[go: up one dir, main page]

JP3890320B2 - 帯電装置及び画像形成装置 - Google Patents

帯電装置及び画像形成装置 Download PDF

Info

Publication number
JP3890320B2
JP3890320B2 JP2003143466A JP2003143466A JP3890320B2 JP 3890320 B2 JP3890320 B2 JP 3890320B2 JP 2003143466 A JP2003143466 A JP 2003143466A JP 2003143466 A JP2003143466 A JP 2003143466A JP 3890320 B2 JP3890320 B2 JP 3890320B2
Authority
JP
Japan
Prior art keywords
magnetic particle
charging
magnetic
particle carrier
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003143466A
Other languages
English (en)
Other versions
JP2004347782A (ja
Inventor
啓之 鈴木
良 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003143466A priority Critical patent/JP3890320B2/ja
Priority to US10/849,157 priority patent/US7103303B2/en
Publication of JP2004347782A publication Critical patent/JP2004347782A/ja
Application granted granted Critical
Publication of JP3890320B2 publication Critical patent/JP3890320B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/02Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices
    • G03G15/0208Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices by contact, friction or induction, e.g. liquid charging apparatus
    • G03G15/0241Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices by contact, friction or induction, e.g. liquid charging apparatus by bringing charging powder particles into contact with the member to be charged, e.g. by means of a magnetic brush
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/02Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices
    • G03G15/0291Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices corona discharge devices, e.g. wires, pointed electrodes, means for cleaning the corona discharge device

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Control Or Security For Electrophotography (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、帯電装置及び画像形成装置に関する。
【0002】
【従来の技術】
(1)画像形成プロセス
従来、電子写真方式や静電記録方式を用いた画像形成装置は、数多く考案されているが図4を用いて概略構成ならびに動作について簡単に説明する。
【0003】
図4に示した画像形成装置において、コピー開始信号が入力されると被帯電体(像担持体)である感光体ドラム1がコロナ帯電器3により所定の電位になるように帯電される。一方、原稿台10上におかれた原稿Gに対し原稿照射用ランプ、短焦点レンズアレイ、CCDセンサーが一体のユニット9となって原稿を照射しながら走査することにより、その照明走査光の原稿面反射光が、短焦点レンズアレイによって結像されてCCDセンサーに入射される。CCDセンサーは受光部、転送部、出力部より構成されている。CCD受光部において光信号が電荷信号に変えられ、転送部でクロックパルスに同期して順次出力部へ転送され、出力部において電荷信号を電圧信号に変換し、増幅、低インピーダンス化して出力する。得られたアナログ信号は周知の画像処理を行なってデジタル信号に変換してプリンター部に送られる。プリンター部においては、上記の画像信号を受けてON、OFF発光される像露光手段であるLED露光手段2により感光ドラム1面上に、原稿画像に対応した静電潜像を形成する。
【0004】
次にこの静電潜像をトナー粒子を収容した現像手段である現像器4にて現像し、感光ドラム1上にトナー像を得る。
【0005】
このようにして、感光ドラム1上に形成されたトナー像は、転写手段である転写装置7によって転写材上に静電転写される。その後転写材は、静電分離されて定着器6へと搬送され、熱定着されて画像が出力される。
【0006】
一方、トナー像転写後の感光ドラム1の面は、クリーナー5によって転写残りトナー等の付着汚染物の除去、必要に応じて像露光の光メモリを除去する前露光手段8による露光を受けて繰り返し画像形成に使用される。なお、転写残りのトナーを除去する方法としてクリーナを使わずに現像器において現像同時クリーニングを行なうクリーナーレスシステムも存在する。
【0007】
(2)a−Si系感光体
前述した画像形成プロセスにおいて用いられる被帯電体としては、有機感光体やアモルファスシリコン系感光体(以下、「a−Si系感光体」と称する。)等がよく用いられている。特に、前記、a−Si系感光体は、表面硬度が高く、半導体レーザなどに高い感度を示し、しかも繰返し使用による劣化もほとんど認められないことから、高速複写機やレーザービームプリンタ(LBP)などの電子写真用感光体として用いられている。
【0008】
しかし、従来a−Si系感光体においては数10Vの帯電ムラが発生する問題が生じていた。これは以下のような理由で発生していた。
【0009】
a−Si系感光体の製造方法は、ガスを高周波やマイクロ波でプラズマ化して固体化し、アルミシリンダー上に堆積させて成膜するため、プラズマが均一でないと周方向や長手方向に膜厚ムラや組成ムラができてしまう。この膜厚ムラにより静電容量の違いができ帯電能の差が生じる現象とともに、前周の光メモリーを消すために用いる前露光による帯電−現像間での暗状態での電位減衰(以降、暗減衰と呼ぶ)が、膜厚や組成の違いによって差が生じ現像部における電位ムラをより増大させるためである。
【0010】
このような問題点に対して、例えば複数回帯電を行うという方法が有効である。前述の光メモリーによる暗減衰の増大は複数帯電を行うことにより、第1の帯電で光メモリーを大幅に軽減できるため、第2の帯電を行った後には暗減衰を少なくすることが可能となる。これに伴い、電位ゴーストや電位ムラが大幅に良化される。
【0011】
(3)磁気ブラシ帯電器
a−Si系感光体を帯電する方法としては、コロナ放電を用いたコロナ帯電方式、導電性ローラを用い直接放電で帯電を行うローラ帯電方式、磁性粒子等により接触面積を充分に取り電荷を感光体表面に直接注入することにより帯電を行う注入帯電方式などがある。
【0012】
この中で、コロナ帯電方式やローラ帯電方式は放電を用いるため放電生成物が表面に付着しやすく、またa−Si系感光体は表面高度が非常に高く磨耗しにくいため放電生成物が表面に残存しやすく、高湿環境下等で水分の吸着等による静電潜像が形成された感光体表面上の電荷の面方向へ移動に伴う画像流れ現象が発生する問題がある。
【0013】
これに対して、前記注入帯電方式は放電を積極的に用いることはせずに感光体表面に接触した部分から直接電荷を注入する帯電方式であるため前記の画像流れといった現象は発生しにくい。また、注入帯電は放電帯電よりも帯電能が高く、電位収束性が高いため、電位ゴーストや電位ムラについて大きく改善される。
【0014】
注入帯電方式の一つである磁性粒子を用いた磁気ブラシ帯電器は、粒子を用いるため感光体に接触する比表面積がローラ帯電等の接触帯電器に比べて大きいため汚染に強く、また、ローラ帯電等のように通電で抵抗が大幅にアップするようなことがないため帯電器寿命は長い。
【0015】
以上のような点からa−Si系感光体を帯電するのに磁気ブラシ帯電器を複数用いる帯電方法が提案されている。
【0016】
しかし、複数の磁気ブラシ帯電器を用いた場合は、マグネットローラ等高価な部品を複数必要としコストが高くなるため、通常の帯電器以上に交換間隔を長くすることが望まれる。更に、用いる被帯電体がa−Si系感光体のような高寿命の感光体共に使用する場合においては、帯電器等の感光体周りのパーツを高寿命化し、ランニングコストを低減させることにより、a−Si系感光体の優位性である高寿命を生かすことができる。
【0017】
前述のように磁性粒子を用いた磁気ブラシ帯電器は、粒子を用いるため被帯電体に接触する比表面積がローラ帯電等の接触帯電器に比べて大きいために汚染に強く、また、ローラ帯電のように通電で抵抗が大幅にアップするようなことがないため帯電器寿命は長いが、長期にわたり耐久を行なっていくとクリーナがあったとしても、クリーナーをすり抜けた現像剤やトナーが少しずつ混入してくるため、磁性粒子の表面を徐々に汚染し少しずつではあるが帯電性が低下してくる。
【0018】
そこで従来発明においては、長期にわたる耐久を行なった際においても帯電能の低下を引き起こすことの無いように、磁性粒子の汚染度合いを帯電部材と被帯電部材の間の電流量をもとに検知し、それをもとに磁性粒子の入れ替え等により帯電能を維持することを行なってきた。
【0019】
以下に本発明と技術分野の関連性が高いものを列記する。
【0020】
【特許文献1】
特開平07−239603号公報
【特許文献2】
特開平10−254223号公報
【特許文献3】
特開平11−149204号公報
【0021】
【発明が解決しようとする課題】
しかし、ながら従来の発明の方法においては帯電部材と被帯電部材との間に流れる電流量を測定していたため、被帯電部材の表面の膜厚、汚染度、環境等に影響をうけ、磁性粒子の汚染だけを詳細に検知することは難しく、磁性粒子の局所的な汚れを検知することはできなかった。
【0022】
【課題を解決するための手段】
本発明は上記問題を解決するために、下記の構成を特徴とする帯電装置及び画像形成装置である。
【0023】
被帯電体に磁性粒子を備える磁気ブラシを接触させて被帯電体を帯電するために、第1の磁性粒子担持体と、前記第1の磁性粒子担持体よりも前記被帯電体移動方向に対して下流側に設けられた第2の磁性粒子担持体とを有する帯電装置において、
前記第1の磁性粒子担持体及び前記第2の磁性粒子担持体は、それぞれの内部に前記第一の磁性粒子担持体と前記第2の磁性粒子担持体とが対向する位置において反対極性となるように配置された磁界発生部材を備え、
前記磁性粒子は、前記第1の磁性粒子担持体と前記第2の磁性粒子担持体に共有して使用され、
前記第1の磁性粒子担持体と前記第2の磁性粒子担持体に近接する電流測定用のプローブを設けることなく、前記第1の磁性粒子担持体と前記第2の磁性粒子担持体の間に電圧を印加したときに、磁性粒子を介して前記第1及び前記第2の磁性粒子担持体間に流れる電流量を測定する電流量測定手段を有し、
前記電流量測定手段は、前記被帯電体を回転させて前記第1の磁性粒子担持体と前記第2の磁性粒子担持体の間に電圧を印加する前記被帯電体の帯電時ではなく、
前記被帯電体を回転させないで前記第1の磁性粒子担持体と前記第2の磁性粒子担持体の間に電圧を印加する電流測定時に、磁性粒子を介して前記第1及び前記第2の磁性粒子担持体間に流れる電流量を測定することを特徴とする帯電装置。
【0024】
【発明の実施の形態】
(実施例1)
本実施例における画像形成装置について概略構成及び動作について図1を用いて説明する。
【0025】
図1に示した画像形成装置において、コピー開始信号が入力されると被帯電体(像担持体)である感光体ドラム1が磁気ブラシ帯電装置30により所定の電位になるように帯電される。一方、原稿台10上におかれた原稿Gに対し原稿照射用ランプ、短焦点レンズアレイ、CCDセンサーが一体のユニット9となって原稿を照射しながら走査することにより、その照明走査光の原稿面反射光が、短焦点レンズアレイによって結像されてCCDセンサーに入射される。CCDセンサーは受光部、転送部、出力部より構成されている。CCD受光部において光信号が電荷信号に変えられ、転送部でクロックパルスに同期して順次出力部へ転送され、出力部において電荷信号を電圧信号に変換し、増幅、低インピーダンス化して出力する。得られたアナログ信号は周知の画像処理を行なってデジタル信号に変換してプリンター部に送られる。プリンター部においては、上記の画像信号を受けてON、OFF発光される像露光手段であるLED露光手段2により感光ドラム1面上に、原稿画像に対応した静電潜像を形成する。
【0026】
次にこの静電潜像をトナー粒子を収容した現像手段である現像器4にて現像し、感光ドラム1上にトナー像を得る。
【0027】
このようにして、感光ドラム1上に形成されたトナー像は、転写手段である転写装置7によって転写材上に静電転写される。その後転写材は、静電分離されて定着器6へと搬送され、熱定着されて画像が出力される。
【0028】
一方、トナー像転写後の感光ドラム1の面は、クリーナー5によって転写残りトナー等の付着汚染物の除去、必要に応じて像露光の光メモリを除去する前露光手段8による露光を受けて繰り返し画像形成に使用される。なお、転写残りのトナーを除去する方法としてクリーナを使わずに現像器において現像同時クリーニングを行なうクリーナーレスシステムとしてもよい。
【0029】
上述の感光体ドラム1、帯電手段、現像手段及びクリーニング手段などの構成要素のうち、複数のものをプロセスカートリッジとして一体に結合して構成し、このプロセスカートリッジを複写機やレーザービームプリンターなどの電子写真装置本体に対して着脱可能に構成することもできる。例えば、本実施例における磁気ブラシ帯電装置30と、現像手段及びクリーニング手段の少なくとも1つを感光体と共に一体に支持してカートリッジ化し、装置本体に設けられたレールなどの案内手段を用いて電子写真装置装置本体に着脱可能なプロセスカートリッジとすることができる。
【0030】
次に帯電工程について説明する。本実施例では感光体としてポジ帯電極性のアモルファスシリコン感光体を用いて、図2に示すような一体容器内に第1及び第2の磁性粒子担持体を有し磁性粒子を循環させて感光体に対して2つのニップを形成して帯電を施す磁気ブラシ帯電装置となっている。
【0031】
ここで、図5は、本実施例において用いたポジ帯電極性のa−Si系感光体の構造を示す模式的な断面図である。
【0032】
図5に示すa−Si系感光体は、Alなどからなる導電性支持体201と、導電性支持体201の表面上に順次堆積された感光層205(電荷注入阻止層202および光導電性を示す光導電層203)と表面層204とからなる。ここで、電荷注入阻止層202は導電性支持体201から光導電層203への電荷の注入を阻止するためのものであり、必要に応じて設けられる。また、光導電層203は少なくともシリコン原子を含む非晶質材料で構成され、光導電性を示すものである。さらに、表面層204はシリコン原子と炭素原子(さらに、必要により水素原子あるいはハロゲン原子またはその両方の原子)を含み、電子写真装置における潜像を保持する能力をもつものである。
【0033】
a−Si系感光体はその製造方法が、ガスを高周波やマイクロ波でプラズマ化して固体化し、アルミシリンダー上に堆積させて成膜するため、プラズマが均一でないと膜厚ムラや組成ムラができてしまう。これにより、従来から現像部において、数10V程度の電位ムラが発生してしまっていた。これは、膜厚ムラにより静電容量の違いができ帯電能の差が生じるの現象とともに、前周の光メモリーを消すために用いる前露光による帯電−現像間での電位減衰が、膜厚や組成によって差が生じ現像部における電位ムラをより増大させることにより発生する。
【0034】
上記の光メモリーについて説明すると、a−Si系感光体を帯電し像露光を行うと光キャリアを生成し電位を減衰させる。しかしこのとき、a−Si系感光体は多くのタングリングボンド(未結合手)を有しており、これが局在準位となって光キャリアの一部を捕捉してその走行性を低下させ、あるいは光生成キャリアーの再結合確率を低下させる。したがって、画像形成プロセスにおいて、露光によって生成された光キャリアの一部は、次工程の帯電時にa−Si系感光体に電界がかかると同時に局在準位から開放され、露光部と非露光部とでa−Si系感光体の表面電位に差が生じて、これが最終的に光メモリーとなる。
【0035】
そこで、前露光工程において均一露光を行うことによりa−Si系感光体内部に潜在する光キャリアを過多にし全面で均一になるようにして、光メモリーを消去することが一般的である。このとき、前露光源8から発する前露光の光量を増やしたり、前露光の波長をa−Si系感光体の分光感度ピーク(約680〜700nm)に近づけることにより、より効果的に光メモリ(ゴースト)を消去することが可能である。
【0036】
しかしながら、上記のようにa−Si系感光体に例えば膜厚ムラが存在すると、光導電層間にかかる電界が異なるため、上記局在準位からの光キャリアの開放に差が生じ、膜厚が薄い部分ほど電位減衰が大きく、帯電部でたとえ均一に帯電できたとしても、現像部では電位ムラが生じてしまう。また、帯電能についても膜厚が薄い部分ほど静電容量が大きくなるため不利となり、帯電能が低下してくると上記の現像部での帯電ムラはより顕著となってしまう。この電位ムラは、画像露光を行った場合にも残り、現像行程を行うと特に目に認識されやすい低濃度領域で顕著な濃度ムラとして現れる。
【0037】
また、a−Si系感光体は膜厚が一定の場合においても製法上周方向や長手方向について組成ムラができやすく光キャリアの発生量が面内で差が生じ、前記と同様に暗減衰が面方向で一定にならないことによる電位ムラは生じる場合が多かった。
【0038】
このような、光キャリアに起因される暗減衰や電位ムラを軽減する方法として複数回帯電を行う方法がある。第1の帯電において光キャリアを大幅に減らすことにより、第2の帯電後の暗減衰を大幅に軽減することが可能になるため、電位ムラや電位ゴーストを大幅に改善できる。
【0039】
ここで、前述のa−Si系感光体の帯電部材としては、従来からコロナ帯電を用いた装置が実用化されている。しかし、a−Siは比誘電率が11〜12と有機感光体に比べ大きいため、静電容量が大きくなり、それに伴い帯電能の低下、放電による潜像の流れによる画像流れ等が発生しやすくなる。
【0040】
これに対して、帯電部材として導電性ローラーやファーブラシローラー、磁性粒子を担持したマグネットローラ等を用いた、接触帯電部材を用い感光体に対して十分な接触状態を保つ条件で、a−Si系感光体を帯電すると、a−Si系感光体表面が10〜1014Ω・cmの材質からなる層により形成されていることにより、接触帯電部材に印加したバイアスのうちの直流成分とほぼ同等の帯電電位を像担持体表面に得ることが可能である。このような帯電方法は、放電を用いずに電荷を直接感光体に注入し帯電を行うため、注入帯電と称する。この注入帯電を用いれば、像担持体への帯電がコロナ帯電器を用いて行われるような放電現象を利用しないので完全なオゾンレスかつ、低電力消費型帯電が可能となり注目されてきている。また、帯電能の低下や画像流れが防止できるとともに、印加した電圧近傍に帯電されるため電位の制御を行うことも容易となる。
【0041】
本実施例における、磁気ブラシ帯電装置を図2を用いて説明する。磁気ブラシ帯電装置30内には磁性粒子が200gが収容されている。磁気ブラシ帯電装置30は、第1の磁気ブラシ帯電器308と第1の磁気ブラシ帯電器よりも感光体移動方向下流側に設けられた第2の磁気ブラシ帯電器309とを備え、それぞれの磁気ブラシ帯電器は内部に第1の磁性粒子担持体である第1の帯電スリーブ306及び第2の磁性粒子担持体である第2の帯電スリーブ303を有し、各々の帯電スリーブ303,306内に5極構成の磁界発生部材であるマグネット302、305が存在しており、このマグネットの磁気拘束力により磁性粒子304が拘束され帯電スリーブ表面に磁気ブラシを形成する構成となっている。
【0042】
本実施例では一体容器内に複数の帯電スリーブを収容し、磁性粒子を循環させて感光体に対して2つの接触ニップを形成して帯電を実現している。磁気ブラシ帯電器30において複数帯電を実現する方法としては本実施例のように一体容器内に複数の帯電スリーブを収容する方法以外にも独立で2つの磁気ブラシ帯電器を用いて帯電を行う方法もあるが、本実施例のような構成にすると、磁性粒子担持体を近接配置できるためスペースとしても小さく形成できる。
【0043】
マグネット302、305はそれぞれ複数の磁極を有し、第1の磁性粒子担持体と第2の磁性粒子担持体の対向部において、周方向に隣接する同極性の磁極が配置されている。さらに第1の磁気ブラシ帯電器のマグネットの磁極と第2の磁気ブラシ帯電器マグネットの磁極は、両者の対向部で互いに逆極性になっている。このように磁極を構成することにより2本の磁性粒子担持体間の磁性粒子の搬送性が良くなる。磁性粒子規制手段301によって規制された帯電用磁性粒子304が磁界によってブラシ状に形成されて、帯電スリーブ303、306の回転にともない前述の固定マグネット302,305の磁気力によって図2のように第2の帯電スリーブから第1の帯電スリーブへと帯電用磁性粒子304が受け渡されつつ搬送される。また、上記の第1及び第2の帯電スリーブは感光ドラム1に対しカウンター方向に回転しており、感光ドラム1の回転速度300mm/secに対し第1及び第2の帯電スリーブは共に250mm/secで回転している。上記の第1及び第2の帯電スリーブに、それぞれ電圧を印加することにより、感光ドラム表面に接触した磁性粒子304から電荷が感光ドラム1表面へと与えられ、印加された電圧に対応した電位近傍に帯電される。
【0044】
前述の磁性粒子規制手段301によって、磁気ブラシ帯電器内の帯電スリーブ表面にコーティングされる磁性粒子量は本実施例では50mg/cm2に設定されている。磁性粒子の漏らし量としては10mg/cm2〜200mg/cm程度が好ましい。更に好ましくは、十分な接触状態を保ち且つニップ内を通過できずに溢れてしまうような現象を防止するためには、30〜100mg/cm程度に設定することが好ましい。
【0045】
また、帯電用磁性粒子304としては、粒径が平均粒径が10〜100μm、飽和磁化が20〜250emu/cm、抵抗が10〜1010Ω・cmのものが、好ましく用いられる。感光ドラムにピンホールのような絶縁の欠陥が存在することを考慮すると10Ω・cm以上のものを用いることが好ましい。帯電性能を良くするにはできるだけ抵抗の小さいものを用いる方がよいので、本実施例においては、平均粒径20μm、飽和磁化200emu/cm、抵抗が5×10Ω・cmの帯電用磁性粒子を用いた。また本実施例において用いた帯電用磁性粒子は、フェライト表面を酸化、還元処理して抵抗調整を行ったものを用いている。
【0046】
ここで、帯電用磁性粒子の抵抗値は、底面積が228mmの金属セルに帯電用磁性粒子を2g入れた後、6.6Kg/cmで加重し、100Vの電圧を印加して測定している。
【0047】
また、本実施例において画像形成を行う際には、切り替えスイッチ20、21は帯電用回路接点50、51と接続し、帯電用直流電源52、53により第1の磁性粒子担持体である帯電スリーブ306には600Vの直流電圧を、第2の磁性粒子担持体である帯電スリーブ303には500Vの直流電圧を印加している。このように電圧を印加して帯電工程を行うと、第1の帯電スリーブ306との接触ニップにより600V近傍まで帯電された後に、a−Si感光体の場合には暗減衰による電位減衰が生じ、第2の帯電スリーブ303での帯電を施す直前においては500V弱に減衰している。引き続き第2の帯電スリーブ303で帯電を行うと、第1の帯電スリーブ306によって500V弱に帯電が施されているため、帯電ニップ内においては印加電圧に収束させるための帯電時間が充分取れるため、電位ムラのない均一な帯電状態が実現できる。また、第1の帯電スリーブ306によって形成されるニップにおいて帯電した後に暗減衰を起こしているため、光キャリアを大幅に減らすことができ、第2の帯電スリーブ303による帯電工程後の暗減衰を大幅に軽減することが可能になる。このため、暗減衰の差によって生じる電位ムラや帯電不良による電位ムラ等について大幅に改善することができる。
【0048】
図6は上記のような条件下において、画像比率7%の原稿を出力し耐久を行なった場合の現像位置における電位の推移をあらわしており、図7は、前記条件における電位ムラの推移をあらわしている。
【0049】
電位及び電位ムラについて初期から5万枚程度までは問題なく帯電できているが、5万枚を過ぎたあたりから徐々に帯電能が低下して電位の低下、電位ムラの増加が見られている。
【0050】
このように帯電能が低下した磁性粒子304を、前述と同様の抵抗値測定を行ったところ、初期の抵抗値が5×10Ω・cmであったものが10万枚経過後には2×10Ω・cmに抵抗アップしてしまっている。つまり、この抵抗アップが帯電性能を悪化させている要因であると考えられる。
【0051】
そこで、本発明においては本体に設置した状態で容易に磁性粒子304の抵抗を測定し、磁性粒子304の抵抗アップによる影響を画像形成時に及ぼさないように制御を行うことを目的としている。
【0052】
最初に、非画像形成時に第1の帯電スリーブ306と第2の帯電スリーブ303間に電位差を設け、流れる電流を測定することによって磁性粒子304の抵抗値を測定する。具体的には、非画像形成時に、感光ドラム1の回転を停止させ、図2の切り替えスイッチ20、21を帯電用回路接点50、51から電流量測定用回路接点60、61に切り替えることにより電流量測定用回路を形成する。このように感光ドラム1を停止させて電流量を測定する場合は、磁気ブラシ帯電器から感光ドラムへは電流が流れないため帯電スリーブ間の磁性粒子を流れる電流を測定することが可能である。また、帯電用の電源及び回路と兼用させて電流量測定用回路を組むことにより新しく電源を加えることや、帯電スリーブに電流測定用のプローブなどを新しく加える必要がない。図3は第1の帯電スリーブ306をアースに接地し第2の帯電スリーブ303に0〜600Vの異なる直流電圧値の電圧を印加した場合の電流量について、初期の磁性粒子及び、5万枚、10万枚、20万枚、40万枚経過後について測定したものである。図3からもわかるように耐久を行うに従い徐々に磁性粒子の抵抗値が高くなり電流量が減少していることがわかる。
【0053】
そこで、本実施例においては上記のように第1の帯電スリーブ306と第2の帯電スリーブ303間に電位差を設け流れる電流を測定することによって磁性粒子304の抵抗値を測定する工程を電子写真装置の本体の電源投入時及び1000枚通紙時に行なうようにした。
【0054】
具体的には、図2の切り替えスイッチ20、21を帯電用回路接点50、51から電流量測定用回路接点60、61に切り替えることにより電流量測定用回路を形成することにより行う。第1の帯電スリーブ306をアースに接地し第2の帯電スリーブ303に電流測定用直流電源63で0〜600Vの直流電圧を印加した場合の電流量を電流量測定手段である電流計62でモニタし、その電流値が図3中の5万枚時点での電流値よりも低くなった場合に磁性粒子の交換時期として、粒子交換手段であるスクリュー307により使用済みの磁性粒子を約10g帯電容器内から回収し不図示の磁性粒子回収容器に送り、新しい磁性粒子を10gを不図示の磁性粒子補給容器より補給し磁性粒子の入替工程を行った。
【0055】
このように、磁性粒子の抵抗値を測定し磁性粒子の汚染に対応して入替を行なうことにより、帯電性の低下を一定値以下にならないように制御することが可能となり長期にわたり帯電電位および電位ムラを良好なレベルに保つことが可能となる。図8は本実施例の条件下において、画像比率7%の原稿を出力し耐久を行なった場合の現像位置における電位の推移をあらわしており、図9は、前記条件における電位ムラの推移をあらわしている。図6、図7のように悪化していくことなく長期に渡り良好な帯電電位及び電位ムラが維持できていることがわかる。
【0056】
(実施例2)
実施例2においては図19に示すように第1の帯電スリーブ306及び第2の帯電スリーブ303に対して第1の帯電スリーブ306には帯電用直流電源52により600Vの直流電圧を、帯電用直流電源53により第2の帯電スリーブ303には500Vの直流電圧を印加し、さらに帯電用交番電源54により周波数1000HZ、振幅200Vの交番電圧を重畳して帯電を行った。本実施例のように帯電バイアスに交番電圧を重畳すると初期の帯電電位及び電位ムラが改善されるのと同時に磁性粒子の汚染が生じても帯電電位及び電位ムラの悪化しにくくなる。電流量測定は、電流測定用直流電源63、64による直流電圧と交番電圧の重畳電圧を用いて測定を行い、帯電時、電流量測定時の回路の切り替え等その他の構成については実施例1と同様とした。
【0057】
図10は上記のような帯電条件において磁性粒子の入替を行なわずに、画像比率7%の原稿を出力し耐久を行なった場合の現像位置における電位の推移をあらわしており、図11は、電位ムラの推移をあらわしている。実施例1の図6、図7と比較すると電位の低下及び電位ムラの上昇は緩やかな推移を示しており、実施例1における5万枚の時点と本実施例の20万枚の時点、実施例1における40万枚の時点と本実施例の60万枚の時点での電位及び電位ムラがほぼ同等となっている。図16は、第1の帯電スリーブ306をアースに接地し第2の帯電スリーブ303に0〜600Vの直流電圧に周波数1000HZ、振幅200Vの交番電圧を印加した場合の直流電流量を測定したものである。実施例1と同程度の帯電性を確保するためには上記のような方法で直流電流値を画像形成装置本体立ち上げ時や一定枚数通紙後に測定し、20万枚時点での電流量以下にならないように、磁性粒子の入替を行なえば良いが、本実施例ではより帯電能が高い状態を維持するために10万枚時点での電流量以下にならないように磁性粒子の入替を行なった。このときの磁性粒子の入替量は実施例1と同様に10gとした。入替量に関しては本実施例のように10gに限られるものではなく、より少量にして小刻みに入れ替えても良いし、より多く入替を行ない入替間隔を長くしても構わない。また、磁性粒子の汚染レベルの下限値も、本実施例では10万枚時点の電流値を下まわらないレベルに設定したが、これもこの条件に限られるものではなく、より帯電能を高く維持したい場合には磁性粒子の入替頻度を高くすれば良いし、入替頻度を少なくしたい場合には画像欠陥の出ないぎりぎりの領域で制御を行なっても構わない。図12は本実施例の上記の条件下において、画像比率7%の原稿を出力し耐久を行なった場合の現像位置における電位の推移をあらわしており、図13は、前記条件における電位ムラの推移をあらわしている。図10図11に比較して実施例1と同様に改善がはかられ、長期に渡り良好な帯電電位及び電位ムラが維持できていることがわかる。
【0058】
本発明において大事なのは帯電スリーブ間に異なる電圧を印加して、磁性粒子を介して流れる電流値を測定することにより、磁性粒子の汚染度を測定し所望の帯電能レベルを維持することである。
【0059】
また、磁性粒子の汚染度を測定するにあたっては上記のように実際に帯電の行なう際の交流電圧を重畳した状態で測定しても良いし、例えば実際画像を出力する際には交流電圧を重畳するが、磁性粒子の汚染具合を測定する場合には直流電圧のみを印加して測定しても良い。このようにして磁性粒子の汚染度を測定する場合のみ直流電圧のみ印加した場合磁性粒子の汚染による電流量の低下が交番電圧を重畳した場合よりも大きいため汚染度合いの差がわかりやすく制御が容易となる。
【0060】
(実施例3)
実施例1,2においては、第1及び第2の磁性粒子担持体間を磁性粒子304を介して流れる電流量の測定することにより、磁性粒子304の汚染度を測定し磁性粒子304の入替を行なったが、本実施例においては磁性粒子304の入替は行なわず、磁性粒子304の汚染度に対応して前記の帯電スリーブに印加される交番電圧の振幅を変化させることにより帯電能の維持を実現した。実施例2において述べたとおり、帯電時に印加される直流電圧に対して交番電圧を重畳することにより帯電能は大幅に向上される。図17は20万枚時点におけるの前記電流値測定時の直流電圧値を電流値の関係を示す図であり、振幅を変化させた場合の直流電流値がわかるが、図17からもわかるように振幅を高めることにより直流電流が流れるようになることがわかり、帯電性向上に交番電圧の振幅値が大きく寄与することがわかる。
【0061】
ただし、交流電圧を高め過ぎることは必ずしも良いことばかりではない。例えば振幅が1200Vを越えるとAC放電が生じ画像流れ等が発生しやすくなる。また、1200V以下においても必要以上に交流電圧が高いと帯電スリーブ303,306と感光ドラム1間のニップ部で磁性粒子が滞留し通過しにくくなる現象が発生し、トナー等が磁気ブラシ帯電器へ混入した際など交番電圧値が高いほど感光ドラム1への吐きだしが行なわれにくく磁気ブラシ中へのトナーの混入量が高くなるなどの現象も発生する。よって、本実施例では帯電能を維持できる中でできるだけ低めの振幅値で画像出力を行なうように制御するため、汚染度に応じて少しずつ交番電圧の振幅を上げている制御を行なっている。
【0062】
本実施例においては、図20に示すように、帯電用直流電源52により第1の帯電スリーブ306には600Vの直流電圧を、帯電用直流電源53により第2の帯電スリーブ303には500Vの直流電圧を印加し帯電を施した。画像出力枚数が増えるにしたがい、各々の帯電スリーブに印加する直流電圧に対して帯電用交流電源54により1000Hzの交流電圧を重畳し、その振幅を汚染度に応じて徐々に上げていき帯電能を維持するようにした。帯電時、電流量測定時の回路の切り替え等その他の構成については実施例1と同様とする。
【0063】
磁性粒子の汚染度の測定に際しては、初期の状態において第1の帯電スリーブをアースに接地し第2の帯電スリーブに0〜600Vの直流電圧を印加した場合の電流値を測定しておき、画像出力を重ねるに従い電流値測定時において第2の帯電スリーブ印加する電圧に電流測定用交番電源64により交番電圧の重畳を行い、周波数1000HZの条件で0Vから徐々に上げて初期の電流値に近くなる振幅値を電流計62で検出し、画像出力時の交番電圧の振幅値を決定している。つまり、磁性粒子担持体間に流れる電流量の測定により、帯電時に印加される交番電圧の振幅値を決める構成となっている。
【0064】
図18は、出力枚数に伴い交番電圧の振幅値を高めていった場合の前記電流値測定時の直流電圧値を電流値の関係を示すものである。初期の直流電圧に対して、5万枚時点は振幅100V、10万枚時点は振幅200V、20万枚時点は振幅400V、40万枚時点は振幅600V、60万枚時点は振幅700Vの条件下でほぼ同程度の電流値を示していることがわかる。
【0065】
本実施例においては、画像出力に際し第1の帯電スリーブ306及び第2の帯電スリーブ303に重畳される交番電圧を上述のようにして測定された電流値に対応して振幅値を決め、第1及び第2の帯電スリーブへ同じ交流電圧を重畳し帯電を施した。このように、画像出力に伴い磁性粒子が汚染されていくのに対応して、磁性粒子の汚染レベルを検知し徐々に交番電圧を上げていくことにより磁性粒子の入替等を行なうことなく初期とほぼ同等な帯電レベルを維持し良好な画像を得ることが可能となった。
【0066】
図14は本実施例における上記の条件下で、画像比率7%の原稿を出力し耐久を行なった場合の現像位置における電位の推移をあらわしており、図15は、前記条件における電位ムラの推移をあらわしている。本実施例のように出力枚数に応じて磁性粒子の汚染検知を行ない、徐々に重畳する交流電圧の振幅値を上げ磁性粒子の汚染による帯電能低下を防止することにより、図14,図15のように長期に渡り良好な帯電電位及び電位ムラが維持できていることがわかる。
【0067】
また、本実施例においては磁性粒子の汚染検知によって得られた交流電圧の振幅値を、第1及び第2の帯電スリーブについて同じ振幅値で重畳したが、必ずしも同じ振幅値にする必要は無い。第1の帯電スリーブ306か第2の帯電スリーブ303かのいずれかのみに上記の振幅値を重畳する方法でも構わない。好ましくは第1の帯電スリーブ306の方が帯電時に流れる電流量が大きいため帯電に及ぼす影響が高いことから、上記の振幅値は第1の帯電スリーブ306に印加する方がよいが、これに限られるものではない。
【0068】
本発明において大事なのは帯電スリーブ間の磁性粒子を介して流れる電流値を測定することにより、磁性粒子の汚染度を測定し所望の帯電能レベルを維持することであり、本実施例の方法は、汚染レベルに合わせて印加される交番電圧の振幅を第1、第2の帯電スリーブの双方またはどちらかについて徐々に上げていき、磁性粒子が汚染しても磁性粒子を入れ替えることなく帯電能を維持できる方法である。
【0069】
実施例1、2において、粒子の交換手段としてスクリューを用いているが、この例に限られるものではなく、粒子を磁性粒子補給容器から補給するだけでもよい。また、粒子の入れ替えと実施例3のように交流電圧の振幅値を変化させる事を同時に行なってもかまわない。
【0070】
また、実施例1,2,3において、粒子の補給または交換時期が来た場合、不図示の操作パネル等に補給交換時期が来たことを知らせる表示をする方法を合わせてとってもよい。この場合、粒子の補給または交換又はカートリッジの交換を人間の手により行なってもかまわない。
【0071】
また、実施例1,2,3では電流量測定用に図2、19、20のように回路を組んでいるがこれらに限られるものではない。例えば帯電用または電流量測定用の電源は兼用するように構成してもかまわない。また、電流測定手段の配置を電流量測定用回路接点60とアースの間に設けても良い。ここで重要なのは、電源や電流量測定装置の位置に関わらず、第1及び第2の磁気ブラシ帯電器に帯電用の電圧を印加できる帯電用回路と、第1及び第2の磁性粒子担持体間を流れる電流量を測定するための電流量測定用回路とが設けられていればよい。
【0072】
また、電源に直流電圧を用いるか、交流電圧との重畳電圧を用いるかは問題としない。
【0074】
実施例1,2,3において磁性粒子の汚染度を検知するための電流値の検出方法について、第1の帯電スリーブ306を接地し、第2の帯電スリーブ303に0〜600Vの直流電圧または交番電圧を印加した場合の電流値を測定したが、電圧の印加についてもこのような例に限られるわけではない。例えば、第2の帯電スリーブ303を接地して第1の帯電スリーブ306に電圧を印加しても構わないし、第1及び第2の帯電スリーブともに接地せず各々に異なる直流電圧を印加しても構わないし、実施例中で可変とした第2の帯電スリーブ303に印加した直流電圧値についても例えば300Vと言ったような固定値のみでの測定を用いて検知を行なっても構わない。
【0075】
つまり本発明は、帯電スリーブ間の磁性粒子を介して流れる電流値を測定することである。また、その電流量をもとに磁性粒子の汚染度を測定し所望の帯電能レベルを維持することであり、その際の電圧の印加方法及び検知結果に対応してどのようにして帯電能レベルを維持するかといった手段に関しては制限されるものではない。
【0076】
【発明の効果】
本発明においては、上記のように第1及び第2の磁性粒子担持体を有し、第1及び第2の磁性粒子担持体間を磁性粒子が受け渡されることにより磁性粒子を循環させ、感光体に対して複数の接触ニップを形成し帯電を行なう帯電装置において、第1及び第2の磁性粒子担持体間に磁性粒子を介して流れる電流量を測定する電流量測定手段により、電流量から磁性粒子の汚染度を検知することができる。また、その汚染の度合いにより磁性粒子の補給や交換、または磁性粒子担持体へ印加するバイアスの交番電圧の振幅を上げるなどの方法によって帯電能の低下を防止し長期に渡り良好な画像を維持することを可能にしている。磁性粒子を流れる電流量を直接測定しているため、被帯電体の汚染等による影響を受けず詳細な汚染の検知を行い帯電性能の維持を図ることができる。
【図面の簡単な説明】
【図1】本発明の実施例1,2、3において用いた画像形成装置の概略図
【図2】本発明の実施例1において用いた磁気ブラシ帯電器の概略図
【図3】本発明の実施例1において測定した磁性粒子を介して流れた電流値の耐久による推移
【図4】従来例において用いた画像形成装置の概略図
【図5】アモルファスシリコン感光体の層構成の一例を示す断面図
【図6】実施例1において用いた磁性粒子の入替を行なわない場合の帯電電位の推移を示すグラフ
【図7】実施例1において用いた磁性粒子の入替を行なわない場合の電位ムラの推移を示すグラフ
【図8】実施例1において用いた磁性粒子の入替を行なった場合の帯電電位の推移を示すグラフ
【図9】実施例1において用いた磁性粒子の入替を行なった場合の電位ムラの推移を示すグラフ
【図10】実施例2において用いた磁性粒子の入替を行なわない場合の帯電電位の推移を示すグラフ
【図11】実施例2において用いた磁性粒子の入替を行なわない場合の電位ムラの推移を示すグラフ
【図12】実施例2において用いた磁性粒子の入替を行なった場合の帯電電位の推移を示すグラフ
【図13】実施例2において用いた磁性粒子の入替を行なった場合の電位ムラの推移を示すグラフ
【図14】実施例3において電流値に応じて交番電圧を変化させた場合の帯電電位の推移を示すグラフ
【図15】実施例3において電流値に応じて交番電圧を変化させた場合の電位ムラの推移を示すグラフ
【図16】実施例2において測定した磁性粒子を介して流れた電流値の耐久による推移を示すグラフ
【図17】実施例3において測定した20万枚時点での磁性粒子を介して流れた電流値と交番電圧の振幅値の関係を示すグラフ
【図18】実施例3において耐久に応じて交番電圧の振幅値を変化させた場合の磁性粒子を介して流れた電流値を示すグラフ
【図19】本発明の実施例2において用いた磁気ブラシ帯電器の概略図
【図20】本発明の実施例3において用いた磁気ブラシ帯電器の概略図
【符号の説明】
1 感光ドラム
2 LED露光手段
3 コロナ帯電器
30 磁気ブラシ帯電器
4 現像装置
5 クリーナー
6 定着器
7 転写装置
8 前露光ランプ
9 スキャナユニット
10 原稿台
20、21 切り替えスイッチ
50,51 帯電用回路接点
52,53 帯電用直流電源
54 帯電用交番電源
60,61 電流量測定用回路接点
62 電流計
63 電流測定用直流電源
64 電流測定用交番電源
308 第1の磁気ブラシ帯電器
309 第2の磁気ブラシ帯電器

Claims (12)

  1. 被帯電体に磁性粒子を備える磁気ブラシを接触させて被帯電体を帯電するために、第1の磁性粒子担持体と、前記第1の磁性粒子担持体よりも前記被帯電体移動方向に対して下流側に設けられた第2の磁性粒子担持体とを有する帯電装置において、
    前記第1の磁性粒子担持体及び前記第2の磁性粒子担持体は、それぞれの内部に前記第一の磁性粒子担持体と前記第2の磁性粒子担持体とが対向する位置において反対極性となるように配置された磁界発生部材を備え、
    前記磁性粒子は、前記第1の磁性粒子担持体と前記第2の磁性粒子担持体に共有して使用され、
    前記第1の磁性粒子担持体と前記第2の磁性粒子担持体に近接する電流測定用のプローブを設けることなく、前記第1の磁性粒子担持体と前記第2の磁性粒子担持体の間に電圧を印加したときに、磁性粒子を介して前記第1及び前記第2の磁性粒子担持体間に流れる電流量を測定する電流量測定手段を有し、
    前記電流量測定手段は、前記被帯電体を回転させて前記第1の磁性粒子担持体と前記第2の磁性粒子担持体の間に電圧を印加する前記被帯電体の帯電時ではなく、
    前記被帯電体を回転させないで前記第1の磁性粒子担持体と前記第2の磁性粒子担持体の間に電圧を印加する電流測定時に、磁性粒子を介して前記第1及び前記第2の磁性粒子担持体間に流れる電流量を測定することを特徴とする帯電装置。
  2. 前記電流量の測定は、前記電圧が異なる値の直流電圧を使って複数回行なわれることを特徴とする請求項1記載の帯電装置。
  3. 前記電流量の測定値に応じて、磁性粒子の補給 または交換 行うことを特徴とする請求項1または2いずれか記載の帯電装置。
  4. 前記電流量の測定値に応じて、磁性粒子の補給 または交換 の表示をすることを特徴とする請求項1乃至3いずれか記載の帯電装置。
  5. 前記電流量の測定値に応じて、画像形成時に前記第1の磁性粒子担持体および前記第2の磁性粒子担持体に印加される交流電圧の振幅値を決めることを特徴とする請求項1乃至4いずれか記載の帯電装置。
  6. 前記電流量の測定は、非画像形成時に行うことを特徴とする請求項1乃至5いずれか記載の帯電装置。
  7. 前記被帯電体は、アモルファスシリコンを含む感光体であることを特徴とする、請求項1乃至いずれか記載の帯電装置。
  8. 前記磁界発生部材は複数の磁極を備え、前記複数の磁極は、隣接する同極性の磁極が配置されることを特徴とする請求項1乃至7いずれか記載の帯電装置。
  9. 前記同極性の磁極が隣接して配置される領域が、前記第1の磁性粒子担持体と前記第2の磁性粒子担持体の対向部に有ることを特徴とする請求項に記載の帯電装置。
  10. 前記第1の磁性粒子担持体と前記第2の磁性粒子担持体により担持される磁性粒子を被帯電体に接触させて電荷を直接注入して帯電を行なうことを特徴とする請求項1乃至のいずれか記載の帯電装置。
  11. 前記被帯電体は像担持体であり、前記像担持体、前記第1及び第2の磁性粒子担持体は、画像形成装置本体に着脱可能なプロセスカートリッジに設けられることを特徴とする請求項1乃至10のいずれか記載の帯電装置。
  12. 前記請求項1乃至11記載の帯電装置と、前記被帯電体に対し露光を行い静電潜像を形成する像露光手段と、前記潜像を現像しトナー像を形成する現像手段と、前記トナー像を転写材に転写する転写手段を有し、前記被帯電体は像担持体であることを特徴とする画像形成装置。
JP2003143466A 2003-05-21 2003-05-21 帯電装置及び画像形成装置 Expired - Fee Related JP3890320B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003143466A JP3890320B2 (ja) 2003-05-21 2003-05-21 帯電装置及び画像形成装置
US10/849,157 US7103303B2 (en) 2003-05-21 2004-05-20 Charging apparatus and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003143466A JP3890320B2 (ja) 2003-05-21 2003-05-21 帯電装置及び画像形成装置

Publications (2)

Publication Number Publication Date
JP2004347782A JP2004347782A (ja) 2004-12-09
JP3890320B2 true JP3890320B2 (ja) 2007-03-07

Family

ID=33531249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003143466A Expired - Fee Related JP3890320B2 (ja) 2003-05-21 2003-05-21 帯電装置及び画像形成装置

Country Status (2)

Country Link
US (1) US7103303B2 (ja)
JP (1) JP3890320B2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPR621501A0 (en) 2001-07-06 2001-08-02 Commonwealth Scientific And Industrial Research Organisation Delivery of ds rna
JP4307369B2 (ja) * 2004-12-07 2009-08-05 キヤノン株式会社 帯電装置、プロセスカートリッジおよび画像形成装置
JP4861736B2 (ja) 2005-05-02 2012-01-25 キヤノン株式会社 画像形成装置
JP4886320B2 (ja) * 2006-02-28 2012-02-29 キヤノン株式会社 画像形成装置
KR100662238B1 (ko) * 2006-08-08 2006-12-28 주식회사 디오스텍 구동 수단을 구비한 렌즈 조립체 및 이를 포함하는 자동초점 조절 장치
JP2008077065A (ja) * 2006-08-24 2008-04-03 Canon Inc 帯電装置及び画像形成装置
US7970320B2 (en) * 2007-12-20 2011-06-28 Canon Kabushiki Kaisha Image forming apparatus having charging device using magnetic brush charger
JP2010237650A (ja) * 2009-03-09 2010-10-21 Canon Inc 画像形成装置
JP5539013B2 (ja) * 2009-06-17 2014-07-02 キヤノン株式会社 画像形成装置
JP5517862B2 (ja) * 2009-10-05 2014-06-11 キヤノン株式会社 画像形成装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US633041A (en) * 1898-03-31 1899-09-12 John Reel Harness.
JP3423348B2 (ja) 1993-03-19 2003-07-07 キヤノン株式会社 画像形成装置
JP3041173B2 (ja) 1993-10-01 2000-05-15 キヤノン株式会社 画像形成装置
JP3035449B2 (ja) 1993-10-29 2000-04-24 キヤノン株式会社 現像方法及び装置並びに画像形成方法及び装置
JPH11149204A (ja) 1997-11-17 1999-06-02 Canon Inc 接触帯電装置及び画像形成装置
JP3703341B2 (ja) 1999-07-29 2005-10-05 キヤノン株式会社 画像形成装置および現像剤・帯電用磁性粒子補給容器
US6501916B2 (en) 2000-05-31 2002-12-31 Canon Kabushiki Kaisha Image forming apparatus
US6909859B2 (en) * 2002-05-08 2005-06-21 Canon Kabushiki Kaisha Charging apparatus with plural charging means
US7130565B2 (en) * 2003-06-03 2006-10-31 Canon Kabushiki Kaisha Charging apparatus and image forming apparatus

Also Published As

Publication number Publication date
US7103303B2 (en) 2006-09-05
US20040265005A1 (en) 2004-12-30
JP2004347782A (ja) 2004-12-09

Similar Documents

Publication Publication Date Title
US6909859B2 (en) Charging apparatus with plural charging means
JP3890320B2 (ja) 帯電装置及び画像形成装置
JP3634547B2 (ja) 画像形成装置
JP3919615B2 (ja) 画像形成装置
US6999690B2 (en) Image forming apparatus
JP4194390B2 (ja) 帯電装置及び画像形成装置
JPH10228160A (ja) 画像形成装置
JP2008077065A (ja) 帯電装置及び画像形成装置
JP2004258109A (ja) 画像形成装置
JP4289984B2 (ja) 帯電装置及び画像形成装置
JP4886320B2 (ja) 画像形成装置
JP5611384B2 (ja) 帯電装置及び画像形成装置
JP2002207350A (ja) 画像形成装置
JP3630998B2 (ja) 画像形成装置
JPH11305521A (ja) 画像形成装置
JP3376187B2 (ja) 画像形成装置の制御方法
JPH09211938A (ja) 画像形成装置
JP2004054022A (ja) 帯電装置および画像形成装置
JP4227372B2 (ja) 画像形成装置
JP3466840B2 (ja) 画像形成装置
JPH07199758A (ja) 画像形成装置
JP2004279807A (ja) 帯電装置、プロセスカートリッジ、及び画像形成装置
JP2004069775A (ja) 帯電ユニット及び画像形成装置
JP2006039363A (ja) 画像形成装置
JP2000231246A (ja) 電子写真方法及び電子写真装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050829

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061012

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131208

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees