[go: up one dir, main page]

JP3894938B2 - Exhaust gas treatment device and exhaust gas treatment method - Google Patents

Exhaust gas treatment device and exhaust gas treatment method Download PDF

Info

Publication number
JP3894938B2
JP3894938B2 JP2005086503A JP2005086503A JP3894938B2 JP 3894938 B2 JP3894938 B2 JP 3894938B2 JP 2005086503 A JP2005086503 A JP 2005086503A JP 2005086503 A JP2005086503 A JP 2005086503A JP 3894938 B2 JP3894938 B2 JP 3894938B2
Authority
JP
Japan
Prior art keywords
exhaust gas
filter
filter unit
regeneration
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005086503A
Other languages
Japanese (ja)
Other versions
JP2006266179A (en
Inventor
純一 河西
吉宣 田村
我部  正志
光彦 板屋
健太 内藤
暁 千林
彰 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Nissin Electric Co Ltd
Original Assignee
Isuzu Motors Ltd
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd, Nissin Electric Co Ltd filed Critical Isuzu Motors Ltd
Priority to JP2005086503A priority Critical patent/JP3894938B2/en
Priority to PCT/JP2006/305525 priority patent/WO2006101070A1/en
Publication of JP2006266179A publication Critical patent/JP2006266179A/en
Application granted granted Critical
Publication of JP3894938B2 publication Critical patent/JP3894938B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/41Ionising-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/12Plant or installations having external electricity supply dry type characterised by separation of ionising and collecting stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/36Controlling flow of gases or vapour
    • B03C3/368Controlling flow of gases or vapour by other than static mechanical means, e.g. internal ventilator or recycler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/027Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means
    • F01N3/0275Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means using electric discharge means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/031Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters having means for by-passing filters, e.g. when clogged or during cold engine start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/30Details of magnetic or electrostatic separation for use in or with vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrostatic Separation (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

本発明は、自動車搭載の内燃機関等の排気ガスを、帯電凝集部とフィルタ部を備えてコロナ放電を利用して浄化する排気ガス処理装置及び排気ガス処理方法に関する。   The present invention relates to an exhaust gas processing apparatus and an exhaust gas processing method for purifying exhaust gas of an internal combustion engine mounted on an automobile, etc., by using a corona discharge provided with a charge aggregation part and a filter part.

工場ガス,発電所ガス、自動車ガス等の排ガス処理装置として、又、各種製造工場や医療現場等のガス処理装置として、静電凝集装置や静電集塵装置等が使用されている。これらのガス処理装置では、コロナ電極と集塵電極の間に高電圧を印加してガス中にコロナ放電を発生させ、このコロナ放電によりガス中の浮遊微粒子を帯電し、この帯電した粒子を静電気力で集塵電極に引き寄せて凝集肥大化させたり、捕捉したりしている。   Electrostatic agglomeration devices, electrostatic dust collectors, and the like are used as exhaust gas treatment devices for factory gas, power plant gas, automobile gas, etc., and as gas treatment devices for various manufacturing factories and medical sites. In these gas treatment devices, a high voltage is applied between the corona electrode and the dust collecting electrode to generate a corona discharge in the gas. The corona discharge charges the suspended fine particles in the gas, and the charged particles are electrostatically charged. It is attracted to the dust collecting electrode by force to enlarge or capture.

これらの放電を利用した静電集塵装置では、処理対象ガスを筒状体に通し、この筒状体で形成された集塵電極又は筒状体とは別に設けた筒状の集塵電極の略中央(軸中心)にコロナ電極を配置して、コロナ電極と集塵電極との間に高電圧を印加することによって、ガス中にコロナ放電を発生させ、ガス中の浮遊微粒子を帯電させる。   In the electrostatic precipitator using these discharges, the gas to be treated is passed through a cylindrical body, and a dust collecting electrode formed by the cylindrical body or a cylindrical dust collecting electrode provided separately from the cylindrical body is used. A corona electrode is arranged at substantially the center (axial center), and a high voltage is applied between the corona electrode and the dust collecting electrode, thereby generating a corona discharge in the gas and charging suspended fine particles in the gas.

この帯電した粒子を、コロナ電極と集塵電極との間に形成された電界によって静電気力で集塵電極表面に移動させて、集塵電極表面で捕捉する。この捕捉された粒子は、電気集塵装置等と同様な振るい落とし等により集塵電極から離脱させて集められたり、集塵電極に隣接して設けられたヒータ等の加熱により燃焼除去される。   The charged particles are moved to the surface of the dust collecting electrode by an electrostatic force by an electric field formed between the corona electrode and the dust collecting electrode, and are captured on the surface of the dust collecting electrode. The trapped particles are separated from the dust collecting electrode and collected by shaking or the like as in the electric dust collector or the like, or burned and removed by heating with a heater or the like provided adjacent to the dust collecting electrode.

そして、自動車に搭載したディーゼルエンジン等の内燃機関の排気ガスを対象とする場合には、排気ガス中に含まれているPM(Particulate Matter:パティキュレート・マター:粒子状物質)が処理対象成分となるが、このPMには、特に燃焼が難しいと言われるSoot(スート:煤)と、高温では蒸気となっているSOF(Soluble Organic Fraction:可溶性有機成分)が含まれている。このSootは、炭素を主成分とするエンジンの排出物質であり、SOFは、燃料やオイルの燃え残りが原因で発生する、ベンゼン,トルエン等の有機溶剤に溶ける成分であり、酸化触媒表面で燃焼できる。   When exhaust gas from an internal combustion engine such as a diesel engine mounted on an automobile is targeted, PM (Particulate Matter) contained in the exhaust gas is treated as a component to be treated. However, this PM contains soot (soot), which is said to be particularly difficult to burn, and SOF (Soluble Organic Fraction), which is steam at high temperatures. This Soot is an engine exhaust material mainly composed of carbon, and SOF is a component dissolved in an organic solvent such as benzene and toluene, which is generated due to unburned fuel and oil, and burns on the surface of the oxidation catalyst. it can.

しかしながら、従来技術の電気集塵法では、固体化したSoot成分は取れるが、ガス化したSOF成分の除去率は高くないという問題がある。   However, the conventional electric dust collection method has a problem that the solidified soot component can be removed, but the removal rate of the gasified SOF component is not high.

この電気集塵法では、電気集塵作用を行う部分は、捕集機能に着目した場合には静電捕集部となり、凝集機能に着目した場合には静電凝集部となり、Sootを一旦集塵電極に静電捕集する。この集塵電極上に捕捉され、堆積したSootは、やがて排気ガスの流れによって剥がれて再飛散する。   In this electrostatic precipitating method, the part that performs the electrostatic precipitating action becomes an electrostatic collecting part when paying attention to the collecting function, and becomes an electrostatic collecting part when paying attention to the aggregating function. Electrostatic collection on the dust electrode. The soot trapped and deposited on the dust collecting electrode is eventually peeled off by the flow of exhaust gas and re-scatters.

つまり、静電集塵により、集塵電極の表面で捕捉された粒子間に結合が生じて、微粒子が凝集肥大化するが、この肥大化した捕捉粒子はガス流の影響により、集塵電極の表面から剥離して再飛散を起こす。この再飛散粒子は、ガス処理装置内で帯電、捕捉、剥離を繰り返しながら、その粒径を徐々に大きくしていくが、最終的には再飛散により静電集塵装置から排出されてしまう。この再飛散粒子は凝集肥大化しており、この特性を利用することにより後段に目の粗いフィルタを配置してもSootを効果的に捕集することができる。   In other words, electrostatic dust collection creates a bond between the particles captured on the surface of the dust collection electrode, causing the fine particles to agglomerate and swell. It peels off from the surface and re-scatters. The re-scattered particles gradually increase in particle size while being repeatedly charged, trapped, and peeled off in the gas processing apparatus, but are eventually discharged from the electrostatic precipitator by re-scattering. These re-scattered particles are agglomerated and enlarged, and by utilizing this characteristic, it is possible to effectively collect soot even if a coarse filter is disposed in the subsequent stage.

一方、排気ガス中のガス化したSOFは、冷却して凝縮して液化させると粘着性を持つミストとなり、このミスト状のSOFは、鳥もちの原理により超微小粒子を捕捉して凝集肥大化する。つまり、このSOFは、Sootの捕集や凝集肥大化のバインダとして有用である。そして、超微小粒子の捕集に際して、このSOFの凝集肥大化機能を利用するためには、フィルタ等の集塵装置は電気凝集装置の下流側に設けることが有効である。   On the other hand, the gasified SOF in the exhaust gas becomes sticky mist when cooled and condensed and liquefied, and this mist-like SOF captures ultrafine particles and agglomerates and enlarges in accordance with the principle of bird's-eye. To do. That is, this SOF is useful as a binder for collecting Soot and agglomerating. In order to utilize this SOF coagulation enlargement function when collecting ultrafine particles, it is effective to provide a dust collecting device such as a filter on the downstream side of the electrocoagulation device.

この下流側にフィルタを配置した構成では、排気ガス中の超微小粒子が、静電作用と液化したSOFの粘着機能との相乗効果により凝集肥大化し、電気凝集装置から、排出される粒子の粒径が大きくなるため、目の粗いフィルタでもこれらの粒子を容易に捕捉することができる。   In the configuration in which the filter is arranged on the downstream side, the ultrafine particles in the exhaust gas agglomerate and enlarge due to the synergistic effect of the electrostatic action and the adhesion function of the liquefied SOF, and the particles discharged from the electrocoagulation apparatus Since the particle size becomes large, these particles can be easily captured even with a coarse filter.

しかしながら、このSOFの全量を使用しきれないので、このSOFの除去を高い除去率で行う必要がある場合には、酸化触媒の併用が必要となる。このガス化状態のSOFは酸化触媒で酸化でき、この酸化触媒は温度が高いほど触媒活性が高いため、また、電気凝集装置は、コロナ放電が500℃を超えると不安定になり充分な電力を投入できず、電気集塵作用が低下するため、通常はガスの温度が高い排気管の前方に酸化触媒を設置し、ガスの温度が低下する排気管後方に電気集塵装置を設置することが考えられる。   However, since the entire amount of this SOF cannot be used, if it is necessary to remove this SOF at a high removal rate, it is necessary to use an oxidation catalyst in combination. This gasified SOF can be oxidized with an oxidation catalyst, and the higher the temperature, the higher the catalytic activity of this oxidation catalyst. Also, the electrocoagulation device becomes unstable when the corona discharge exceeds 500 ° C. and has sufficient power. Since it cannot be charged and the electrostatic precipitating action decreases, it is usually necessary to install an oxidation catalyst in front of the exhaust pipe where the gas temperature is high and install an electrostatic precipitator behind the exhaust pipe where the gas temperature decreases. Conceivable.

しかし、酸化触媒を電気凝集装置よりも、上流側に配設した場合には、SOFが酸化触媒で酸化されてしまうため、電気凝集装置における超微小粒子の捕捉効果が低下してしまい、捕集効率が上がらなくなる。その上、酸化触媒にSOFとSoot等からなる凝集体が流入すると酸化触媒が目詰まりを起こす。   However, when the oxidation catalyst is disposed upstream of the electrocoagulation device, SOF is oxidized by the oxidation catalyst, so that the effect of capturing ultrafine particles in the electrocoagulation device is reduced, and the capture is performed. Collection efficiency will not increase. In addition, when the aggregate composed of SOF and Soot flows into the oxidation catalyst, the oxidation catalyst is clogged.

従って、Sootの捕捉及び凝集肥大化に使用した残りのSOFを酸化触媒で処理するのが良く、酸化触媒の位置としては、帯電凝集部の前段(上流側)に配置するよりも、後段(下流側)に配置した方がよい。つまり、電気凝集装置、フィルタ、酸化触媒の機能を考えると、上流側から電気凝集装置、粗い目のフィルタ、酸化触媒の順に配置することがもっとも効果的に排気ガスを浄化できる。   Therefore, it is better to treat the remaining SOF used for the capture of Soot and the agglomeration with an oxidation catalyst, and the position of the oxidation catalyst is lower than the upstream (upstream side) of the charged aggregation part. It is better to place it on the side. That is, considering the functions of the electrocoagulation device, the filter, and the oxidation catalyst, the exhaust gas can be purified most effectively by arranging the electrocoagulation device, the coarse filter, and the oxidation catalyst in this order from the upstream side.

そして、電気集塵では、Soot(固体粒子)を静電捕集するが、結局集塵電極に捕集できる量に限りがあり、その限界量を超えると再飛散という形で排気ガスの流れに再放出してしまう。そのため、この捕集できる限界量を超える前に、何らかの手段で集塵電極からSootを除去できれば、浄化性能を長時間維持することができる。この手段として、払い落とし(掻き落とし)回収手段やヒータ加熱による燃焼除去手段などがある(例えば、特許文献1〜3参照。)。   In electrostatic dust collection, soot (solid particles) is electrostatically collected. However, the amount that can be collected by the dust collection electrode is limited, and when the limit amount is exceeded, the exhaust gas flows in the form of re-scattering. It will be released again. Therefore, the purification performance can be maintained for a long time if the Soot can be removed from the dust collection electrode by some means before the limit amount that can be collected is exceeded. Examples of this means include a scraping (scraping) collecting means and a combustion removing means by heating with a heater (see, for example, Patent Documents 1 to 3).

しかしながら、この払い落とし回収手段では、払い落とし時にせっかく捕捉した粒子が排気ガスの主流中に再飛散し、払い落とし時に浄化性能が一時的に劣化してしまうという問題や払い落としで回収した粒子の処理も別途必要になるという問題がある。   However, with this drop-off collection means, particles trapped at the time of drop-off re-scatter into the main flow of exhaust gas, and the purification performance temporarily deteriorates at the time of drop-off. There is a problem that processing is also required separately.

そして、この浄化性能の劣化を避けようとすれば、帯電凝集部を2系統設けると共に排気ガスの切換処理が必要となる。その上、払い落としのための機械機構も必要となる。従って、特に自動車への搭載にあたっては小型化することが難しい。   In order to avoid the deterioration of the purification performance, two charging agglomeration portions are provided, and an exhaust gas switching process is required. In addition, a mechanical mechanism for paying off is also required. Therefore, it is difficult to reduce the size especially when mounted on an automobile.

また、ヒータ加熱による燃焼除去手段も原理的には可能であるが、排気ガスの主流に曝されている集塵電極を加熱しようとすると、排気ガスへ熱が逃げてしまい、熱効率が悪くなるという問題がある。特にSootの燃焼には500℃以上の高温が必要であるため、多大な電力が必要となる。これを避けようとすると、帯電凝集部を2系統設けると共に排気ガスの切換処理が必要となる(例えば、特許文献4参照。)。   In addition, although combustion removal means by heater heating is possible in principle, if the dust collection electrode exposed to the main stream of exhaust gas is heated, heat will escape to the exhaust gas, resulting in poor thermal efficiency. There's a problem. In particular, the combustion of Soot requires a high temperature of 500 ° C. or higher, and thus a great amount of electric power is required. In order to avoid this, two systems for charging and aggregating portions are provided and an exhaust gas switching process is required (see, for example, Patent Document 4).

また、帯電凝集部の後段にフィルタ部を設けた場合においても、フィルタ部で捕集されたSootを燃焼除去する再生処理に関しても同様であり、フィルタ部を、又は、帯電凝集部とフィルタ部を、2系統設けると共に排気ガスの切換処理が必要となる。   In addition, when the filter unit is provided after the charging aggregation unit, the same applies to the regeneration processing for burning and removing the soot collected by the filter unit, and the filter unit or the charging aggregation unit and the filter unit are combined. Two systems are provided and an exhaust gas switching process is required.

つまり、従来技術では、帯電凝集部、又は、帯電凝集部とフィルタの組み合わせを2系統設けないと、エネルギー効率のよいシステム構成が実現できず、装置のコンパクト化が難しい。   That is, in the prior art, unless two systems of the charging aggregation section or the combination of the charging aggregation section and the filter are provided, an energy efficient system configuration cannot be realized and it is difficult to make the apparatus compact.

更に、自動車に搭載されたエンジンの排気ガスを対象とする場合には、自動車のエンジンの運転条件は、アイドリングから高負荷・高回転までさまざまな条件に変化するので、自動車用の排気ガス後処理装置には、これらのすべての運転条件で効率的にPMを浄化する性能が要求される。   Furthermore, when the exhaust gas of an engine mounted on a car is targeted, the operating condition of the car engine varies from idling to high load / high rotation. The apparatus is required to have the ability to efficiently purify PM under all these operating conditions.

しかしながら、排気ガス温度が低く、フィルタで捕集したSootを酸化することができない状態が長時間継続するような場合には、フィルタをSootの自己燃焼開始温度以上に昇温して、捕集したSootを燃焼除去する等のフィルタの再生操作が必要となる。   However, when the exhaust gas temperature is low and the state where the soot collected by the filter cannot be oxidized continues for a long time, the temperature of the filter is raised to the self-combustion start temperature of the soot and collected. It is necessary to regenerate the filter such as burning and removing the soot.

この再生操作では、通常、特に連続再生式のフィルタでは、フィルタの再生時に、フィルタを昇温するために、内燃機関のシリンダ内へのポスト噴射等の燃料噴射制御による、フィルタ再生用の排気ガスの昇温を行う場合が多いが、この場合は高温の排気ガスにより放電部の温度が高くなってコロナ放電が不安定化するという問題がある。   In this regeneration operation, particularly in a continuous regeneration type filter, exhaust gas for filter regeneration by fuel injection control such as post injection into the cylinder of the internal combustion engine in order to raise the temperature of the filter during regeneration of the filter. However, in this case, there is a problem that the corona discharge becomes unstable because the temperature of the discharge part is increased by the high-temperature exhaust gas.

この放電の不安定化を回避するために、再生制御時に放電部への通電を停止すると、電気凝集装置の浄化作用を利用できなくなるので、目の粗いフィルタを使用した場合にはPMを捕集できず、排気ガス処理装置の下流側にPMが流出するという問題がある。   In order to avoid this destabilization of the discharge, if the energization to the discharge part is stopped during the regeneration control, the purification action of the electrocoagulation device cannot be used. Therefore, when a coarse filter is used, PM is collected. There is a problem that PM cannot flow out to the downstream side of the exhaust gas treatment device.

また、排気ガスの昇温により、排気ガス量が多くなって流速が速くなるので、電気集塵装置における再飛散が起こり易くなり、PMが流出し易くなる。   Moreover, since the exhaust gas amount increases and the flow rate increases due to the temperature rise of the exhaust gas, re-scattering in the electrostatic precipitator tends to occur, and PM tends to flow out.

従って、放電の安定化と排気ガス流量(流速)の安定化を同時に図ることにより、再飛散などによりPMが下流側に流出しないようにすることが必要となり、これを考慮したフィルタの再生のための制御が必要となる。   Therefore, it is necessary to stabilize the discharge and the exhaust gas flow rate (flow velocity) at the same time so that the PM does not flow downstream due to re-scattering, etc. Control is required.

一方、発明者らは、静電捕集部のSootの捕集性能の経時劣化特性が、排気ガス流量で変化することを見出し、次のような知見を得た。   On the other hand, the inventors have found that the temporal degradation characteristic of the collection performance of the soot of the electrostatic collection section changes with the exhaust gas flow rate, and obtained the following knowledge.

つまり、自動車の内燃機関の排気ガスを対象とする場合は、排気ガスの流量が回転数と負荷の変化に応じて変化するので、実際の運用時には、回転数と負荷のダイナミックな変化に応じて排気ガスの流量もダイナミックに変化する。そして、高回転数、高負荷で排気ガス流量が多い領域では、静電捕集部の再飛散現象が発生し易く、比較的短時間で静電捕集部出口のPM浄化性能が劣化するため、後段にフィルタを配置して再飛散粒子を捕捉する必要がある。   In other words, when the exhaust gas of an internal combustion engine of an automobile is targeted, the flow rate of the exhaust gas changes according to changes in the rotation speed and the load. Therefore, during actual operation, according to the dynamic change in the rotation speed and the load. The exhaust gas flow rate also changes dynamically. And, in a region where the exhaust gas flow rate is high at a high rotational speed and high load, the re-scattering phenomenon of the electrostatic collector is likely to occur, and the PM purification performance at the outlet of the electrostatic collector is deteriorated in a relatively short time. It is necessary to arrange a filter in the subsequent stage to capture the re-scattered particles.

一方、低回転数、低負荷で排気ガス流量が少ない領域では、静電捕集部の再飛散現象が発生し難く、後段にフィルタを配置しなくても、比較的長時間にわたって高い浄化性能を維持できる。
特開平11−165095号公報 特開2000−176313号公報 特開昭59−85415号公報 特開昭56−15852号公報
On the other hand, in a region where the exhaust gas flow rate is low at a low rotational speed and low load, the re-scattering phenomenon of the electrostatic collector is unlikely to occur, and high purification performance can be achieved over a relatively long period of time without a filter being placed downstream. Can be maintained.
JP-A-11-165095 JP 2000-176313 A JP 59-85415 A JP 56-15852 A

本発明は、上記の知見を得て、上記の問題を解決するためになされたものであり、その目的は、コロナ放電による凝集機能及び集塵機能とフィルタの集塵機能を用いて、ガス中の超微小粒子を凝集肥大化して捕集する車両搭載可能な排気ガス処理装置において、コンパクトで比較的シンプルな構成と比較的簡単な再生制御で、フィルタ再生時における浄化率の低下やPMの暴走燃焼を回避しながら、熱効率よくフィルタを再生できる排気ガス処理装置及び排気ガス処理方法を提供することにある。   The present invention has been made in order to obtain the above knowledge and solve the above problems, and its purpose is to use an agglomeration function and a dust collection function by corona discharge and a filter dust collection function, thereby In a vehicle-mounted exhaust gas treatment system that collects and collects fine particles by agglomeration, a compact, relatively simple configuration and relatively simple regeneration control reduce the purification rate and runaway PM during filter regeneration. It is an object of the present invention to provide an exhaust gas processing apparatus and an exhaust gas processing method capable of regenerating a filter efficiently while avoiding the above.

上記のような目的を達成するための排気ガス処理装置は、集塵電極とコロナ電極とを有し、内燃機関の排気ガス中の捕集対象成分をコロナ放電により帯電させて凝集すると共に一時的に捕集する帯電凝集部と、該凝集させた成分を捕集するフィルタ部と、該フィルタ部をバイパスするバイパス通路と、排気ガスの少なくとも大部分の流れを前記フィルタ部と前記バイパス通路とに切り換える流路切換手段を有し、内燃機関の回転数が所定の回転数以下でかつ負荷が所定の負荷以下の場合に、前記帯電凝集部でコロナ放電を行うことにより捕集対象成分を前記帯電凝集部で一時的に捕集しながら、排気ガスの少なくとも大部分の流れを前記バイパス通路に切り換えるように構成される。 An exhaust gas treatment apparatus for achieving the above object has a dust collecting electrode and a corona electrode, and the components to be collected in the exhaust gas of the internal combustion engine are aggregated by being charged by corona discharge and temporarily aggregated. A charging and aggregating part that collects in the filter, a filter part that collects the agglomerated component, a bypass passage that bypasses the filter part, and a flow of at least most of the exhaust gas to the filter part and the bypass passage. A flow path switching means for switching, and when the rotational speed of the internal combustion engine is equal to or lower than a predetermined rotational speed and the load is equal to or lower than the predetermined load, the charging target component is charged by performing corona discharge in the charging aggregation section. It is configured to switch the flow of at least the most part of the exhaust gas to the bypass passage while temporarily collecting at the aggregating portion .

上記の排気ガス浄化装置において、前記フィルタ部を再生するための再生手段を有すると共に、排気ガスの少なくとも大部分の流れを前記バイパス通路に切り換えている時に、前記帯電凝集部でコロナ放電を行いながら、前記再生手段により前記フィルタ部の再生処理をするように構成する。   In the exhaust gas purifying apparatus described above, while having a regenerating means for regenerating the filter part, while switching at least the most flow of the exhaust gas to the bypass passage, The regeneration unit performs the regeneration process of the filter unit.

上記の排気ガス浄化装置において、前記フィルタ部を連続再生式のフィルタで形成すると共に、排気ガスの温度が前記フィルタ部の再生が可能な所定の温度よりも高い時には、排気ガスの少なくとも大部分の流れを前記バイパス通路に切り換えず、排気ガスの温度が前記フィルタ部の再生が可能な所定の温度よりも低く、かつ、内燃機関の負荷が所定の負荷以下である時には、排気ガスの少なくとも大部分の流れを前記バイパス通路に切り換えるように構成する。   In the exhaust gas purifying apparatus described above, the filter unit is formed by a continuous regeneration type filter, and when the temperature of the exhaust gas is higher than a predetermined temperature at which the filter unit can be regenerated, at least most of the exhaust gas When the flow of the exhaust gas is lower than a predetermined temperature at which the filter unit can be regenerated and the load of the internal combustion engine is equal to or lower than the predetermined load without switching the flow to the bypass passage, at least most of the exhaust gas The flow is switched to the bypass passage.

あるいは、前記フィルタ部を連続再生式のフィルタ以外のフィルタで形成すると共に、排気ガスの温度が前記フィルタ部に捕集された捕集対象成分の自己着火可能な温度よりも高い時には、排気ガスの少なくとも大部分の流れを前記バイパス通路に切り換えず、排気ガスの温度が前記自己着火可能な温度よりも低く、かつ、内燃機関の負荷が所定の負荷以下である時には、排気ガスの少なくとも大部分の流れを前記バイパス通路に切り換えるように構成する。   Alternatively, when the filter unit is formed of a filter other than a continuous regeneration type filter and the temperature of the exhaust gas is higher than the temperature at which the component to be collected collected by the filter unit can self-ignite, When at least most of the flow is not switched to the bypass passage, the temperature of the exhaust gas is lower than the temperature at which self-ignition is possible, and the load of the internal combustion engine is equal to or lower than a predetermined load, at least most of the exhaust gas The flow is switched to the bypass passage.

また、上記の排気ガス処理装置において、前記フィルタ部を連続再生式のフィルタ以外のフィルタで形成すると共に、前記排気ガスの少なくとも大部分の流れを前記バイパス通路に切り換えている時に、前記再生のための再生手段により、前記フィルタ部を加熱するように構成する。   Further, in the above exhaust gas processing apparatus, the filter unit is formed by a filter other than a continuous regeneration type filter, and when the flow of at least most of the exhaust gas is switched to the bypass passage, the regeneration is performed. The filter unit is configured to be heated by the regenerating unit.

そして、更に、上記の排気ガス処理装置において、前記フィルタ部の下流側の流路と前記バイパス通路とが合流する合流部分より下流側に酸化触媒を設けて構成すると、この酸化触媒により、ガス化したまま帯電凝集部とフィルタ部を通過してきたSOF等の蒸発成分を分解することができる。そのため、再生時も含めて、エンジンの全運転領域において、ガス化したままの成分も下流側に配置した酸化触媒で浄化できる。   Further, in the above exhaust gas treatment device, when an oxidation catalyst is provided downstream from the joining portion where the flow path on the downstream side of the filter unit and the bypass passage are merged, gasification is performed by the oxidation catalyst. It is possible to decompose the evaporation component such as SOF that has passed through the charging and aggregating portion and the filter portion. Therefore, the gasified component can be purified by the oxidation catalyst disposed on the downstream side in the entire operation region of the engine including the regeneration.

また、上記の排気ガス処理装置において、前記帯電凝集部で排気ガスを冷却するように構成する。これにより、排気ガス中のSOF等の蒸発成分を凝結及び液化することができ、この液化した成分の粘着性によりSoot等の微小粒子成分を非常に効率良く凝集できる。   Further, the exhaust gas processing apparatus is configured such that the exhaust gas is cooled by the charging and aggregating unit. Thereby, evaporation components such as SOF in the exhaust gas can be condensed and liquefied, and fine particle components such as Soot can be aggregated very efficiently due to the adhesiveness of the liquefied components.

この所定の回転数以下かつ所定の負荷以下の内燃機関の運転状態とは、コロナ放電が安定化し、また、帯電凝集部において排気ガス中のPM等の捕集対象成分が凝集すると共に、帯電凝集部に捕集された捕集対象成分が殆ど再飛散しない程度の排気ガス流量となるような内燃機関の運転状態のことをいう。以下、この状態の運転領域のことを「再生処理用運転領域」ということにする。   The operating state of the internal combustion engine below the predetermined rotational speed and below the predetermined load is that the corona discharge is stabilized, and the collection target component such as PM in the exhaust gas is aggregated in the charging aggregation section, and the charging aggregation is performed. The operation state of the internal combustion engine is such that the exhaust gas flow rate is such that the collection target component collected in the portion hardly rescatters. Hereinafter, the operation region in this state is referred to as a “regeneration processing operation region”.

この所定の回転数と所定の負荷で決まる再生処理用運転領域の具体的な範囲は、内燃機関の機種によって排気ガスの状態が異なるため、また、フィルタ部におけるPM等の捕集対象成分の自己燃焼可能な温度によっても再生が不要となる排気ガス温度が異なるため、一律に決定することは困難であるが、エンジンの機種毎又は個々のエンジン毎に決まるので、予め実験などにより、これらの数値を求めておいて制御装置に入力しておき、判定前までにこれらの入力データから算出するように構成することができる。   The specific range of the regeneration processing operation region determined by the predetermined rotational speed and the predetermined load is different in the state of exhaust gas depending on the model of the internal combustion engine. Since the exhaust gas temperature at which regeneration is not required varies depending on the combustible temperature, it is difficult to determine it uniformly, but it is determined for each engine model or for each individual engine. Can be calculated and input from the input data before determination.

また、このフィルタ部としては、目の粗いフィルタだけでなく、触媒を担持した連続再生式のフィルタや触媒を担持しない非連続再生式のフィルタ等も用いることができる。   Further, as the filter unit, not only a coarse filter but also a continuous regeneration type filter carrying a catalyst or a non-continuous regeneration type filter not carrying a catalyst can be used.

連続再生式のフィルタの場合には、排気ガス温度がフィルタ部の再生が可能な所定の温度(例えば、350℃程度)以上では、触媒作用によりPMのSoot等の捕集対象成分を酸化できるので、捕集対象成分の自己燃焼可能な温度範囲が広くなる。そのため、再生領域が広くなり、再生処理用運転領域を狭く設定することができる。   In the case of a continuous regeneration type filter, if the exhaust gas temperature is equal to or higher than a predetermined temperature (for example, about 350 ° C.) at which the filter unit can be regenerated, catalytic components can oxidize collection target components such as PM soot. The temperature range in which the collection target component can self-combust is widened. Therefore, the regeneration area is widened, and the regeneration processing operation area can be set narrow.

一方、非連続再生式のフィルタの場合には、PMが自己燃焼できる温度、即ち、自己着火可能な温度(例えば、500℃程度)以上の再生領域では、フィルタ部における捕集対象成分の蓄積は生じないが、それ以下では捕集対象成分の蓄積が生じ、強制的に再生処理する必要があるため、再生処理用運転領域が、連続再生式のフィルタを使用する場合よりも広くなる。しかし、再生処理用運転領域が広くなっても、触媒を担持していないので、再生処理時に捕集対象成分の燃焼によってフィルタが高温になって触媒が劣化することに対する対策が不要となるというメリットがある。   On the other hand, in the case of a non-continuous regeneration type filter, in the regeneration region at a temperature at which PM can self-combust, that is, a temperature at which self-ignition is possible (for example, about 500 ° C.) or higher, Although it does not occur, accumulation of the components to be collected occurs below this, and it is necessary to forcibly regenerate, so the operation region for regeneration processing becomes wider than when a continuous regeneration type filter is used. However, even if the operation area for regeneration treatment is wide, it does not carry a catalyst, so that it is not necessary to take measures against the deterioration of the catalyst due to the high temperature of the filter due to combustion of the components to be collected during regeneration treatment. There is.

この排気ガス浄化装置においては、内燃機関の運転状態が高回転運転状態や高負荷運転状態の非再生処理用運転領域の場合には、排気ガスの大部分がフィルタ部に流れるように切り換えて、コロナ放電を行っている帯電凝集部とフィルタ部で、排気ガス中のPM等の捕集対象成分を捕集する。この時、帯電凝集部で凝集肥大化しながら静電捕集されたSoot等の固体粒子は、排気ガスの流れによって剥がれて再飛散するが、この再飛散粒子は、後段のフィルタ部で捕集される。そのため、高い浄化率を維持できる。   In this exhaust gas purification device, when the operation state of the internal combustion engine is a high-revolution operation state or a high-load operation state non-regeneration treatment operation region, switching so that most of the exhaust gas flows to the filter unit, The charging target part such as PM in the exhaust gas is collected by the charge aggregation part and the filter part that perform corona discharge. At this time, solid particles such as soot that are electrostatically collected while agglomerating and agglomerating in the charged agglomerated part are peeled off and re-scattered by the flow of the exhaust gas, but the re-scattered particles are collected in the subsequent filter part. The Therefore, a high purification rate can be maintained.

一方、内燃機関の運転状態が低回転かつ低負荷運転状態の再生処理用運転領域の場合には、排気ガスの大部分がバイパス通路に流れるように切り換えて、コロナ放電を行っている帯電凝集部のみで、排気ガス中のPM等の捕集対象成分を捕集する。この時、排気ガス中に含まれる捕集対象成分も少なく、また、排気ガスの量も少ないので、捕集対象成分は帯電凝集部に捕集されたまま、再飛散しない。そのため、排気ガスの大部分をフィルタ部をバイパスさせても、浄化率は低下しないので、高い浄化率を維持できる。   On the other hand, when the operating state of the internal combustion engine is a low-revolution and low-load operating state for the regeneration process, the charging agglomeration unit that performs corona discharge by switching so that most of the exhaust gas flows to the bypass passage Only the components to be collected such as PM in the exhaust gas are collected. At this time, since the collection target component contained in the exhaust gas is small and the amount of the exhaust gas is small, the collection target component is not re-scattered while being collected in the charged aggregation portion. Therefore, even if most of the exhaust gas is bypassed through the filter portion, the purification rate does not decrease, so that a high purification rate can be maintained.

そして、内燃機関の運転状態が高回転運転状態や高負荷運転状態で、フィルタ部における捕集対象成分の捕集量が所定の捕集限界量(閾値)になっていない時は、フィルタ部の再生処理を特に行う必要がないので、そのまま、運転が継続される。なお、この捕集量はフィルタ部の前後差圧等から推定することができる。   When the operation state of the internal combustion engine is a high rotation operation state or a high load operation state, and the collection amount of the collection target component in the filter unit is not the predetermined collection limit amount (threshold value), Since it is not necessary to perform the regeneration process in particular, the operation is continued as it is. In addition, this collection amount can be estimated from the differential pressure before and after the filter section.

このフィルタ部で捕集された捕集対象成分は、回転数と負荷が高くなって排気ガスの温度が500℃程度にまで高くなると燃焼除去される。しかし、内燃機関の運転状態が再生処理用運転領域にならずに、また、排気ガスの温度がフィルタ部に捕集された捕集対象成分が燃焼を開始する温度(例えば500℃程度)に到達することなく、この高回転運転状態や高負荷運転状態が継続し、フィルタ部における捕集対象成分の捕集量が所定の捕集限界量(閾値)になってしまった時には、内燃機関の運転状態が再生処理用運転領域に移行するまで、あるいは、排気ガスが500℃程度以上になって自己燃焼による再生が行われるまでの間、できるだけ長く再生処理を待つが、フィルタ部が捕集可能な最終的な限界を超えた場合には、フィルタ部の再生処理を行ってもよい。この再生処理は、再生用の再生手段等によりフィルタ部を加熱し、捕集対象成分を燃焼除去する。   The collection target component collected by the filter unit is burned and removed when the rotation speed and load increase and the temperature of the exhaust gas rises to about 500 ° C. However, the operation state of the internal combustion engine does not become the operation region for regeneration processing, and the temperature of the exhaust gas reaches the temperature (for example, about 500 ° C.) at which the collection target component collected by the filter unit starts combustion. When the high rotation operation state and the high load operation state continue without being performed and the collection amount of the collection target component in the filter unit reaches a predetermined collection limit amount (threshold), the operation of the internal combustion engine is performed. Until the state shifts to the operation region for regeneration processing or until the regeneration is performed by self-combustion when the exhaust gas reaches about 500 ° C. or more, the regeneration processing is waited for as long as possible, but the filter section can be collected. When the final limit is exceeded, the filter unit may be regenerated. In this regeneration process, the filter unit is heated by a regeneration means for regeneration and the components to be collected are burned and removed.

この再生処理では排気ガスの温度が比較的高いので、僅かな熱の追加で再生処理できるので、ヒータ加熱の場合には消費電力が少なくて済む。この再生処理は、帯電凝集部ではコロナ放電を行いながら実施され、排気ガス中の捕集対象成分は帯電凝集部とフィルタ部に捕集される。   In this regeneration process, since the temperature of the exhaust gas is relatively high, the regeneration process can be performed by adding a small amount of heat. Therefore, in the case of heater heating, less power is consumed. This regeneration process is performed while performing corona discharge in the charge aggregation portion, and the collection target component in the exhaust gas is collected in the charge aggregation portion and the filter portion.

そして、内燃機関の運転状態が再生処理用運転領域に移行した場合には、次のように、フィルタ部の再生処理が行われる。   When the operating state of the internal combustion engine shifts to the regeneration processing operation region, the regeneration processing of the filter unit is performed as follows.

先ず、内燃機関の運転状態が高回転運転状態や高負荷運転状態において、フィルタ部の再生処理を開始した後に再生処理用運転領域の運転状態になった場合は、流路切換手段により排気ガスの少なくとも大部分の流れをバイパス通路に切り換えると共に、再生処理用の再生手段によるフィルタ部の加熱を継続し、捕集対象成分を燃焼除去してフィルタ部の再生処理を継続実施する。なお、この再生処理は、帯電凝集部ではコロナ放電を行いながら実施され、排気ガス中の捕集対象成分は帯電凝集部に捕集される。   First, when the operation state of the internal combustion engine is a high rotation operation state or a high load operation state and the operation state of the regeneration processing operation region is started after starting the regeneration processing of the filter unit, the exhaust gas is While at least most of the flow is switched to the bypass passage, the heating of the filter unit by the regeneration means for regeneration process is continued, the component to be collected is burned and removed, and the regeneration process of the filter unit is continued. This regeneration process is performed while performing corona discharge in the charge aggregation section, and the collection target component in the exhaust gas is collected in the charge aggregation section.

この再生処理用運転領域におけるフィルタ部の再生処理では、大部分の排気ガスの流れをフィルタ部をバイパスさせることにより、フィルタ部の熱が排気ガスによって奪われることを防止できるので、熱効率よく再生処理でき、消費電力を低減できる。また、排気ガスによって供給される酸素量が少ないので、熱暴走も防止できる。   In the regeneration process of the filter part in this regeneration process operation region, the heat of the filter part can be prevented from being taken away by the exhaust gas by bypassing the filter part of the flow of most of the exhaust gas. And power consumption can be reduced. Moreover, since the amount of oxygen supplied by the exhaust gas is small, thermal runaway can be prevented.

また、フィルタ部の再生処理を加熱ではなく、機械機構による払い落としで行う場合でも、払い落とした捕集対象成分が排気ガスの主流中に再飛散することが無い。   Further, even when the regeneration process of the filter unit is performed not by heating but by removal by a mechanical mechanism, the collected component to be collected does not rescatter in the main flow of exhaust gas.

次に、フィルタ部の再生処理を行っていない状態で、内燃機関の運転状態が高回転運転状態や高負荷運転状態から再生処理用運転領域の運転状態になった場合は、流路切換手段により排気ガスの少なくとも大部分の流れをバイパス通路に切り換える。   Next, when the operation state of the internal combustion engine is changed from the high rotation operation state or the high load operation state to the operation state of the regeneration processing region without performing the regeneration processing of the filter unit, the flow path switching means Switch at least most of the flow of exhaust gas to the bypass passage.

そして、フィルタ部における捕集対象成分の捕集量が所定の捕集限界量(閾値)になっていなくても、再生処理用の再生手段によりフィルタ部を加熱し、捕集対象成分を燃焼除去してフィルタ部の再生処理を実施する。そして、この再生処理は、捕集された捕集対象成分が燃焼除去された時点で終了される。   And even if the collection amount of the collection target component in the filter unit does not reach the predetermined collection limit amount (threshold value), the filter unit is heated by the regeneration means for the regeneration process, and the collection target component is burned and removed. Then, regeneration processing of the filter unit is performed. And this regeneration process is complete | finished when the collected collection target component is burned and removed.

このフィルタ部の再生を終了するタイミングは、捕集対象成分の酸化が終了した時であり、具体的には、フィルタ部の下流側の排気ガスの酸素濃度が上昇した時、又は、フィルタ部の下流側の排気ガス温度が低下し始めた時等が考えられる。このタイミングはフィルタ部の下流側に配置した酸素濃度センサや排気ガス温度センサの出力値から検出することができる。   The timing for completing the regeneration of the filter unit is when the oxidation of the components to be collected is completed. Specifically, when the oxygen concentration of the exhaust gas downstream of the filter unit is increased, or A case where the exhaust gas temperature on the downstream side starts to decrease may be considered. This timing can be detected from an output value of an oxygen concentration sensor or an exhaust gas temperature sensor arranged on the downstream side of the filter unit.

この再生処理の実施により、フィルタ部に捕集されている捕集対象成分を除去して、次に内燃機関の運転状態が高回転運転状態や高負荷運転状態、即ち、非再生処理用運転領域になった時に、帯電凝集部から再飛散してくる捕集対象成分を十分にフィルタ部で捕集できるようになる。また、非再生処理用運転領域におけるフィルタ部の再生処理の回数や時間を著しく少なくすることができる。   By carrying out this regeneration process, the collection target component collected in the filter unit is removed, and then the operation state of the internal combustion engine is a high rotation operation state or a high load operation state, that is, a non-regeneration process operation region. Then, it becomes possible to sufficiently collect the component to be collected, which is re-scattered from the charged aggregation portion, with the filter portion. In addition, the number and time of the regeneration processing of the filter unit in the non-regeneration processing operation region can be significantly reduced.

また、この再生処理用運転状態では、フィルタ部の再生処理中も再生処理終了後も、帯電凝集部ではコロナ放電を行っているので、排気ガス中の捕集対象成分は帯電凝集部に捕集される。   Further, in this operation state for the regeneration process, since the charging aggregation unit performs corona discharge both during and after the regeneration process of the filter unit, the collection target component in the exhaust gas is collected in the charging aggregation unit. Is done.

なお、このフィルタ部の再生処理を行っていない状態で、非再生処理用運転状態から再生処理用運転領域に移行した場合において、制御を単純化するために、フィルタ部における捕集対象成分の捕集量に関係なく、再生処理を必ず行うようにしてもよいが、再生処理に伴う加熱用電力の低減を図るために、前回の再生処理から非再生処理用運転領域の運転状態が所定の時間を超えた場合や、再生処理用運転領域に移行した時のフィルタ部における捕集対象成分の捕集量が所定の再生処理開始量(閾値)を超えていた場合のみ再生処理を行うように構成してもよい。なお、この所定の再生処理開始量(閾値)は、所定の捕集限界量(閾値)より小さく設定される。   In addition, when the regeneration process of the filter unit is not performed and the operation state is shifted from the non-regeneration process operation state to the regeneration process operation region, in order to simplify the control, the filter unit captures the collection target component. Regardless of the amount of collection, the regeneration process may be performed without fail, but in order to reduce the heating power associated with the regeneration process, the operation state in the non-regeneration process operation region has changed from the previous regeneration process to a predetermined time. Is configured to perform the regeneration process only when the amount of collection of the collection target component in the filter unit exceeds the predetermined regeneration process start amount (threshold value) when exceeding the regeneration processing operation region May be. The predetermined regeneration processing start amount (threshold value) is set smaller than the predetermined collection limit amount (threshold value).

また、このフィルタ部を再生するための再生手段としては、フィルタを直接加熱する電気ヒーターやフィルタを加熱する高温ガスを供給するバーナー等による外部加熱方式の手段や、捕集対象成分が溜まってくると隣接して設けた電極間の隙間が埋まり、両電極間で電気が短絡し、この短絡により発生した火花で捕集対象成分の自己燃焼を開始させる電気ショート方式の手段等を用いることができる。   In addition, as a regeneration means for regenerating the filter unit, an external heating method means such as an electric heater for directly heating the filter, a burner for supplying a high-temperature gas for heating the filter, or a component to be collected is accumulated. A gap between the electrodes provided adjacent to each other is filled, electricity is short-circuited between both electrodes, and an electric short-type means for starting self-combustion of the component to be collected by a spark generated by this short-circuit can be used. .

この排気ガスの流路切換手段は、切換弁等の切換や幾つかの開閉弁で構成するが、排気ガスの主な流れをバイパス通路に切り換えた場合に、フィルタ部への排気ガスの流入を完全に止めることなく、フィルタ部への排気ガスの流路に対しては、切換弁又は開閉弁を閉じた時でも隙間が開くように形成して、少量の排気ガスがフィルタ部に流れるように構成し、捕集対象成分の暴走燃焼を防止するために、フィルタ部に対する捕集対象成分の酸化用の酸素の適正量の供給と、フィルタ部の冷却を行う。これにより、フィルタ部の焼損や溶損を防止するだけでなく、触媒を担持している場合はその触媒の熱劣化を防止する。   This exhaust gas flow path switching means is constituted by switching of a switching valve or the like and several on-off valves. However, when the main flow of exhaust gas is switched to the bypass passage, the exhaust gas flows into the filter section. Without stopping completely, the exhaust gas flow path to the filter part is formed so that a gap is opened even when the switching valve or on-off valve is closed so that a small amount of exhaust gas flows to the filter part. In order to prevent the runaway combustion of the collection target component, supply of an appropriate amount of oxygen for oxidation of the collection target component to the filter unit and cooling of the filter unit are performed. This not only prevents burning and melting of the filter part, but also prevents thermal deterioration of the catalyst when it is supported.

そして、上記のような目的を達成するための排気ガス処理方法は、集塵電極とコロナ電極とを有し、内燃機関の排気ガス中の捕集対象成分をコロナ放電により帯電させて凝集すると共に一時的に捕集する帯電凝集部と、該凝集させた成分を捕集するフィルタ部と、該フィルタ部をバイパスするバイパス通路と、排気ガスの少なくとも大部分の流れを前記フィルタ部と前記バイパス通路とに切り換える流路切換手段を有する排気ガス処理装置において、内燃機関の回転数が所定の回転数以上又は負荷が所定の負荷以上の場合に、排気ガスの少なくとも大部分の流れを前記フィルタ部に切り換えて、前記フィルタ部で粒子状の捕集対象成分を蓄積し、内燃機関の回転数が所定の回転数以下でかつ負荷が所定の負荷以下の場合に、前記帯電凝集部でコロナ放電を行うことにより捕集対象成分を前記帯電凝集部で一時的に捕集しながら、排気ガスの少なくとも大部分の流れを前記バイパス通路に切り換えて、排気ガスの主流から前記フィルタ部を切り離し、前記フィルタ部の再生処理を行うことを特徴とする。 The exhaust gas treatment method for achieving the above object, and a dust collecting electrode and the corona electrode, the collecting target component in the exhaust gas of an internal combustion engine as well as aggregate is charged by corona discharge A charging and aggregating part that temporarily collects, a filter part that collects the agglomerated component, a bypass passage that bypasses the filter part, and at least most of the flow of exhaust gas in the filter part and the bypass passage In the exhaust gas processing apparatus having the flow path switching means for switching to the above, when the rotational speed of the internal combustion engine is equal to or higher than the predetermined speed or the load is equal to or higher than the predetermined load, at least most of the flow of the exhaust gas flows to the filter unit. switched, the particulate collecting target component accumulated in the filter unit, when the rotation speed of the internal combustion engine and equal to or less than the predetermined rotation speed load is below a predetermined load, in the charging aggregation unit While temporarily collected by the charging aggregation unit collected target component by performing corona discharge, by switching the flow of at least a majority of the exhaust gas to the bypass passage, disconnecting the filter unit from the main flow of exhaust gas The reproduction processing of the filter unit is performed.

つまり、本発明では、エンジン回転数と負荷に応じて、排気ガス流量が多い非再生処理用運転領域では帯電凝集部の後段のフィルタ部に排気ガスの大部分を流して、フィルタ部で粒子状の捕集対象成分を蓄積し、排気ガス流量が少ない再生処理用運転領域では、静電捕集の機能も有する帯電凝集部で粒子状の捕集対象成分を十分に捕捉させながら、排気ガスの大部分をバイパス通路に流して、排気ガスの主流からフィルタ部を切り離して、フィルタ部の再生処理を行うように構成する。   In other words, according to the present invention, in the non-regeneration treatment operation region where the exhaust gas flow rate is high, most of the exhaust gas is allowed to flow through the filter unit downstream of the charge aggregation unit in accordance with the engine speed and load, In the regeneration operation area where the exhaust gas flow rate is low and the exhaust gas flow rate is low, the charged agglomeration part, which also has the function of electrostatic Most of the gas is passed through the bypass passage, and the filter unit is separated from the main flow of the exhaust gas so that the regeneration process of the filter unit is performed.

この構成により、再生時にフィルタ部を排気ガスの主流から切り離せるため、ヒータ加熱で再生する場合には、熱を排気ガスに奪われることがないので、熱効率が良くなり消費電力が低減する。また、フィルタ部を払い落としで再生する場合でも、排気ガス流が殆ど無いので、払い落とした捕集対象成分が排気ガス中に再飛散することが殆ど無い。従って、帯電凝集部やフィルタ部を2系統設ける必要が無く、コンパクトな装置で高い浄化性能を得ることができる。   With this configuration, the filter unit can be separated from the main flow of exhaust gas at the time of regeneration. Therefore, when regenerating by heater heating, heat is not lost to the exhaust gas, so that thermal efficiency is improved and power consumption is reduced. In addition, even when the filter part is regenerated by scraping off, there is almost no exhaust gas flow, so that the trapped component to be collected is hardly scattered again in the exhaust gas. Therefore, it is not necessary to provide two systems for charging and aggregating sections and filter sections, and high purification performance can be obtained with a compact apparatus.

また、エンジン回転数と負荷が低い時に帯電凝集部に溜め込まれた捕集対象成分は、エンジン回転数と負荷が高くなった時に再飛散してフィルタ部に捕捉され、エンジン回転数と負荷が高く、排気ガス温度が500℃程度まで高くなる領域では燃焼除去される。   In addition, when the engine speed and load are low, the target components collected in the charging and aggregating part are scattered again and captured by the filter part when the engine speed and load are high, resulting in high engine speed and load. In the region where the exhaust gas temperature rises to about 500 ° C., it is removed by combustion.

そして、下流側のフィルタ部に溜め込まれた捕集対象成分は、エンジン回転数と負荷が低い場合には、上記のような熱再生処理等により効果的に再生できる。また、エンジン回転数と負荷が高い場合には、排気ガスの大部分が流通しているので、排気ガス温度が捕集対象成分の自己着火可能な温度(500℃程度)にまで高くなる時には特に加熱せずとも燃焼除去が可能となる。また、排気ガスの温度が比較的高い時は、僅かなヒータ電力で自己着火可能な温度まで追加熱することも可能となる。   And the collection object component stored in the filter part of the downstream side can be effectively regenerated by the above heat regeneration process or the like when the engine speed and load are low. Further, when the engine speed and load are high, most of the exhaust gas circulates. Therefore, especially when the exhaust gas temperature rises to a temperature (about 500 ° C.) at which the components to be collected can self-ignite. Combustion removal is possible without heating. Further, when the temperature of the exhaust gas is relatively high, it is possible to perform additional heating to a temperature at which self-ignition can be performed with a slight heater power.

なお、既存のDPFを備えた排気ガス処理装置に、帯電凝集部や必要に応じてフィルタ部を昇温するための再生手段と本発明の制御方法を追設することで、本発明の排気ガス処理装置とすることができる。   In addition, the exhaust gas processing apparatus provided with the existing DPF is additionally provided with a regeneration means for raising the temperature of the charge aggregation part and, if necessary, the filter part and the control method of the present invention. It can be a processing device.

本発明の排気ガス処理装置及び排気ガス処理方法によれば、次のような効果を奏することができる。   According to the exhaust gas processing apparatus and the exhaust gas processing method of the present invention, the following effects can be obtained.

フィルタ部の再生を、内燃機関の運転状態が、内燃機関の回転数が所定の回転数以下でかつ負荷が所定の負荷以下の場合の、再生処理用運転領域の運転状態にある時に、排気ガスの少なくとも大部分をバイパス通路に切り換えて実施するので、フィルタ再生処理用の熱が排気ガスによって奪われることが無く、熱効率よくフィルタ部の再生処理を行うことができ、ヒータ加熱等による消費電力を低減することができる。   When the operating state of the internal combustion engine is in the operating state of the regeneration processing operation region when the rotational speed of the internal combustion engine is equal to or lower than the predetermined rotational speed and the load is equal to or lower than the predetermined load, the filter unit is regenerated. Since at least most of this is performed by switching to the bypass passage, the heat for filter regeneration processing is not taken away by the exhaust gas, and the regeneration of the filter portion can be performed with high thermal efficiency. Can be reduced.

しかも、帯電凝集部に流入する排気ガスをフィルタ部の再生処理のために昇温することなく、フィルタ部を再生手段により昇温するので、再生処理時においては、帯電凝集部に流入する排気ガス温度が低く、コロナ放電が安定し凝集及び捕集効率が上昇しており、また、排気ガス流量が少なくて、流速が遅くて再飛散が発生し難くなっていて、フィルタ部による捕集機能を必要としない状態にある。そのため、このフィルタ部の再生処理時に、帯電凝集部を通過した後の排気ガスがフィルタ部をバイパスしても、PM等の捕集対象成分が排気ガス処理装置の下流側に流出することが無く、再生処理時に浄化率が悪化することが無い。   In addition, since the temperature of the filter unit is raised by the regenerating unit without increasing the temperature of the exhaust gas flowing into the charging aggregation unit for the regeneration process of the filter unit, the exhaust gas flowing into the charging aggregation unit during the regeneration process The temperature is low, the corona discharge is stable, the agglomeration and collection efficiency is increased, the exhaust gas flow rate is low, the flow rate is slow, and re-scattering is difficult to occur. It is not necessary. Therefore, even when the exhaust gas after passing through the charging and aggregating part bypasses the filter part during the regeneration process of the filter part, the collection target component such as PM does not flow out to the downstream side of the exhaust gas processing apparatus. The purification rate does not deteriorate during the regeneration process.

そして、フィルタ部を再生処理する時に、排気ガスの少なくとも大部分をバイパス通路に流すので、フィルタ部に流入する酸素量を少なくして、フィルタ部に捕集された捕集対象成分の暴走燃焼を抑制することができる。また、少量の排気ガスをフィルタ部に流すのでフィルタ部を冷却でき、この冷却によっても、フィルタ部の過剰昇温による捕集対象成分の暴走燃焼を抑制できる。   When the filter part is regenerated, at least most of the exhaust gas flows through the bypass passage, so that the amount of oxygen flowing into the filter part is reduced, and runaway combustion of the collection target component collected in the filter part is prevented. Can be suppressed. In addition, since a small amount of exhaust gas is allowed to flow through the filter unit, the filter unit can be cooled, and runaway combustion of the collection target component due to excessive temperature rise of the filter unit can also be suppressed by this cooling.

従って、上記の排気ガス処理装置を採用することにより、エネルギー効率よくフィルタ部を再生処理できると共に、コンパクトかつシンプルな構成で、フィルタ部再生処理時における浄化率の低下の問題やフィルタ部の焼損や溶損や担持触媒の劣化の問題も解決することができる。   Therefore, by adopting the above exhaust gas treatment device, it is possible to regenerate the filter part in an energy efficient manner, and with a compact and simple configuration, there is a problem of a reduction in the purification rate during the filter part regeneration process, burnout of the filter part, Problems of melting loss and deterioration of the supported catalyst can also be solved.

以下、本発明に係る実施の形態の排気ガス処理装置及び排気ガス処理方法について、ディーゼルエンジンの排気ガスを処理対象ガスとした排気ガス処理装置を例にして、図面を参照しながら説明する。   Hereinafter, an exhaust gas processing apparatus and an exhaust gas processing method according to embodiments of the present invention will be described with reference to the drawings, taking an exhaust gas processing apparatus using exhaust gas of a diesel engine as a processing target gas as an example.

図1に示すように、この排気ガス処理装置1は、排気ガス中の捕集対象成分であるSoot成分をコロナ放電により帯電させて凝集する帯電凝集部10を上流側に、この凝集させた成分を捕集するフィルタ部20を下流側に備えると共に、このフィルタ部20をバイパスするバイパス通路40を設けて構成される。また、フィルタ部20の下流側で、かつ、バイパス通路40の合流部42より下流側に酸化触媒30を設けて構成される。   As shown in FIG. 1, the exhaust gas treatment apparatus 1 is configured such that the aggregating component 10 is agglomerated by charging a soot component, which is a collection target component in the exhaust gas, by charging with corona discharge to agglomerate. Is provided on the downstream side, and a bypass passage 40 that bypasses the filter unit 20 is provided. Further, the oxidation catalyst 30 is provided on the downstream side of the filter unit 20 and on the downstream side of the joining portion 42 of the bypass passage 40.

つまり、コロナ放電によりSootを粗大化し凝集及び一時的に捕集する帯電凝集部10を前段に、この帯電凝集部10から再飛散する肥大化したSootを捕集するフィルタ部20を中段に、ガス化したままのSOF等の蒸発成分を浄化する酸化触媒30を後段に配置すると共に、フィルタ部20のみをバイパスするバイパス通路40を設ける。   In other words, the charged agglomeration portion 10 that coarsens and aggregates and temporarily collects soot by corona discharge is disposed in the front stage, and the filter portion 20 that collects the enlarged soot re-scattered from the charged agglomeration portion 10 is disposed in the middle stage. An oxidation catalyst 30 that purifies the evaporated component such as SOF that has been converted into a gas is disposed in the subsequent stage, and a bypass passage 40 that bypasses only the filter unit 20 is provided.

このバイパス通路40は、帯電凝集部10とフィルタ部20の間から分岐され、フィルタ部20と酸化触媒30との間の合流部42に合流する。帯電凝集部10とフィルタ部20の間に流路切換手段である切換弁41を設ける。この切換弁41は、排気ガスの流れをフィルタ部20への流れとバイパス通路40への流れとに切り換える役割を持ち、通常は1つの切換弁41で形成するが、複数の開閉弁で構成してもよい。なお、フィルタ部20の再生時において、排気ガスの流れをバイパス通路40に切り換えた場合でも、フィルタ部20への排気ガスの流れを完全に遮断せずに、フィルタ部20に捕集されたPM燃焼のための酸素を供給することができるように、少量の排気ガスが流入するように構成する。   The bypass passage 40 is branched from between the charging and aggregating unit 10 and the filter unit 20, and joins the joining unit 42 between the filter unit 20 and the oxidation catalyst 30. A switching valve 41 serving as a flow path switching unit is provided between the charging aggregation unit 10 and the filter unit 20. The switching valve 41 has a role of switching the flow of the exhaust gas between the flow to the filter unit 20 and the flow to the bypass passage 40, and is normally formed by one switching valve 41, but is constituted by a plurality of on-off valves. May be. Even when the flow of the exhaust gas is switched to the bypass passage 40 at the time of regeneration of the filter unit 20, the PM collected in the filter unit 20 without completely blocking the flow of the exhaust gas to the filter unit 20. A small amount of exhaust gas is introduced so that oxygen for combustion can be supplied.

更に、フィルタ部20の前後差圧を検出する差圧センサ51を設け、更に、フィルタ部20の下流側に酸素濃度センサ52と排気ガス温度センサ53を設ける。これらのセンサ51,52,53の出力は、排気ガス処理装置1の制御装置50に入力される。この制御装置50は、通常はエンジンコントロールユニットと呼ばれるエンジンの制御装置に組み入れられて構成され、帯電凝集部10のコロナ放電の制御やフィルタ部20の再生手段の制御を行う。   Further, a differential pressure sensor 51 for detecting the differential pressure across the filter unit 20 is provided, and an oxygen concentration sensor 52 and an exhaust gas temperature sensor 53 are further provided on the downstream side of the filter unit 20. The outputs of these sensors 51, 52, 53 are input to the control device 50 of the exhaust gas processing device 1. The control device 50 is configured to be incorporated in an engine control device that is usually called an engine control unit, and controls corona discharge of the charge aggregation unit 10 and regeneration means of the filter unit 20.

この帯電凝集部10は、複数、例えば、6本の帯電凝集ユニット11を並列に配置して構成される。この帯電凝集ユニット11は、図2〜図4に示すように、低電圧電極で形成される集塵電極11aと高電圧電極で形成されるコロナ電極11bとを有して構成される。   The charging aggregation unit 10 is configured by arranging a plurality of, for example, six charging aggregation units 11 in parallel. As shown in FIGS. 2 to 4, the charging and aggregating unit 11 includes a dust collecting electrode 11 a formed of a low voltage electrode and a corona electrode 11 b formed of a high voltage electrode.

特に、自動車搭載のエンジンの排気ガスを対象とする場合は、このように、帯電凝集部10は、帯電凝集ユニット11を並列配置した多管構造とするのが好ましい。帯電凝集部10に投入可能な電力はPM捕集能力と大きな関係があるため、エンジンのアイドリングから最高回転速度までの広い運転範囲で帯電凝集部10の機能を十分に発揮させようとすると、単管で長くするか、多管で短くするかのいずれかとなるが、自動車では配置スペースが限られることと、絶縁状態を常時保つのに長いものは強度面及び振動面で不利であるを考慮すると、多管構造が有利となるためである。   In particular, when the exhaust gas of an engine mounted on an automobile is targeted, it is preferable that the charging aggregation unit 10 has a multi-tube structure in which the charging aggregation units 11 are arranged in parallel. Since the electric power that can be input to the charging aggregation unit 10 has a large relationship with the PM collecting ability, if the function of the charging aggregation unit 10 is sufficiently exerted in a wide operating range from idling to the maximum rotation speed of the engine, Either a long tube or a short tube will be used, but in consideration of the limited placement space in automobiles and the disadvantage of long and long to keep the insulation state in terms of strength and vibration. This is because a multi-tube structure is advantageous.

この集塵電極11aは、例えば、SUS304製等の導電性の材料で、円筒状体等の筒状体に形成され、上流側はガス入口室11cに、下流側はガス出口室11dに接続される。この集塵電極である筒状体11aはガス通路の通路壁を兼ねる。この筒状体11aの断面形状としては特に限定されない。コロナ放電の安定性等を考えると円形が好ましいが、正方形等でもよく、特に、コロナ電極11bを複数設ける場合には、楕円形、三角形、長方形、その他の多角形であってもよい。   The dust collecting electrode 11a is made of a conductive material such as SUS304, and is formed in a cylindrical body such as a cylindrical body. The upstream side is connected to the gas inlet chamber 11c and the downstream side is connected to the gas outlet chamber 11d. The The cylindrical body 11a as the dust collecting electrode also serves as a passage wall of the gas passage. The cross-sectional shape of the cylindrical body 11a is not particularly limited. Considering the stability of the corona discharge, a circular shape is preferable, but it may be a square or the like. In particular, when a plurality of corona electrodes 11b are provided, an elliptical shape, a triangular shape, a rectangular shape, or other polygonal shapes may be used.

コロナ電極11bは、電界集中係数の高い電極であればよく、細線電極、角状電極、突起構造付き電極等の線状(ワイヤ状)や棒状等の線状体、例えば、SUS304製の中空ワイヤ等で形成される。そして、筒状体11aの内部、例えば、筒状体の軸心部分等の中央に配置される。また、図4に示すように、筒状体11aの内部に、複数のコロナ電極11bを設けてもよい。   The corona electrode 11b may be an electrode having a high electric field concentration coefficient, and may be a linear body (wire shape) such as a thin wire electrode, a square electrode, or a projection-structured electrode, or a linear body such as a rod, such as a hollow wire made of SUS304. Etc. are formed. And it arrange | positions inside the cylindrical body 11a, for example, the center, such as an axial center part of a cylindrical body. In addition, as shown in FIG. 4, a plurality of corona electrodes 11b may be provided inside the cylindrical body 11a.

この集塵電極11aとコロナ電極11bは互いに碍子等により電気的に絶縁状態にして構成される。この集塵電極11aは電気的に接地(アース)され、接地電位に保たれるが、必要に応じて、別電位に保持される。一方、コロナ電極11bは高圧電源に接続される。この高圧電源で発生し、コロナ電極11bに印加する高電圧は、一般的には、負極性の直流電圧を用いるのが好ましいが、直流、交流、パルス状のいずれであってもよく、また、極性も、負極性でも正極性でもあってもよい。また、電圧は、この筒状体11aとコロナ電極11bとの間を通過する排気ガスG中にコロナ放電を発生できる電圧であればよい。   The dust collection electrode 11a and the corona electrode 11b are configured to be electrically insulated from each other by an insulator or the like. The dust collecting electrode 11a is electrically grounded (grounded) and maintained at the ground potential, but is maintained at another potential as necessary. On the other hand, the corona electrode 11b is connected to a high voltage power source. The high voltage generated by this high-voltage power source and applied to the corona electrode 11b is generally preferably a negative direct-current voltage, but may be any of direct current, alternating current, pulsed, The polarity may be negative or positive. Moreover, the voltage should just be a voltage which can generate | occur | produce a corona discharge in the exhaust gas G which passes between this cylindrical body 11a and the corona electrode 11b.

そして、この筒状体11aの通路壁を冷却壁(ガス冷却部)とし、帯電凝集部10で排気ガスGを冷却できるように構成する。つまりこの筒状体11aの外面側を自然空冷又は強制冷却するように構成する。   And the passage wall of this cylindrical body 11a is used as a cooling wall (gas cooling part), and it is comprised so that the exhaust gas G can be cooled by the charge aggregation part 10. FIG. That is, the outer surface side of the cylindrical body 11a is configured to be naturally air-cooled or forcedly cooled.

この自然空冷においては、筒状体11aの外面を保温したり、筒状体11aを更に、排気ガス処理装置1のケース等の別の筒体(図示しない)で密閉せずに、大気開放状態にしたり、ケースとなる別の筒体を通気孔を設けたものにする等、外気との接触を容易にし、自然対流伝熱が行われ易くする。また、熱放射による冷却効果を促進できるように、周囲の部材の温度を低くしたり、熱伝導による冷却効果を上げるために、低温の熱伝導体と接触させたりする。更に、筒状体11aの外部への放熱を促進する冷却用のフィンを筒状体11aの外面に設けることもできる。この冷却用フィンとしては、例えば、熱交換器等で一般的に用いられている平滑環状フィン、スロットフィン、テントフィン、短冊フィン、ワイヤーループフィン等がある。   In this natural air cooling, the outer surface of the cylindrical body 11a is kept warm, or the cylindrical body 11a is not sealed with another cylindrical body (not shown) such as a case of the exhaust gas treatment device 1, and is in an open air state. For example, it is easy to make contact with the outside air, such as providing a ventilation hole for another cylindrical body serving as a case, so that natural convection heat transfer is easily performed. Moreover, in order to promote the cooling effect by heat radiation, the temperature of surrounding members is lowered, or in order to increase the cooling effect by heat conduction, it is brought into contact with a low-temperature heat conductor. Furthermore, cooling fins that promote heat dissipation to the outside of the cylindrical body 11a can be provided on the outer surface of the cylindrical body 11a. Examples of the cooling fins include smooth annular fins, slot fins, tent fins, strip fins, and wire loop fins that are generally used in heat exchangers.

また、強制冷却においては、ファン等により筒状体11aの外面に送風して対流伝熱による強制冷却をしたり、筒状体11aを冷却水等の冷媒が通過する二重管構造とし、筒状体11aを冷媒で強制冷却するように構成する。これらの冷却手段に限られず、一般的な冷却手段を適用できる。   Further, in forced cooling, a fan or the like blows air to the outer surface of the cylindrical body 11a to perform forced cooling by convective heat transfer, or the cylindrical body 11a has a double tube structure through which a coolant such as cooling water passes. The structure 11a is configured to be forcibly cooled with a refrigerant. Not limited to these cooling means, general cooling means can be applied.

そして、排気ガス処理装置1を車両に搭載した場合には、車両の走行により、帯電凝集部10の外気に露出した筒状体11等の部分に強い風が当たるので、自然対流や熱放射による自然放熱によって排気ガスGが冷却される。そのため、特別あるいは能動的な冷却手段を設けなくても、積極的な保温手段を設けなければ、冷却効果を得ることができる。   When the exhaust gas treatment device 1 is mounted on a vehicle, a strong wind is applied to a portion such as the cylindrical body 11 exposed to the outside air of the charging and aggregating unit 10 due to traveling of the vehicle. The exhaust gas G is cooled by natural heat dissipation. Therefore, even if no special or active cooling means is provided, a cooling effect can be obtained unless an active heat retaining means is provided.

このガス冷却は、処理対象ガスGが200℃以上の温度である場合において、特に有効である。つまり、処理対象ガスが200℃以上であると、SOF等の成分の多くは蒸発してガス化しているが、このガス冷却により排気ガスGをそれ以下の温度にして、SOF等の蒸発成分を凝縮させて液化することができ、この液化した成分の粘着性により、ベトベト状態の鳥もちのような効果を発揮できるので、Soot等の微小粒子を非常に効率よく凝集できるようになる。つまり、液化したSOF分の存在は、Soot凝集の接着剤的作用を発揮する。   This gas cooling is particularly effective when the processing target gas G is at a temperature of 200 ° C. or higher. In other words, when the gas to be processed is 200 ° C. or higher, most of the components such as SOF are evaporated and gasified, but by this gas cooling, the exhaust gas G is brought to a temperature lower than that and the evaporated components such as SOF are changed. It can be condensed and liquefied, and the stickiness of this liquefied component can exert an effect similar to that of a sticky bird, so that microparticles such as Soot can be aggregated very efficiently. That is, the presence of the liquefied SOF component exerts the adhesive action of soot aggregation.

また、帯電凝集部10の帯電凝集ユニット11においては、図5〜図7に示すように、帯電凝集部10の筒状体11aの内側表面近傍の排気ガスGの流れに対して乱流を促進する乱流促進手段11eを筒状体11aの表面又は表面近傍に設けることができる。この乱流促進手段11eは筒状体11aの表面を加工して設けてもよく、筒状体11aとは別体の構造物を筒状体11aの表面に当接又は浮かせて配置してもよい。   Further, in the charging aggregation unit 11 of the charging aggregation unit 10, as shown in FIGS. 5 to 7, turbulence is promoted with respect to the flow of the exhaust gas G in the vicinity of the inner surface of the cylindrical body 11 a of the charging aggregation unit 10. The turbulent flow promoting means 11e can be provided on or near the surface of the cylindrical body 11a. The turbulent flow promoting means 11e may be provided by processing the surface of the cylindrical body 11a, or a structure separate from the cylindrical body 11a may be disposed in contact with or floating on the surface of the cylindrical body 11a. Good.

この乱流促進手段11eは凹凸構造とすることもでき、この凹凸構造は、単数又は複数の線状体(丸棒や角棒)を筒状体11aにスパイラル状にして挿入し、筒状体11aの内側表面に巻き付けたり、筒状体11aの内側表面に溝きりにより台形形状の凸部や、格子溝や螺旋溝等の規則正しい凹凸を設けて、内面溝付き管構造とすることもできる。また、リング状の凸部を筒状体11aの内側表面に筒状体11aの軸方向に間隔をおいて形成したり、三次元構造を持つフィンで形成したり、ブラスト処理して乱雑な凹凸を形成したりすることもできる。これらの凹凸は一様に形成されていてもよく、分散配置されていてもよい。   The turbulent flow promoting means 11e may have an uneven structure, and this uneven structure is formed by inserting one or more linear bodies (round bars or square bars) in a spiral shape into the cylindrical body 11a. It is also possible to provide an internally grooved tube structure by wrapping around the inner surface of 11a, or providing regular irregularities such as trapezoidal convex portions, lattice grooves, and spiral grooves by grooving on the inner surface of the cylindrical body 11a. In addition, ring-shaped convex portions are formed on the inner surface of the cylindrical body 11a at intervals in the axial direction of the cylindrical body 11a, formed with fins having a three-dimensional structure, or blasted and rough irregularities. Can also be formed. These irregularities may be formed uniformly or may be distributed.

更に、筒状体11aを加工するだけでなく、加工により凹凸を設けた板材や、既に凹凸を有して形成されている板材を、筒状体11aに挿入可能に整形して挿入してもよく、既に凹凸を有して市販されているような面状体を筒状体11aを挿入してもよい。この面状体としては、金網やパンチングメタル、エキスパンダメタル等のシート状突起物が有用であり、スリットグリル、ダイヤスクリーン、ディンプルスクリーン(孔無し)、ディンプルスクリーン(孔有り)、スリット出窓スクリーン、ブリッジ出窓スクリーン、三角出窓スクリーン、半円出窓スクリーン等々の打ち抜きスクリーンを使用できる。   Furthermore, not only the cylindrical body 11a is processed, but also a plate material provided with irregularities by processing, or a plate material that is already formed with irregularities is shaped and inserted so as to be insertable into the cylindrical body 11a. The cylindrical body 11a may be inserted into a planar body that is already commercially available with irregularities. Sheet-like projections such as wire mesh, punching metal, and expander metal are useful as this planar body, and slit grills, diamond screens, dimple screens (without holes), dimple screens (with holes), slit bay screens, A punching screen such as a bridge bay screen, a triangular bay screen, a semi-circular bay screen, etc. can be used.

この乱流促進手段11eの乱流促進により、流路断面方向の攪拌作用を大きくすることができるので、流路空間全体において排気ガス中の成分の帯電に要する時間の短縮化、帯電粒子の集塵電極の対向面への接触の容易化、排気ガスの対向面近傍における主流方向流速の低速化に伴う滞留時間の増加を図ることができ、静電力による帯電粒子の捕捉を一層促進することができる。   The turbulent flow promotion by the turbulent flow promoting means 11e can increase the agitating action in the cross-sectional direction of the flow path, thereby shortening the time required for charging the components in the exhaust gas in the entire flow path space and collecting charged particles. It is possible to facilitate the contact of the dust electrode with the opposing surface, increase the residence time associated with the reduction of the main flow velocity in the vicinity of the exhaust gas opposing surface, and further promote the capture of charged particles by electrostatic force. it can.

また、帯電凝集部10の帯電凝集ユニット11を、次のように構成することもできる。図8〜図12に示すように、帯電凝集ユニット11のガス通路壁、即ち、帯電凝集部10のガス通路壁を、筒状体11fで形成し、低電圧電極となる集塵電極11aをガス通路壁11fの表面近傍に配置された導電性の筒状体で形成する。また、コロナ電極11bを筒状体11fの内部に配置した線状体の高電圧電極で形成する。この筒状体11fと集塵電極11aは共に導電材料で形成してもよいが、筒状体11fを絶縁材料で形成し、集塵電極11aを導電材料で形成すると、帯電凝集ユニット11の表面が筒状体11fにより電気的に絶縁されるので、漏電等に対する安全性が増す。   Further, the charging aggregation unit 11 of the charging aggregation unit 10 can also be configured as follows. As shown in FIGS. 8 to 12, the gas passage wall of the charging and aggregating unit 11, that is, the gas passage wall of the charging and aggregating portion 10 is formed of a cylindrical body 11f, and the dust collecting electrode 11a serving as a low-voltage electrode is gas. It is formed of a conductive cylindrical body disposed near the surface of the passage wall 11f. Further, the corona electrode 11b is formed of a linear high-voltage electrode arranged inside the cylindrical body 11f. Both the cylindrical body 11f and the dust collecting electrode 11a may be formed of a conductive material. However, if the cylindrical body 11f is formed of an insulating material and the dust collecting electrode 11a is formed of a conductive material, the surface of the charged aggregation unit 11 is formed. Is electrically insulated by the cylindrical body 11f, the safety against leakage etc. is increased.

また、図8〜図11に示すように集塵電極11aの表面又は表面近傍に乱流促進手段11eを設けたり、図12に示すように集塵電極11aを乱流促進手段11eで形成すると、乱流促進手段11eによる効果を得ることができる。   Further, when the turbulent flow promoting means 11e is provided on or near the surface of the dust collecting electrode 11a as shown in FIGS. 8 to 11, or when the dust collecting electrode 11a is formed with the turbulent flow promoting means 11e as shown in FIG. The effect by the turbulent flow promoting means 11e can be obtained.

この構成では、集塵電極11aを筒状体11fと別体にして形成しているので、集塵電極11aはガス通路壁の機能が不要となる。そのため、集塵電極11aはガス通過性を有してもよくなり、表面積を増加できるので、より凝集肥大化の効果を大きくすることができる。また、筒状体11fを絶縁体で形成すると、帯電凝集ユニット11の表面を電気的に絶縁でき、漏電等に対する安全性を増すことができる。   In this configuration, since the dust collecting electrode 11a is formed separately from the cylindrical body 11f, the dust collecting electrode 11a does not need the function of the gas passage wall. Therefore, the dust collection electrode 11a may have gas permeability and can increase the surface area, so that the effect of cohesive enlargement can be further increased. Further, when the cylindrical body 11f is formed of an insulator, the surface of the charging and aggregating unit 11 can be electrically insulated, and the safety against leakage etc. can be increased.

フィルタ部20は、帯電凝集部10から、粗大化して再飛散してくる凝集体を捕集して除去するためのフィルタを有して構成される。このフィルタは、耐熱性に優れたSiCやコージェライト等のセラミック製であってもよいが、ステンレス等の金属製のフィルタで形成すると、捕集したPMを燃焼除去する際に、高温にしても溶損し難いので、有炎燃焼により簡単に再生することができるようになる。   The filter unit 20 is configured to have a filter for collecting and removing aggregates that are coarsened and re-scattered from the charge aggregation unit 10. This filter may be made of ceramics such as SiC and cordierite having excellent heat resistance. However, if the filter is made of a metal filter such as stainless steel, the collected PM may be heated at a high temperature. Since it is difficult to melt, it can be easily regenerated by flaming combustion.

このフィルタ部20は、上流側の帯電凝集部10で捕集対象成分であるSootを凝集肥大化させてから捕集するので、圧力損失の小さい、比較的目の粗いフィルタで形成することができる。また、フィルタ部20には、触媒を担持しない非連続再生式のフィルタを用いることもでき、触媒を担持した連続再生式のフィルタを用いることもできる。   Since the filter unit 20 collects the soot that is a collection target component in the upstream charging aggregation unit 10 after aggregation and enlargement, the filter unit 20 can be formed with a relatively coarse filter having a small pressure loss. . The filter unit 20 may be a non-continuous regeneration filter that does not carry a catalyst, or a continuous regeneration filter that carries a catalyst.

そして、このフィルタ部20は、Sootの捕集量が増加し目詰まりしてきた時に、Sootを燃焼除去するために、フィルタ部20の再生が必要になり、そのための再生手段が必要になる。   The filter unit 20 needs to be regenerated in order to burn and remove the soot when the collection amount of the soot increases and becomes clogged, and a regenerating means for that purpose is necessary.

この再生手段としては、加熱用ヒータやバーナーや短絡用電極等が考えられる。   As the regeneration means, a heater, a burner, a short-circuit electrode, or the like can be considered.

加熱用ヒーターでは、フィルタ部材の表面、又は、表面と内部に金属線等のヒーターを埋め込んで、このヒーターに通電することにより発熱させてフィルタ部20を昇温する。この加熱ヒーター方式の場合は、ヒーターの電気抵抗値と投入電力でフィルタ部20の昇温や維持温度をコントロールする。   In the heater for heating, a heater such as a metal wire is embedded in the surface of the filter member or in the surface and inside, and the heater is heated to generate heat to raise the temperature of the filter unit 20. In the case of this heater method, the temperature rise and maintenance temperature of the filter unit 20 are controlled by the electric resistance value of the heater and the input power.

また、バーナーは、バイパス通路40の分岐部下流のフィルタ部20の直前に燃焼ガスを供給してフィルタ部20を加熱して昇温するものであり、このバーナーに外部燃料(車両用燃料との共用も可能)を供給して燃焼し、高温ガスを発生させる。この高温ガスによりフィルタ部20を昇温させるが、排気ガス中に高温ガスが注入されるので、排気ガス中のPMも着火させてフィルタ部20の昇温に寄与させることができる。   The burner supplies combustion gas immediately before the filter unit 20 downstream of the branching portion of the bypass passage 40 to heat the filter unit 20 to raise the temperature. The burner is supplied with external fuel (with vehicle fuel). It can be shared) and burned to generate hot gas. Although the temperature of the filter unit 20 is increased by the high temperature gas, since the high temperature gas is injected into the exhaust gas, PM in the exhaust gas can be ignited to contribute to the temperature increase of the filter unit 20.

短絡用電極は、Sootが溜まってくると隣接して設けた電極間、あるいは、フィルタ部材の電導部分に隣接して設けた電極で形成され、この電極間あるいはフィルタ部材の電導部分と電極間の隙間が捕集されたSootで埋まると、電気的に短絡し、この短絡により発生した火花でSootが自己燃焼する。   The shorting electrode is formed between electrodes provided adjacent to each other when the soot accumulates, or an electrode provided adjacent to the conductive portion of the filter member, and between the electrodes or between the conductive portion of the filter member and the electrode. When the gap is filled with the collected soot, it is electrically short-circuited, and the soot is self-burned by the spark generated by this short-circuit.

なお、セラミックスフィルタの場合は、再生手段による局部的な加熱では、フィルタの温度を均一にし難く、再生ムラや温度差に起因する熱割れが発生し易いが、金属フィルタの場合は、温度の均一化が容易である。また、金属フィルタの場合は、加熱ヒーターやバーナーなどによる外部加熱方式以外にも、短絡用電極による方式を用いることもできる。   In the case of ceramic filters, local heating by the regeneration means makes it difficult to make the temperature of the filter uniform and heat cracks due to uneven reproduction and temperature differences are likely to occur. However, in the case of a metal filter, the temperature is uniform. Is easy. In the case of a metal filter, a method using a short-circuit electrode can be used in addition to an external heating method using a heater or a burner.

酸化触媒30は、セラミックのハニカム構造等の担持体に、白金等の酸化触媒を担持させて形成され、ガス冷却によっても液化しないで、気相状態でフィルタ部20を通過するSOF等の蒸発成分を浄化する。   The oxidation catalyst 30 is formed by supporting an oxidation catalyst such as platinum on a support such as a ceramic honeycomb structure, and is not liquefied even by gas cooling, but an evaporation component such as SOF that passes through the filter unit 20 in a gas phase state. To purify.

そして、この排気ガス処理装置1においては、次のようにして排気ガスGを浄化する。   And in this exhaust gas processing apparatus 1, the exhaust gas G is purified as follows.

最上流側の帯電凝集部10では、ガス入口室11cから各々の帯電凝集ユニット11の筒状体(集塵電極)11aの内部に排気ガスGを通過させる。それと共に、コロナ電極11bと集塵電極11aとの間に高電圧を印加して、集塵電極11aの内部にコロナ放電を形成し、その内部を通過する排気ガスG中のPMのSoot(スート:煤)等の捕集対象成分を帯電させ、この帯電した粒子を凝集する。   In the most upstream charging aggregation section 10, the exhaust gas G is allowed to pass from the gas inlet chamber 11 c into the cylindrical body (dust collection electrode) 11 a of each charging aggregation unit 11. At the same time, a high voltage is applied between the corona electrode 11b and the dust collecting electrode 11a to form a corona discharge inside the dust collecting electrode 11a, and the soot of PM in the exhaust gas G passing through the inside of the dust collecting electrode 11a. : Charge the target component such as 煤) and agglomerate the charged particles.

この帯電凝集部10では、コロナ放電による帯電を利用して、排気ガス中のSoot等の固形成分を帯電させる。それと共に、排気ガスGが冷却され、この冷却により凝縮したミスト状のSOF(可溶性有機成分)等の液体成分がバインダーの役割を果す。そのため、この排気ガス処理装置1では、冷却により凝縮した液体成分のバインダー機能を利用できるので、繊細なSootの粒子を、より効率良く凝集することができる。つまり、帯電凝縮部10で、コロナ放電の電気集塵機能に加えて、ガス冷却により凝縮したSOF等の液体成分の接着機能を利用して、排気ガスG中の浮遊微粒子を効率よく凝集肥大化できる。   In the charging aggregation unit 10, solid components such as soot in the exhaust gas are charged using charging by corona discharge. At the same time, the exhaust gas G is cooled, and a liquid component such as a mist-like SOF (soluble organic component) condensed by this cooling serves as a binder. Therefore, in this exhaust gas processing apparatus 1, since the binder function of the liquid component condensed by cooling can be used, fine soot particles can be aggregated more efficiently. That is, in the charging condensing unit 10, in addition to the electrostatic dust collecting function of corona discharge, the floating fine particles in the exhaust gas G can be efficiently agglomerated and enlarged using the adhesion function of liquid components such as SOF condensed by gas cooling. .

この凝集体は、コロナ電極11bと集塵電極11aの間の電場により、クローン力により集塵電極11aに移動し、一時的には集塵電極11aの表面に捕集されるが、集塵電極11aに触れて電荷を失い、また、壁面上で更に粗大化し、その結果、排気ガスGの流れにより集塵電極11aの表面から剥離し再飛散する。   The aggregate is moved to the dust collecting electrode 11a by the clonal force by the electric field between the corona electrode 11b and the dust collecting electrode 11a, and is temporarily collected on the surface of the dust collecting electrode 11a. 11a is touched and loses electric charge, and is further coarsened on the wall surface. As a result, it is peeled off from the surface of the dust collecting electrode 11a by the flow of the exhaust gas G and scattered again.

そして、この再飛散してくる凝集体や直接流入する捕集対象成分を、フィルタ部20で捕集するが、再飛散したり、SOFの回りに凝集したりした凝集体は、粗大化及び肥大化しているため、フィルタの目が比較的粗くても効率良く捕集することができる。従って、通常の物理的なフィルタだけで機械的にトラップする場合に比べ、より繊細なSootの粒子を効率良く捕集することができる。なお、フィルタ部20で、圧力損失の小さい目の粗いフィルタを用いることができるので、圧力損失を小さくでき、また、目詰まりまでの間、かなりの長時間連続運転することができる。   Then, the re-scattered aggregates and the components to be collected that directly flow in are collected by the filter unit 20, but the aggregates that are re-scattered or aggregated around the SOF are coarsened and enlarged. Therefore, even if the filter has a relatively coarse mesh, it can be collected efficiently. Therefore, finer soot particles can be efficiently collected as compared with a case where mechanical trapping is performed only with a normal physical filter. In addition, since the filter part 20 can use a coarse filter with a small pressure loss, a pressure loss can be made small, and it can operate continuously for a considerable long time until clogging.

また、最下流の酸化触媒30においては、ガス化したまま帯電凝集部10とフィルタ部20を通過してきたSOF等の成分を酸化して除去する。これにより、凝縮しなかったSOF等の蒸発成分も除去できるので、PMの除去能力を更に高めることができる。   Further, in the most downstream oxidation catalyst 30, components such as SOF that have passed through the charge aggregation unit 10 and the filter unit 20 while being gasified are oxidized and removed. Thereby, evaporation components such as SOF that have not been condensed can also be removed, so that the PM removal capability can be further enhanced.

これらの結果、排気ガス処理装置1に流入した排気ガスGは、浄化された排気ガスGcとしてこの排気ガス処理装置1から排出される。   As a result, the exhaust gas G flowing into the exhaust gas processing device 1 is discharged from the exhaust gas processing device 1 as purified exhaust gas Gc.

そして、Soot等の捕集対象成分が蓄積されて目詰まりが進行し、所定の限界値(閾値)を超えた場合には、フィルタに設けた再生手段(図示しない)等によりフィルタを加熱して、フィルタの温度をSootの自己着火可能な温度(500℃程度)以上に上昇させてSootを燃焼除去する。このフィルタの温度上昇は局部的であっても、一旦Sootの燃焼が開始されると燃焼熱が発生し燃焼の伝播が起こるので、フィルタ全体のSootを燃焼除去して、フィルタ全体を再生できる。この場合に、フィルタ部20を金属製のフィルタで形成すると、Sootを燃焼除去する際に、高温にしても溶損し難いので、有炎燃焼により簡単に再生することができる。   Then, when the collection target component such as Soot is accumulated and clogging progresses and exceeds a predetermined limit value (threshold value), the filter is heated by a regenerating means (not shown) provided in the filter. Then, the temperature of the filter is raised to a temperature at which the soot can be ignited (about 500 ° C.) or more to burn and remove the soot. Even if the temperature rise of the filter is localized, once the combustion of the soot is started, combustion heat is generated and the propagation of the combustion occurs. Therefore, the soot of the entire filter can be burned and removed to regenerate the entire filter. In this case, when the filter unit 20 is formed of a metal filter, the soot is hardly melted even at a high temperature when the soot is burned and removed.

そして、本発明においては、このフィルタ部20を再生するための制御を、所定の回転数以下かつ所定の負荷以下のエンジンの運転状態の時に行う。ここでは、この状態の運転領域のことを「再生処理用運転領域」ということにする。   In the present invention, the control for regenerating the filter unit 20 is performed when the engine is operating at a predetermined rotation speed or lower and a predetermined load or lower. Here, the operation region in this state is referred to as a “regeneration processing operation region”.

この再生処理用運転領域を定める所定の回転数と所定の負荷は、内燃機関の機種によって排気ガスの状態が異なるため、また、フィルタ部20におけるPMの自己燃焼可能な温度によっても再生が不要となる排気ガス温度が異なるため、一律にその範囲を決定することは困難であるが、予め実験などにより、エンジンの機種毎又は個々のエンジン毎に決めることができる。   The predetermined rotational speed and the predetermined load that define the regeneration processing operation region are different in the exhaust gas state depending on the model of the internal combustion engine, and the regeneration is not necessary depending on the temperature at which the PM in the filter unit 20 can self-combust. It is difficult to uniformly determine the range because the exhaust gas temperatures are different, but it can be determined in advance for each engine model or for each engine by experiments or the like.

つまり、この再生処理用運転領域は、帯電凝集部10のコロナ放電が安定化し、また、帯電凝集部10において凝集して、帯電凝集部10に捕集されたPM等の捕集対象成分が殆ど再飛散しない排気ガス流量となるような状態であるので、実験的に求めた排気ガスの状態とエンジンの運転状態の関係から、回転数等の具体的な数値を決定できる。そして、これらの数値を予め制御装置に入力しておき、エンジンの運転状態が再生処理用運転領域か否かを判定する時点までに、これらの入力データから算出するように構成する。   That is, in this regeneration processing operation region, the corona discharge of the charging aggregation unit 10 is stabilized, and the collection target component such as PM collected in the charging aggregation unit 10 is aggregated in the charging aggregation unit 10. Since the exhaust gas flow rate is such that it does not re-scatter, specific numerical values such as the rotational speed can be determined from the relationship between the exhaust gas state obtained experimentally and the engine operating state. These numerical values are input to the control device in advance, and are calculated from these input data by the time when it is determined whether or not the engine operating state is in the regeneration processing operating region.

なお、この再生処理用運転領域の一例をあげれば、特定の機種の実験結果であるが、回転数と負荷が最高出力時の回転数と負荷のそれぞれの50〜60%以下となる。   An example of the regeneration processing operation region is an experimental result of a specific model. The rotation speed and load are 50 to 60% or less of the rotation speed and load at the maximum output.

次に、本発明の実施の形態の排気ガス処理装置における排気ガスGの浄化とフィルタ部20の再生処理について説明する。   Next, the purification of the exhaust gas G and the regeneration process of the filter unit 20 in the exhaust gas processing apparatus according to the embodiment of the present invention will be described.

この排気ガス浄化装置1においては、内燃機関の運転状態が高回転運転状態や高負荷運転状態の非再生処理用運転領域の場合には、排気ガスGの少なくとも大部分がフィルタ部20に流れるように切り換えて、コロナ放電を行っている帯電凝集部10とフィルタ部20で、排気ガスG中のPM等の捕集対象成分を捕集する。   In the exhaust gas purification device 1, at least most of the exhaust gas G flows to the filter unit 20 when the operation state of the internal combustion engine is a high-revolution operation state or a high-load operation state non-regeneration treatment operation region. Then, the collection target component such as PM in the exhaust gas G is collected by the charging aggregation unit 10 and the filter unit 20 performing corona discharge.

この時、帯電凝集部10でSootの固体粒子は集塵電極に凝集肥大化しながら静電捕集されるが、排気ガスGの量が多く流速が大きいため、堆積した固体粒子は排気ガスGの流れによって剥がれて再飛散する。しかし、この再飛散粒子は、後段のフィルタ部20で捕集されるため、高い浄化率を維持できる。   At this time, the solid particles of the soot are electrostatically collected while being agglomerated and enlarged on the dust collecting electrode in the charging and aggregating unit 10. However, since the amount of exhaust gas G is large and the flow velocity is large, the deposited solid particles are the exhaust gas G. It peels off by the flow and re-scatters. However, since the re-scattered particles are collected by the subsequent filter unit 20, a high purification rate can be maintained.

このフィルタ部20で捕集されたSootは、回転数と負荷が高くなって排気ガスGの温度が自己着火可能な温度(500℃程度)にまで高くなると燃焼除去される。   The soot collected by the filter unit 20 is burned and removed when the rotational speed and load increase and the temperature of the exhaust gas G rises to a temperature at which self-ignition is possible (about 500 ° C.).

そして、内燃機関の運転状態が低回転かつ低負荷運転状態の再生処理用運転領域の場合には、排気ガスGの少なくとも大部分がバイパス通路40に流れるように切り換えて、コロナ放電を行っている帯電凝集部10のみで、排気ガスG中のSootを捕集する。この時、排気ガスG中に含まれるSootは少なく、また、排気ガスGの量も少なく流速が小さいので、Sootは帯電凝集部10に捕集されたまま、再飛散しない。そのため、排気ガスGの大部分をフィルタ部20をバイパスさせても、排気ガスGの浄化率は低下しないので、高い浄化率を維持できる。   When the operating state of the internal combustion engine is in the low-speed and low-load operating state for the regeneration process, the corona discharge is performed by switching so that at least most of the exhaust gas G flows to the bypass passage 40. The soot in the exhaust gas G is collected only by the charge aggregation part 10. At this time, since the soot contained in the exhaust gas G is small and the amount of the exhaust gas G is small and the flow speed is small, the soot is not collected again in the charged aggregation part 10 while being collected. Therefore, even if most of the exhaust gas G is bypassed through the filter unit 20, the purification rate of the exhaust gas G does not decrease, so that a high purification rate can be maintained.

そして、内燃機関の運転状態が高回転運転状態や高負荷運転状態の非再生処理用運転領域で、フィルタ部20におけるSootの捕集量が所定の捕集限界量(閾値)になっていない時は、フィルタ部20の再生処理を特に行う必要がないので、そのまま、運転が継続される。なお、この捕集量は、フィルタ部20の前後差圧を検出する差圧センサ51の検出値から推定することができる。   When the operation state of the internal combustion engine is a non-regeneration processing operation region in a high rotation operation state or a high load operation state, and the collection amount of soot in the filter unit 20 is not the predetermined collection limit amount (threshold value). Since it is not necessary to perform the regeneration process of the filter unit 20 in particular, the operation is continued as it is. Note that the collected amount can be estimated from the detection value of the differential pressure sensor 51 that detects the differential pressure across the filter unit 20.

また、この高回転運転状態や高負荷運転状態が継続し、内燃機関の運転状態が再生処理用運転領域にならずに、また、排気ガスGの温度がフィルタ部20に捕集されたSootが燃焼を開始する自己着火可能な温度に到達することなく、フィルタ部20におけるSootの捕集量が所定の捕集限界量(閾値)になってしまった時には、即ち、差圧センサ51で検出された前後差圧が所定の限界値(閾値)を超えた時には、次のように処理される。   Further, the high rotation operation state and the high load operation state continue, the operation state of the internal combustion engine does not become the regeneration processing operation region, and the soot in which the temperature of the exhaust gas G is collected by the filter unit 20 is reduced. When the amount of collected Soot in the filter unit 20 reaches a predetermined collection limit (threshold) without reaching the temperature at which self-ignition can be started to start combustion, that is, detected by the differential pressure sensor 51. When the front-rear differential pressure exceeds a predetermined limit value (threshold value), the following processing is performed.

内燃機関の運転状態が再生処理用運転領域に移行するまで、あるいは、排気ガスGが自己着火可能な温度以上になって自己燃焼による再生が行われるまでの間、できるだけ長く再生処理を待つが、捕集可能な最終的な限界を超えた場合には、フィルタ部20の再生処理を行う。   Until the operation state of the internal combustion engine shifts to the operation region for regeneration processing, or until regeneration by self-combustion is performed after the exhaust gas G becomes higher than the temperature at which self-ignition occurs, When the final limit that can be collected is exceeded, regeneration processing of the filter unit 20 is performed.

この再生処理は、再生処理用の再生手段や排気ガス昇温等によりフィルタ部20を加熱し、Sootを燃焼除去する。この再生処理では排気ガスGの温度が比較的高いので、僅かな熱の追加で再生処理できるので、ヒータ加熱の場合には消費電力が少なくて済む。この再生処理は、帯電凝集部10ではコロナ放電を行いながら実施され、排気ガスG中のSoot分等は帯電凝集部10とフィルタ部20に捕集される。   In this regeneration process, the filter unit 20 is heated by regeneration means for regeneration process, exhaust gas temperature rise or the like, and soot is burned and removed. In this regeneration process, since the temperature of the exhaust gas G is relatively high, the regeneration process can be performed by adding a small amount of heat. Therefore, in the case of heater heating, less power is consumed. This regeneration process is performed while performing corona discharge in the charging aggregation unit 10, and the soot content in the exhaust gas G is collected by the charging aggregation unit 10 and the filter unit 20.

そして、フィルタ部20の再生処理を、エンジンの運転状態がエンジンのスタート時や高回転運転状態や高負荷運転状態から再生処理用運転領域の運転状態になった時に、切換弁41を操作して、帯電凝集部10を通過した排気ガスGの少なくとも大部分をバイパス通路40に切り換えると共に、帯電凝集部10でコロナ放電を行いながら、フィルタ部20の再生処理を実施する。   Then, the regeneration processing of the filter unit 20 is performed by operating the switching valve 41 when the engine operating state changes from the engine start state, the high rotation operation state, or the high load operation state to the regeneration processing operation region. In addition, at least most of the exhaust gas G that has passed through the charging aggregation unit 10 is switched to the bypass passage 40, and the regeneration processing of the filter unit 20 is performed while the charging aggregation unit 10 performs corona discharge.

このフィルタ部20の再生処理は、エンジンの運転状態が再生処理用運転領域の運転状態に移行する前に再生処理を開始していた場合にはその再生処理を継続し、移行前に再生処理していない場合は、フィルタ部20における捕集対象成分の捕集量に関係なく、再生処理を開始する。   The regeneration process of the filter unit 20 continues the regeneration process when the engine operation state has shifted to the operation state of the regeneration processing operation region, and continues the regeneration process before the transition. If not, the regeneration process is started regardless of the amount of the target component to be collected in the filter unit 20.

この再生処理は、帯電凝集部10に流入する排気ガスGをフィルタ部20の再生処理のために昇温することなく、つまり、エンジンに要求される回転数や出力と関係なくフィルタ部20の再生処理のためだけに、エンジンのシリンダ内への燃料噴射制御でポスト噴射等を行って排気ガス温度を上昇させることなく、フィルタ部20を再生手段により昇温して、フィルタ部20の再生処理を行う。   In this regeneration process, the temperature of the exhaust gas G flowing into the charging and aggregating unit 10 is not increased for the regeneration process of the filter unit 20, that is, the regeneration of the filter unit 20 regardless of the rotational speed and output required for the engine. Only for the processing, the regeneration of the filter unit 20 is performed by raising the temperature of the filter unit 20 by the regenerating unit without increasing the exhaust gas temperature by performing the post injection or the like by the fuel injection control into the cylinder of the engine. Do.

そして、このフィルタ部20の再生処理の終了は、捕集対象成分の酸化が終了してフィルタ部20の下流側の排気ガスGの酸素濃度が上昇した時とする。このタイミングは、フィルタ部20の下流側に配置した酸素濃度センサ52の検出値から検出することができる。あるいは、フィルタ部20の下流側の排気ガスGの温度が低下し始めた時とすることもでき、この場合は、フィルタ部20の下流側に配置した排気ガス温度センサ53の検出値から検出することができる。   The end of the regeneration process of the filter unit 20 is when the oxygen concentration of the exhaust gas G on the downstream side of the filter unit 20 is increased after the oxidation of the component to be collected is completed. This timing can be detected from the detection value of the oxygen concentration sensor 52 arranged on the downstream side of the filter unit 20. Alternatively, it may be the time when the temperature of the exhaust gas G on the downstream side of the filter unit 20 starts to decrease. In this case, the temperature is detected from the detection value of the exhaust gas temperature sensor 53 disposed on the downstream side of the filter unit 20. be able to.

このフィルタ部20の再生処理の実施により、フィルタ部20に捕集されているSootが除去されるので、次に内燃機関の運転状態が高回転運転状態や高負荷運転状態、即ち、非再生処理用運転領域になった時に、帯電凝集部10から再飛散してくるSootを十分にフィルタ部20で捕集できるようになる。また、非再生処理用運転領域におけるフィルタ部20の再生処理の回数や時間を少なくすることができる。   Since the soot collected by the filter unit 20 is removed by performing the regeneration process of the filter unit 20, the operation state of the internal combustion engine is next set to a high rotation operation state or a high load operation state, that is, a non-regeneration process. The soot that re-scatters from the charging and aggregating unit 10 when the operation region is reached can be sufficiently collected by the filter unit 20. Moreover, the frequency | count and time of the regeneration process of the filter part 20 in the driving | operation area | region for non-regeneration | regeneration processes can be decreased.

また、この再生処理用運転状態では、フィルタ部20の再生処理中も再生処理終了後も、帯電凝集部10ではコロナ放電を行っているので、排気ガスG中のSootは帯電凝集部10に捕集される。   Further, in this regeneration processing operation state, the charging aggregation unit 10 performs corona discharge both during and after the regeneration process of the filter unit 20, so that the soot in the exhaust gas G is captured by the charging aggregation unit 10. Be collected.

なお、このフィルタ部20の再生処理を行っていない状態で、非再生処理用運転状態から再生処理用運転領域の運転状態になった場合において、上記のように、制御を単純化するために、フィルタ部20における捕集対象成分の捕集量に関係なく、再生処理を必ず行うように構成してもよいが、再生処理に伴う加熱用電力の低減を図るために、前回の再生処理から非再生処理用運転領域の運転状態が所定の時間を超えた場合や、再生処理用運転領域に移行した時のフィルタ部20におけるSootの捕集量が所定の再生処理開始量(閾値)を超えていた場合のみ再生処理を行うように構成してもよい。   In the case where the regeneration process of the filter unit 20 is not performed and the operation state of the regeneration process operation region is changed from the non-regeneration process operation state, as described above, in order to simplify the control, Regardless of the collection amount of the component to be collected in the filter unit 20, the regeneration process may be performed without fail. However, in order to reduce the heating power associated with the regeneration process, the regeneration process is not performed. When the operation state of the regeneration processing operation region exceeds a predetermined time or when the soot collection amount in the filter unit 20 is shifted to the regeneration processing operation region, the soot collection amount exceeds a predetermined regeneration processing start amount (threshold). The reproduction process may be performed only in the case of

上記の排気ガス処理装置1及び排気ガス処理方法によれば、次のような効果を奏することができる。   According to the exhaust gas processing apparatus 1 and the exhaust gas processing method described above, the following effects can be obtained.

この構成により、内燃機関の運転状態が高回転運転状態や高負荷運転状態の排気ガス量も排気ガス中の捕集対象成分も多い時は、帯電凝集部10とフィルタ部20の両方で、捕集対象成分を捕集するので、高い浄化率で排気ガスGを浄化できる。   With this configuration, when the operating state of the internal combustion engine is a high-speed operating state or a high-load operating state, and when there are many components to be collected in the exhaust gas, both the charge aggregation unit 10 and the filter unit 20 capture. Since the collection target component is collected, the exhaust gas G can be purified with a high purification rate.

また、内燃機関の運転状態が低回転かつ低負荷運転状態、即ち、再生処理用運転状態の時は、排気ガスGの少なくとも大部分をバイパス通路40に切り換えて、帯電凝集部10のみで捕集対象成分を捕集するが、この状態では、排気ガスGの流量も排気ガスG中の捕集対象成分も少ないので、高い浄化率で排気ガスGを浄化できる。そして、再生処理時にフィルタ部20を排気ガスGの主流から切り離せる。   Further, when the operating state of the internal combustion engine is a low rotation and low load operating state, that is, the regeneration processing operating state, at least most of the exhaust gas G is switched to the bypass passage 40 and collected only by the charging and aggregating unit 10. The target component is collected. In this state, the exhaust gas G can be purified at a high purification rate because the flow rate of the exhaust gas G and the collection target component in the exhaust gas G are small. The filter unit 20 can be separated from the main flow of the exhaust gas G during the regeneration process.

この再生処理用運転領域の運転状態で帯電凝集部10に溜め込まれた捕集対象成分は、非再生処理用運転領域に移行してエンジン回転数と負荷が高くなった時に再飛散してフィルタ部20に捕捉され、エンジン回転数と負荷が高く、排気ガス温度が自己着火可能な温度(500℃程度)まで高くなる領域では、特に再生処理をしなくても燃焼除去される。   The collection target component stored in the charging aggregation unit 10 in the operation state of the regeneration processing operation region is re-scattered when the engine speed and the load are increased by moving to the non-regeneration processing operation region. In the region where the engine speed and the load are high and the exhaust gas temperature rises to a temperature at which self-ignition is possible (about 500 ° C.), it is burned and removed without particularly performing a regeneration process.

そして、燃焼除去されずに下流側のフィルタ部20に溜め込まれた捕集対象成分は、非再生処理用運転領域で排気ガスGの温度が比較的高い時は、僅かな加熱量で自己着火可能な温度まで追加熱することができ、エンジン回転数と負荷が低い再生処理用運転領域では、排気ガスGの主流と切り離した状態で再生処理できるので、効率よく再生できる。   Then, the target components collected in the downstream filter unit 20 without being burned off can be self-ignited with a slight heating amount when the temperature of the exhaust gas G is relatively high in the non-regeneration treatment operation region. In the regeneration processing operating region where the engine speed and load can be reduced, regeneration processing can be performed in a state separated from the main flow of the exhaust gas G, so that regeneration can be performed efficiently.

つまり、内燃機関の回転数が所定の回転数以下でかつ負荷が所定の負荷以下の場合である再生処理用運転領域で、排気ガスGの少なくとも大部分をバイパス通路40に切り換えて、排気ガスGの大部分がフィルタ部20をバイパスした状態の時に、フィルタ部20の再生処理を実施するので、再生処理時にフィルタ部20を排気ガスGの主流から切り離せる。   In other words, in the regeneration processing operation region where the rotational speed of the internal combustion engine is equal to or lower than the predetermined rotational speed and the load is equal to or lower than the predetermined load, at least most of the exhaust gas G is switched to the bypass passage 40 and the exhaust gas G Since the regeneration process of the filter unit 20 is performed when most of the filter unit 20 bypasses the filter unit 20, the filter unit 20 can be separated from the main flow of the exhaust gas G during the regeneration process.

そのため、ヒータ加熱で再生する場合には、温度の低い排気ガスが多量流入してフィルタ部20の熱を奪うことを回避でき、熱効率よく再生処理することができる。従って、再生手段による再生処理に伴う消費電力の低減を図ることができる。また、フィルタ部20を機械機構による払い落としで再生する場合でも、排気ガスGの流れが殆ど無いので、払い落とした捕集対象成分が排気ガスG中に再飛散することが殆ど無い。   Therefore, when regenerating by heater heating, it can be avoided that a large amount of exhaust gas having a low temperature flows in and takes heat of the filter unit 20, and the regeneration process can be performed efficiently. Therefore, it is possible to reduce the power consumption associated with the reproduction process by the reproduction unit. Even when the filter unit 20 is regenerated by a mechanical mechanism, there is almost no flow of the exhaust gas G, so that the collected component to be collected hardly rescatters in the exhaust gas G.

従って、帯電凝集部10やフィルタ部20を2系統設ける必要が無く、コンパクトな装置で高い浄化性能を得ることができる。   Accordingly, there is no need to provide two systems of the charge aggregation unit 10 and the filter unit 20, and high purification performance can be obtained with a compact device.

また、再生処理用運転領域にある時のフィルタ部20の再生処理では、帯電凝集部10に流入する排気ガスGをフィルタ部20の再生処理のために昇温することなく、フィルタ部20を再生手段により昇温するので、再生処理時においては、帯電凝集部10に流入する排気ガスGの温度を低い状態のままにすることができる。   Further, in the regeneration process of the filter unit 20 when in the regeneration processing operation region, the exhaust gas G flowing into the charging aggregation unit 10 is regenerated without increasing the temperature for the regeneration process of the filter unit 20. Since the temperature is raised by the means, the temperature of the exhaust gas G flowing into the charging and aggregating portion 10 can be kept low during the regeneration process.

そのため、帯電凝集部10では、コロナ放電が安定し、凝集及び捕集効率が上昇している状態で、しかも、排気ガスGの流量が少なくて、流速が遅くて再飛散も発生し難い状態となっている。つまり、フィルタ部20による捕集機能を必要としない状態にある。   Therefore, in the charging and aggregating unit 10, the corona discharge is stable and the agglomeration and collection efficiency is increased, and the flow rate of the exhaust gas G is small, the flow rate is slow, and re-scattering is difficult to occur. It has become. That is, the collecting function by the filter unit 20 is not required.

そのため、このフィルタ部20の再生時に、帯電凝集部10を通過した後の排気ガスGの大部分がフィルタ部20をバイパスしても、PM等の捕集対象成分が排気ガス処理装置1の下流側に流出することが無く、再生処理時に浄化率が悪化することが無い。   Therefore, when the filter unit 20 is regenerated, even if most of the exhaust gas G that has passed through the charge aggregation unit 10 bypasses the filter unit 20, the collection target component such as PM is downstream of the exhaust gas processing device 1. The purification rate does not deteriorate during the regeneration process.

更に、フィルタ部20の再生処理時に、排気ガスGのフィルタ部20への流入量を制限するので、フィルタ部20への酸素の供給量を制限でき、フィルタ部20におけるPMの暴走燃焼を抑制できる。また、温度の低い排気ガスの一部をフィルタ部20に流入させるので、フィルタ部20の局部的な過熱を冷却でき、また、フィルタ部20の温度の均一化を図ることができる。従って、フィルタの焼損や溶損を防止でき、更に、触媒を担持している場合はその触媒の熱劣化も防止できる。   Furthermore, since the amount of exhaust gas G flowing into the filter unit 20 is limited during the regeneration process of the filter unit 20, the amount of oxygen supplied to the filter unit 20 can be limited, and runaway combustion of PM in the filter unit 20 can be suppressed. . In addition, since a part of the exhaust gas having a low temperature flows into the filter unit 20, local overheating of the filter unit 20 can be cooled, and the temperature of the filter unit 20 can be made uniform. Accordingly, it is possible to prevent the filter from being burned out or melted, and furthermore, when a catalyst is supported, thermal deterioration of the catalyst can be prevented.

なお、フィルタ部20を連続再生式のフィルタで形成した場合には、排気ガス温度がフィルタ部20の再生が可能な所定の温度(例えば、350℃程度)以上では、触媒作用によりPMのSoot等の捕集対象成分を酸化できるので、捕集対象成分の自己燃焼可能な温度範囲が広くなる。そのため、再生用運転領域を狭くなる。   When the filter unit 20 is formed of a continuous regeneration type filter, when the exhaust gas temperature is equal to or higher than a predetermined temperature (for example, about 350 ° C.) at which the filter unit 20 can be regenerated, PM soot or the like is generated by catalytic action. Since the component to be collected can be oxidized, the temperature range in which the component to be collected can be self-combusted is widened. Therefore, the regeneration operation area is narrowed.

また、フィルタ部20を非連続再生式のフィルタで形成した場合には、PMが自己着火可能な温度(500℃程度)以上では、フィルタ部20におけるPMの蓄積は生じないが、それ以下ではPMの蓄積が生じ、再生処理する必要があるため、再生処理用運転領域が、連続再生式のフィルタを使用する場合よりも広くなる。しかし、再生処理用運転領域が広くなっても、触媒を担持していないので、再生処理時に捕集対象成分の燃焼によってフィルタが高温になっても、触媒が劣化することに対する対策が不要となる。   Further, when the filter unit 20 is formed of a discontinuous regenerative filter, accumulation of PM in the filter unit 20 does not occur above the temperature at which PM can self-ignite (about 500 ° C.). Therefore, the regeneration processing operation area becomes wider than when a continuous regeneration type filter is used. However, since the catalyst is not carried even when the operation region for the regeneration process is widened, no countermeasure is required against deterioration of the catalyst even if the filter becomes hot due to combustion of the collection target component during the regeneration process. .

なお、上記の説明ではディーゼルエンジンの排気ガスを処理対象のガスとして説明したが、本発明は、自動車搭載の内燃機関の排気ガスのみならず、各種産業用機械や定置式の内燃機関の排気ガス等の排気ガス処理装置及び排気ガス処理方法としても使用できる。   In the above description, the exhaust gas of the diesel engine has been described as the gas to be processed. However, the present invention is not limited to the exhaust gas of an internal combustion engine mounted on an automobile, but the exhaust gas of various industrial machines and stationary internal combustion engines. It can also be used as an exhaust gas processing apparatus and an exhaust gas processing method.

本発明に係るガス処理装置の構成を模式的に示す図である。It is a figure which shows typically the structure of the gas processing apparatus which concerns on this invention. 帯電凝集ユニットの側断面図である。It is a sectional side view of a charge aggregation unit. 筒状体の断面形状が円形の帯電凝集ユニットを示す断面図である。It is sectional drawing which shows the charging aggregation unit whose cross-sectional shape of a cylindrical body is circular. 筒状体の断面形状が端部が円形の偏平体で、コロナ電極が複数ある帯電凝集ユニットを示す断面図である。FIG. 3 is a cross-sectional view showing a charging and aggregating unit in which a cylindrical body is a flat body having a circular end and a plurality of corona electrodes. 乱流促進手段を設けた帯電凝集ユニットの側断面図である。It is a sectional side view of the charging aggregation unit provided with the turbulent flow promoting means. 乱流促進手段を設けた筒状体の断面形状が円形の帯電凝集ユニットを示す断面図である。It is sectional drawing which shows the charging aggregation unit with a circular cross-sectional shape of the cylindrical body which provided the turbulent flow promotion means. 乱流促進手段を設けた筒状体の断面形状が端部が円形の偏平体で、コロナ電極が複数ある帯電凝集ユニットを示す断面図である。FIG. 5 is a cross-sectional view showing a charging and aggregating unit in which a tubular body provided with turbulent flow promoting means is a flat body having a circular end and a plurality of corona electrodes. 集塵電極と筒状体を別体で形成した帯電凝集ユニットの側断面図である。It is a sectional side view of the charge aggregation unit which formed the dust collection electrode and the cylindrical body separately. 乱流促進手段を設けた集塵電極とは別体に形成した筒状体の断面形状が円形の帯電凝集ユニットを示す断面図である。It is sectional drawing which shows the charging aggregation unit with a circular cross-sectional shape of the cylindrical body formed separately from the dust collection electrode which provided the turbulent flow promotion means. 乱流促進手段を設けた集塵電極とは別体に形成した筒状体の断面形状が端部が円形の偏平体で、コロナ電極が複数ある帯電凝集ユニットを示す断面図である。FIG. 4 is a cross-sectional view showing a charging and aggregating unit in which a cylindrical body formed separately from a dust collecting electrode provided with turbulent flow promoting means is a flat body having a circular end and a plurality of corona electrodes. 乱流促進手段を設けた集塵電極とは別体に形成した筒状体の断面形状が矩形の帯電凝集ユニットを示す断面図である。It is sectional drawing which shows the charging aggregation unit whose cross-sectional shape of the cylindrical body formed separately from the dust collection electrode which provided the turbulent flow promotion means is a rectangle. 乱流促進手段を兼ねる集塵電極とは別体に形成した筒状体の断面形状が長方形で、コロナ電極が複数ある帯電凝集ユニットを示す断面図である。FIG. 5 is a cross-sectional view showing a charging and aggregating unit in which a cylindrical body formed separately from a dust collecting electrode serving also as a turbulent flow promoting means is rectangular and has a plurality of corona electrodes.

符号の説明Explanation of symbols

1 排気ガス処理装置
10 帯電凝集部
20 フィルタ部
30 酸化触媒
40 バイパス通路
41 切換弁
50 制御装置
DESCRIPTION OF SYMBOLS 1 Exhaust gas processing apparatus 10 Charge aggregation part 20 Filter part 30 Oxidation catalyst 40 Bypass passage
41 switching valve 50 control device

Claims (8)

集塵電極とコロナ電極とを有し、内燃機関の排気ガス中の捕集対象成分をコロナ放電により帯電させて凝集すると共に一時的に捕集する帯電凝集部と、該凝集させた成分を捕集するフィルタ部と、該フィルタ部をバイパスするバイパス通路と、排気ガスの少なくとも大部分の流れを前記フィルタ部と前記バイパス通路とに切り換える流路切換手段を有し、 内燃機関の回転数が所定の回転数以下でかつ負荷が所定の負荷以下の場合に、前記帯電凝集部でコロナ放電を行うことにより捕集対象成分を前記帯電凝集部で一時的に捕集しながら、排気ガスの少なくとも大部分の流れを前記バイパス通路に切り換えることを特徴とする排気ガス処理装置。 It has a dust collection electrode and a corona electrode, and charges and aggregates the collection target component in the exhaust gas of the internal combustion engine by corona discharge , and collects the aggregated component. A filter section that collects, a bypass passage that bypasses the filter section, and a flow path switching means that switches the flow of at least most of the exhaust gas to the filter section and the bypass passage, and the rotational speed of the internal combustion engine is predetermined When the load is equal to or less than a predetermined load and corona discharge is performed at the charged aggregation portion, the collection target component is temporarily collected at the charged aggregation portion, and at least a large amount of exhaust gas is collected. An exhaust gas processing apparatus, wherein the flow of the part is switched to the bypass passage. 前記フィルタ部を再生するための再生手段を有すると共に、排気ガスの少なくとも大部分の流れを前記バイパス通路に切り換えている時に、前記帯電凝集部でコロナ放電を行いながら、前記再生手段により前記フィルタ部の再生処理をすることを特徴とする請求項1記載の排気ガス処理装置。   The regeneration unit for regenerating the filter unit, and when the flow of at least most of the exhaust gas is switched to the bypass passage, the filter unit is used by the regeneration unit while performing corona discharge in the charging aggregation unit. The exhaust gas processing apparatus according to claim 1, wherein the regeneration process is performed. 前記フィルタ部を連続再生式のフィルタで形成すると共に、
排気ガスの温度が前記フィルタ部の再生が可能な所定の温度よりも高い時には、排気ガスの少なくとも大部分の流れを前記バイパス通路に切り換えず、
排気ガスの温度が前記フィルタ部の再生が可能な所定の温度よりも低く、かつ、内燃機関の負荷が所定の負荷以下である時には、排気ガスの少なくとも大部分の流れを前記バイパス通路に切り換えることを特徴とする請求項1又は2記載の排気ガス処理装置。
While forming the filter portion with a continuous regeneration type filter,
When the temperature of the exhaust gas is higher than a predetermined temperature at which the filter unit can be regenerated, the flow of at least most of the exhaust gas is not switched to the bypass passage,
When the temperature of the exhaust gas is lower than a predetermined temperature at which the filter unit can be regenerated and the load of the internal combustion engine is equal to or lower than the predetermined load, the flow of at least most of the exhaust gas is switched to the bypass passage. The exhaust gas treatment apparatus according to claim 1 or 2, characterized in that.
前記フィルタ部を連続再生式のフィルタ以外のフィルタで形成すると共に、
排気ガスの温度が前記フィルタ部に捕集された捕集対象成分の自己着火可能な温度よりも高い時には、排気ガスの少なくとも大部分の流れを前記バイパス通路に切り換えず、
排気ガスの温度が前記自己着火可能な温度よりも低く、かつ、内燃機関の負荷が所定の負荷以下である時には、排気ガスの少なくとも大部分の流れを前記バイパス通路に切り換えることを特徴とする請求項1又は2記載の排気ガス処理装置。
While forming the filter portion with a filter other than a continuous regeneration type filter,
When the temperature of the exhaust gas is higher than the temperature capable of self-ignition of the collection target component collected in the filter unit, the flow of at least most of the exhaust gas is not switched to the bypass passage,
When the temperature of the exhaust gas is lower than the temperature at which self-ignition is possible and the load of the internal combustion engine is equal to or lower than a predetermined load, the flow of at least most of the exhaust gas is switched to the bypass passage. Item 3. The exhaust gas treatment apparatus according to Item 1 or 2.
前記フィルタ部を連続再生式のフィルタ以外のフィルタで形成すると共に、
前記排気ガスの少なくとも大部分の流れを前記バイパス通路に切り換えている時に、前記再生のための再生手段により、前記フィルタ部を再生処理することを特徴とする請求項4記載の排気ガス処理装置。
While forming the filter portion with a filter other than a continuous regeneration type filter,
5. The exhaust gas processing apparatus according to claim 4, wherein when the flow of at least most of the exhaust gas is switched to the bypass passage, the filter section is regenerated by the regeneration means for regeneration.
前記フィルタ部の下流側の流路と前記バイパス通路とが合流する合流部分より下流側に酸化触媒を設けたことを特徴とする請求項1〜5のいずれか1項に記載の排気ガス処理装置。   The exhaust gas processing apparatus according to any one of claims 1 to 5, wherein an oxidation catalyst is provided downstream of a joining portion where a flow path on the downstream side of the filter unit and the bypass passage are joined. . 前記帯電凝集部で排気ガスを冷却するように構成したことを特徴とする請求項1〜6のいずれか1項に記載の排気ガス処理装置。   The exhaust gas processing device according to any one of claims 1 to 6, wherein the exhaust gas is cooled by the charging and aggregating unit. 集塵電極とコロナ電極とを有し、内燃機関の排気ガス中の捕集対象成分をコロナ放電により帯電させて凝集すると共に一時的に捕集する帯電凝集部と、該凝集させた成分を捕集するフィルタ部と、該フィルタ部をバイパスするバイパス通路と、排気ガスの少なくとも大部分の流れを前記フィルタ部と前記バイパス通路とに切り換える流路切換手段を有する排気ガス処理装置において、
内燃機関の回転数が所定の回転数以上又は負荷が所定の負荷以上の場合に、排気ガスの少なくとも大部分の流れを前記フィルタ部に切り換えて、前記フィルタ部で粒子状の捕集対象成分を蓄積し、
内燃機関の回転数が所定の回転数以下でかつ負荷が所定の負荷以下の場合に、前記帯電凝集部でコロナ放電を行うことにより捕集対象成分を前記帯電凝集部で一時的に捕集しながら、排気ガスの少なくとも大部分の流れを前記バイパス通路に切り換えて、排気ガスの主流から前記フィルタ部を切り離し、前記フィルタ部の再生処理を行うことを特徴とする排気ガス処理方法。
It has a dust collection electrode and a corona electrode, and charges and aggregates the collection target component in the exhaust gas of the internal combustion engine by corona discharge , and collects the aggregated component. In an exhaust gas processing apparatus having a filter unit to be collected, a bypass passage that bypasses the filter unit, and a flow path switching unit that switches at least most of the flow of exhaust gas to the filter unit and the bypass passage,
When the rotational speed of the internal combustion engine is equal to or higher than the predetermined rotational speed or the load is equal to or higher than the predetermined load, the flow of at least most of the exhaust gas is switched to the filter portion, and the particulate collection target component is changed by the filter portion. Accumulate,
When the rotational speed of the internal combustion engine is equal to or lower than the predetermined rotational speed and the load is equal to or lower than the predetermined load, the collection target component is temporarily collected by the charged aggregation section by performing corona discharge in the charged aggregation section. while, by switching the flow of at least a majority of the exhaust gas to the bypass passage, disconnecting the filter unit from the main flow of the exhaust gas, the exhaust gas treatment method, which comprises carrying out the regeneration process of the filter unit.
JP2005086503A 2005-03-24 2005-03-24 Exhaust gas treatment device and exhaust gas treatment method Expired - Fee Related JP3894938B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005086503A JP3894938B2 (en) 2005-03-24 2005-03-24 Exhaust gas treatment device and exhaust gas treatment method
PCT/JP2006/305525 WO2006101070A1 (en) 2005-03-24 2006-03-20 Exhaust gas treating device and exhaust gas treating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005086503A JP3894938B2 (en) 2005-03-24 2005-03-24 Exhaust gas treatment device and exhaust gas treatment method

Publications (2)

Publication Number Publication Date
JP2006266179A JP2006266179A (en) 2006-10-05
JP3894938B2 true JP3894938B2 (en) 2007-03-22

Family

ID=37023731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005086503A Expired - Fee Related JP3894938B2 (en) 2005-03-24 2005-03-24 Exhaust gas treatment device and exhaust gas treatment method

Country Status (2)

Country Link
JP (1) JP3894938B2 (en)
WO (1) WO2006101070A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011141827A1 (en) * 2010-05-11 2011-11-17 Flsmidth A/S Method and plant for dedusting a stream of dust-laden gases in a hybrid filter installation
DE102011050980B4 (en) * 2011-06-09 2023-10-12 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Method for operating a hybrid vehicle
JP5843666B2 (en) * 2012-03-07 2016-01-13 株式会社デンソー EHD fluid transport device
CN106812570B (en) * 2017-03-30 2022-09-20 成都青舟特机环境技术有限公司 Motor vehicle exhaust gas treatment system
WO2019065069A1 (en) * 2017-09-27 2019-04-04 京セラ株式会社 Measurement device component
GB201720147D0 (en) 2017-12-04 2018-01-17 Univ Newcastle Particulate reduction
JP2021004555A (en) * 2019-06-25 2021-01-14 トヨタ自動車株式会社 Internal combustion engine control apparatus
KR102563143B1 (en) * 2022-07-15 2023-08-03 한국환경기기시험원 주식회사 Exhaust Gas Purification Device with Its Own Heat Exchange Method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04358714A (en) * 1991-01-23 1992-12-11 Nissan Motor Co Ltd Exhaust purifying device for engine
JPH082521A (en) * 1994-06-17 1996-01-09 Sogo Insatsu Shiki Kk Packaging box with cushioning function
EP0988104B1 (en) * 1997-05-16 2002-07-24 Siemens Aktiengesellschaft Method and device for eliminating oxide pollutants in an exhaust gas containing oxygen and engine operating thereby
JP2001280121A (en) * 2000-03-31 2001-10-10 Isuzu Motors Ltd Continuous regeneration-type particulate filter device
JP3846361B2 (en) * 2002-05-17 2006-11-15 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine

Also Published As

Publication number Publication date
JP2006266179A (en) 2006-10-05
WO2006101070A1 (en) 2006-09-28

Similar Documents

Publication Publication Date Title
JP4529013B2 (en) Gas processing equipment
WO2006101070A1 (en) Exhaust gas treating device and exhaust gas treating method
US7976801B2 (en) System and method for the processing and incineration of diesel exhaust particulate matter
JP2010281211A (en) Exhaust gas combustion apparatus and generator equipped with the same
JP2005232972A (en) Exhaust emission control device
JP4581130B2 (en) Exhaust gas treatment method and exhaust gas treatment apparatus
JP2005061246A (en) Exhaust purification equipment
JP4156276B2 (en) Exhaust purification device
JP2006105081A (en) Exhaust emission control device
JPH10121941A (en) Exhaust gas purification device
CN201265441Y (en) System for collecting and incinerating diesel exhaust particulate matter
JP2004293416A (en) Exhaust emission control method of internal combustion engine and its device
JP2005232971A (en) Exhaust emission control device
JP2012136954A (en) Exhaust-gas treatment device for internal combustion engine
JP2004092589A (en) Exhaust gas purification device for internal combustion engine
KR100926136B1 (en) Automatic regenerative electrostatic precipitator for vehicle exhaust gas treatment
JP2005232970A (en) Exhaust emission control device
JP4604803B2 (en) Exhaust treatment device
JP4132920B2 (en) PM purification device
RU2212546C1 (en) Method of and device for cleaning exhaust gases of diesel engine and internal combustion engine
JP5988663B2 (en) Portable engine generator
JP2006029132A (en) Exhaust purification device
JP2009515083A (en) Purification system for exhaust gas discharged from an internal combustion engine
JPH06221137A (en) Exhaust gas disposing device
JP2005061236A (en) Exhaust gas purification device for diesel engine

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees