透明性が落ちてくる。しかし、DLC膜の膜厚を薄く設定することにより、容器の透明性を向上させることができる。また、DLC膜の膜厚が大きくなるとDLC膜に大きな圧縮応力が働き、DLC膜にクラックが生じる結果、酸素バリア性が劣化するという問題があるが、DLC膜を上記のように薄く形成することによりこのような問題を回避できる。さらに、膜厚を薄く設定する場合には、膜厚の形成に必要な蒸着時間が短縮されるため、生産性が向上する。
【0059】
なお、図6に示す酸素透過度はModern Control 社製 Oxtran を用いて、22℃、60%RHの条件にて測定した。DLC膜の膜厚は、Tenchol社 alpha−step 500 の触針式段差計を用いて測定した。
【0060】
−実施例3−
以下、図8を参照して、500mlのPETボトルの内壁面に上記装置を用いて形成されたDLC膜の密度について説明する。
【0061】
実験番号7〜10のPETボトルにおけるプラズマ条件について、以下に述べる。原料ガスとしてアセチレンを用い、放電方法としては底部電極4に高周波電力を印加する方法を用いた。すなわち、肩部電極2、胴部電極3および底部電極4を電気的に互いに絶縁した状態において底部電極4のみに高周波電力を印加した。真空度は0.05torr(6.66Pa)、ガス流量は31cc/min、プラズマ時間は8秒である。
【0062】
図8に密度の測定結果を示す。図8における「放電方法」の欄中、「全体」は、肩部電極2、胴部電極3および底部電極4を電気的に短絡し、これらの電極に同時に同一の高周波電力を印加したことを示す(実験番号7および8)。「底部」は、肩部電極2、胴部電極3および底部電極4を電気的に互いに絶縁した状態において底部電極4のみに高周波電力を印加したことを示す(実験番号9および10)。
【0063】
また、「高周波印加電圧」の欄は、各実験番号において印加した高周波電力を示す。図8では、各実験番号のPETボトルの肩部、胴部および底部について、それぞれDLC膜の厚み、DLC膜の体積、DLC膜の重量およびDLC膜の密度を示しており、PETボトルの部位は、「容器の部位」の欄の「肩部」、「胴部」、および「底部」の表示に対応している。
【0064】
なお、図8に示す酸素透過度はModern Control 社製 Oxtran を用いて、22℃、60%RHの条件にて測定した。DLC膜の膜厚は、Tenchol社 alpha−step 500 の触針式段差計で測定した。また、PETボトルの表面積は、PETボトルの図面からCADにより計算した。
【0065】
DLC膜の重量の測定においては、PETボトル100を肩部、胴部および底部に3分割した。次に、これらの各部位をビーカに入れた4%NaOH水溶液に浸けて常温で10−12時間程度反応させ、DLC膜を剥離させた。この溶液をポリテトラフルオロエチレン製のミリポアフィルター(孔径0.5μm)で濾過した後、105℃で乾燥させ、ミリポアフィルターとともに重量を測定した。この重量から濾過に使用する前のミリポアフィルターの重量を差し引くことにより、剥離されたDLC膜の重量を求めた。また、NaOH溶液は不純物として残渣があるので、NaOH溶液のブランク値も求めて、DLC膜の重量を補正した。
【0066】
DLC膜の密度は、下記の式(1)から計算で求めた。
【0067】
【数1】
密度=重量/(表面積×厚み) …式(1)
【0068】
図8に示すように、DLC膜の密度は、放電方法、高周波印加電力の大きさ、あるいはPETボトルの部位による明らかな差が認められなかったが、DLC膜の密度の範囲は1.2〜2.3g/cm3であった。
【0069】
−実施例4−
以下、図9を参照して、500mlのPETボトルの内壁面に上記装置を用いて形成されたDLC膜の水素含量について説明する。
【0070】
実験番号11および12では、肩部、胴部、および底部のそれぞれの所定領域に、ガラス基板(長さ:23mm、幅:19mm、厚み:0.5mm)を取り付けた。PETには水素が含有されており、水素含量の測定に誤差を生ずるため、ガラス基板を使用したものである。ガラス基板は、外電極に取り付けられた金属プラグを介して取り付けられる。
【0071】
図7において、符号「P」が肩部に設けられた上部領域を、符号「Q」が胴部に設けられた中部領域を、符号「R」が底部に設けられた下部領域を、それぞれ表す。上部領域Pの下端はPETボトルの底から上方に125mm、上部領域Pの上端はPETボトルの底から上方に144mmの位置にある。中部領域Qの下端はPETボトルの底から上方に65mm、中部領域Qの上端はPETボトルの底から上方に84mmの位置にある。下部領域Rの下端はPETボトルの底から上方に11mm、下部領域Rの上端はPETボトルの底から上方に30mmの位置にある。
【0072】
プラズマ条件としては、実験番号11および12とも、アセチレンを原料ガスとして用いるとともに、いずれも底放電、すなわち、肩部電極2、胴部電極3および底部電極4を電気的に互いに絶縁した状態において底部電極4のみに高周波電力を印加している。真空度は0.05torr(6.66Pa)、ガス流量は31cc/minである。また、実験番号11では高周波印加電力を800W、実験番号12では高周波印加電力を1200Wとしている。
【0073】
図9では、各PETボトルにおける上部領域P、中部領域Q、および下部領域Rに設けられたガラス基板上に形成されたDLC膜の水素含量を示しており、図9における「容器の部位」に記載された「上部」、「中部」、および「下部」の表示が、それぞれ上部領域P、中部領域Q、および下部領域Rを表している。
【0074】
図8にも示したように、DLC膜の密度は1.22〜2.30の間でばらつくため、DLC膜の密度が、それぞれ、1.2、1.8、および2.3の各部位について水素含量を測定している。
【0075】
水素含量の測定には、島津IBA−9900EREA(elastic recoil detection analysis ;弾性反跳粒子検出法)を使用して、DLC膜中の水素濃度%(水素原子数の比率)を測定した。
【0076】
図9に示すように、水素含量は高周波印加電力が大きい場合(実験番号12)に増加する。また、密度の増加にともなって水素含量が若干減少する傾向がみられる。
【0077】
上記実施形態では、高周波電力を印加することによりプラズマを発生させてDLC膜を形成しているが、DLC膜の形成方法は上記実施形態の方法に限定されない。例えば、マイクロ波放電によりプラズマを発生させてDLC膜を形成してもよい。
【0078】
本発明のDLC膜はPETあるいはPP以外の材質のプラスチック容器に適用することもできる。また、容器以外の用途に用いることもできる。
【0079】
本明細書において、「炭素膜コーティングプラスチック容器」は、DLC膜が形成されたプラスチック容器を意味する。
【0080】
【発明の効果】
請求項1及び3に記載の発明によれば、外電極を第1の電極と、第2の電極と、第3の電極と、に分割したので、各部位に適した電力を供給することができる。
【図面の簡単な説明】
【図1】本発明による製造装置の一実施形態を示す図。
【図2】プラズマCVDの条件およびプラスチックボトルの寸法等を示す図であり、(a)はプラズマCVDの条件を示す図、(b)はプラスチックボトルの寸法を示す図。
【図3】DLC膜が形成された500mlPETボトルの評価方法を示す図。
【図4】原料ガスとしてトルエンを用いてDLC膜を形成した500mlPETボトルの評価結果を示す図。
【図5】原料ガスとしてアセチレンを用いてDLC膜を形成した500mlPETボトルの評価結果を示す図。
【図6】実験番号1〜6のボトルにおけるDLC膜の成膜条件、膜厚、および酸素透過度を示す図。
【図7】PETボトルの形状を示す図であり、(a)は正面図、(b)は(a)におけるB−B線方向から見た底面図。
【図8】実験番号7〜10のボトルにおけるDLC膜の成膜条件および密度等を示す図。
【図9】実験番号11および12のボトルにおけるDLC膜の成膜条件および水素含量等を示す図。
【符号の説明】
2 肩部電極
3 胴部電極
4 底部電極
5 プラスチック容器
8 整合器
9 高周波発振器
11 内電極
12 管路
100 ペットボトル[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for producing a carbon film coated plastic container that can be used as a container for oxygen-sensitive beer, sparkling wine, wine, high fruit juice beverages, and the like.
[0002]
[Prior art]
In general, plastic containers are widely used as filling containers in various fields such as foods and pharmaceuticals because they are easy to mold, lightweight, and low in cost.
[0003]
However, plastics, as is well known, have the property of permeating low molecular gases such as oxygen and carbon dioxide and the property of sorbing low molecular organic compounds. For this reason, a plastic container receives various restrictions about the use object and usage form compared with a glass container.
[0004]
For example, when a plastic container is used as a filled container for carbonated beverages such as beer or wine or wine, oxygen permeates the plastic and oxidizes the beverage over time, or carbon dioxide in the carbonated beverage permeates the plastic. The carbonated beverage may be exhausted because it is released to the outside of the container. Therefore, the plastic container is not suitable as a filling container for beverages that dislike oxidation or carbonated beverages.
[0005]
In addition, when a plastic container is used as a filling container for a beverage having a fragrance component such as orange juice, a fragrance component (for example, limonene of orange juice) which is a low molecular organic compound contained in the beverage is sorbed onto the plastic. Therefore, the balance of the composition of the aroma component of the beverage is lost, and the quality of the beverage is deteriorated. Therefore, the plastic container is not suitable as a filling container for beverages having aroma components.
[0006]
On the other hand, in recent years, especially the recycling of resources has been called out, and the collection of used containers has become a problem. When plastic containers are used as returnable containers, unlike glass containers, when plastic containers are left in the environment during collection, various low molecular organic compounds such as mold odors are sorbed on the plastics. End up. For this reason, conventionally, there have been limited examples in which plastic containers are used as returnable containers.
[0007]
However, as described above, the plastic container has characteristics such as ease of molding, light weight, and low cost, so the plastic container can be used as a filling container for carbonated beverages and beverages having aroma components, and the purity. It is very convenient if it can be used as a filling container for a substance that is required, and as a returnable container.
[0008]
[Problems to be solved by the invention]
As a container that can meet such demands, JP-A-8-53117 discloses a DLC (Diamond Like Carbon, hereinafter referred to as “Diamond Like Carbon”) film on the inner wall surface of a plastic container. A formed container and an apparatus for manufacturing such a container are disclosed. This DLC film is a hard carbon film also called an i-carbon film or a hydrogenated amorphous carbon film (aC: H). Three It is an amorphous carbon film mainly composed of bonds. It is very hard and excellent in insulation, and has a high refractive index. By forming such a DLC film on the inner wall surface of a plastic container, a container that can be used as a returnable container can be obtained.
[0009]
An object of the present invention is to provide a DLC film-coated plastic container suitable as a container for oxygen-sensitive beverages and sparkling beverages, a manufacturing apparatus capable of manufacturing the same, and a manufacturing method thereof.
[0010]
[Means for Solving the Problems]
An apparatus for manufacturing a DLC film-coated plastic container according to the present invention includes an outer electrode disposed outside a plastic container (5), an inner electrode (11) disposed inside the plastic container (5), and the plastic. A vacuum means for depressurizing the inside of the container (5), a gas supply means (12 or the like) for supplying a raw material gas of a carbon source into the plastic container (5) decompressed by the vacuum means, and the gas supply means ( 12), a DLC film is formed on the inner wall surface of the plastic container (5) by generating a plasma by applying a voltage between the outer electrode and the inner electrode (11). A first power source (4) disposed along a bottom of the plastic container (5), and the plastic container. A second electrode disposed along the body portion (3), A third electrode (2) provided above the second electrode (3) and disposed along a shoulder of the plastic container (5); And the upper end of the first electrode (4) is positioned below the central position of the upper and lower ends of the plastic container (5), In addition, the first electrode (4), the second electrode (3), and the third electrode (2) are capacitively coupled to each other at the upper and lower sides, And the output of the said power supply device (8, 9) is connected only to the said 1st electrode (4), It is characterized by the above-mentioned.
[0011]
In the apparatus for manufacturing a DLC film-coated plastic container according to the present invention, the power supply device (8, 9) supplies lower power to the second electrode (3) than the first electrode (4) by capacitive coupling. Including the case of applying.
[0012]
In the present invention, the power supply device (8, 9) applies lower power to the second electrode (3) than the first electrode (4) by capacitive coupling, so the entire container (5) A DLC film having an appropriate thickness can be formed.
[0013]
An apparatus for manufacturing a DLC film-coated plastic container according to the present invention includes an outer electrode disposed outside a plastic container (5), an inner electrode (11) disposed inside the plastic container (5), and the plastic. A vacuum means for depressurizing the inside of the container (5), a gas supply means (12 etc.) for supplying a raw material gas of a carbon source into the plastic container (5) depressurized by the vacuum means, and the gas supply means After supplying the source gas, a power supply device (8) that forms a DLC film on the inner wall surface of the plastic container (5) by generating a plasma by applying a voltage between the outer electrode and the inner electrode (11). 9), and the outer electrode includes a first electrode (4) disposed along the bottom of the plastic container (5) and a body of the plastic container (5). And a third electrode (2) disposed along the shoulder of the plastic container (5), and the first electrode (4). ), The second electrode (3), and the third electrode (2) are capacitively coupled to each other at the top and bottom, and the output of the power supply device (8, 9) is the first electrode ( 4) It is characterized by being connected only to.
[0014]
In this invention, since the outer electrode is divided into the first electrode (4), the second electrode (3), and the third electrode (2), it is possible to supply electric power suitable for each part. it can.
[0015]
In the apparatus for manufacturing a DLC film-coated plastic container according to the present invention, the power supply device (8, 9) supplies lower power to the second electrode (3) than the first electrode (4) by capacitive coupling. Including the case of applying.
[0016]
In the present invention, the power supply device (8, 9) applies lower power to the second electrode (3) than the first electrode (4) by capacitive coupling, so the entire container (5) A DLC film having an appropriate thickness can be formed.
[0017]
The DLC film-coated plastic container manufacturing apparatus according to the present invention further includes an outer electrode disposed outside the plastic container, an inner electrode disposed inside the plastic container, and a vacuum means for decompressing the plastic container. A gas supply means for supplying a source gas of a carbon source to the inside of the plastic container depressurized by the vacuum means, and a voltage between the outer electrode and the inner electrode after the supply of the source gas by the gas supply means. And generating a plasma to form a DLC film on the inner wall surface of the plastic container, and the outer electrode includes a first electrode disposed along the bottom of the plastic container, A second electrode disposed on the first electrode; and two or more electrodes disposed on the second electrode. , Each electrode is the outer electrode is respectively capacitively coupled with the upper and lower each other, and wherein the output of the power supply is connected only to the first electrode.
[0018]
In the method of manufacturing a DLC film-coated plastic container according to the present invention, the first electrode constituting a part of the outer electrode is disposed outside the plastic container along the bottom of the plastic container, and the body of the plastic container is disposed. A second electrode constituting a part of the outer electrode along the shoulder of the plastic container and a third electrode constituting a part of the outer electrode along the shoulder of the plastic container. The first electrode, the second electrode, and the third electrode are capacitively coupled to each other at the upper and lower sides, an inner electrode is disposed inside the plastic container, and the inside of the plastic container is evacuated. After that, the raw material gas of the carbon source is supplied to the inside of the plastic container, and the first electrode and the second electrode are supplied by connecting the output of the power supply device only to the first electrode and supplying power. The To pole third electrode, and by applying a voltage to generate a plasma between said electrodes, characterized in that to form a DLC film on the inner wall surface of said plastic container.
[0019]
In the method of manufacturing a DLC film-coated plastic container according to the present invention, a first electrode constituting a part of the outer electrode is disposed outside the plastic container along the bottom of the plastic container, and the outer side of the plastic container is aligned. A second electrode constituting a part of the outer electrode is arranged on the upper part of the first electrode, and a part of the outer electrode is arranged on the upper part of the second electrode along the outside of the plastic container. The above electrodes are arranged, and the electrodes as the outer electrodes are capacitively coupled to each other on the upper and lower sides, the inner electrode is arranged inside the plastic container, the inside of the plastic container is evacuated, and then inside the plastic container A source gas of a carbon source is supplied, and an output of a power supply device is connected only to the first electrode to supply electric power, thereby providing an upper portion of the first electrode, the second electrode, and the second electrode. Arranged Serial 2 or more electrodes, and by applying a voltage to generate a plasma between said electrodes, characterized in that to form a DLC film on the inner wall surface of said plastic container.
[0020]
The method for manufacturing a DLC film-coated plastic container according to the present invention includes a case in which lower power than the first electrode is applied to an outer electrode other than the first electrode by capacitive coupling.
[0021]
In order to facilitate understanding of the present invention, reference numerals in the accompanying drawings are appended in parentheses, but the present invention is not limited to the illustrated embodiments.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, with reference to FIGS. 1-9, embodiment of the manufacturing apparatus of the DLC film | membrane and carbon film coating plastic container by this invention is described.
[0023]
FIG. 1 is a diagram showing an electrode configuration and the like of this apparatus. As shown in FIG. 1, this apparatus includes a
[0024]
When the
[0025]
As shown in FIG. 1, an
[0026]
The
[0027]
The
[0028]
As shown in FIG. 1, the output of a high-
[0029]
Next, a procedure for forming a DLC (Diamond Like Carbon) film on the inner wall surface of the
[0030]
The
[0031]
When the
[0032]
After the concentration of the raw material gas reaches a predetermined value, a high frequency voltage is applied between the
[0033]
That is, the DLC film is formed on the inner wall surface of the
[0034]
As a result, hydrocarbon carbon and hydrogen, which are source gases present in the plasma, are each ionized positively, and randomly collide with the inner wall surface of the
[0035]
As described above, the output terminal of the high-
[0036]
In general, the bottom of a plastic container such as a bottle has a complicated shape, and it is difficult to form a DLC film with a sufficient thickness. In addition, since the bottom portion is insufficiently stretched in production, the gas barrier property of the plastic itself is lowered at the bottom portion. For this reason, even after the DLC film is formed, the gas barrier property at the bottom of the container tends to be low.
[0037]
According to an experiment by the inventors of the present invention, when a plastic bottle is used as a plastic container and the same high frequency power is applied to the entire outer electrode corresponding to the
[0038]
Further, the adhesion of the DLC film to the inner wall surface of the container was insufficient, and the DLC film was not dense enough.
[0039]
Therefore, when uniform high frequency power is applied to the entire outer electrode, the gas barrier property can be improved only about 2 to 6 times that of the original plastic bottle.
[0040]
On the other hand, according to the manufacturing apparatus of the above embodiment, since a high frequency power larger than that of the trunk and shoulder can be applied to the bottom of the plastic container, a DLC film having a uniform thickness is formed on the entire bottle. Further, it is possible to form a thicker DLC film at the bottom where the gas barrier property of the plastic itself is low. Therefore, the gas barrier property as the whole container can be improved effectively. In the above embodiment, the applied power can be increased to 1200 to 1400 W, and thus the manufacturing cost can be reduced by shortening the coating time.
[0041]
Further, in the above-described embodiment, sufficient high-frequency power can be applied to the bottom while suppressing high-frequency power at the mouth and shoulder of the container. Therefore, the plastic container is dense and suppresses deformation of the plastic container. A DLC film having good adhesion to the inner wall surface can be obtained.
[0042]
In the above embodiment, the
[0043]
Although the case where the outer electrode is divided into three parts is illustrated in the above embodiment, the outer electrode may be divided into two parts, or may be divided into four or more parts.
[0044]
In the above embodiment, a container having a shape that makes it difficult to form a DLC film on the bottom has been described. However, by adjusting the distribution of high-frequency power to be applied according to the shape of the container, a good DLC can be obtained throughout the container. A film can be formed.
[0045]
According to the manufacturing apparatus of the present invention, a plastic container suitable as a returnable container can be manufactured. However, the plastic container manufactured by the present apparatus can be used for one-way use (not collected but disposable by filling the contents once. (Use).
[0046]
Example 1
Next, conditions and evaluation results when a DLC film is formed on the inner wall surface of a 500 ml PET bottle using the above apparatus will be described.
[0047]
FIG. 2 shows the plasma CVD conditions and the dimensions of the PET bottle, and FIG. 3 shows a bottle evaluation method in which a DLC film is formed on the inner wall surface. FIG. 4 shows film forming conditions and evaluation results when toluene is used as the source gas, and FIG. 5 shows film forming conditions and evaluation results when acetylene is used as the source gas.
[0048]
In the table of “Plastic bottle dimensions” in FIG. 2B, “bottom / shoulder + body + bottom” is the ratio of the portion where the
[0049]
In the table of “Plastic bottle dimensions”, the columns “700 ml PET bottle” and “500 ml PP (polypropylene) bottle” indicate the same size and bottom of each type of bottle prepared as the object of the experiment. The part of the electrode is shown. 4 and 5 show only film forming conditions and evaluation results in a 500 ml PET bottle.
[0050]
In “(7) Discharge method of external electrode” in FIG. 2A, “1 overall” means that the
[0051]
In “(1) Evaluation by appearance” and “(2) Deformation of container” in FIG. 3, “◯” represents the best state, and “×” represents the worst state. These evaluation results are described in predetermined columns of the tables shown in FIGS.
[0052]
-Example 2-
Next, with reference to FIG. 6, conditions and evaluation results when a DLC film thinner than Example 1 is formed on the inner wall surface of a 500 ml PET bottle by the above apparatus will be described. In the second embodiment, the film thickness of the DLC film to be formed is reduced by setting the plasma time to a relatively short time.
[0053]
The plasma conditions of Experiment Nos. 1 to 6 will be described below. Acetylene was used as the source gas, and a method of applying high frequency power to the
[0054]
FIG. 6 shows the plasma time, the film thickness of the DLC film, and the oxygen permeability of Experiment Nos. 1-6. Fig.7 (a) and FIG.7 (b) have shown the shape of PET bottle.
[0055]
The height of the
[0056]
In the numerical value in the column of the film thickness in FIG. 6, the film thickness of the DLC film at the shoulder, trunk, and bottom of the
[0057]
As shown in FIG. 6, in the PET bottle of Experiment No. 1 in which no DLC film is formed, the oxygen permeability is 0.033 ml / day / container, whereas a DLC film having a film thickness of 50 to 75 mm is formed. In the PET bottle of Experiment No. 2, the oxygen permeability per container (PET bottle) is 0.008 ml / day. Thus, by forming a thin DLC film of about 50 to 75 mm, the oxygen permeability can be reduced to about 1/4. In addition, as shown in FIG. 6, in the PET bottles of
[0058]
When the thin DLC film is formed on the inner wall surface of the PET bottle as in Experiment Nos. 2 to 6, there are the following advantages. First of all, the DLC film is colored slightly yellow. As the film thickness increases, the color gradually becomes black and the transparency of the container decreases. However, the transparency of the container can be improved by setting the thickness of the DLC film thin. In addition, when the film thickness of the DLC film increases, a large compressive stress acts on the DLC film and cracks occur in the DLC film, resulting in a problem that the oxygen barrier property deteriorates. However, the DLC film should be formed thin as described above. Thus, such a problem can be avoided. Furthermore, when the film thickness is set to be thin, the deposition time necessary for forming the film thickness is shortened, so that productivity is improved.
[0059]
The oxygen permeability shown in FIG. 6 was measured under the conditions of 22 ° C. and 60% RH using an Oxtran manufactured by Modern Control. The film thickness of the DLC film was measured using a tentacle type alpha-
[0060]
-Example 3-
Hereinafter, the density of the DLC film formed on the inner wall surface of a 500 ml PET bottle using the above apparatus will be described with reference to FIG.
[0061]
The plasma conditions in the PET bottles with the
[0062]
FIG. 8 shows the density measurement results. In the “discharge method” column in FIG. 8, “whole” means that the
[0063]
The column of “high frequency applied voltage” indicates the high frequency power applied in each experiment number. FIG. 8 shows the thickness of the DLC film, the volume of the DLC film, the weight of the DLC film, and the density of the DLC film for the shoulder, trunk and bottom of the PET bottle of each experiment number. This corresponds to the display of “shoulder”, “torso”, and “bottom” in the “container part” column.
[0064]
The oxygen permeability shown in FIG. 8 was measured under the conditions of 22 ° C. and 60% RH using an Oxtran manufactured by Modern Control. The film thickness of the DLC film was measured with a tentacle alpha-
[0065]
In measuring the weight of the DLC film, the
[0066]
The density of the DLC film was calculated from the following formula (1).
[0067]
[Expression 1]
Density = weight / (surface area × thickness) (1)
[0068]
As shown in FIG. 8, the density of the DLC film was not clearly different depending on the discharge method, the magnitude of the high frequency applied power, or the site of the PET bottle, but the density range of the DLC film was 1.2 to 2.3 g / cm 3 Met.
[0069]
Example 4
Hereinafter, the hydrogen content of the DLC film formed on the inner wall surface of a 500 ml PET bottle using the above apparatus will be described with reference to FIG.
[0070]
In Experiment Nos. 11 and 12, a glass substrate (length: 23 mm, width: 19 mm, thickness: 0.5 mm) was attached to a predetermined region of each of the shoulder, the trunk, and the bottom. Since PET contains hydrogen and causes an error in the measurement of the hydrogen content, a glass substrate is used. The glass substrate is attached via a metal plug attached to the outer electrode.
[0071]
In FIG. 7, the symbol “P” represents the upper region provided on the shoulder, the symbol “Q” represents the middle region provided on the trunk, and the symbol “R” represents the lower region provided on the bottom. . The lower end of the upper region P is 125 mm upward from the bottom of the PET bottle, and the upper end of the upper region P is 144 mm upward from the bottom of the PET bottle. The lower end of the middle region Q is 65 mm upward from the bottom of the PET bottle, and the upper end of the middle region Q is 84 mm upward from the bottom of the PET bottle. The lower end of the lower region R is 11 mm upward from the bottom of the PET bottle, and the upper end of the lower region R is 30 mm upward from the bottom of the PET bottle.
[0072]
As the plasma conditions, in both
[0073]
In FIG. 9, the hydrogen content of the DLC film formed on the glass substrate provided in the upper region P, the middle region Q, and the lower region R in each PET bottle is shown. The indicated “upper”, “middle”, and “lower” indications represent the upper region P, the middle region Q, and the lower region R, respectively.
[0074]
As shown in FIG. 8, since the density of the DLC film varies between 1.22 and 2.30, the density of the DLC film is 1.2, 1.8, and 2.3, respectively. The hydrogen content is measured.
[0075]
For measurement of the hydrogen content, Shimadzu IBA-9900EREA (elastic recoil detection analysis; elastic recoil detection method) was used to measure the hydrogen concentration% (ratio of the number of hydrogen atoms) in the DLC film.
[0076]
As shown in FIG. 9, the hydrogen content increases when the high frequency applied power is large (experiment number 12). There is also a tendency for the hydrogen content to decrease slightly with increasing density.
[0077]
In the above embodiment, plasma is generated by applying high frequency power to form the DLC film, but the method of forming the DLC film is not limited to the method of the above embodiment. For example, the DLC film may be formed by generating plasma by microwave discharge.
[0078]
The DLC film of the present invention can also be applied to plastic containers made of materials other than PET or PP. Moreover, it can also be used for uses other than a container.
[0079]
In this specification, the “carbon film-coated plastic container” means a plastic container in which a DLC film is formed.
[0080]
【The invention's effect】
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of a manufacturing apparatus according to the present invention.
2A and 2B are diagrams showing plasma CVD conditions, plastic bottle dimensions, and the like. FIG. 2A is a diagram showing plasma CVD conditions, and FIG. 2B is a diagram showing plastic bottle dimensions.
FIG. 3 is a view showing a method for evaluating a 500 ml PET bottle on which a DLC film is formed.
FIG. 4 is a view showing an evaluation result of a 500 ml PET bottle in which a DLC film is formed using toluene as a source gas.
FIG. 5 is a view showing an evaluation result of a 500 ml PET bottle in which a DLC film is formed using acetylene as a source gas.
FIG. 6 is a diagram showing film formation conditions, film thickness, and oxygen permeability of DLC films in bottles of Experiment Nos. 1-6.
7A and 7B are diagrams showing the shape of a PET bottle, where FIG. 7A is a front view, and FIG. 7B is a bottom view as viewed from the direction of the line BB in FIG.
FIG. 8 is a diagram showing film formation conditions, density, and the like of a DLC film in bottles with
FIG. 9 is a diagram showing the DLC film formation conditions, hydrogen content, and the like for the bottles of Experiment Nos. 11 and 12.
[Explanation of symbols]
2 shoulder electrodes
3 Body electrode
4 Bottom electrode
5 Plastic containers
8 Matching device
9 High frequency oscillator
11 Inner electrode
12 pipelines
100 plastic bottles
Claims (8)
Priority Applications (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29980699A JP3901888B2 (en) | 1999-05-19 | 1999-10-21 | Diamond-like carbon film coated plastic container manufacturing apparatus and manufacturing method thereof |
PCT/JP2000/002648 WO2000071780A1 (en) | 1999-05-19 | 2000-04-21 | Dlc film, dlc-coated plastic container, and method and apparatus for manufacturing dlc-coated plastic container |
KR1020017014594A KR100549033B1 (en) | 1999-05-19 | 2000-04-21 | DLC film, DLC film coated plastic container, apparatus for manufacturing same and method for manufacturing same |
DE60031544T DE60031544T2 (en) | 1999-05-19 | 2000-04-21 | DLC-FILM, DLC-COATED PLASTIC CONTAINER AND METHOD AND DEVICE FOR PRODUCING SUCH CONTAINER |
KR1020057017881A KR100610130B1 (en) | 1999-05-19 | 2000-04-21 | Dlc film, dlc-coated plastic container, and method and apparatus for manufacturing dlc-coated plastic container |
EP00919156A EP1197581B1 (en) | 1999-05-19 | 2000-04-21 | Dlc film, dlc-coated plastic container, and method and apparatus for manufacturing dlc-coated plastic container |
US10/019,852 US7166336B1 (en) | 1999-05-19 | 2000-04-21 | DLC film, DLC-coated plastic container, and method and apparatus for manufacturing DLC-coated plastic container |
AT00919156T ATE343661T1 (en) | 1999-05-19 | 2000-04-21 | DLC FILM, DLC COATED PLASTIC CONTAINER AND METHOD AND APPARATUS FOR PRODUCING SUCH CONTAINERS |
CNB008077401A CN1174115C (en) | 1999-05-19 | 2000-04-21 | DLC film, DLC film-coated plastic container, and apparatus and method for producing the same |
AU39879/00A AU768043B2 (en) | 1999-05-19 | 2000-04-21 | DLC film, DLC-coated plastic container, and method and apparatus for manufacturing DLC-coated plastic container |
ES00919156T ES2275502T3 (en) | 1999-05-19 | 2000-04-21 | DLC FILM, PLASTIC CONTAINER COVERED WITH DLC AND PROCEDURE AND APPLIANCE TO MANUFACTURE PLASTIC CONTAINER COVERED WITH DLC. |
HK02107047.6A HK1045542B (en) | 1999-05-19 | 2002-09-26 | Dlc film, dlc-coated plastic container, and method and apparatus for manufacturing dlc-coated plastic container |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11-139211 | 1999-05-19 | ||
JP13921199 | 1999-05-19 | ||
JP29980699A JP3901888B2 (en) | 1999-05-19 | 1999-10-21 | Diamond-like carbon film coated plastic container manufacturing apparatus and manufacturing method thereof |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006314691A Division JP2007070734A (en) | 1999-05-19 | 2006-11-21 | Diamond-like carbon film coated plastic container |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2001031045A JP2001031045A (en) | 2001-02-06 |
JP2001031045A5 JP2001031045A5 (en) | 2006-05-18 |
JP3901888B2 true JP3901888B2 (en) | 2007-04-04 |
Family
ID=26472093
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29980699A Expired - Fee Related JP3901888B2 (en) | 1999-05-19 | 1999-10-21 | Diamond-like carbon film coated plastic container manufacturing apparatus and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3901888B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4492985B2 (en) * | 2000-02-24 | 2010-06-30 | 三菱商事プラスチック株式会社 | Liquid medicine plastic container and liquid medicine storage and recovery method |
JP2001240115A (en) * | 2000-02-24 | 2001-09-04 | Mitsubishi Shoji Plast Kk | Plastic container for dry solid food |
US7754302B2 (en) * | 2002-05-28 | 2010-07-13 | Kirin Brewery Company, Limted | DLC film coated plastic container, and device and method for manufacturing the plastic container |
JP4132982B2 (en) * | 2002-05-28 | 2008-08-13 | 麒麟麦酒株式会社 | DLC film coated plastic container manufacturing equipment |
-
1999
- 1999-10-21 JP JP29980699A patent/JP3901888B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001031045A (en) | 2001-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100610130B1 (en) | Dlc film, dlc-coated plastic container, and method and apparatus for manufacturing dlc-coated plastic container | |
US6294226B1 (en) | Method and apparatus for producing plastic container having carbon film coating | |
JP4188315B2 (en) | DLC film coated plastic container and manufacturing apparatus thereof | |
JP2788412B2 (en) | Apparatus and method for producing carbon film-coated plastic container | |
JP3970169B2 (en) | DLC film coated plastic container manufacturing method | |
JPH0853116A (en) | Plastic container coated with carbon film | |
JP2006224992A (en) | Plastic container coated with gas barrier membrane, its manufacturing device, and its manufacturing method | |
JP2007070734A (en) | Diamond-like carbon film coated plastic container | |
JP3901888B2 (en) | Diamond-like carbon film coated plastic container manufacturing apparatus and manufacturing method thereof | |
JP4159223B2 (en) | DLC film and carbon film coated plastic container | |
JP4132982B2 (en) | DLC film coated plastic container manufacturing equipment | |
JP2005105294A (en) | Cvd film-forming apparatus, and method for manufacturing plastic container coated with cvd film | |
JP2006160269A (en) | Plasma CVD film forming apparatus and method for manufacturing plastic container having gas barrier property | |
JP5032080B2 (en) | Gas barrier plastic container manufacturing apparatus and manufacturing method thereof | |
JP4279127B2 (en) | Gas barrier thin film coated plastic container manufacturing apparatus and manufacturing method thereof | |
JP4002164B2 (en) | DLC film-coated plastic container and manufacturing method thereof | |
JP4722667B2 (en) | Method for suppressing plasma generation outside reaction chamber, method for manufacturing gas barrier plastic container, and apparatus for manufacturing the same | |
JP2005330542A (en) | Plasma cvd film deposition system, method for confirming ignition of plasma, method for confirming property of cvd film and method for confirming stain of system | |
JP2003335395A (en) | Method of using beverage bottle coated with carbon film | |
JP2003327248A (en) | Manufacturing method of beverage bottle coated with carbon film | |
JP2007126732A (en) | Plasma CVD film forming apparatus and gas barrier plastic container manufacturing method | |
JP2012116541A (en) | Method for manufacturing plastic container having gas barrier property, adapter for small container, and thin film deposition apparatus | |
JP2003312670A (en) | Carbon film coated drink bottle | |
AU776224B2 (en) | Apparatus and method for manufacturing plastic container coated with carbon film | |
JP2009096475A (en) | Manufacturing method of ultra-thin carbon film coated plastic container |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050518 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20060221 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20060221 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060329 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20060329 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20060523 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060606 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060803 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20060804 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20061003 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061127 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20061206 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061226 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061227 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100112 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100112 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100112 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130112 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |