[go: up one dir, main page]

JP3887035B2 - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP3887035B2
JP3887035B2 JP09952996A JP9952996A JP3887035B2 JP 3887035 B2 JP3887035 B2 JP 3887035B2 JP 09952996 A JP09952996 A JP 09952996A JP 9952996 A JP9952996 A JP 9952996A JP 3887035 B2 JP3887035 B2 JP 3887035B2
Authority
JP
Japan
Prior art keywords
insulating layer
layer
wiring
layers
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09952996A
Other languages
English (en)
Other versions
JPH09237831A (ja
Inventor
エム・ビー・アナンド
雅基 山田
英毅 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP09952996A priority Critical patent/JP3887035B2/ja
Priority to TW085106346A priority patent/TW317010B/zh
Priority to US08/698,335 priority patent/US6307265B1/en
Priority to SG1996010573A priority patent/SG60016A1/en
Priority to EP96113827A priority patent/EP0783178A3/en
Priority to KR1019960038590A priority patent/KR100279790B1/ko
Priority to CNB961179724A priority patent/CN1160772C/zh
Publication of JPH09237831A publication Critical patent/JPH09237831A/ja
Priority to US09/525,442 priority patent/US6306753B1/en
Priority to KR1020000020962A priority patent/KR100308240B1/ko
Application granted granted Critical
Publication of JP3887035B2 publication Critical patent/JP3887035B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/7682Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing the dielectric comprising air gaps
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/01Manufacture or treatment
    • H10D84/0123Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
    • H10D84/0126Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
    • H10D84/0149Manufacturing their interconnections or electrodes, e.g. source or drain electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76834Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers formation of thin insulating films on the sidewalls or on top of conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76885By forming conductive members before deposition of protective insulating material, e.g. pillars, studs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5222Capacitive arrangements or effects of, or between wiring layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/5329Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/5329Insulating materials
    • H01L23/53295Stacked insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76807Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • H01L21/76883Post-treatment or after-treatment of the conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、配線間の絶縁構造に特徴を有する半導体装置及びその製造方法に関する。
【0002】
【従来の技術】
LSIの性能の向上は、基本的に、素子の集積度を高めること、即ち素子の微細化を図ることにより達成できる。しかし、素子の集積度が極端に高くなると配線間の容量が増大するため、LSIの性能(高速動作など)を向上させることが容易ではなくなる。
【0003】
従って、マイクロプロセッサなどの超大規模集積回路(ULSIC)においては、その性能の向上を達成するために集積回路の内部配線の寄生抵抗及び寄生容量を減少させることが不可欠である。
【0004】
内部配線の寄生抵抗の減少は、抵抗率が低い材料により内部配線を構成することにより達成できる。現在では、アルミニウム合金に比べて抵抗率が30%以上低い銅を、アルミニウム合金に変えて内部配線に用いることが研究されている。
内部配線の寄生容量には、二つの成分がある。
【0005】
一つめは、異なるレベルに存在する配線間に生じる容量、即ち上下の配線間に生じる容量である。この容量は、下側の配線上に形成される層間絶縁膜の厚さを増すことにより減少させることが可能である。
【0006】
二つめは、同じレベルに存在する配線間に生じる容量、即ち左右の配線間に生じる容量である。この容量は、配線の間隔を広げること及び配線の厚さを減らすことにより達成できる。
【0007】
しかし、配線の間隔を広げると素子の集積度を低下させることになり、配線の厚さを減らすと配線抵抗が増大することになるため、かえってLSIの性能の向上を図ることができない。
【0008】
そこで、現在では、内部配線の寄生容量を減少させるために、配線間の絶縁層に誘電率εの低いものを使用することが研究されている。
【0009】
図233は、配線間に誘電率εの低い絶縁層を満たした構造の半導体装置を示すものである。
【0010】
半導体基板11上には絶縁層12が形成されている。配線13は、絶縁層12上に配置されている。配線13間及び配線13上には、弗素を含むプラズマTEOS層14が形成されている。
【0011】
この弗素を含むプラズマTEOS層14は、誘電率εが約3.3であり、弗素を含まないプラズマTEOS層に比べて誘電率εを約15%減少させている。
【0012】
しかし、近年の素子の集積度の向上に伴い、LSIの性能の向上は、配線間の誘電率εを3.3以下にしなければ達成できない状態になっている。
【0013】
【発明が解決しようとする課題】
このように、従来は、LSIの性能の向上を図るため、配線間の絶縁層の誘電率を減少させることが必須である。しかし、絶縁層の誘電率を3.3以下にすることは非常に困難であるため、絶縁層の誘電率は、素子の集積度が進む中で、LSIの性能の向上の支障となっている。
【0014】
一方、近年では、同じレベルに存在する配線間を空洞にすることで、配線間の寄生容量を低減しようとする試みがなされている。
【0015】
文献(特開平7−45701号公報)は、同じレベルに存在する配線間を空洞にする技術を開示している。この技術の特徴は、予め配線間に満たしておいた氷膜を蒸発させる点にある。
【0016】
しかし、この技術は、材料の相転移を利用しているために以下の欠点がある。第一に、配線間の水を凍結する際に体積膨脹が生じて配線に悪影響を与える。この欠点は、配線を形成した後に、相転移を利用して材料を埋め込むことに起因しており、氷膜に限られず、文献が示す全ての材料について生じる。第二に、CMP(化学的機械研磨)により氷膜を研磨する際に、摩擦熱により氷膜の全てが溶けてしまう場合がある。第三に、固体膜の蒸発前の全ての工程を低温(氷膜の場合、摂氏零度以下)で行う必要があり、ウェハの取り扱いが困難になる。
【0017】
また、この技術では、配線間の空洞には水蒸気が満たされることになるため、この水蒸気が配線のショ−トや腐食の原因となり、配線の信頼性に悪影響を与える。さらに、この技術では、異なるレベルに存在する配線間を空洞にする技術を開示していないため、配線間の寄生容量の低減は必ずしも十分とはいえない。
【0018】
本発明は、上記欠点を解決すべくなされたもので、その目的は、配線間に誘電率が低く、配線に悪影響を与えないようなガスを満たすことにより、素子の集積度の向上とLSIの性能の向上を同時に達成することである。
【0019】
【課題を解決するための手段】
本発明の半導体装置の製造方法は、半導体基板上に第1の絶縁層を形成する工程と、前記第1の絶縁層上に炭素層を形成する工程と、前記炭素層に複数の溝を形成する工程と、前記複数の溝内にのみ導電体を埋め込んで複数の配線を形成する工程と、前記炭素層上及び前記複数の配線上に酸化物からなる第2の絶縁層を形成する工程と、酸素を前記第2の絶縁層を透過させて前記炭素層と反応させることにより前記炭素層を酸化し、前記炭素層をガス層に変換する工程とを備える。
【0155】
【発明の実施の形態】
以下、図面を参照しながら、本発明の実施の形態について詳細に説明する。
【0156】
図1は、本発明の第1の実施の形態に関わる半導体装置を示している。
【0157】
半導体基板(例えば、シリコンウェハ)11上には、絶縁層(例えば、シリコン酸化層)12が形成されている。配線13は、絶縁層12上に配置されている。配線13は、銅、アルミニウム合金などの金属、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属から構成されている。
【0158】
配線13間を満たすことがない板状の絶縁層(例えば、シリコン酸化層)14は、配線13を柱として、配線13上に形成されている。つまり、配線13間は、空洞(キャビティ)15になっている。空洞15内には、誘電率εが1.0程度のガス、即ち、酸素O2 と二酸化炭素CO2 の混合ガスが主として満たされている。
【0159】
なお、空洞内の二酸化炭素CO2 のガスの濃度は、少なくとも空気(大気)中の二酸化炭素のガスの濃度よりも高くなっている。また、空洞15を、製造時に空気に接触させることにより、又はパッケ−ジに穴を設けておくことにより、空洞15内に空気を満たすようにしてもよい。
【0160】
上記構成の半導体装置によれば、配線13間には、主として酸素O2 と二酸化炭素CO2 の混合ガス、又は空気が満たされている。この混合ガス又は空気の誘電率εは、1.0程度である。これにより、配線13間をシリコン酸化層などの絶縁層で満たす場合に比べて、極端に誘電率を低下させることができる。従って、素子の集積度の向上とLSIの性能の向上を同時に達成することができる。
【0161】
次に、図1の半導体装置の製造方法について説明する。
【0162】
まず、図2に示すように、半導体基板11上に絶縁層12を形成する。スパッタリング法などにより絶縁層12上に炭素(カ−ボン)層16を形成する。ここで、炭素層16の厚さは、LSIの内部配線の厚さと等しい値(例えば、約0.7〜約0.2μm)に設定される。
【0163】
スパッタリング法又はCVD法により、炭素層16上にマスク材(例えば、シリコン酸化層やシリコン窒化層など)17を形成する。ここで、マスク材17が酸化物により構成されている場合には、マスク材17は、スパッタリング法により形成するのがよい。CVD法を用いる場合、反応ガスに含まれる酸素により炭素層16が消滅する場合があるからである。
【0164】
次に、マスク材17上にレジストを塗布し、PEP(写真蝕刻工程)を用いてこのレジストをパタ−ニングする。また、パタ−ニングされたレジストをマスクにしてマスク材17をパタ−ニングする。この後、レジストを剥離し、マスク材17をマスクにして、異方性エッチングにより炭素層16をエッチングし、炭素層16に溝を形成する。
【0165】
なお、炭素層16は、レジストをマスクにしてエッチングしてもよい。
【0166】
レジストの剥離は、H2 SO4 とH2 2 の薬液により行われる。レジストは、酸素プラズマ処理でも剥離できるが、酸素プラズマ処理を用いると、炭素層16も消滅してしまうからである。
【0167】
次に、図3に示すように、CVD法又はスパッタリング法により、半導体基板11上の全面に銅などから構成される導電層を形成する。化学機械的研磨(CMP)により、炭素層16の間の溝内にのみ導電層を残存させ、配線13を形成する。
【0168】
なお、CMPの代わりに、異方性エッチング又は等方性エッチングを用いて配線13を形成するようにしてもよい。
【0169】
この後、マスク材17は、剥離される。
【0170】
次に、図4に示すように、スパッタリング法により、配線13及び炭素層16上に絶縁層(例えば、シリコン酸化層)14を形成する。ここで、絶縁層14がシリコン酸化層のような酸化物の場合には、CVD法を用いない方がよい。なぜなら、反応ガスの中に酸素O2 が含まれているため、絶縁層14の形成時に、炭素層16が除去されてしまう可能性があるからである。
【0171】
次に、図5及び図6に示すように、炭素層16を灰化し、炭素層16を、酸素O2 と二酸化炭素CO2 の混合ガスが主として満たされた空洞15に変換する。なお、炭素層16の灰化は、以下の二つの方法のいずれかを使用することにより達成される。
【0172】
一つめは、酸素雰囲気中(酸素を含む雰囲気のことをいう、例えば大気中でもよい)での熱処理(温度400〜450℃、時間2h程度)である。この方法では、炭素層16が二酸化炭素CO2 に変換する反応が緩やかに進むため、炭素層16の体積の膨脹による絶縁層14の破裂を防止できる利点がある反面、処理時間が長くなる欠点がある。
【0173】
二つめは、酸素プラズマ処理(アッシャ−)である。この方法では、炭素層16が二酸化炭素CO2 に変換する反応が速やかに進むため、処理時間が短くなる利点がある反面、炭素層16の体積の膨脹による絶縁層14の破裂が生じる可能性が高くなるという欠点がある。しかし、この欠点は、絶縁層14の質の改善や酸素プラズマ処理の温度の低下などにより回避できる。
【0174】
なお、空洞15を、製造時に空気に接触させることにより、又はパッケ−ジに穴を設けておくことにより、空洞15内に空気を満たすようにしてもよい。
【0175】
上述の方法によれば、配線を形成するための溝を有する絶縁層に炭素層を用い、かつ、溝内に配線を形成した後にこの炭素層を灰化してガスが満たされた空洞に変換している。従って、容易に、図1の半導体装置を提供することができる。
図7は、本発明の第2の実施の形態に関わる半導体装置を示している。
【0176】
半導体基板(例えば、シリコンウェハ)21上には、フィ−ルド酸化層(例えば、シリコン酸化層)22が形成されている。フィ−ルド酸化層22に囲まれた素子領域には、MOSトランジスタが形成されている。このMOSトランジスタは、ゲ−ト電極23及びソ−ス・ドレイン領域24a,24bを有している。
【0177】
絶縁層25は、MOSトランジスタを覆っている。絶縁層25は、例えば、硼素燐ケイ酸ガラス(BPSG)や燐ケイ酸ガラス(PSG)などから構成することができる。
【0178】
絶縁層25の表面は、平坦である。絶縁層25の表面は、化学機械的研磨(CMP)により平坦にすることができる。絶縁層25には、ソ−ス・ドレイン領域24a,24bに達するコンタクトホ−ルが形成されている。
【0179】
このコンタクトホ−ル内には、タングステンなどの高融点金属から構成される導電層26a,26bが埋め込まれている。但し、導電層26a,26bは、高融点金属以外の他の材料から構成しても構わない。
【0180】
配線W1は、絶縁層25上に配置され、導電層26a,26bに接続されている。配線W1は、銅、アルミニウム合金などの金属28a,28bと、この金属28a,28bの底面及び側面を覆うU字溝状のバリア層27a,27bとから構成されている。
【0181】
なお、配線W1は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属から構成してもよい。また、バリア層27a,27bは、例えば、チタンと窒化チタンの積層などから構成することができる。
【0182】
配線W1の上部には、絶縁層29,30が形成されている。この絶縁層29,30は、配線W1に支えられている。配線W1間は、空洞(キャビティ)31になっている。この空洞31には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【0183】
なお、絶縁層29は、配線W1のパタ−ンを決定するもので、例えば、シリコン酸化層やシリコン窒化層などから構成される。絶縁層30は、配線W1間に空洞31を設ける際に重要となると共に、絶縁層30上に層を積み重ねる際の土台となる重要なものである。絶縁層30は、例えば、シリコン酸化膜などから構成される。
【0184】
絶縁層30上には、絶縁層32が形成されている。絶縁層32は、例えば、シリコン酸化層から構成される。絶縁層32には、配線W1に達するコンタクトホ−ルが形成されている。
【0185】
このコンタクトホ−ル内には、タングステンなどの高融点金属から構成される導電層33a,33bが埋め込まれている。但し、導電層33a,33bは、高融点金属以外の他の材料から構成しても構わない。
【0186】
配線W2は、絶縁層32上に配置され、導電層33a,33bに接続されている。配線W2は、銅、アルミニウム合金などの金属35a,35bと、この金属35a,35bの底面及び側面を覆うU字溝状のバリア層34a,34bとから構成されている。
【0187】
なお、配線W2は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属から構成してもよい。また、バリア層34a,34bは、例えば、チタンと窒化チタンの積層などから構成することができる。
【0188】
配線W2の上部には、絶縁層36,37が形成されている。この絶縁層36,37は、配線W2に支えられている。配線W2間は、空洞(キャビティ)38になっている。この空洞38には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【0189】
なお、絶縁層36は、配線W2のパタ−ンを決定するもので、例えば、シリコン酸化層やシリコン窒化層などから構成される。絶縁層37は、配線W2間に空洞38を設ける際に重要となると共に、絶縁層37上に層を積み重ねる際の土台となる重要なものである。絶縁層37は、例えば、シリコン酸化膜などから構成される。
【0190】
なお、空洞31,38を、製造時に空気に接触させることにより、又はパッケ−ジに穴を設けておくことにより、空洞31,38内に空気を満たすようにしてもよい。
【0191】
上記構成の半導体装置によれば、配線W1間には、酸素O2 と二酸化炭素CO2 の混合ガス又は空気が満たされた空洞31が形成され、配線W2間には、酸素O2 と二酸化炭素CO2 の混合ガス又は空気が満たされた空洞38が形成されている。
【0192】
この混合ガス又は空気の誘電率εは、1.0程度である。これにより、配線W1間及び配線W2間をシリコン酸化層などの絶縁層で満たす場合に比べて、極端に誘電率を低下させることができる。
【0193】
従って、素子の集積度の向上とLSIの性能の向上を同時に達成することができる。
【0194】
次に、図7の半導体装置の製造方法について説明する。
【0195】
まず、図8に示すように、LOCOS法により半導体基板21上にフィ−ルド酸化層22を形成する。また、フィ−ルド酸化層22に囲まれた素子領域に、例えば、ゲ−ト電極23及びソ−ス・ドレイン領域24a,24bを有するMOSトランジスタを形成する。
【0196】
半導体基板21上の全面に、MOSトランンジスタを完全に覆う絶縁層(BPSGやPSGなど)25を形成する。この後、化学機械的研磨(CMP)を行い、絶縁層25の表面を平坦にする。
【0197】
PEP(写真蝕刻工程)により、絶縁層25にソ−ス・ドレイン領域24a,24bに達するコンタクトホ−ルを形成する。選択成長法により、絶縁層25のコンタクトホ−ル内のみに、タングステンなどの高融点金属から構成される導電層26a,26bを埋め込む。
【0198】
なお、絶縁層25のコンタクトホ−ル内には、高融点金属以外の他の材料を埋め込んでも構わない。
【0199】
次に、図9に示すように、スパッタリング法により、絶縁層25上に炭素(カ−ボン)層39を形成する。ここで、炭素層39の厚さは、LSIの内部配線の厚さと等しい値(例えば、約0.7〜約0.2μm)に設定される。
【0200】
次に、図10に示すように、スパッタリング法により、炭素層39上にマスク材(例えば、シリコン酸化層やシリコン窒化層など)29を、約0.05μmの厚さで形成する。
【0201】
ここで、マスク材29が酸化物から構成される場合には、マスク材29は、炭素層39の消滅を防ぐため、CVD法でなく、スパッタリング法で形成するのがよい。
【0202】
次に、図11に示すように、マスク材29上にレジストを塗布し、PEP(写真蝕刻工程)を用いてこのレジストをパタ−ニングする。また、パタ−ニングされたレジストをマスクにしてマスク材29をパタ−ニングする。この後、レジストを剥離する。マスク材29のパタ−ンは、配線のパタ−ンと同じになる。
【0203】
次に、図12に示すように、マスク材29をマスクにして、異方性エッチングにより炭素層39をエッチングする。
【0204】
なお、本実施例では、PEPにより、直接、炭素層39をエッチングすることなく、PEPで加工したマスク材29をマスクにして炭素層39をエッチングしている。
【0205】
この理由は、以下のとおりである。PEPに用いるレジストは、酸素プラズマ処理(アッシャ−)、又はH2 SO4 とH2 2 の薬液により除去される。しかし、酸素プラズマ処理でレジストを除去する場合は、せっかくパタ−ニングした炭素層39が同時に除去されてしまう。一方、H2 SO4 とH2 2 の薬液によりレジストを除去する場合は、導電層(高融点金属の場合のみ)26a,26bが同時に除去されてしまう。
【0206】
そこで、導電層26a,26bが高融点金属の場合には、PEPで加工したマスク材29をマスクにして炭素層39をエッチングするのがよい。
【0207】
次に、図13に示すように、スパッタリング法又はCVD法により、例えば、チタンと窒化チタンの積層から構成されるバリア層27を、配線溝XXの内面上及びマスク材29上に形成する。
【0208】
次に、図14に示すように、スパッタリング法又はCVD法により、バリア層27上に、銅、アルミニウム合金などなどから構成される金属28を形成する。なお、配線は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属であってもよい。
【0209】
次に、図15に示すように、化学機械的研磨(CMP)により、炭素層39の間の溝内にのみ、バリア層27a,27b及び金属28a,28bを残存させ、配線W1を形成する。
【0210】
なお、CMPに代えて、異方性エッチング又は等方性エッチングを用いて配線W1を形成してもよい。
【0211】
次に、図16に示すように、スパッタリング法により、マスク材29上及び配線W1上に絶縁層(例えば、シリコン酸化層)30を形成する。
【0212】
ここで、絶縁層30が酸化物の場合には、絶縁層30は、CVD法により形成しない方がよい。なぜなら、絶縁層30を形成する際の反応ガス中には、酸素O2 ガスが含まれているため、絶縁層30の形成時に、炭素層39が除去されてしまう可能性があるからである。
【0213】
また、絶縁層30の厚さは、絶縁層30がシリコン酸化層の場合は、0.01〜0.1μmの範囲にあるのが、絶縁層30の破裂なしに灰化を行うのに都合がよい。但し、絶縁層30の種類や質などにより、絶縁層30の最適な厚さは、それぞれ異なる。
【0214】
次に、図17及び図18に示すように、炭素層39を灰化し、炭素層39を、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞31に変換する。炭素層39の灰化は、以下の二つの方法のいずれかを使用することにより達成される。
【0215】
一つめは、酸素雰囲気中での熱処理(温度400〜450℃、時間2h程度)である。この方法では、炭素層39が二酸化炭素CO2 に変換する反応が緩やかに進むため、炭素層39の体積の膨脹による絶縁層29,30の破裂を防止できる利点がある反面、処理時間が長くなる欠点がある。
【0216】
二つめは、酸素プラズマ処理(アッシャ−)である。この方法では、炭素層39が二酸化炭素CO2 に変換する反応が速やかに進むため、処理時間が短くなる利点がある反面、炭素層39の体積の膨脹による絶縁層29,30の破裂が生じる可能性が高くなるという欠点がある。しかし、この欠点は、絶縁層29,30の質の改善や酸素プラズマ処理の温度の低下などにより回避できる。
【0217】
次に、図19に示すように、CVD法を用いて、絶縁層30上に低い誘電率を有する絶縁層(例えば、弗素を含むTEOSなど)32を形成する。
【0218】
次に、図20に示すように、PEP(写真蝕刻工程)及びRIE(反応性イオンエッチング)を用いて、配線W1に達するビアホ−ルを絶縁層30,32に設ける。
【0219】
次に、図21に示すように、選択成長法を用いて、ビアホ−ル内のみに、タングステンなどの高融点金属から構成される導電層33a,33bを埋め込む。なお、絶縁層30,32のビアホ−ル内には、高融点金属以外の他の材料を埋め込んでも構わない。
【0220】
次に、図22に示すように、配線W1を形成する際に使用した工程と同様の工程により配線W2を形成する。
【0221】
即ち、まず、スパッタリング法により、絶縁層32上に炭素(カ−ボン)層を形成する。ここで、炭素層の厚さは、配線W2の厚さと等しい値に設定されている。スパッタリング法により、炭素層上にマスク材(例えば、シリコン酸化層やシリコン窒化層など)36を、約0.05μmの厚さで形成する。
【0222】
この後、PEP(写真蝕刻工程)及び異方性エッチングを用いて、マスク材36をパタ−ニングする。また、マスク材36をマスクにして、異方性エッチングにより炭素層をエッチングする。スパッタリング法又はCVD法により、例えば、チタンと窒化チタンの積層から構成されるバリア層34a,34bを形成する。
【0223】
スパッタリング法又はCVD法により、バリア層34a,34b上に、銅、アルミニウム合金などなどから構成される金属層35a,35bを形成する。化学機械的研磨(CMP)により、炭素層の間の溝内にのみ、バリア層34a,34b及び金属層35a,35bを残存させ、配線W2を形成する。
【0224】
なお、CMPに代えて、異方性エッチング又は等方性エッチングにより配線W2を形成するようにしてもよい。
【0225】
スパッタリング法により、マスク材36上及び配線W2上に絶縁層(例えば、シリコン酸化層)37を形成する。この後、炭素層を灰化し、炭素層を、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞38に変換する。
【0226】
なお、空洞31,38を、製造時に空気に接触させることにより、又はパッケ−ジに穴を設けておくことにより、空洞31,38内に空気を満たすようにしてもよい。
【0227】
上述の製造方法によれば、配線W1,W2を形成するための溝を有する絶縁層に炭素層を用い、かつ、溝内に配線を形成した後にこの炭素層を灰化してガスが満たされた空洞に変換している。従って、容易に、図7の半導体装置を提供することができる。
【0228】
図23は、本発明の第3の実施の形態に関わる半導体装置を示している。
【0229】
半導体基板(例えば、シリコンウェハ)21上には、フィ−ルド酸化層(例えば、シリコン酸化層)22が形成されている。フィ−ルド酸化層22に囲まれた素子領域には、MOSトランジスタが形成されている。このMOSトランジスタは、ゲ−ト電極23及びソ−ス・ドレイン領域24a,24bを有している。
【0230】
絶縁層25は、MOSトランジスタを覆っている。絶縁層25は、例えば、硼素燐ケイ酸ガラス(BPSG)や燐ケイ酸ガラス(PSG)などから構成することができる。
【0231】
絶縁層25の表面は、平坦である。絶縁層25の表面は、化学機械的研磨(CMP)により平坦にすることができる。絶縁層25には、ソ−ス・ドレイン領域24a,24bに達するコンタクトホ−ルが形成されている。
【0232】
このコンタクトホ−ル内には、タングステンなどの高融点金属から構成される導電層26a,26bが埋め込まれている。但し、導電層26a,26bは、高融点金属以外の他の材料から構成しても構わない。
【0233】
配線W1は、絶縁層25上に配置され、導電層26a,26bに接続されている。配線W1は、銅、アルミニウム合金などの金属28a,28bと、この金属28a,28bの底面及び側面を覆うU字溝状のバリア層27a,27bとから構成されている。
【0234】
なお、配線W1は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属から構成してもよい。また、バリア層27a,27bは、例えば、チタンと窒化チタンの積層などから構成することができる。
【0235】
配線W1の上部には、絶縁層30が形成されている。この絶縁層30は、配線W1に支えられている。配線W1間は、空洞(キャビティ)31になっている。この空洞31には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【0236】
絶縁層30は、配線W1間に空洞31を設ける際に重要となると共に、絶縁層30上に層を積み重ねる際の土台となる重要なものである。絶縁層30は、例えば、シリコン酸化膜などから構成される。
【0237】
絶縁層30上には、絶縁層32が形成されている。絶縁層32は、例えば、シリコン酸化層から構成される。絶縁層32には、配線W1に達するコンタクトホ−ルが形成されている。
【0238】
このコンタクトホ−ル内には、タングステンなどの高融点金属から構成される導電層33a,33bが埋め込まれている。但し、導電層33a,33bは、高融点金属以外の他の材料から構成しても構わない。
【0239】
配線W2は、絶縁層32上に配置され、導電層33a,33bに接続されている。配線W2は、銅、アルミニウム合金などの金属35a,35bと、この金属35a,35bの底面及び側面を覆うU字溝状のバリア層34a,34bとから構成されている。
【0240】
なお、配線W2は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属から構成してもよい。また、バリア層34a,34bは、例えば、チタンと窒化チタンの積層などから構成することができる。
【0241】
配線W2の上部には、絶縁層37が形成されている。この絶縁層37は、配線W2に支えられている。配線W2間は、空洞(キャビティ)38になっている。この空洞38には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【0242】
絶縁層37は、配線W2間に空洞38を設ける際に重要となると共に、絶縁層37上に層を積み重ねる際の土台となる重要なものである。絶縁層37は、例えば、シリコン酸化膜などから構成される。
【0243】
なお、空洞31,38を、製造時に空気に接触させることにより、又はパッケ−ジに穴を設けておくことにより、空洞31,38内に空気を満たすようにしてもよい。
【0244】
上記構成の半導体装置によれば、配線W1間には、酸素O2 と二酸化炭素CO2 の混合ガス又は空気が満たされた空洞31が形成され、配線W2間には、酸素O2 と二酸化炭素CO2 の混合ガス又は空気が満たされた空洞38が形成されている。
【0245】
この混合ガス又は空気の誘電率εは、1.0程度である。これにより、配線W1間及び配線W2間をシリコン酸化層などの絶縁層で満たす場合に比べて、極端に誘電率を低下させることができる。
【0246】
従って、素子の集積度の向上とLSIの性能の向上を同時に達成することができる。
【0247】
次に、図23の半導体装置の製造方法について説明する。
【0248】
まず、図24に示すように、絶縁層25上に炭素層39を形成するまでを、上述の第2の実施の形態における製造方法と同様の方法により行う。
【0249】
即ち、LOCOS法により半導体基板21上にフィ−ルド酸化層22を形成する。また、フィ−ルド酸化層22に囲まれた素子領域に、例えば、ゲ−ト電極23及びソ−ス・ドレイン領域24a,24bを有するMOSトランジスタを形成する。
【0250】
半導体基板21上の全面に、MOSトランンジスタを完全に覆う絶縁層(BPSGやPSGなど)25を形成する。この後、化学機械的研磨(CMP)を行い、絶縁層25の表面を平坦にする。
【0251】
PEP(写真蝕刻工程)により、絶縁層25にソ−ス・ドレイン領域24a,24bに達するコンタクトホ−ルを形成する。選択成長法により、絶縁層25のコンタクトホ−ル内のみに、タングステンなどの高融点金属から構成される導電層26a,26bを埋め込む。
【0252】
なお、絶縁層25のコンタクトホ−ル内には、高融点金属以外の他の材料を埋め込んでも構わない。
【0253】
スパッタリング法により、絶縁層25上に炭素(カ−ボン)層39を形成する。ここで、炭素層39の厚さは、LSIの内部配線の厚さと等しい値(例えば、約0.7〜約0.2μm)に設定される。
【0254】
スパッタリング法により、炭素層39上にマスク材(例えば、シリコン酸化層やシリコン窒化層など)を、約0.05μmの厚さで形成する。
【0255】
マスク材上にレジストを塗布し、PEP(写真蝕刻工程)を用いてこのレジストをパタ−ニングする。また、パタ−ニングされたレジストをマスクにしてマスク材をパタ−ニングする。この後、レジストを剥離し、マスク材をマスクにして、異方性エッチングにより炭素層39をエッチングする。
【0256】
なお、PEPにより、直接、炭素層39をエッチングすることなく、PEPで加工したマスク材をマスクにして炭素層39をエッチングする理由は、上述の第2の実施の形態における製造方法で説明した理由と同じである。
【0257】
従って、導電層26a,26bが高融点金属の場合には、PEPで加工したマスク材をマスクに炭素層39をエッチングし、導電層26a,26bがH2 SO4 とH2 2 の薬液により腐蝕されないような材質である場合には、レジストをマスクに炭素層39をエッチングするのがよい。
【0258】
この後、マスク材を除去し、スパッタリング法又はCVD法により、例えば、チタンと窒化チタンの積層から構成されるバリア層27を、配線溝XXの内面上及び炭素層39上に形成する。
【0259】
次に、図25に示すように、スパッタリング法又はCVD法により、バリア層27上に、銅、アルミニウム合金などなどから構成される金属28を形成する。なお、配線は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属であってもよい。
【0260】
次に、図26に示すように、化学機械的研磨(CMP)により、炭素層39の間の溝内にのみ、バリア層27a,27b及び金属28a,28bを残存させ、配線W1を形成する。
【0261】
なお、CMPに代えて、異方性エッチング又は等方性エッチングにより配線W1を形成するようにしてもよい。
【0262】
次に、図27に示すように、スパッタリング法により、炭素層39上及び配線W1上に絶縁層(例えば、シリコン酸化層)30を形成する。ここで、絶縁層30は、CVD法により形成しない方がよい。なぜなら、絶縁層30を形成する際の反応ガス中には、酸素O2 ガスが含まれているため、絶縁層30の形成時に、炭素層39が除去されてしまう可能性があるからである。
【0263】
また、絶縁層30の厚さは、絶縁層30がシリコン酸化層の場合は、0.01〜0.1μmの範囲にあるのが、絶縁層30の破裂なしに灰化を行うのに都合がよい。但し、絶縁層30の種類や質などにより、絶縁層30の最適な厚さは、それぞれ異なる。
【0264】
次に、図28及び図29に示すように、炭素層39を灰化し、炭素層39を、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞31に変換する。炭素層39の灰化は、以下の二つの方法のいずれかを使用することにより達成される。
【0265】
一つめは、酸素雰囲気中での熱処理(温度400〜450℃、時間2h程度)である。この方法では、炭素層39が二酸化炭素CO2 に変換する反応が緩やかに進むため、炭素層39の体積の膨脹による絶縁層30の破裂を防止できる利点がある反面、処理時間が長くなる欠点がある。
【0266】
二つめは、酸素プラズマ処理(アッシャ−)である。この方法では、炭素層39が二酸化炭素CO2 に変換する反応が速やかに進むため、処理時間が短くなる利点がある反面、炭素層39の体積の膨脹による絶縁層30の破裂が生じる可能性が高くなるという欠点がある。しかし、この欠点は、絶縁層30の質の改善や酸素プラズマ処理の温度の低下などにより回避できる。
【0267】
次に、図30に示すように、CVD法を用いて、絶縁層30上に低い誘電率を有する絶縁層(例えば、弗素を含むTEOSなど)32を形成する。
【0268】
次に、図31に示すように、PEP(写真蝕刻工程)及びRIE(反応性イオンエッチング)を用いて、配線W1に達するビアホ−ルを絶縁層30,32に設ける。
【0269】
次に、図32に示すように、選択成長法を用いて、ビアホ−ル内のみに、タングステンなどの高融点金属から構成される導電層33a,33bを埋め込む。なお、絶縁層30,32のビアホ−ル内には、高融点金属以外の他の材料を埋め込んでも構わない。
【0270】
次に、図33に示すように、配線W1を形成する際に使用した工程と同様の工程により配線W2を形成する。
【0271】
即ち、まず、スパッタリング法により、絶縁層32上に炭素(カ−ボン)層を形成する。ここで、炭素層の厚さは、配線W2の厚さと等しい値に設定されている。スパッタリング法により、炭素層上にマスク材(例えば、シリコン酸化層やシリコン窒化層など)を、約0.05μmの厚さで形成する。
【0272】
この後、マスク材上にレジストを塗布し、PEP(写真蝕刻工程)を用いてこのレジストをパタ−ニングする。また、パタ−ニングされたレジストをマスクにしてマスク材をパタ−ニングする。この後、レジストを剥離し、マスク材をマスクにして、異方性エッチングにより炭素層をエッチングする。
【0273】
また、マスク材を除去し、スパッタリング法又はCVD法により、例えば、チタンと窒化チタンの積層から構成されるバリア層34a,34bを形成する。
【0274】
スパッタリング法又はCVD法により、バリア層34a,34b上に、銅、アルミニウム合金などなどから構成される金属層35a,35bを形成する。化学機械的研磨(CMP)により、炭素層の間の溝内にのみ、バリア層34a,34b及び金属層35a,35bを残存させ、配線W2を形成する。
【0275】
なお、CMPに代えて、異方性エッチング又は等方性エッチングにより配線W2を形成するようにしてもよい。
【0276】
スパッタリング法により、炭素層上及び配線W2上に絶縁層(例えば、シリコン酸化層)37を形成する。この後、炭素層を灰化し、炭素層を、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞38に変換する。
【0277】
なお、空洞31,38を、製造時に空気に接触させることにより、又はパッケ−ジに穴を設けておくことにより、空洞31,38内に空気を満たすようにしてもよい。
【0278】
上述の製造方法によれば、配線W1,W2を形成するための溝を有する絶縁層に炭素層を用い、かつ、溝内に配線を形成した後にこの炭素層を灰化してガスが満たされた空洞に変換している。従って、容易に、図23の半導体装置を提供することができる。
【0279】
また、マスク材は、炭素層をパタ−ニングした後、炭素層の灰化前に、除去されている。従って、炭素層の灰化を迅速かつ正確に行うことができる。
【0280】
図34は、本発明の第4の実施の形態に関わる半導体装置を示している。
【0281】
半導体基板(例えば、シリコンウェハ)21上には、フィ−ルド酸化層(例えば、シリコン酸化層)22が形成されている。フィ−ルド酸化層22に囲まれた素子領域には、MOSトランジスタが形成されている。このMOSトランジスタは、ゲ−ト電極23及びソ−ス・ドレイン領域24a,24bを有している。
【0282】
絶縁層25は、MOSトランジスタを覆っている。絶縁層25は、例えば、硼素燐ケイ酸ガラス(BPSG)や燐ケイ酸ガラス(PSG)などから構成することができる。
【0283】
絶縁層25の表面は、平坦である。絶縁層25の表面は、化学機械的研磨(CMP)により平坦にすることができる。絶縁層25には、ソ−ス・ドレイン領域24a,24bに達するコンタクトホ−ルが形成されている。
【0284】
このコンタクトホ−ル内には、タングステンなどの高融点金属から構成される導電層26a,26bが埋め込まれている。但し、導電層26a,26bは、高融点金属以外の他の材料から構成しても構わない。
【0285】
配線W1は、絶縁層25上に配置され、導電層26a,26bに接続されている。配線W1は、銅、アルミニウム合金などの金属28a,28bと、この金属28a,28bの底面及び側面を覆うU字溝状のバリア層27a,27bとから構成されている。
【0286】
なお、配線W1は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属から構成してもよい。また、バリア層27a,27bは、例えば、チタンと窒化チタンの積層などから構成することができる。
【0287】
配線W1の上部には、絶縁層29,30が形成されている。この絶縁層29,30は、配線W1に支えられている。配線W1間は、空洞(キャビティ)31になっている。この空洞31には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【0288】
なお、絶縁層29は、配線W1のパタ−ンを決定するもので、例えば、シリコン酸化層やシリコン窒化層などから構成される。絶縁層30は、配線W1間に空洞31を設ける際に重要となると共に、絶縁層30上に層を積み重ねる際の土台となる重要なものである。絶縁層30は、例えば、シリコン酸化膜などから構成される。
【0289】
絶縁層30には、配線W1に達するコンタクトホ−ルが形成されている。このコンタクトホ−ル内及びコンタクトホ−ル上には、タングステンなどの高融点金属から構成される柱状の導電層33a,33bが形成されている。
【0290】
但し、導電層33a,33bは、高融点金属以外の他の材料から構成しても構わない。
【0291】
柱状の導電層33a,33bの上部には、棚状の絶縁層36,37が形成されている。この絶縁層36,37は、導電層33a,33bに支えられている。柱状の導電層33a,33bの間は、空洞(キャビティ)40になっている。この空洞40には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【0292】
なお、絶縁層36は、導電層33a,33bの位置や断面積を決めるもので、例えば、シリコン酸化層やシリコン窒化層などから構成される。絶縁層37は、空洞40を設ける際に重要となると共に、絶縁層37上にさらに配線を積み重ねる際の土台となる重要なものである。絶縁層37は、例えば、シリコン酸化膜などから構成される。
【0293】
なお、空洞31,40を、製造時に空気に接触させることにより、又はパッケ−ジに穴を設けておくことにより、空洞31,40内に空気を満たすようにしてもよい。
【0294】
上記構成の半導体装置によれば、配線W1間には、酸素O2 と二酸化炭素CO2 の混合ガス又は空気が満たされた空洞31が形成され、導電層(上下配線のコンタクトプラグ)33a,33bの間にも、酸素O2 と二酸化炭素CO2 の混合ガス又は空気が満たされた空洞40が形成されている。
【0295】
この混合ガス又は空気の誘電率εは、1.0程度である。これにより、配線W1間及び導電層33a,33bの間をシリコン酸化層などの絶縁層で満たす場合に比べて、極端に誘電率を低下させることができる。
【0296】
従って、素子の集積度の向上とLSIの性能の向上を同時に達成することができる。
【0297】
次に、図34の半導体装置の製造方法について説明する。
【0298】
まず、図35に示すように、絶縁層25上に配線W1を形成するまでを、上述の第2の実施の形態における製造方法と同様の方法により行う。
【0299】
即ち、LOCOS法により半導体基板21上にフィ−ルド酸化層22を形成する。また、フィ−ルド酸化層22に囲まれた素子領域に、例えば、ゲ−ト電極23及びソ−ス・ドレイン領域24a,24bを有するMOSトランジスタを形成する。
【0300】
半導体基板21上の全面に、MOSトランンジスタを完全に覆う絶縁層(BPSGやPSGなど)25を形成する。この後、化学機械的研磨(CMP)を行い、絶縁層25の表面を平坦にする。
【0301】
PEP(写真蝕刻工程)により、絶縁層25にソ−ス・ドレイン領域24a,24bに達するコンタクトホ−ルを形成する。選択成長法により、絶縁層25のコンタクトホ−ル内のみに、タングステンなどの高融点金属から構成される導電層26a,26bを埋め込む。
【0302】
なお、絶縁層25のコンタクトホ−ル内には、高融点金属以外の他の材料を埋め込んでも構わない。
【0303】
スパッタリング法により、絶縁層25上に炭素(カ−ボン)層を形成する。ここで、炭素層の厚さは、LSIの内部配線の厚さと等しい値(例えば、約0.7〜約0.2μm)に設定される。
【0304】
スパッタリング法により、炭素層上にマスク材(例えば、シリコン酸化層やシリコン窒化層など)29を、約0.05μmの厚さで形成する。
【0305】
また、マスク材29上にレジストを塗布し、PEP(写真蝕刻工程)を用いてこのレジストをパタ−ニングする。パタ−ニングされたレジストをマスクにしてマスク材29をパタ−ニングする。この後、レジストを剥離し、マスク材29をマスクにして、異方性エッチングにより炭素層をエッチングする。
【0306】
なお、PEPにより、直接、炭素層をエッチングすることなく、PEPで加工したマスク材をマスクにして炭素層をエッチングする理由は、上述の第2の実施の形態における製造方法で説明した理由と同じである。
【0307】
従って、導電層26a,26bが高融点金属の場合には、PEPで加工したマスク材29をマスクに炭素層をエッチングし、導電層26a,26bがH2 SO4 とH2 2 の薬液により腐蝕されないような材質である場合には、レジストをマスクに炭素層をエッチングするのがよい。
【0308】
この後、スパッタリング法又はCVD法により、例えば、チタンと窒化チタンの積層から構成されるバリア層27a,27bを形成する。スパッタリング法又はCVD法により、バリア層27a,27b上に、銅、アルミニウム合金などから構成される金属層28a,28bを形成する。
【0309】
なお、配線は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属であってもよい。
【0310】
化学機械的研磨(CMP)により、炭素層の間の溝内にのみ、バリア層27a,27b及び金属28a,28bを残存させ、配線W1を形成する。
【0311】
なお、CMPに代えて、異方性エッチング又は等方性エッチングにより配線W1を形成するようにしてもよい。
【0312】
スパッタリング法により、マスク材29上及び配線W1上に絶縁層(例えば、シリコン酸化層)30を形成する。ここで、絶縁層30は、CVD法により形成しない方がよい。なぜなら、絶縁層30を形成する際の反応ガス中には、酸素O2 ガスが含まれているため、絶縁層30の形成時に、炭素層39が除去されてしまう可能性があるからである。
【0313】
また、絶縁層30の厚さは、絶縁層30がシリコン酸化層の場合は、0.01〜0.1μmの範囲にあるのが、絶縁層30の破裂なしに灰化を行うのに都合がよい。但し、絶縁層30の種類や質などにより、絶縁層30の最適な厚さは、それぞれ異なる。
【0314】
この後、炭素層を灰化し、この炭素層を、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞31に変換する。
【0315】
上述の工程により配線W1を形成した後、スパッタリング法により、絶縁層30上に炭素層41を形成する。また、スパッタリング法により、炭素層41上にマスク材(例えば、シリコン酸化層やシリコン窒化層など)36を、約0.05μmの厚さで形成する。
【0316】
PEP(写真蝕刻工程)及び異方性エッチングを用いて、マスク材36をパタ−ニングする。このマスク材36をマスクにして、異方性エッチングにより炭素層41及び絶縁層30をエッチングする。その結果、炭素層41及び絶縁層30には、配線W1に達するビアホ−ルが形成される。
【0317】
次に、図36に示すように、選択成長法を用いて、ビアホ−ル内のみに、タングステンなどの高融点金属から構成される導電層33a,33bを埋め込む。なお、絶縁層30及び炭素層41のビアホ−ル内には、高融点金属以外の他の材料を埋め込んでも構わない。
【0318】
次に、図37に示すように、スパッタリング法により、マスク材36上及び導電層33a,33b上に絶縁層(例えば、シリコン酸化層)37を形成する。ここで、絶縁層37は、炭素層41の消滅を防ぐため、CVD法により形成しない方がよい。
【0319】
また、絶縁層37の厚さは、絶縁層37がシリコン酸化層の場合は、0.01〜0.1μmの範囲にあるのが、絶縁層37の破裂なしに灰化を行うのに都合がよい。但し、絶縁層37の種類や質などにより、絶縁層37の最適な厚さは、それぞれ異なる。
【0320】
次に、図38及び図39に示すように、炭素層41を灰化し、この炭素層41を、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞40に変換する。炭素層41の灰化は、以下の二つの方法のいずれかを使用することにより達成される。
【0321】
一つめは、酸素雰囲気中での熱処理(温度400〜450℃、時間2h程度)である。この方法では、炭素層41が二酸化炭素CO2 に変換する反応が緩やかに進むため、炭素層41の体積の膨脹による絶縁層36,37の破裂を防止できる利点がある反面、処理時間が長くなる欠点がある。
【0322】
二つめは、酸素プラズマ処理(アッシャ−)である。この方法では、炭素層41が二酸化炭素CO2 に変換する反応が速やかに進むため、処理時間が短くなる利点がある反面、炭素層41の体積の膨脹による絶縁層36,37の破裂が生じる可能性が高くなるという欠点がある。しかし、この欠点は、絶縁層36,37の質の改善や酸素プラズマ処理の温度の低下などにより回避できる。
【0323】
なお、空洞31,40を、製造時に空気に接触させることにより、又はパッケ−ジに穴を設けておくことにより、空洞31,40内に空気を満たすようにしてもよい。
【0324】
上述の製造方法によれば、配線W1を形成するための溝を有する絶縁層に炭素層を用い、かつ、溝内に配線を形成した後にこの炭素層を灰化してガスが満たされた空洞に変換している。
【0325】
また、導電層(上下配線のコンタクトプラグ)33a,33bを形成するためのビアホ−ルを有する絶縁層に炭素層を用い、かつ、ビアホ−ル内に導電層33a,33bを形成した後にこの炭素層を灰化してガスが満たされた空洞に変換している。
【0326】
これにより、多層配線構造の半導体装置において、同一層(左右)の配線間に酸素O2 と二酸化炭素CO2 の混合ガス又は空気を満たし、かつ、異なる層(上下)の配線間に酸素O2 と二酸化炭素CO2 の混合ガス又は空気を満たすことができる。
【0327】
図40は、本発明の第5の実施の形態に関わる半導体装置を示している。
【0328】
半導体基板(例えば、シリコンウェハ)21上には、フィ−ルド酸化層(例えば、シリコン酸化層)22が形成されている。フィ−ルド酸化層22に囲まれた素子領域には、MOSトランジスタが形成されている。このMOSトランジスタは、ゲ−ト電極23及びソ−ス・ドレイン領域24a,24bを有している。
【0329】
絶縁層25は、MOSトランジスタを覆っている。絶縁層25は、例えば、硼素燐ケイ酸ガラス(BPSG)や燐ケイ酸ガラス(PSG)などから構成することができる。
【0330】
絶縁層25の表面は、平坦である。絶縁層25の表面は、化学機械的研磨(CMP)により平坦にすることができる。絶縁層25には、ソ−ス・ドレイン領域24a,24bに達するコンタクトホ−ルが形成されている。
【0331】
このコンタクトホ−ル内には、タングステンなどの高融点金属から構成される導電層26a,26bが埋め込まれている。但し、導電層26a,26bは、高融点金属以外の他の材料から構成しても構わない。
【0332】
配線W1は、絶縁層25上に配置され、導電層26a,26bに接続されている。配線W1は、銅、アルミニウム合金などの金属28a,28bと、この金属28a,28bの底面及び側面を覆うU字溝状のバリア層27a,27bとから構成されている。
【0333】
なお、配線W1は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属から構成してもよい。また、バリア層27a,27bは、例えば、チタンと窒化チタンの積層などから構成することができる。
【0334】
配線W1の上部には、絶縁層30が形成されている。この絶縁層30は、配線W1に支えられている。配線W1間は、空洞(キャビティ)31になっている。この空洞31には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【0335】
絶縁層30は、配線W1間に空洞31を設ける際に重要となると共に、絶縁層30上に層を積み重ねる際の土台となる重要なものである。絶縁層30は、例えば、シリコン酸化膜などから構成される。
【0336】
絶縁層30には、配線W1に達するコンタクトホ−ルが形成されている。このコンタクトホ−ル内及びコンタクトホ−ル上には、タングステンなどの高融点金属から構成される柱状の導電層33a,33bが形成されている。
【0337】
但し、導電層33a,33bは、高融点金属以外の他の材料から構成しても構わない。
【0338】
柱状の導電層33a,33bの上部には、棚状の絶縁層36,37が形成されている。この絶縁層36,37は、導電層33a,33bに支えられている。柱状の導電層33a,33bの間は、空洞(キャビティ)40になっている。この空洞40には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【0339】
絶縁層36は、例えば、シリコン酸化層やシリコン窒化層などから構成される。絶縁層37は、空洞40を設ける際に重要となると共に、絶縁層37上にさらに配線を積み重ねる際の土台となる重要なものである。絶縁層37は、例えば、シリコン酸化膜などから構成される。
【0340】
なお、空洞31,40を、製造時に空気に接触させることにより、又はパッケ−ジに穴を設けておくことにより、空洞31,40内に空気を満たすようにしてもよい。
【0341】
上記構成の半導体装置によれば、配線W1間には、酸素O2 と二酸化炭素CO2 の混合ガス又は空気が満たされた空洞31が形成され、導電層(上下配線のコンタクトプラグ)33a,33bの間にも、酸素O2 と二酸化炭素CO2 の混合ガス又は空気が満たされた空洞40が形成されている。
【0342】
この混合ガス又は空気の誘電率εは、1.0程度である。これにより、配線W1間及び導電層33a,33bの間をシリコン酸化層などの絶縁層で満たす場合に比べて、極端に誘電率を低下させることができる。
【0343】
従って、素子の集積度の向上とLSIの性能の向上を同時に達成することができる。
【0344】
次に、図40の半導体装置の製造方法について説明する。
【0345】
まず、図41に示すように、絶縁層25上に配線W1を形成するまでを、上述の第3の実施の形態における製造方法と同様の方法により行う。
【0346】
即ち、LOCOS法により半導体基板21上にフィ−ルド酸化層22を形成する。また、フィ−ルド酸化層22に囲まれた素子領域に、例えば、ゲ−ト電極23及びソ−ス・ドレイン領域24a,24bを有するMOSトランジスタを形成する。
【0347】
半導体基板21上の全面に、MOSトランンジスタを完全に覆う絶縁層(BPSGやPSGなど)25を形成する。この後、化学機械的研磨(CMP)を行い、絶縁層25の表面を平坦にする。
【0348】
PEP(写真蝕刻工程)により、絶縁層25にソ−ス・ドレイン領域24a,24bに達するコンタクトホ−ルを形成する。選択成長法により、絶縁層25のコンタクトホ−ル内のみに、タングステンなどの高融点金属から構成される導電層26a,26bを埋め込む。
【0349】
なお、絶縁層25のコンタクトホ−ル内には、高融点金属以外の他の材料を埋め込んでも構わない。
【0350】
スパッタリング法により、絶縁層25上に炭素(カ−ボン)層を形成する。ここで、炭素層の厚さは、LSIの内部配線の厚さと等しい値(例えば、約0.7〜約0.2μm)に設定される。
【0351】
スパッタリング法により、炭素層上にマスク材(例えば、シリコン酸化層やシリコン窒化層など)を、約0.05μmの厚さで形成する。PEP(写真蝕刻工程)及び異方性エッチングを用いて、マスク材をパタ−ニングする。このマスク材をマスクにして、異方性エッチングにより炭素層をエッチングする。
【0352】
なお、PEPにより、直接、炭素層をエッチングすることなく、PEPで加工したマスク材をマスクにして炭素層をエッチングする理由は、上述の第2の実施の形態における製造方法で説明した理由と同じである。
【0353】
従って、導電層26a,26bが高融点金属の場合には、PEPで加工したマスク材をマスクに炭素層をエッチングし、導電層26a,26bがH2 SO4 とH2 2 の薬液により腐蝕されないような材質である場合には、レジストをマスクに炭素層をエッチングするのがよい。
【0354】
この後、マスク材を除去し、スパッタリング法又はCVD法により、例えば、チタンと窒化チタンの積層から構成されるバリア層27a,27bを形成する。スパッタリング法又はCVD法により、バリア層27a,27b上に、銅、アルミニウム合金などから構成される金属28a,28bを形成する。
【0355】
なお、配線は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属であってもよい。
【0356】
化学機械的研磨(CMP)により、炭素層の間の溝内にのみ、バリア層27a,27b及び金属28a,28bを残存させ、配線W1を形成する。なお、CMPに代えて、異方性エッチング又は等方性エッチングにより配線W1を形成していもよい。
【0357】
スパッタリング法により、炭素層上及び配線W1上に絶縁層(例えば、シリコン酸化層)30を形成する。ここで、絶縁層30は、CVD法により形成しない方がよい。なぜなら、絶縁層30を形成する際の反応ガス中には、酸素O2 ガスが含まれているため、絶縁層30の形成時に、炭素層39が除去されてしまう可能性があるからである。
【0358】
また、絶縁層30の厚さは、絶縁層30がシリコン酸化層の場合は、0.01〜0.1μmの範囲にあるのが、絶縁層30の破裂なしに灰化を行うのに都合がよい。但し、絶縁層30の種類や質などにより、絶縁層30の最適な厚さは、それぞれ異なる。
【0359】
この後、炭素層を灰化し、この炭素層を、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞31に変換する。
【0360】
上述の工程により配線W1を形成した後、スパッタリング法により、絶縁層30上に炭素層41を形成する。また、スパッタリング法により、炭素層41上にマスク材(例えば、シリコン酸化層やシリコン窒化層など)36を、約0.05μmの厚さで形成する。
【0361】
マスク材36上にレジストを塗布し、PEP(写真蝕刻工程)を用いてこのレジストをパタ−ニングする。また、パタ−ニングされたレジストをマスクにしてマスク材36をパタ−ニングする。
【0362】
この後、レジストを剥離し、マスク材36をマスクにして、異方性エッチングにより炭素層41及び絶縁層30をエッチングする。その結果、炭素層41及び絶縁層30には、配線W1に達するビアホ−ルが形成される。この後、マスク材36は、除去される。
【0363】
次に、図42に示すように、選択成長法を用いて、ビアホ−ル内のみに、タングステンなどの高融点金属から構成される導電層33a,33bを埋め込む。なお、絶縁層30,32のビアホ−ル内には、高融点金属以外の他の材料を埋め込んでも構わない。
【0364】
次に、図43に示すように、スパッタリング法により、炭素層41上及び導電層33a,33b上に絶縁層(例えば、シリコン酸化層)37を形成する。ここで、絶縁層37は、炭素層41の消滅を防ぐため、CVD法により形成しない方がよい。
【0365】
また、絶縁層37の厚さは、絶縁層37がシリコン酸化層の場合は、0.01〜0.1μmの範囲にあるのが、絶縁層37の破裂なしに灰化を行うのに都合がよい。但し、絶縁層37の種類や質などにより、絶縁層37の最適な厚さは、それぞれ異なる。
【0366】
次に、図44及び図45に示すように、炭素層41を灰化し、この炭素層41を、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞40に変換する。炭素層41の灰化は、以下の二つの方法のいずれかを使用することにより達成される。
【0367】
一つめは、酸素雰囲気中での熱処理(温度400〜450℃、時間2h程度)である。この方法では、炭素層41が二酸化炭素CO2 に変換する反応が緩やかに進むため、炭素層41の体積の膨脹による絶縁層36,37の破裂を防止できる利点がある反面、処理時間が長くなる欠点がある。
【0368】
二つめは、酸素プラズマ処理(アッシャ−)である。この方法では、炭素層41が二酸化炭素CO2 に変換する反応が速やかに進むため、処理時間が短くなる利点がある反面、炭素層41の体積の膨脹による絶縁層36,37の破裂が生じる可能性が高くなるという欠点がある。しかし、この欠点は、絶縁層36,37の質の改善や酸素プラズマ処理の温度の低下などにより回避できる。
【0369】
なお、空洞31,40を、製造時に空気に接触させることにより、又はパッケ−ジに穴を設けておくことにより、空洞31,40内に空気を満たすようにしてもよい。
【0370】
上述の製造方法によれば、配線W1を形成するための溝を有する絶縁層に炭素層を用い、かつ、溝内に配線を形成した後にこの炭素層を灰化してガスが満たされた空洞に変換している。
【0371】
また、導電層(上下配線のコンタクトプラグ)33a,33bを形成するためのビアホ−ルを有する絶縁層に炭素層を用い、かつ、ビアホ−ル内に導電層33a,33bを形成した後にこの炭素層を灰化してガスが満たされた空洞に変換している。
【0372】
これにより、多層配線構造の半導体装置において、同一層(左右)の配線間に酸素O2 と二酸化炭素CO2 の混合ガス又は空気を満たし、かつ、異なる層(上下)の配線間に酸素O2 と二酸化炭素CO2 の混合ガス又は空気を満たすことができる。
【0373】
また、マスク材は、炭素層をパタ−ニングした後、炭素層の灰化前に、除去されている。従って、炭素層の灰化を迅速かつ正確に行うことができる。
【0374】
図46は、本発明の第6の実施の形態に関わる半導体装置を示している。
【0375】
半導体基板(例えば、シリコンウェハ)21上には、フィ−ルド酸化層(例えば、シリコン酸化層)22が形成されている。フィ−ルド酸化層22に囲まれた素子領域には、MOSトランジスタが形成されている。このMOSトランジスタは、ゲ−ト電極23及びソ−ス・ドレイン領域24a,24bを有している。
【0376】
絶縁層25は、MOSトランジスタを覆っている。絶縁層25は、例えば、硼素燐ケイ酸ガラス(BPSG)や燐ケイ酸ガラス(PSG)などから構成することができる。
【0377】
絶縁層25の表面は、平坦である。絶縁層25の表面は、化学機械的研磨(CMP)により平坦にすることができる。絶縁層25には、ソ−ス・ドレイン領域24a,24bに達するコンタクトホ−ルが形成されている。
【0378】
このコンタクトホ−ル内には、タングステンなどの高融点金属から構成される導電層26a,26bが埋め込まれている。但し、導電層26a,26bは、高融点金属以外の他の材料から構成しても構わない。
【0379】
配線W1は、絶縁層25上に配置され、導電層26a,26bに接続されている。配線W1は、銅、アルミニウム合金などの金属28a,28bと、この金属28a,28bの底面及び側面を覆うU字溝状のバリア層27a,27bとから構成されている。
【0380】
なお、配線W1は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属から構成してもよい。また、バリア層27a,27bは、例えば、チタンと窒化チタンの積層などから構成することができる。
【0381】
配線W1の上部には、絶縁層29,30が形成されている。この絶縁層29,30は、配線W1に支えられている。配線W1間は、空洞(キャビティ)31になっている。この空洞31には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【0382】
なお、絶縁層29は、配線W1のパタ−ンを決定するもので、例えば、シリコン酸化層やシリコン窒化層などから構成される。絶縁層30は、配線W1間に空洞31を設ける際に重要となると共に、絶縁層30上に層を積み重ねる際の土台となる重要なものである。絶縁層30は、例えば、シリコン酸化膜などから構成される。
【0383】
絶縁層30には、配線W1に達するコンタクトホ−ルが形成されている。このコンタクトホ−ル内及びコンタクトホ−ル上には、タングステンなどの高融点金属から構成される柱状の導電層33a,33bが形成されている。但し、導電層33a,33bは、高融点金属以外の他の材料から構成しても構わない。
【0384】
導電層33a,33bの上部には、絶縁層42,43が形成されている。この絶縁層42,43は、導電層33a,33bに支えられている。導電層33a,33bの間は、空洞(キャビティ)40になっている。この空洞40には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【0385】
なお、絶縁層42は、導電層33a,33bの位置及び断面積を決めるもので、例えば、シリコン酸化層やシリコン窒化層などから構成される。絶縁層43は、導電層33a,33bの間に空洞40を設ける際に重要となると共に、絶縁層43上に配線W2を積み重ねる際の土台となる重要なものである。絶縁層43は、例えば、シリコン酸化膜などから構成される。
【0386】
配線W2は、絶縁層43上に配置され、導電層33a,33bに接続されている。配線W2は、銅、アルミニウム合金などの金属35a,35bと、この金属35a,35bの底面及び側面を覆うU字溝状のバリア層34a,34bとから構成されている。
【0387】
なお、配線W2は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属から構成してもよい。また、バリア層34a,34bは、例えば、チタンと窒化チタンの積層などから構成することができる。
【0388】
配線W2の上部には、絶縁層36,37が形成されている。この絶縁層36,37は、配線W2に支えられている。配線W2間は、空洞(キャビティ)38になっている。この空洞38には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【0389】
絶縁層36は、配線W2のパタ−ンを決定するもので、例えば、シリコン酸化層やシリコン窒化層などから構成される。絶縁層37は、配線W2間に空洞38を設ける際に重要となると共に、絶縁層37上に層を積み重ねる際の土台となる重要なものである。絶縁層37は、例えば、シリコン酸化膜などから構成される。
【0390】
なお、空洞31,38,40を、製造時に空気に接触させることにより、又はパッケ−ジに穴を設けておくことにより、空洞31,38,40に空気を満たすようにしてもよい。
【0391】
上記構成の半導体装置によれば、配線W1間には、酸素O2 と二酸化炭素CO2 の混合ガス又は空気が満たされた空洞31が形成され、配線W2間には、酸素O2 と二酸化炭素CO2 の混合ガス又は空気が満たされた空洞38が形成されている。
【0392】
さらに、導電層33a,33bの間、即ち、配線W1と配線W2の間には、酸素O2 と二酸化炭素CO2 の混合ガス又は空気が満たされた空洞40が形成されている。
【0393】
この混合ガス又は空気の誘電率εは、1.0程度である。これにより、同一層(左右)の配線間及び異なる層(上下)の配線間をシリコン酸化層などの絶縁層で満たす場合に比べて、極端に誘電率を低下させることができる。
【0394】
従って、素子の集積度の向上とLSIの性能の向上を同時に達成することができる。
【0395】
次に、図46の半導体装置の製造方法について説明する。
【0396】
まず、図47に示すように、絶縁層25上に配線W1を形成するまでを、上述の第2の実施の形態における製造方法と同様の方法により行う。
【0397】
即ち、LOCOS法により半導体基板21上にフィ−ルド酸化層22を形成する。また、フィ−ルド酸化層22に囲まれた素子領域に、例えば、ゲ−ト電極23及びソ−ス・ドレイン領域24a,24bを有するMOSトランジスタを形成する。
【0398】
半導体基板21上の全面に、MOSトランンジスタを完全に覆う絶縁層(BPSGやPSGなど)25を形成する。この後、化学機械的研磨(CMP)を行い、絶縁層25の表面を平坦にする。
【0399】
PEP(写真蝕刻工程)により、絶縁層25にソ−ス・ドレイン領域24a,24bに達するコンタクトホ−ルを形成する。選択成長法により、絶縁層25のコンタクトホ−ル内のみに、タングステンなどの高融点金属から構成される導電層26a,26bを埋め込む。
【0400】
なお、絶縁層25のコンタクトホ−ル内には、高融点金属以外の他の材料を埋め込んでも構わない。
【0401】
スパッタリング法により、絶縁層25上に炭素(カ−ボン)層を形成する。ここで、炭素層の厚さは、LSIの内部配線の厚さと等しい値(例えば、約0.7〜約0.2μm)に設定される。
【0402】
スパッタリング法により、炭素層上にマスク材(例えば、シリコン酸化層やシリコン窒化層など)29を、約0.05μmの厚さで形成する。
【0403】
マスク材29上にレジストを塗布し、PEP(写真蝕刻工程)を用いてレジストをパタ−ニングする。また、パタ−ニングされたレジストをマスクにしてマスク材29をパタ−ニングする。この後、レジストを剥離し、マスク材29をマスクにして、異方性エッチングにより炭素層をエッチングする。
【0404】
なお、PEPにより、直接、炭素層をエッチングすることなく、PEPで加工したマスク材をマスクにして炭素層をエッチングする理由は、上述の第2の実施の形態における製造方法で説明した理由と同じである。
【0405】
従って、導電層26a,26bが高融点金属の場合には、PEPで加工したマスク材29をマスクに炭素層をエッチングし、導電層26a,26bがH2 SO4 とH2 2 の薬液により腐蝕されないような材質である場合には、レジストをマスクに炭素層をエッチングするのがよい。
【0406】
この後、スパッタリング法又はCVD法により、例えば、チタンと窒化チタンの積層から構成されるバリア層27a,27bを形成する。スパッタリング法又はCVD法により、バリア層27a,27b上に、銅、アルミニウム合金などから構成される金属28a,28bを形成する。
【0407】
なお、配線は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属であってもよい。
【0408】
化学機械的研磨(CMP)により、炭素層の間の溝内にのみ、バリア層27a,27b及び金属28a,28bを残存させ、配線W1を形成する。なお、CMPに代えて、異方性エッチング又は等方性エッチングにより配線W1を形成するようにしてもよい。
【0409】
スパッタリング法により、マスク材29上及び配線W1上に絶縁層(例えば、シリコン酸化層)30を形成する。ここで、絶縁層30は、CVD法により形成しない方がよい。なぜなら、絶縁層30を形成する際の反応ガス中には、酸素O2 ガスが含まれているため、絶縁層30の形成時に、炭素層39が除去されてしまう可能性があるからである。
【0410】
また、絶縁層30の厚さは、絶縁層30がシリコン酸化層の場合は、0.01〜0.1μmの範囲にあるのが、絶縁層30の破裂なしに灰化を行うのに都合がよい。但し、絶縁層30の種類や質などにより、絶縁層30の最適な厚さは、それぞれ異なる。
【0411】
この後、炭素層を灰化し、この炭素層を、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞31に変換する。
【0412】
上述の工程により配線W1を形成した後、スパッタリング法により、絶縁層30上に炭素層41を形成する。また、スパッタリング法により、炭素層41上にマスク材(例えば、シリコン酸化層やシリコン窒化層など)42を、約0.05μmの厚さで形成する。
【0413】
PEP(写真蝕刻工程)及び異方性エッチングを用いて、マスク材42をパタ−ニングする。このマスク材42をマスクにして、異方性エッチングにより炭素層41及び絶縁層30をエッチングする。その結果、炭素層41及び絶縁層30には、配線W1に達するビアホ−ルが形成される。
【0414】
次に、図48に示すように、選択成長法を用いて、ビアホ−ル内のみに、タングステンなどの高融点金属から構成される導電層33a,33bを埋め込む。なお、絶縁層30及び炭素層41のビアホ−ル内には、高融点金属以外の他の材料を埋め込んでも構わない。
【0415】
次に、図49に示すように、スパッタリング法により、マスク材42及び導電層33a,33b上に絶縁層(例えば、シリコン酸化層)43を形成する。ここで、絶縁層43は、CVD法により形成しない方がよい。なぜなら、絶縁層43を形成する際の反応ガス中には、酸素O2 ガスが含まれているため、絶縁層43の形成時に、炭素層41が除去されてしまう可能性があるからである。
【0416】
また、絶縁層43の厚さは、絶縁層43がシリコン酸化層の場合は、0.01〜0.1μmの範囲にあるのが、絶縁層43の破裂なしに灰化を行うのに都合がよい。但し、絶縁層43の種類や質などにより、絶縁層43の最適な厚さは、それぞれ異なる。
【0417】
次に、図50に示すように、配線W1を形成する際に使用した工程と同様の工程により配線W2を形成する。
【0418】
即ち、まず、スパッタリング法により、絶縁層43上に炭素(カ−ボン)層44を形成する。ここで、炭素層44の厚さは、配線W2の厚さと等しい値に設定されている。スパッタリング法により、炭素層44上にマスク材(例えば、シリコン酸化層やシリコン窒化層など)36を、約0.05μmの厚さで形成する。マスク材36上にレジストを塗布し、PEP(写真蝕刻工程)を用いてレジストをパタ−ニングする。また、パタ−ニングされたレジストをマスクにしてマスク材36をパタ−ニングする。
【0419】
この後、レジストを剥離し、マスク材36をマスクにして異方性エッチングにより炭素層44をエッチングする。
【0420】
スパッタリング法又はCVD法により、例えば、チタンと窒化チタンの積層から構成されるバリア層34a,34bを、絶縁層43上及びマスク材36上に形成する。
【0421】
スパッタリング法又はCVD法により、バリア層34a,34b上に、銅、アルミニウム合金などなどから構成される金属層35a,35bを形成する。化学機械的研磨(CMP)により、炭素層の間の溝内にのみ、バリア層34a,34b及び金属層35a,35bを残存させ、配線W2を形成する。
【0422】
スパッタリング法により、マスク材36上及び配線W2上に絶縁層(例えば、シリコン酸化層)37を形成する。
【0423】
絶縁層37の厚さは、絶縁層37がシリコン酸化層の場合は、0.01〜0.1μmの範囲にあるのが、絶縁層37の破裂なしに灰化を行うのに都合がよい。但し、絶縁層37の種類や質などにより、絶縁層37の最適な厚さは、それぞれ異なる。
【0424】
次に、図51及び図52に示すように、酸素雰囲気中での熱処理又は酸素プラズマ処理により、炭素層41,44を同時に灰化し、炭素層41を、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞40に変換し、炭素層44を、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞38に変換する。
【0425】
なお、空洞31,38,40を、製造時に空気に接触させることにより、又はパッケ−ジに穴を設けておくことにより、空洞31,38,40に空気を満たすようにしてもよい。
【0426】
上述の製造方法によれば、配線W1,W2を形成するための溝を有する絶縁層に炭素層を用い、かつ、溝内に配線を形成した後にこの炭素層を灰化してガスが満たされた空洞に変換している。
【0427】
また、導電層(上下配線のコンタクトプラグ)33a,33bを形成するためのビアホ−ルを有する絶縁層に炭素層を用い、かつ、ビアホ−ル内に導電層33a,33bを形成した後にこの炭素層を灰化してガスが満たされた空洞に変換している。
【0428】
これにより、多層配線構造の半導体装置において、同一層(左右)の配線間に酸素O2 と二酸化炭素CO2 の混合ガス又は空気を満たし、かつ、異なる層(上下)の配線間に酸素O2 と二酸化炭素CO2 の混合ガス又は空気を満たすことができる。
【0429】
図53は、本発明の第7の実施の形態に関わる半導体装置を示している。
【0430】
半導体基板(例えば、シリコンウェハ)21上には、フィ−ルド酸化層(例えば、シリコン酸化層)22が形成されている。フィ−ルド酸化層22に囲まれた素子領域には、MOSトランジスタが形成されている。このMOSトランジスタは、ゲ−ト電極23及びソ−ス・ドレイン領域24a,24bを有している。
【0431】
絶縁層25は、MOSトランジスタを覆っている。絶縁層25は、例えば、硼素燐ケイ酸ガラス(BPSG)や燐ケイ酸ガラス(PSG)などから構成することができる。
【0432】
絶縁層25の表面は、平坦である。絶縁層25の表面は、化学機械的研磨(CMP)により平坦にすることができる。絶縁層25には、ソ−ス・ドレイン領域24a,24bに達するコンタクトホ−ルが形成されている。
【0433】
このコンタクトホ−ル内には、タングステンなどの高融点金属から構成される導電層26a,26bが埋め込まれている。但し、導電層26a,26bは、高融点金属以外の他の材料から構成しても構わない。
【0434】
配線W1は、絶縁層25上に配置され、導電層26a,26bに接続されている。配線W1は、銅、アルミニウム合金などの金属28a,28bと、この金属28a,28bの底面及び側面を覆うU字溝状のバリア層27a,27bとから構成されている。
【0435】
なお、配線W1は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属から構成してもよい。また、バリア層27a,27bは、例えば、チタンと窒化チタンの積層などから構成することができる。
【0436】
配線W1の上部には、絶縁層30が形成されている。この絶縁層30は、配線W1に支えられている。配線W1間は、空洞(キャビティ)31になっている。この空洞31には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【0437】
絶縁層30は、配線W1間に空洞31を設ける際に重要となると共に、絶縁層30上に層を積み重ねる際の土台となる重要なものである。絶縁層30は、例えば、シリコン酸化膜などから構成される。
【0438】
絶縁層30には、配線W1に達するコンタクトホ−ルが形成されている。このコンタクトホ−ル内及びコンタクトホ−ル上には、タングステンなどの高融点金属から構成される柱状の導電層33a,33bが形成されている。但し、導電層33a,33bは、高融点金属以外の他の材料から構成しても構わない。
【0439】
導電層33a,33bの上部には、絶縁層43が形成されている。この絶縁層43は、導電層33a,33bに支えられている。導電層33a,33bの間は、空洞(キャビティ)40になっている。この空洞40には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【0440】
絶縁層43は、導電層33a,33bの間に空洞40を設ける際に重要となると共に、絶縁層43上に配線W2を積み重ねる際の土台となる重要なものである。絶縁層43は、例えば、シリコン酸化膜などから構成される。
【0441】
配線W2は、絶縁層43上に配置され、導電層33a,33bに接続されている。配線W2は、銅、アルミニウム合金などの金属35a,35bと、この金属35a,35bの底面及び側面を覆うU字溝状のバリア層34a,34bとから構成されている。
【0442】
なお、配線W2は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属から構成してもよい。また、バリア層34a,34bは、例えば、チタンと窒化チタンの積層などから構成することができる。
【0443】
配線W2の上部には、絶縁層37が形成されている。この絶縁層37は、配線W2に支えられている。配線W2間は、空洞(キャビティ)38になっている。この空洞38には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【0444】
絶縁層37は、配線W2間に空洞38を設ける際に重要となると共に、絶縁層37上に層を積み重ねる際の土台となる重要なものである。絶縁層37は、例えば、シリコン酸化膜などから構成される。
【0445】
なお、空洞31,38,40を、製造時に空気に接触させることにより、又はパッケ−ジに穴を設けておくことにより、空洞31,38,40に空気を満たすようにしてもよい。
【0446】
上記構成の半導体装置によれば、配線W1間には、酸素O2 と二酸化炭素CO2 の混合ガス又は空気が満たされた空洞31が形成され、配線W2間には、酸素O2 と二酸化炭素CO2 の混合ガス又は空気が満たされた空洞38が形成されている。
【0447】
さらに、導電層33a,33bの間、即ち、配線W1と配線W2の間には、酸素O2 と二酸化炭素CO2 の混合ガス又は空気が満たされた空洞40が形成されている。
【0448】
この混合ガス又は空気の誘電率εは、1.0程度である。これにより、同一層(左右)の配線間及び異なる層(上下)の配線間をシリコン酸化層などの絶縁層で満たす場合に比べて、極端に誘電率を低下させることができる。
【0449】
従って、素子の集積度の向上とLSIの性能の向上を同時に達成することができる。
【0450】
次に、図53の半導体装置の製造方法について説明する。
【0451】
まず、図54に示すように、絶縁層25上に配線W1を形成するまでを、上述の第3の実施の形態における製造方法と同様の方法により行う。
【0452】
即ち、LOCOS法により半導体基板21上にフィ−ルド酸化層22を形成する。また、フィ−ルド酸化層22に囲まれた素子領域に、例えば、ゲ−ト電極23及びソ−ス・ドレイン領域24a,24bを有するMOSトランジスタを形成する。
【0453】
半導体基板21上の全面に、MOSトランンジスタを完全に覆う絶縁層(BPSGやPSGなど)25を形成する。この後、化学機械的研磨(CMP)を行い、絶縁層25の表面を平坦にする。
【0454】
PEP(写真蝕刻工程)により、絶縁層25にソ−ス・ドレイン領域24a,24bに達するコンタクトホ−ルを形成する。選択成長法により、絶縁層25のコンタクトホ−ル内のみに、タングステンなどの高融点金属から構成される導電層26a,26bを埋め込む。
【0455】
なお、絶縁層25のコンタクトホ−ル内には、高融点金属以外の他の材料を埋め込んでも構わない。
【0456】
スパッタリング法により、絶縁層25上に炭素(カ−ボン)層を形成する。ここで、炭素層の厚さは、LSIの内部配線の厚さと等しい値(例えば、約0.7〜約0.2μm)に設定される。
【0457】
スパッタリング法により、炭素層上にマスク材(例えば、シリコン酸化層やシリコン窒化層など)29を、約0.05μmの厚さで形成する。PEP(写真蝕刻工程)及び異方性エッチングを用いて、マスク材29をパタ−ニングする。このマスク材29をマスクにして、異方性エッチングにより炭素層をエッチングする。
【0458】
なお、PEPにより、直接、炭素層をエッチングすることなく、PEPで加工したマスク材をマスクにして炭素層をエッチングする理由は、上述の第2の実施の形態における製造方法で説明した理由と同じである。
【0459】
従って、導電層26a,26bが高融点金属の場合には、PEPで加工したマスク材29をマスクに炭素層をエッチングし、導電層26a,26bがH2 SO4 とH2 2 の薬液により腐蝕されないような材質である場合には、レジストをマスクに炭素層をエッチングするのがよい。
【0460】
この後、マスク材29を除去し、スパッタリング法又はCVD法により、例えば、チタンと窒化チタンの積層から構成されるバリア層27a,27bを形成する。スパッタリング法又はCVD法により、バリア層27a,27b上に、銅、アルミニウム合金などから構成される金属28a,28bを形成する。
【0461】
なお、配線は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属であってもよい。
【0462】
化学機械的研磨(CMP)により、炭素層の間の溝内にのみ、バリア層27a,27b及び金属28a,28bを残存させ、配線W1を形成する。なお、CMPに代えて、異方性エッチング又は等方性エッチングにより配線W1を形成するようにしてもよい。
【0463】
スパッタリング法により、炭素層上及び配線W1上に絶縁層(例えば、シリコン酸化層)30を形成する。ここで、絶縁層30は、CVD法により形成しない方がよい。なぜなら、絶縁層30を形成する際の反応ガス中には、酸素O2 ガスが含まれているため、絶縁層30の形成時に、炭素層39が除去されてしまう可能性があるからである。
【0464】
また、絶縁層30の厚さは、絶縁層30がシリコン酸化層の場合は、0.01〜0.1μmの範囲にあるのが、絶縁層30の破裂なしに灰化を行うのに都合がよい。但し、絶縁層30の種類や質などにより、絶縁層30の最適な厚さは、それぞれ異なる。
【0465】
この後、炭素層を灰化し、この炭素層を、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞31に変換する。
【0466】
上述の工程により配線W1を形成した後、スパッタリング法により、絶縁層30上に炭素層41を形成する。また、スパッタリング法により、炭素層41上にマスク材(例えば、シリコン酸化層やシリコン窒化層など)42を、約0.05μmの厚さで形成する。
【0467】
マスク材42上にレジストを塗布し、PEP(写真蝕刻工程)を用いてレジストをパタ−ニングする。また、パタ−ニングされたレジストをマスクにしてマスク材42をパタ−ニングする。この後、レジストを剥離し、マスク材42をマスクにして、異方性エッチングにより炭素層41及び絶縁層30をエッチングする。その結果、炭素層41及び絶縁層30には、配線W1に達するビアホ−ルが形成される。
【0468】
次に、図55に示すように、選択成長法を用いて、ビアホ−ル内のみに、タングステンなどの高融点金属から構成される導電層33a,33bを埋め込む。なお、絶縁層30及び炭素層41のビアホ−ル内には、高融点金属以外の他の材料を埋め込んでも構わない。
【0469】
次に、図56に示すように、スパッタリング法により、炭素層41及び導電層33a,33b上に絶縁層(例えば、シリコン酸化層)43を形成する。ここで、絶縁層43は、CVD法により形成しない方がよい。なぜなら、絶縁層43を形成する際の反応ガス中には、酸素O2 ガスが含まれているため、絶縁層43の形成時に、炭素層41が除去されてしまう可能性があるからである。
【0470】
また、絶縁層43の厚さは、絶縁層43がシリコン酸化層の場合は、0.01〜0.1μmの範囲にあるのが、絶縁層43の破裂なしに灰化を行うのに都合がよい。但し、絶縁層43の種類や質などにより、絶縁層43の最適な厚さは、それぞれ異なる。
【0471】
次に、図57に示すように、配線W1を形成する際に使用した工程と同様の工程により配線W2を形成する。
【0472】
即ち、まず、スパッタリング法により、絶縁層43上に炭素(カ−ボン)層44を形成する。ここで、炭素層44の厚さは、配線W2の厚さと等しい値に設定されている。スパッタリング法により、炭素層44上にマスク材(例えば、シリコン酸化層やシリコン窒化層など)を、約0.05μmの厚さで形成する。
【0473】
この後、PEP(写真蝕刻工程)及び異方性エッチングを用いて、マスク材をパタ−ニングする。マスク材をマスクにして、異方性エッチングにより炭素層44及び絶縁層43をエッチングする。
【0474】
マスク材を除去し、スパッタリング法又はCVD法により、例えば、チタンと窒化チタンの積層から構成されるバリア層34a,34bを、配線溝YYの内面上及び炭素層44上に形成する。
【0475】
スパッタリング法又はCVD法により、バリア層34a,34b上に、銅、アルミニウム合金などなどから構成される金属層35a,35bを形成する。化学機械的研磨(CMP)により、炭素層の間の溝内にのみ、バリア層34a,34b及び金属層35a,35bを残存させ、配線W2を形成する。
【0476】
なお、CMPに代えて、異方性エッチング又は等方性エッチングにより配線W2を形成するようにしてもよい。
【0477】
スパッタリング法により、炭素層44上及び配線W2上に絶縁層(例えば、シリコン酸化層)37を形成する。
【0478】
絶縁層37の厚さは、絶縁層37がシリコン酸化層の場合は、0.01〜0.1μmの範囲にあるのが、絶縁層37の破裂なしに灰化を行うのに都合がよい。但し、絶縁層37の種類や質などにより、絶縁層37の最適な厚さは、それぞれ異なる。
【0479】
次に、図58及び図59に示すように、酸素雰囲気中での熱処理又は酸素プラズマ処理により、炭素層41,44を同時に灰化し、炭素層41を、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞40に変換し、炭素層44を、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞38に変換する。
【0480】
なお、空洞31,38,40を、製造時に空気に接触させることにより、又はパッケ−ジに穴を設けておくことにより、空洞31,38,40に空気を満たすようにしてもよい。
【0481】
上述の製造方法によれば、配線W1,W2を形成するための溝を有する絶縁層に炭素層を用い、かつ、溝内に配線を形成した後にこの炭素層を灰化してガスが満たされた空洞に変換している。
【0482】
また、導電層(上下配線のコンタクトプラグ)33a,33bを形成するためのビアホ−ルを有する絶縁層に炭素層を用い、かつ、ビアホ−ル内に導電層33a,33bを形成した後にこの炭素層を灰化してガスが満たされた空洞に変換している。
【0483】
これにより、多層配線構造の半導体装置において、同一層(左右)の配線間に酸素O2 と二酸化炭素CO2 の混合ガス又は空気を満たし、かつ、異なる層(上下)の配線間に酸素O2 と二酸化炭素CO2 の混合ガス又は空気を満たすことができる。
【0484】
また、マスク材は、炭素層をパタ−ニングした後、炭素層の灰化前に、除去されている。従って、炭素層の灰化を迅速かつ正確に行うことができる。
【0485】
図60は、本発明の第8の実施の形態に関わる半導体装置を示している。
【0486】
半導体基板(例えば、シリコンウェハ)21上には、フィ−ルド酸化層(例えば、シリコン酸化層)22が形成されている。フィ−ルド酸化層22に囲まれた素子領域には、MOSトランジスタが形成されている。このMOSトランジスタは、ゲ−ト電極23及びソ−ス・ドレイン領域24a,24bを有している。
【0487】
絶縁層25は、MOSトランジスタを覆っている。絶縁層25は、例えば、硼素燐ケイ酸ガラス(BPSG)や燐ケイ酸ガラス(PSG)などから構成することができる。
【0488】
絶縁層25の表面は、平坦である。絶縁層25の表面は、化学機械的研磨(CMP)により平坦にすることができる。絶縁層25には、ソ−ス・ドレイン領域24a,24bに達するコンタクトホ−ルが形成されている。
【0489】
このコンタクトホ−ル内には、タングステンなどの高融点金属から構成される導電層26a,26bが埋め込まれている。但し、導電層26a,26bは、高融点金属以外の他の材料から構成しても構わない。
【0490】
配線W1は、絶縁層25上に配置され、導電層26a,26bに接続されている。配線W1は、銅、アルミニウム合金などの金属28a,28bと、この金属28a,28bの底面及び側面を覆うU字溝状のバリア層27a,27bとから構成されている。
【0491】
なお、配線W1は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属から構成してもよい。また、バリア層27a,27bは、例えば、チタンと窒化チタンの積層などから構成することができる。
【0492】
配線W1の上部には、絶縁層29,30が形成されている。この絶縁層29,30は、配線W1に支えられている。配線W1間は、空洞(キャビティ)31になっている。この空洞31には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【0493】
なお、絶縁層29は、配線W1のパタ−ンを決定するもので、例えば、シリコン酸化層やシリコン窒化層などから構成される。絶縁層30は、配線W1間に空洞31を設ける際に重要となると共に、絶縁層30上に層を積み重ねる際の土台となる重要なものである。絶縁層30は、例えば、シリコン酸化膜などから構成される。
【0494】
絶縁層30には、配線W1に達するコンタクトホ−ルが形成されている。このコンタクトホ−ル内及びコンタクトホ−ル上には、銅、アルミニウム合金などの金属層35a,35bと、この金属層35a,35bの底面及び側面を覆うバリア層34a,34bとから構成される配線W2が形成されている。
【0495】
なお、配線W2は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属から構成してもよい。また、バリア層34a,34bは、例えば、チタンと窒化チタンの積層などから構成することができる。
【0496】
配線W2の上部と下部の間には、絶縁層(例えば、シリコン酸化層)43が形成されている。この絶縁層43は、配線W2に支えられている。配線W2の下部は、柱状であり、また、配線W2の上部は、線状であり、絶縁層43上に配置されている。
【0497】
配線W2上には、絶縁層(例えば、シリコン酸化層)37が形成されている。配線W2の下部の間(上下の配線W1と配線W2の間)は、空洞(キャビティ)40になっている。この空洞40には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【0498】
配線W2の上部の間(左右の配線W2の間)は、空洞(キャビティ)38になっている。この空洞38には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【0499】
なお、空洞31,38,40を製造時に空気に接触させることにより、又はパッケ−ジに穴を設けておくことにより、空洞31,38,40内に空気を満たすようにしてもよい。
【0500】
上記構成の半導体装置によれば、配線W1間には、酸素O2 と二酸化炭素CO2 の混合ガス又は空気が満たされた空洞31が形成され、配線W2間には、酸素O2 と二酸化炭素CO2 の混合ガス又は空気が満たされた空洞38が形成されている。
【0501】
さらに、導電層33a,33bの間、即ち、配線W1と配線W2の間には、酸素O2 と二酸化炭素CO2 の混合ガス又は空気が満たされた空洞40が形成されている。
【0502】
この混合ガス又は空気の誘電率εは、1.0程度である。これにより、同一層(左右)の配線間及び異なる層(上下)の配線間をシリコン酸化層などの絶縁層で満たす場合に比べて、極端に誘電率を低下させることができる。
【0503】
従って、素子の集積度の向上とLSIの性能の向上を同時に達成することができる。
【0504】
次に、図60の半導体装置の製造方法について説明する。
【0505】
まず、図61に示すように、絶縁層25上に配線W1を形成するまでを、上述の第2の実施の形態における製造方法と同様の方法により行う。
【0506】
即ち、LOCOS法により半導体基板21上にフィ−ルド酸化層22を形成する。また、フィ−ルド酸化層22に囲まれた素子領域に、例えば、ゲ−ト電極23及びソ−ス・ドレイン領域24a,24bを有するMOSトランジスタを形成する。
【0507】
半導体基板21上の全面に、MOSトランンジスタを完全に覆う絶縁層(BPSGやPSGなど)25を形成する。この後、化学機械的研磨(CMP)を行い、絶縁層25の表面を平坦にする。
【0508】
PEP(写真蝕刻工程)により、絶縁層25にソ−ス・ドレイン領域24a,24bに達するコンタクトホ−ルを形成する。選択成長法により、絶縁層25のコンタクトホ−ル内のみに、タングステンなどの高融点金属から構成される導電層26a,26bを埋め込む。
【0509】
なお、絶縁層25のコンタクトホ−ル内には、高融点金属以外の他の材料を埋め込んでも構わない。
【0510】
スパッタリング法により、絶縁層25上に炭素(カ−ボン)層を形成する。ここで、炭素層の厚さは、LSIの内部配線の厚さと等しい値(例えば、約0.7〜約0.2μm)に設定される。
【0511】
スパッタリング法により、炭素層上にマスク材(例えば、シリコン酸化層やシリコン窒化層など)29を、約0.05μmの厚さで形成する。
【0512】
マスク材29上にレジストを塗布し、PEP(写真蝕刻工程)を用いてレジストをパタ−ニングする。また、パタ−ニングされたレジストをマスクにしてマスク材29をパタ−ニングする。この後、レジストを剥離し、マスク材29をマスクにして異方性エッチングにより炭素層をエッチングする。
【0513】
なお、PEPにより、直接、炭素層をエッチングすることなく、PEPで加工したマスク材をマスクにして炭素層をエッチングする理由は、上述の第2の実施の形態における製造方法で説明した理由と同じである。
【0514】
従って、導電層26a,26bが高融点金属の場合には、PEPで加工したマスク材29をマスクに炭素層をエッチングし、導電層26a,26bがH2 SO4 とH2 2 の薬液により腐蝕されないような材質である場合には、レジストをマスクに炭素層をエッチングするのがよい。
【0515】
この後、スパッタリング法又はCVD法により、例えば、チタンと窒化チタンの積層から構成されるバリア層27a,27bを形成する。スパッタリング法又はCVD法により、バリア層27a,27b上に、銅、アルミニウム合金などから構成される金属層28a,28bを形成する。
【0516】
なお、配線は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属であってもよい。
【0517】
化学機械的研磨(CMP)により、炭素層の間の溝内にのみ、バリア層27a,27b及び金属28a,28bを残存させ、配線W1を形成する。なお、CMPに代えて、異方性エッチング又は等方性エッチングにより配線W1を形成してもよい。
【0518】
スパッタリング法により、マスク材29上及び配線W1上に絶縁層(例えば、シリコン酸化層)30を形成する。ここで、絶縁層30は、CVD法により形成しない方がよい。なぜなら、絶縁層30を形成する際の反応ガス中には、酸素O2 ガスが含まれているため、絶縁層30の形成時に、炭素層が除去されてしまう可能性があるからである。
【0519】
また、絶縁層30の厚さは、絶縁層30がシリコン酸化層の場合は、0.01〜0.1μmの範囲にあるのが、絶縁層30の破裂なしに灰化を行うのに都合がよい。但し、絶縁層30の種類や質などにより、絶縁層30の最適な厚さは、それぞれ異なる。
【0520】
この後、炭素層を灰化し、この炭素層を、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞31に変換する。
【0521】
上述の工程により配線W1を形成した後、スパッタリング法により、絶縁層30上に炭素層41を形成する。また、スパッタリング法により、炭素層41上に絶縁層(例えば、シリコン酸化層)43を約0.05μmの厚さで形成する。
【0522】
なお、絶縁層43は、CVD法により形成しない方がよい。なぜなら、絶縁層43を形成する際の反応ガス中には、酸素O2 ガスが含まれているため、絶縁層43の形成時に、炭素層41が除去されてしまう可能性があるからである。
【0523】
また、絶縁層43の厚さは、絶縁層43がシリコン酸化層の場合は、0.01〜0.1μmの範囲にあるのが、絶縁層43の破裂なしに灰化を行うのに都合がよい。但し、絶縁層43の種類や質などにより、絶縁層43の最適な厚さは、それぞれ異なる。
【0524】
続けて、スパッタリング法により、絶縁層43上に炭素層44を形成する。
【0525】
この後、炭素層44をパタ−ニングして、配線を形成するための溝を炭素層44に設ける。炭素層44のパタ−ニングには、PEP(写真蝕刻工程)とRIEを用いる方法と、PEPとRIEで加工したマスク材をマスクにパタ−ニングする方法の2つがある。
【0526】
本実施例では、PEPとRIEを用いる方法について述べる。即ち、炭素層44上にレジスト45を形成する。レジスト45をパタ−ニングした後、このレジスト45をマスクに異方性エッチングにより炭素層44をエッチングし、炭素層44に溝を形成する。
【0527】
この後、H2 SO4 とH2 2 の薬液を用いて、レジスト45を除去する。なお、酸素プラズマ処理は炭素層44の消滅を招くため、この酸素プラズマ処理はレジスト45の剥離に用いない。
【0528】
次に、図62に示すように、炭素層44上に再びレジスト46を形成する。レジスト46をパタ−ニングした後、このレジスト46をマスクにして、異方性エッチングにより、溝の底部に露出した絶縁層43及び炭素層41をエッチングする。
【0529】
この後、H2 SO4 とH2 2 の薬液を用いて、レジスト46を除去する。なお、酸素プラズマ処理は炭素層46の消滅を招くため、この酸素プラズマ処理はレジスト46の剥離に用いない。
【0530】
次に、図63に示すように、異方性エッチングを用いて、溝の底部に露出した絶縁層30をエッチングし、配線W1に達するビアホ−ルを形成する。
【0531】
スパッタリング法又はCVD法により、例えば、チタンと窒化チタンの積層から構成されるバリア層34を、炭素層44上、炭素層44の間の溝内及び炭素層41のビアホ−ル内に形成する。また、スパッタリング法又はCVD法により、バリア層34上に、銅、アルミニウム合金などなどから構成される金属層35を形成する。
【0532】
次に、図64に示すように、化学機械的研磨(CMP)又はエッチングにより、炭素層44の間の溝内及び炭素層41のビアホ−ル内に、それぞれバリア層34a,34b及び金属層35a,35bを残存させる。
【0533】
また、スパッタリング法により、炭素層44上に絶縁層(例えば、シリコン酸化層)37を、約0.05μmの厚さで形成する。
【0534】
なお、絶縁層37,43の厚さは、絶縁層37,43がシリコン酸化層の場合は、0.01〜0.1μmの範囲にあるのが、絶縁層37,43の破裂なしに灰化を行うのに都合がよい。但し、絶縁層37,43の種類や質などにより、絶縁層37,43の最適な厚さは、それぞれ異なる。
【0535】
次に、図65及び図66に示すように、酸素雰囲気中での熱処理又は酸素プラズマ処理により、炭素層41,44を同時を灰化し、炭素層41を、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞40に変換し、炭素層44を、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞38に変換する。
【0536】
なお、空洞31,38,40を製造時に空気に接触させることにより、又はパッケ−ジに穴を設けておくことにより、空洞31,38,40内に空気を満たすようにしてもよい。
【0537】
上述の製造方法によれば、配線W1,W2を形成するための溝又はビアホ−ルを有する絶縁層に炭素層を用い、かつ、溝内及びビアホ−ル内に配線を形成した後にこの炭素層を灰化してガスが満たされた空洞に変換している。
【0538】
また、配線W2は、コンタクトプラグを用いることなく、配線W1に直接接続されるているため、上述の第2〜7の実施の形態における製造方法に比べて大幅に工程数を減らすことができる。
【0539】
これにより、多層配線構造の半導体装置において、同一層(左右)の配線間に酸素O2 と二酸化炭素CO2 の混合ガス又は空気を満たし、かつ、異なる層(上下)の配線間に酸素O2 と二酸化炭素CO2 の混合ガス又は空気を満たすことができる。
【0540】
図67は、本発明の第9の実施の形態に関わる半導体装置を示している。
【0541】
半導体基板(例えば、シリコンウェハ)21上には、フィ−ルド酸化層(例えば、シリコン酸化層)22が形成されている。フィ−ルド酸化層22に囲まれた素子領域には、MOSトランジスタが形成されている。このMOSトランジスタは、ゲ−ト電極23及びソ−ス・ドレイン領域24a,24bを有している。
【0542】
絶縁層25は、MOSトランジスタを覆っている。絶縁層25は、例えば、硼素燐ケイ酸ガラス(BPSG)や燐ケイ酸ガラス(PSG)などから構成することができる。
【0543】
絶縁層25の表面は、平坦である。絶縁層25の表面は、化学機械的研磨(CMP)により平坦にすることができる。絶縁層25には、ソ−ス・ドレイン領域24a,24bに達するコンタクトホ−ルが形成されている。
【0544】
このコンタクトホ−ル内には、タングステンなどの高融点金属から構成される導電層26a,26bが埋め込まれている。但し、導電層26a,26bは、高融点金属以外の他の材料から構成しても構わない。
【0545】
配線W1は、絶縁層25上に配置され、導電層26a,26bに接続されている。配線W1は、銅、アルミニウム合金などの金属層28a,28bと、この金属層28a,28bの底面及び側面を覆うU字溝状のバリア層27a,27bとから構成されている。
【0546】
なお、配線W1は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属から構成してもよい。また、バリア層27a,27bは、例えば、チタンと窒化チタンの積層などから構成することができる。
【0547】
配線W1の上部には、絶縁層30が形成されている。この絶縁層30は、配線W1に支えられている。配線W1間は、空洞(キャビティ)31になっている。この空洞31には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【0548】
絶縁層30は、配線W1間に空洞31を設ける際に重要となると共に、絶縁層30上に層を積み重ねる際の土台となる重要なものである。絶縁層30は、例えば、シリコン酸化膜などから構成される。
【0549】
絶縁層30には、配線W1に達するコンタクトホ−ルが形成されている。このコンタクトホ−ル内及びコンタクトホ−ル上には、銅、アルミニウム合金などの金属層35a,35bと、この金属層35a,35bの底面及び側面を覆うバリア層34a,34bとから構成される配線W2が形成されている。
【0550】
なお、配線W2は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属から構成してもよい。また、バリア層34a,34bは、例えば、チタンと窒化チタンの積層などから構成することができる。
【0551】
配線W2の上部と下部の間には、絶縁層(例えば、シリコン酸化層)43が形成されている。この絶縁層43は、配線W2に支えられている。配線W2の下部は、柱状であり、また、配線W2の上部は、線状であり、絶縁層43上に配置されている。
【0552】
配線W2上には、絶縁層(例えば、シリコン酸化層)37が形成されている。配線W2の下部の間(上下の配線W1と配線W2の間)は、空洞(キャビティ)40になっている。この空洞40には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【0553】
配線W2の上部の間(左右の配線W2の間)は、空洞(キャビティ)38になっている。この空洞38には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【0554】
なお、空洞31,38,40を製造時に空気に接触させることにより、又はパッケ−ジに穴を設けておくことにより、空洞31,38,40内に空気を満たすようにしてもよい。
【0555】
上記構成の半導体装置によれば、配線W1間には、酸素O2 と二酸化炭素CO2 の混合ガス又は空気が満たされた空洞31が形成され、配線W2間には、酸素O2 と二酸化炭素CO2 の混合ガス又は空気が満たされた空洞38が形成されている。
【0556】
さらに、導電層35a,35bの間、即ち、配線W1と配線W2の間には、酸素O2 と二酸化炭素CO2 の混合ガス又は空気が満たされた空洞40,43が形成されている。
【0557】
この混合ガス又は空気の誘電率εは、1.0程度である。これにより、同一層(左右)の配線間及び異なる層(上下)の配線間をシリコン酸化層などの絶縁層で満たす場合に比べて、極端に誘電率を低下させることができる。
【0558】
従って、素子の集積度の向上とLSIの性能の向上を同時に達成することができる。
【0559】
次に、図67の半導体装置の製造方法について説明する。
【0560】
まず、図68に示すように、絶縁層25上に配線W1を形成するまでを、上述の第3の実施の形態における製造方法と同様の方法により行う。
【0561】
即ち、LOCOS法により半導体基板21上にフィ−ルド酸化層22を形成する。また、フィ−ルド酸化層22に囲まれた素子領域に、例えば、ゲ−ト電極23及びソ−ス・ドレイン領域24a,24bを有するMOSトランジスタを形成する。
【0562】
半導体基板21上の全面に、MOSトランンジスタを完全に覆う絶縁層(BPSGやPSGなど)25を形成する。この後、化学機械的研磨(CMP)を行い、絶縁層25の表面を平坦にする。
【0563】
PEP(写真蝕刻工程)により、絶縁層25にソ−ス・ドレイン領域24a,24bに達するコンタクトホ−ルを形成する。選択成長法により、絶縁層25のコンタクトホ−ル内のみに、タングステンなどの高融点金属から構成される導電層26a,26bを埋め込む。
【0564】
なお、絶縁層25のコンタクトホ−ル内には、高融点金属以外の他の材料を埋め込んでも構わない。
【0565】
スパッタリング法により、絶縁層25上に炭素(カ−ボン)層を形成する。ここで、炭素層の厚さは、LSIの内部配線の厚さと等しい値(例えば、約0.7〜約0.2μm)に設定される。
【0566】
スパッタリング法により、炭素層上にマスク材(例えば、シリコン酸化層やシリコン窒化層など)を、約0.05μmの厚さで形成する。PEP(写真蝕刻工程)及び異方性エッチングを用いて、マスク材をパタ−ニングする。このマスク材をマスクにして、異方性エッチングにより炭素層をエッチングする。
【0567】
なお、PEPにより、直接、炭素層をエッチングすることなく、PEPで加工したマスク材をマスクにして炭素層をエッチングする理由は、上述の第2の実施の形態における製造方法で説明した理由と同じである。
【0568】
従って、導電層26a,26bが高融点金属の場合には、PEPで加工したマスク材をマスクに炭素層をエッチングし、導電層26a,26bがH2 SO4 とH2 2 の薬液により腐蝕されないような材質である場合には、レジストをマスクに炭素層をエッチングするのがよい。
【0569】
この後、マスク材を除去し、スパッタリング法又はCVD法により、例えば、チタンと窒化チタンの積層から構成されるバリア層27a,27bを形成する。スパッタリング法又はCVD法により、バリア層27上に、銅、アルミニウム合金などから構成される金属層28a,28bを形成する。
【0570】
なお、配線は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属であってもよい。
【0571】
化学機械的研磨(CMP)により、炭素層の間の溝内にのみ、バリア層27a,27b及び金属層28a,28bを残存させ、配線W1を形成する。なお、CMPに代えて、異方性エッチング又は等方性エッチングにより配線W1を形成するようにしてもよい。
【0572】
スパッタリング法により、炭素層上及び配線W1上に絶縁層(例えば、シリコン酸化層)30を形成する。ここで、絶縁層30は、CVD法により形成しない方がよい。なぜなら、絶縁層30を形成する際の反応ガス中には、酸素O2 ガスが含まれているため、絶縁層30の形成時に、炭素層が除去されてしまう可能性があるからである。
【0573】
また、絶縁層30の厚さは、絶縁層30がシリコン酸化層の場合は、0.01〜0.1μmの範囲にあるのが、絶縁層30の破裂なしに灰化を行うのに都合がよい。但し、絶縁層30の種類や質などにより、絶縁層30の最適な厚さは、それぞれ異なる。
【0574】
この後、炭素層を灰化し、この炭素層を、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞31に変換する。
【0575】
上述の工程により配線W1を形成した後、スパッタリング法により、絶縁層30上に炭素層41を形成する。また、スパッタリング法により、炭素層41上に絶縁層(例えば、シリコン酸化層)43を約0.05μmの厚さで形成する。
【0576】
なお、絶縁層43は、CVD法により形成しない方がよい。なぜなら、絶縁層43を形成する際の反応ガス中には、酸素O2 ガスが含まれているため、絶縁層43の形成時に、炭素層41が除去されてしまう可能性があるからである。
【0577】
また、絶縁層43の厚さは、絶縁層43がシリコン酸化層の場合は、0.01〜0.1μmの範囲にあるのが、絶縁層43の破裂なしに灰化を行うのに都合がよい。但し、絶縁層43の種類や質などにより、絶縁層43の最適な厚さは、それぞれ異なる。
【0578】
続けて、スパッタリング法により、絶縁層43上に炭素層44を形成する。
【0579】
この後、炭素層44をパタ−ニングして、配線を形成するための溝を炭素層44に設ける。炭素層44のパタ−ニングには、PEP(写真蝕刻工程)とRIEを用いる方法と、PEPとRIEで加工したマスク材をマスクにパタ−ニングする方法の2つがある。
【0580】
本実施例では、PEPとRIEを用いる方法について述べる。即ち、炭素層44上にレジスト45を形成する。レジスト45をパタ−ニングした後、このレジスト45をマスクに異方性エッチングにより炭素層44をエッチングし、炭素層44に溝を形成する。
【0581】
この後、H2 SO4 とH2 2 の薬液を用いて、レジスト45を除去する。なお、酸素プラズマ処理は炭素層44の消滅を招くため、この酸素プラズマ処理はレジスト45の剥離に用いない。
【0582】
次に、図69に示すように、炭素層44上に再びレジスト46を形成する。レジスト46をパタ−ニングした後、このレジスト46をマスクにして異方性エッチングにより溝の底部に露出した絶縁層43及び炭素層41をエッチングする。
この後、H2 SO4 とH2 2 の薬液を用いて、レジスト46を除去する。なお、酸素プラズマ処理は炭素層46の消滅を招くため、この酸素プラズマ処理はレジスト46の剥離に用いない。
【0583】
次に、図70に示すように、異方性エッチングを用いて、溝の底部に露出した絶縁層30をエッチングし、配線W1に達するビアホ−ルを形成する。
【0584】
スパッタリング法又はCVD法により、例えば、チタンと窒化チタンの積層から構成されるバリア層34を、炭素層44上、炭素層44の間の溝内及び炭素層41のビアホ−ル内に形成する。また、スパッタリング法又はCVD法により、バリア層34上に、銅、アルミニウム合金などなどから構成される金属層35を形成する。
【0585】
次に、図71に示すように、化学機械的研磨(CMP)又はエッチングにより、炭素層44の間の溝内及び炭素層41のビアホ−ル内に、それぞれバリア層34a,34b及び金属層35a,35bを残存させる。
【0586】
また、スパッタリング法により、炭素層44上に絶縁層(例えば、シリコン酸化層)37を、約0.05μmの厚さで形成する。
【0587】
なお、絶縁層37,43の厚さは、絶縁層37,43がシリコン酸化層の場合は、0.01〜0.1μmの範囲にあるのが、絶縁層37,43の破裂なしに灰化を行うのに都合がよい。但し、絶縁層37,43の種類や質などにより、絶縁層37,43の最適な厚さは、それぞれ異なる。
【0588】
次に、図72及び図73に示すように、酸素雰囲気中での熱処理又は酸素プラズマ処理により、炭素層41,44を同時を灰化し、炭素層41を、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞40に変換し、炭素層44を、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞38に変換する。
【0589】
なお、空洞31,38,40を製造時に空気に接触させることにより、又はパッケ−ジに穴を設けておくことにより、空洞31,38,40内に空気を満たすようにしてもよい。
【0590】
上述の製造方法によれば、配線W1,W2を形成するための溝又はビアホ−ルを有する絶縁層に炭素層を用い、かつ、溝内及びビアホ−ル内に配線を形成した後にこの炭素層を灰化してガスが満たされた空洞に変換している。
【0591】
また、配線W2は、コンタクトプラグを用いることなく、配線W1に直接接続されるているため、上述の第2〜7の実施の形態における製造方法に比べて大幅に工程数を減らすことができる。
【0592】
これにより、多層配線構造の半導体装置において、同一層(左右)の配線間に酸素O2 と二酸化炭素CO2 の混合ガス又は空気を満たし、かつ、異なる層(上下)の配線間に酸素O2 と二酸化炭素CO2 の混合ガス又は空気を満たすことができる。
【0593】
また、マスク材は、炭素層をパタ−ニングした後、炭素層の灰化前に、除去されている。従って、炭素層の灰化を迅速かつ正確に行うことができる。
【0594】
図74乃至図76は、本発明の第10の実施の形態に関わる半導体装置を示している。
【0595】
この半導体装置は、図74に示すように、ウェハ47に形成される複数のチップ48の各々に形成される。
【0596】
図76を参照して、この実施の形態に関わる半導体装置について説明する。
【0597】
半導体基板(例えば、シリコンウェハ)21上には、フィ−ルド酸化層(例えば、シリコン酸化層)22が形成されている。フィ−ルド酸化層22に囲まれた素子領域には、MOSトランジスタが形成されている。このMOSトランジスタは、ゲ−ト電極23及びソ−ス・ドレイン領域24a,24bを有している。
【0598】
絶縁層25は、MOSトランジスタを覆っている。絶縁層25は、例えば、硼素燐ケイ酸ガラス(BPSG)や燐ケイ酸ガラス(PSG)などから構成することができる。
【0599】
絶縁層25の表面は、平坦である。絶縁層25の表面は、化学機械的研磨(CMP)により平坦にすることができる。絶縁層25には、ソ−ス・ドレイン領域24a,24bに達するコンタクトホ−ルが形成されている。
【0600】
このコンタクトホ−ル内には、タングステンなどの高融点金属から構成される導電層26a,26bが埋め込まれている。但し、導電層26a,26bは、高融点金属以外の他の材料から構成しても構わない。
【0601】
配線W1は、絶縁層25上に配置され、導電層26a,26bに接続されている。配線W1は、銅、アルミニウム合金などの金属層28a,28bと、この金属層28a,28bの底面及び側面を覆うU字溝状のバリア層27a,27bとから構成されている。
【0602】
なお、配線W1は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属から構成してもよい。また、バリア層27a,27bは、例えば、チタンと窒化チタンの積層などから構成することができる。
【0603】
配線W1の上部には、絶縁層29,30が形成されている。この絶縁層29,30は、配線W1に支えられている。配線W1間は、空洞(キャビティ)31になっている。この空洞31には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【0604】
なお、絶縁層29は、配線W1のパタ−ンを決定するもので、例えば、シリコン酸化層やシリコン窒化層などから構成される。絶縁層30は、配線W1間に空洞31を設ける際に重要となると共に、絶縁層30上に層を積み重ねる際の土台となる重要なものである。絶縁層30は、例えば、シリコン酸化膜などから構成される。
【0605】
絶縁層30上には、絶縁層32が形成されている。絶縁層32は、例えば、シリコン酸化層から構成される。絶縁層32には、配線W1に達するコンタクトホ−ルが形成されている。
【0606】
このコンタクトホ−ル内には、タングステンなどの高融点金属から構成される導電層33a,33bが埋め込まれている。但し、導電層33a,33bは、高融点金属以外の他の材料から構成しても構わない。
【0607】
配線W2は、絶縁層32上に配置され、導電層33a,33bに接続されている。配線W2は、銅、アルミニウム合金などの金属層35a,35bと、この金属層35a,35bの底面及び側面を覆うU字溝状のバリア層34a,34bとから構成されている。
【0608】
なお、配線W2は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属から構成してもよい。また、バリア層34a,34bは、例えば、チタンと窒化チタンの積層などから構成することができる。
【0609】
配線W2の上部には、絶縁層36,37が形成されている。この絶縁層36,37は、配線W2に支えられている。配線W2間は、空洞(キャビティ)38になっている。この空洞38には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【0610】
なお、絶縁層36は、配線W2のパタ−ンを決定するもので、例えば、シリコン酸化層やシリコン窒化層などから構成される。絶縁層37は、配線W2間に空洞38を設ける際に重要となると共に、絶縁層37上に層を積み重ねる際の土台となる重要なものである。絶縁層37は、例えば、シリコン酸化膜などから構成される。
【0611】
また、各チップ48の縁部には、そのチップの縁に沿ってリング状のガ−ドリングGが形成されている。このガ−ドリングGは、空洞31に形成されるバリア層27c及び金属層28cと、空洞38に形成されるバリア層34c及び金属層35cと、絶縁層30,32中に形成される導電層33cとから構成される。
【0612】
空洞31に形成されるバリア層27c及び金属層28cは、配線W1と同じ構成を有し、空洞38に形成されるバリア層34c及び金属層35cは、配線W2と同じ構成を有し、絶縁層30,32中に形成される導電層33cは、導電層(コンタクトプラグ)33a,33bと同じ構成を有している。
【0613】
なお、図77に示すように、絶縁層30,32中の導電層33cは、なくてもよい。
【0614】
上記構成の半導体装置によれば、配線W1間には、酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞31が形成され、配線W2間には、酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞38が形成されている。
【0615】
この混合ガスの誘電率εは、1.0程度である。これにより、配線W1間及び配線W2間をシリコン酸化層などの絶縁層で満たす場合に比べて、極端に誘電率を低下させることができる。
【0616】
従って、素子の集積度の向上とLSIの性能の向上を同時に達成することができる。
【0617】
さらに、チップ48の縁部には、リング状のガ−ドリングGが形成されている。従って、ウェハから個々のチップを切り出した後において、水分H2 Oがチップの縁から空洞31,38を介して配線W1,W2に達するという事態が回避できる。
【0618】
即ち、ガ−ドリングGを設けることにより、チップ内の配線W1,W2を、水分H2 Oに対して保護することができる。
【0619】
また、この実施の形態における半導体装置は、上述の第2の実施の形態における製造方法を用いることにより、容易に形成することができる。
【0620】
図78及び図79は、本発明の第11の実施の形態に関わる半導体装置を示している。
【0621】
この半導体装置は、図74に示すように、ウェハ47に形成される複数のチップ48の各々に形成される。
【0622】
図78を参照して、この実施の形態に関わる半導体装置について説明する。
【0623】
半導体基板(例えば、シリコンウェハ)21上には、フィ−ルド酸化層(例えば、シリコン酸化層)22が形成されている。フィ−ルド酸化層22に囲まれた素子領域には、MOSトランジスタが形成されている。このMOSトランジスタは、ゲ−ト電極23及びソ−ス・ドレイン領域24a,24bを有している。
【0624】
絶縁層25は、MOSトランジスタを覆っている。絶縁層25は、例えば、硼素燐ケイ酸ガラス(BPSG)や燐ケイ酸ガラス(PSG)などから構成することができる。
【0625】
絶縁層25の表面は、平坦である。絶縁層25の表面は、化学機械的研磨(CMP)により平坦にすることができる。絶縁層25には、ソ−ス・ドレイン領域24a,24bに達するコンタクトホ−ルが形成されている。
【0626】
このコンタクトホ−ル内には、タングステンなどの高融点金属から構成される導電層26a,26bが埋め込まれている。但し、導電層26a,26bは、高融点金属以外の他の材料から構成しても構わない。
【0627】
配線W1は、絶縁層25上に配置され、導電層26a,26bに接続されている。配線W1は、銅、アルミニウム合金などの金属28a,28bと、この金属28a,28bの底面及び側面を覆うU字溝状のバリア層27a,27bとから構成されている。
【0628】
なお、配線W1は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステン、タンタルなどの高融点金属から構成してもよい。また、バリア層27a,27bは、例えば、チタンと窒化チタンの積層などから構成することができる。
【0629】
配線W1の上部には、絶縁層30が形成されている。この絶縁層30は、配線W1に支えられている。配線W1間は、空洞(キャビティ)31になっている。この空洞31には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【0630】
絶縁層30は、配線W1間に空洞31を設ける際に重要となると共に、絶縁層30上に層を積み重ねる際の土台となる重要なものである。絶縁層30は、例えば、シリコン酸化膜などから構成される。
【0631】
絶縁層30上には、絶縁層32が形成されている。絶縁層32は、例えば、シリコン酸化層から構成される。絶縁層32には、配線W1に達するコンタクトホ−ルが形成されている。
【0632】
このコンタクトホ−ル内には、タングステンなどの高融点金属から構成される導電層33a,33bが埋め込まれている。但し、導電層33a,33bは、高融点金属以外の他の材料から構成しても構わない。
【0633】
配線W2は、絶縁層32上に配置され、導電層33a,33bに接続されている。配線W2は、銅、アルミニウム合金などの金属35a,35bと、この金属35a,35bの底面及び側面を覆うU字溝状のバリア層34a,34bとから構成されている。
【0634】
なお、配線W2は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステン、タンタルなどの高融点金属から構成してもよい。また、バリア層34a,34bは、例えば、チタンと窒化チタンの積層などから構成することができる。
【0635】
配線W2の上部には、絶縁層37が形成されている。この絶縁層37は、配線W2に支えられている。配線W2間は、空洞(キャビティ)38になっている。この空洞38には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【0636】
絶縁層37は、配線W2間に空洞38を設ける際に重要となると共に、絶縁層37上に層を積み重ねる際の土台となる重要なものである。絶縁層37は、例えば、シリコン酸化膜などから構成される。
【0637】
また、各チップの縁部には、そのチップの縁に沿ってリング状のガ−ドリングGが形成されている。このガ−ドリングGは、空洞31に形成されるバリア層27c及び金属28cと、空洞38に形成されるバリア層34c及び金属35cと、絶縁層30,32中に形成される導電層33cとから構成される。
【0638】
空洞31に形成されるバリア層27c及び金属層28cは、配線W1と同じ構成を有し、空洞38に形成されるバリア層34c及び金属層35cは、配線W2と同じ構成を有し、絶縁層30,32中に形成される導電層33cは、導電層(コンタクトプラグ)33a,33bと同じ構成を有している。
【0639】
なお、図79に示すように、絶縁層30,32中の導電層33cは、なくてもよい。
【0640】
上記構成の半導体装置によれば、配線W1間には、酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞31が形成され、配線W2間には、酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞38が形成されている。
【0641】
この混合ガスの誘電率εは、1.0程度である。これにより、配線W1間及び配線W2間をシリコン酸化層などの絶縁層で満たす場合に比べて、極端に誘電率を低下させることができる。
【0642】
従って、素子の集積度の向上とLSIの性能の向上を同時に達成することができる。
【0643】
さらに、チップ48の縁部には、リング状のガ−ドリングGが形成されている。従って、ウェハから個々のチップを切り出した後において、水分H2 Oがチップの縁から空洞31,38を介して配線W1,W2に達するという事態が回避できる。
【0644】
即ち、ガ−ドリングGを設けることにより、チップ内の配線W1,W2を、水分H2 Oに対して保護することができる。
【0645】
また、この実施の形態における半導体装置は、上述の第3の実施の形態における製造方法を用いることにより、容易に形成することができる。
【0646】
図80は、本発明の第12の実施の形態に関わる半導体装置を示している。
【0647】
この半導体装置は、図74に示すように、ウェハ47に形成される複数のチップ48の各々に形成される。
【0648】
図80を参照して、この実施の形態に関わる半導体装置について説明する。
【0649】
半導体基板(例えば、シリコンウェハ)21上には、フィ−ルド酸化層(例えば、シリコン酸化層)22が形成されている。フィ−ルド酸化層22に囲まれた素子領域には、MOSトランジスタが形成されている。このMOSトランジスタは、ゲ−ト電極23及びソ−ス・ドレイン領域24a,24bを有している。
【0650】
絶縁層25は、MOSトランジスタを覆っている。絶縁層25は、例えば、硼素燐ケイ酸ガラス(BPSG)や燐ケイ酸ガラス(PSG)などから構成することができる。
【0651】
絶縁層25の表面は、平坦である。絶縁層25の表面は、化学機械的研磨(CMP)により平坦にすることができる。絶縁層25には、ソ−ス・ドレイン領域24a,24bに達するコンタクトホ−ルが形成されている。
【0652】
このコンタクトホ−ル内には、タングステンなどの高融点金属から構成される導電層26a,26bが埋め込まれている。但し、導電層26a,26bは、高融点金属以外の他の材料から構成しても構わない。
【0653】
配線W1は、絶縁層25上に配置され、導電層26a,26bに接続されている。配線W1は、銅、アルミニウム合金などの金属層28a,28bと、この金属層28a,28bの底面及び側面を覆うU字溝状のバリア層27a,27bとから構成されている。
【0654】
なお、配線W1は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属から構成してもよい。また、バリア層27a,27bは、例えば、チタンと窒化チタンの積層などから構成することができる。
【0655】
配線W1の上部には、絶縁層29,30が形成されている。この絶縁層29,30は、配線W1に支えられている。配線W1間は、空洞(キャビティ)31になっている。この空洞31には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【0656】
なお、絶縁層29は、配線W1のパタ−ンを決定するもので、例えば、シリコン酸化層やシリコン窒化層などから構成される。絶縁層30は、配線W1間に空洞31を設ける際に重要となると共に、絶縁層30上に層を積み重ねる際の土台となる重要なものである。絶縁層30は、例えば、シリコン酸化膜などから構成される。
【0657】
絶縁層30には、配線W1に達するコンタクトホ−ルが形成されている。このコンタクトホ−ル内及びコンタクトホ−ル上には、タングステンなどの高融点金属から構成される柱状の導電層33a,33bが形成されている。
【0658】
但し、導電層33a,33bは、高融点金属以外の他の材料から構成しても構わない。
【0659】
柱状の導電層33a,33bの上部には、棚状の絶縁層36,37が形成されている。この絶縁層36,37は、導電層33a,33bに支えられている。柱状の導電層33a,33bの間は、空洞(キャビティ)40になっている。この空洞40には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【0660】
なお、絶縁層36は、導電層33a,33bの位置や断面積を決めるもので、例えば、シリコン酸化層やシリコン窒化層などから構成される。絶縁層37は、空洞40を設ける際に重要となると共に、絶縁層37上にさらに配線を積み重ねる際の土台となる重要なものである。絶縁層37は、例えば、シリコン酸化膜などから構成される。
【0661】
また、各チップ48の縁部には、そのチップの縁に沿ってリング状のガ−ドリングGが形成されている。このガ−ドリングGは、空洞31に形成されるバリア層27c及び金属層28cと、空洞40に形成される導電層33cとから構成されている。
【0662】
空洞31に形成されるバリア層27c及び金属層28cは、配線W1と同じ構成を有し、空洞40に形成される導電層33cは、導電層(コンタクトプラグ)33a,33bと同じ構成を有している。
【0663】
上記構成の半導体装置によれば、配線W1間には、酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞31が形成され、導電層(上下配線のコンタクトプラグ)33a,33bの間にも、酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞40が形成されている。
【0664】
この混合ガスの誘電率εは、1.0程度である。これにより、配線W1間及び導電層33a,33bの間をシリコン酸化層などの絶縁層で満たす場合に比べて、極端に誘電率を低下させることができる。
【0665】
従って、素子の集積度の向上とLSIの性能の向上を同時に達成することができる。
【0666】
さらに、チップの縁部には、リング状のガ−ドリングGが形成されている。従って、ウェハから個々のチップを切り出した後において、水分H2 Oがチップの縁から空洞31,40を介して配線W1及び導電層33a,33bに達するという事態が回避できる。
【0667】
即ち、ガ−ドリングGを設けることにより、チップ内の配線W1及び導電層33a,33bを、水分H2 Oに対して保護することができる。
【0668】
また、この実施の形態における半導体装置は、上述の第4の実施の形態における製造方法を用いることにより、容易に形成することができる。
【0669】
図81は、本発明の第13の実施の形態に関わる半導体装置を示している。
【0670】
この半導体装置は、図74に示すように、ウェハ47に形成される複数のチップ48の各々に形成される。
【0671】
図81を参照して、この実施の形態に関わる半導体装置について説明する。
【0672】
半導体基板(例えば、シリコンウェハ)21上には、フィ−ルド酸化層(例えば、シリコン酸化層)22が形成されている。フィ−ルド酸化層22に囲まれた素子領域には、MOSトランジスタが形成されている。このMOSトランジスタは、ゲ−ト電極23及びソ−ス・ドレイン領域24a,24bを有している。
【0673】
絶縁層25は、MOSトランジスタを覆っている。絶縁層25は、例えば、硼素燐ケイ酸ガラス(BPSG)や燐ケイ酸ガラス(PSG)などから構成することができる。
【0674】
絶縁層25の表面は、平坦である。絶縁層25の表面は、化学機械的研磨(CMP)により平坦にすることができる。絶縁層25には、ソ−ス・ドレイン領域24a,24bに達するコンタクトホ−ルが形成されている。
【0675】
このコンタクトホ−ル内には、タングステンなどの高融点金属から構成される導電層26a,26bが埋め込まれている。但し、導電層26a,26bは、高融点金属以外の他の材料から構成しても構わない。
【0676】
配線W1は、絶縁層25上に配置され、導電層26a,26bに接続されている。配線W1は、銅、アルミニウム合金などの金属層28a,28bと、この金属層28a,28bの底面及び側面を覆うU字溝状のバリア層27a,27bとから構成されている。
【0677】
なお、配線W1は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属から構成してもよい。また、バリア層27a,27bは、例えば、チタンと窒化チタンの積層などから構成することができる。
【0678】
配線W1の上部には、絶縁層30が形成されている。この絶縁層30は、配線W1に支えられている。配線W1間は、空洞(キャビティ)31になっている。この空洞31には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【0679】
絶縁層30は、配線W1間に空洞31を設ける際に重要となると共に、絶縁層30上に層を積み重ねる際の土台となる重要なものである。絶縁層30は、例えば、シリコン酸化膜などから構成される。
【0680】
絶縁層30には、配線W1に達するコンタクトホ−ルが形成されている。このコンタクトホ−ル内及びコンタクトホ−ル上には、タングステンなどの高融点金属から構成される柱状の導電層33a,33bが形成されている。
【0681】
但し、導電層33a,33bは、高融点金属以外の他の材料から構成しても構わない。
【0682】
柱状の導電層33a,33bの上部には、棚状の絶縁層36,37が形成されている。この絶縁層36,37は、導電層33a,33bに支えられている。柱状の導電層33a,33bの間は、空洞(キャビティ)40になっている。この空洞40には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【0683】
なお、絶縁層36は、シリコン酸化層やシリコン窒化層などから構成される。絶縁層37は、空洞40を設ける際に重要となると共に、絶縁層37上にさらに配線を積み重ねる際の土台となる重要なものである。絶縁層37は、例えば、シリコン酸化膜などから構成される。
【0684】
また、各チップ48縁部には、そのチップの縁に沿ってリング状のガ−ドリングGが形成されている。このガ−ドリングGは、空洞31に形成されるバリア層27c及び金属層28cと、空洞40に形成される導電層33cとから構成されている。
【0685】
空洞31に形成されるバリア層27c及び金属層28cは、配線W1と同じ構成を有し、空洞40に形成される導電層33cは、導電層(コンタクトプラグ)33a,33bと同じ構成を有している。
【0686】
上記構成の半導体装置によれば、配線W1間には、酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞31が形成され、導電層(上下配線のコンタクトプラグ)33a,33bの間にも、酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞40が形成されている。
【0687】
この混合ガスの誘電率εは、1.0程度である。これにより、配線W1間及び導電層33a,33bの間をシリコン酸化層などの絶縁層で満たす場合に比べて、極端に誘電率を低下させることができる。
【0688】
従って、素子の集積度の向上とLSIの性能の向上を同時に達成することができる。
【0689】
さらに、チップの縁部には、リング状のガ−ドリングGが形成されている。従って、ウェハから個々のチップを切り出した後において、水分H2 Oがチップの縁から空洞31,40を介して配線W1及び導電層33a,33bに達するという事態が回避できる。
【0690】
即ち、ガ−ドリングGを設けることにより、チップ内の配線W1及び導電層33a,33bを、水分H2 Oに対して保護することができる。
【0691】
また、この実施の形態における半導体装置は、上述の第5の実施の形態における製造方法を用いることにより、容易に形成することができる。
【0692】
図82は、本発明の第14の実施の形態に関わる半導体装置を示している。
【0693】
この半導体装置は、図74に示すように、ウェハ47に形成される複数のチップ48の各々に形成される。
【0694】
図82を参照して、この実施の形態に関わる半導体装置について説明する。
【0695】
半導体基板(例えば、シリコンウェハ)21上には、フィ−ルド酸化層(例えば、シリコン酸化層)22が形成されている。フィ−ルド酸化層22に囲まれた素子領域には、MOSトランジスタが形成されている。このMOSトランジスタは、ゲ−ト電極23及びソ−ス・ドレイン領域24a,24bを有している。
【0696】
絶縁層25は、MOSトランジスタを覆っている。絶縁層25は、例えば、硼素燐ケイ酸ガラス(BPSG)や燐ケイ酸ガラス(PSG)などから構成することができる。
【0697】
絶縁層25の表面は、平坦である。絶縁層25の表面は、化学機械的研磨(CMP)により平坦にすることができる。絶縁層25には、ソ−ス・ドレイン領域24a,24bに達するコンタクトホ−ルが形成されている。
【0698】
このコンタクトホ−ル内には、タングステンなどの高融点金属から構成される導電層26a,26bが埋め込まれている。但し、導電層26a,26bは、高融点金属以外の他の材料から構成しても構わない。
【0699】
配線W1は、絶縁層25上に配置され、導電層26a,26bに接続されている。配線W1は、銅、アルミニウム合金などの金属層28a,28bと、この金属層28a,28bの底面及び側面を覆うU字溝状のバリア層27a,27bとから構成されている。
【0700】
なお、配線W1は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステン、タンタルなどの高融点金属から構成してもよい。また、バリア層27a,27bは、例えば、チタンと窒化チタンの積層などから構成することができる。
【0701】
配線W1の上部には、絶縁層29,30が形成されている。この絶縁層29,30は、配線W1に支えられている。配線W1間は、空洞(キャビティ)31になっている。この空洞31には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【0702】
なお、絶縁層29の上部は、配線W1のパタ−ンを決定するもので、例えば、シリコン酸化層やシリコン窒化層などから構成される。絶縁層30は、配線W1間に空洞31を設ける際に重要となると共に、絶縁層30上に層を積み重ねる際の土台となる重要なものである。絶縁層30は、例えば、シリコン酸化膜などから構成される。
【0703】
絶縁層30には、配線W1に達するコンタクトホ−ルが形成されている。このコンタクトホ−ル内及びコンタクトホ−ル上には、タングステンなどの高融点金属から構成される柱状の導電層33a,33bが形成されている。但し、導電層33a,33bは、高融点金属以外の他の材料から構成しても構わない。
【0704】
導電層33a,33b上には、絶縁層42,43が形成されている。この絶縁層42,43は、導電層33a,33bに支えられている。導電層33a,33bの間は、空洞(キャビティ)40になっている。この空洞40には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【0705】
なお、絶縁層42は、導電層33a,33bの位置及び断面積を決めるもので、例えば、シリコン酸化層やシリコン窒化層などから構成される。絶縁層43は、導電層33a,33bの間に空洞40を設ける際に重要となると共に、絶縁層43上に配線W2を積み重ねる際の土台となる重要なものである。絶縁層43は、例えば、シリコン酸化膜などから構成される。
【0706】
配線W2は、絶縁層43上に配置され、導電層33a,33bに接続されている。配線W2は、銅、アルミニウム合金などの金属層35a,35bと、この金属層35a,35bの底面及び側面を覆うU字溝状のバリア層34a,34bとから構成されている。
【0707】
なお、配線W2は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属から構成してもよい。また、バリア層34a,34bは、例えば、チタンと窒化チタンの積層などから構成することができる。
【0708】
配線W2の上部には、絶縁層36,37が形成されている。この絶縁層36,37は、配線W2に支えられている。配線W2間は、空洞(キャビティ)38になっている。この空洞38には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【0709】
なお、絶縁層36は、配線W2のパタ−ンを決定するもので、例えば、シリコン酸化層やシリコン窒化層などから構成される。絶縁層37は、配線W2間に空洞38を設ける際に重要となると共に、絶縁層37上に層を積み重ねる際の土台となる重要なものである。絶縁層37は、例えば、シリコン酸化膜などから構成される。
【0710】
また、各チップの縁部には、そのチップの縁に沿ってリング状のガ−ドリングGが形成されている。このガ−ドリングGは、空洞31に形成されるバリア層27c及び金属28cと、空洞38に形成されるバリア層34c及び金属35cと、空洞40に形成される導電層33cとから構成されている。
【0711】
空洞31に形成されるバリア層27c及び金属28cは、配線W1と同じ構成を有し、空洞38に形成されるバリア層34c及び金属35cは、配線W2と同じ構成を有し、空洞40に形成される導電層33cは、導電層(コンタクトプラグ)33a,33bと同じ構成を有している。
【0712】
上記構成の半導体装置によれば、配線W1間には、酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞31が形成され、配線W2間には、酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞38が形成されている。
【0713】
さらに、導電層33a,33bの間、即ち、配線W1と配線W2の間には、酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞40が形成されている。
この混合ガスの誘電率εは、1.0程度である。これにより、同一層(左右)の配線間及び異なる層(上下)の配線間をシリコン酸化層などの絶縁層で満たす場合に比べて、極端に誘電率を低下させることができる。
【0714】
従って、素子の集積度の向上とLSIの性能の向上を同時に達成することができる。
【0715】
さらに、チップの縁部には、リング状のガ−ドリングGが形成されている。従って、ウェハから個々のチップを切り出した後において、水分H2 Oがチップの縁から空洞31,38,40を介して配線W1,W2及び導電層33a,33bに達するという事態が回避できる。
【0716】
即ち、ガ−ドリングGを設けることにより、チップ内の配線W1,W2及び導電層33a,33bを、水分H2 Oに対して保護することができる。
【0717】
また、この実施の形態における半導体装置は、上述の第6の実施の形態における製造方法を用いることにより、容易に形成することができる。
【0718】
図83は、本発明の第15の実施の形態に関わる半導体装置を示している。
【0719】
この半導体装置は、図74に示すように、ウェハ47に形成される複数のチップ48の各々に形成される。
【0720】
図83を参照して、この実施の形態に関わる半導体装置について説明する。
【0721】
半導体基板(例えば、シリコンウェハ)21上には、フィ−ルド酸化層(例えば、シリコン酸化層)22が形成されている。フィ−ルド酸化層22に囲まれた素子領域には、MOSトランジスタが形成されている。このMOSトランジスタは、ゲ−ト電極23及びソ−ス・ドレイン領域24a,24bを有している。
【0722】
絶縁層25は、MOSトランジスタを覆っている。絶縁層25は、例えば、硼素燐ケイ酸ガラス(BPSG)や燐ケイ酸ガラス(PSG)などから構成することができる。
【0723】
絶縁層25の表面は、平坦である。絶縁層25の表面は、化学機械的研磨(CMP)により平坦にすることができる。絶縁層25には、ソ−ス・ドレイン領域24a,24bに達するコンタクトホ−ルが形成されている。
【0724】
このコンタクトホ−ル内には、タングステンなどの高融点金属から構成される導電層26a,26bが埋め込まれている。但し、導電層26a,26bは、高融点金属以外の他の材料から構成しても構わない。
【0725】
配線W1は、絶縁層25上に配置され、導電層26a,26bに接続されている。配線W1は、銅、アルミニウム合金などの金属層28a,28bと、この金属層28a,28bの底面及び側面を覆うU字溝状のバリア層27a,27bとから構成されている。
【0726】
なお、配線W1は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属から構成してもよい。また、バリア層27a,27bは、例えば、チタンと窒化チタンの積層などから構成することができる。
【0727】
配線W1の上部には、絶縁層30が形成されている。この絶縁層30は、配線W1に支えられている。配線W1間は、空洞(キャビティ)31になっている。この空洞31には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【0728】
絶縁層30は、配線W1間に空洞31を設ける際に重要となると共に、絶縁層30上に層を積み重ねる際の土台となる重要なものである。絶縁層30は、例えば、シリコン酸化膜などから構成される。
【0729】
絶縁層30には、配線W1に達するコンタクトホ−ルが形成されている。このコンタクトホ−ル内及びコンタクトホ−ル上には、タングステンやタンタルなどの高融点金属から構成される柱状の導電層33a,33bが形成されている。但し、導電層33a,33bは、高融点金属以外の他の材料から構成しても構わない。
【0730】
導電層33a,33bの上部には、絶縁層43が形成されている。この絶縁層43は、導電層33a,33bに支えられている。導電層33a,33bの間は、空洞(キャビティ)40になっている。この空洞40には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【0731】
絶縁層43は、導電層33a,33bの間に空洞40を設ける際に重要となると共に、絶縁層43上に配線W2を積み重ねる際の土台となる重要なものである。絶縁層43は、例えば、シリコン酸化膜などから構成される。
【0732】
配線W2は、絶縁層43上に配置され、導電層33a,33bに接続されている。配線W2は、銅、アルミニウム合金などの金属層35a,35bと、この金属層35a,35bの底面及び側面を覆うU字溝状のバリア層34a,34bとから構成されている。
【0733】
なお、配線W2は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属から構成してもよい。また、バリア層34a,34bは、例えば、チタンと窒化チタンの積層などから構成することができる。
【0734】
配線W2の上部には、絶縁層37が形成されている。この絶縁層37は、配線W2に支えられている。配線W2間は、空洞(キャビティ)38になっている。この空洞38には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【0735】
絶縁層37は、配線W2間に空洞38を設ける際に重要となると共に、絶縁層37上に層を積み重ねる際の土台となる重要なものである。絶縁層37は、例えば、シリコン酸化膜などから構成される。
【0736】
また、各チップの縁部には、そのチップの縁に沿ってリング状のガ−ドリングGが形成されている。このガ−ドリングGは、空洞31に形成されるバリア層27c及び金属層28cと、空洞38に形成されるバリア層34c及び金属層35cと、空洞40に形成される導電層33cとから構成されている。
【0737】
空洞31に形成されるバリア層27c及び金属層28cは、配線W1と同じ構成を有し、空洞38に形成されるバリア層34c及び金属層35cは、配線W2と同じ構成を有し、空洞40に形成される導電層33cは、導電層(コンタクトプラグ)33a,33bと同じ構成を有している。
【0738】
上記構成の半導体装置によれば、配線W1間には、酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞31が形成され、配線W2間には、酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞38が形成されている。
【0739】
さらに、導電層33a,33bの間、即ち、配線W1と配線W2の間には、酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞40が形成されている。
この混合ガスの誘電率εは、1.0程度である。これにより、同一層(左右)の配線間及び異なる層(上下)の配線間をシリコン酸化層などの絶縁層で満たす場合に比べて、極端に誘電率を低下させることができる。
【0740】
従って、素子の集積度の向上とLSIの性能の向上を同時に達成することができる。
【0741】
さらに、チップの縁部には、リング状のガ−ドリングGが形成されている。従って、ウェハから個々のチップを切り出した後において、水分H2 Oがチップの縁から空洞31,38,40を介して配線W1,W2及び導電層33a,33bに達するという事態が回避できる。
【0742】
即ち、ガ−ドリングGを設けることにより、チップ内の配線W1,W2及び導電層33a,33bを、水分H2 Oに対して保護することができる。
【0743】
また、この実施の形態における半導体装置は、上述の第7の実施の形態における製造方法を用いることにより、容易に形成することができる。
【0744】
図84は、本発明の第16の実施の形態に関わる半導体装置を示している。
【0745】
この半導体装置は、図74に示すように、ウェハ47に形成される複数のチップ48の各々に形成される。
【0746】
図84を参照して、この実施の形態に関わる半導体装置について説明する。
【0747】
半導体基板(例えば、シリコンウェハ)21上には、フィ−ルド酸化層(例えば、シリコン酸化層)22が形成されている。フィ−ルド酸化層22に囲まれた素子領域には、MOSトランジスタが形成されている。このMOSトランジスタは、ゲ−ト電極23及びソ−ス・ドレイン領域24a,24bを有している。
【0748】
絶縁層25は、MOSトランジスタを覆っている。絶縁層25は、例えば、硼素燐ケイ酸ガラス(BPSG)や燐ケイ酸ガラス(PSG)などから構成することができる。
【0749】
絶縁層25の表面は、平坦である。絶縁層25の表面は、化学機械的研磨(CMP)により平坦にすることができる。絶縁層25には、ソ−ス・ドレイン領域24a,24bに達するコンタクトホ−ルが形成されている。
【0750】
このコンタクトホ−ル内には、タングステンなどの高融点金属から構成される導電層26a,26bが埋め込まれている。但し、導電層26a,26bは、高融点金属以外の他の材料から構成しても構わない。
【0751】
配線W1は、絶縁層25上に配置され、導電層26a,26bに接続されている。配線W1は、銅、アルミニウム合金などの金属層28a,28bと、この金属層28a,28bの底面及び側面を覆うU字溝状のバリア層27a,27bとから構成されている。
【0752】
なお、配線W1は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属から構成してもよい。また、バリア層27a,27bは、例えば、チタンと窒化チタンの積層などから構成することができる。
【0753】
配線W1の上部には、絶縁層29,30が形成されている。この絶縁層29,30は、配線W1に支えられている。配線W1間は、空洞(キャビティ)31になっている。この空洞31には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【0754】
なお、絶縁層29は、配線W1のパタ−ンを決定するもので、例えば、シリコン酸化層やシリコン窒化層などから構成される。絶縁層30は、配線W1間に空洞31を設ける際に重要となると共に、絶縁層30上に層を積み重ねる際の土台となる重要なものである。絶縁層30は、例えば、シリコン酸化膜などから構成される。
【0755】
絶縁層30には、配線W1に達するコンタクトホ−ルが形成されている。このコンタクトホ−ル内及びコンタクトホ−ル上には、銅、アルミニウム合金などの金属層35a,35bと、この金属層35a,35bの底面及び側面を覆うバリア層34a,34bとから構成される配線W2が形成されている。
【0756】
なお、配線W2は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属から構成してもよい。また、バリア層34a,34bは、例えば、チタンと窒化チタンの積層などから構成することができる。
【0757】
配線W2の上部と下部の間には、絶縁層(例えば、シリコン酸化層)43が形成されている。この絶縁層43は、配線W2に支えられている。配線W2の下部は、柱状であり、また、配線W2の上部は、線状であり、絶縁層43上に配置されている。
【0758】
配線W2上には、絶縁層(例えば、シリコン酸化層)37が形成されている。配線W2の下部の間(上下の配線W1と配線W2の間)は、空洞(キャビティ)40になっている。この空洞40には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【0759】
配線W2の上部の間(左右の配線W2の間)は、空洞(キャビティ)38になっている。この空洞38には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【0760】
また、各チップの縁部には、そのチップの縁に沿ってリング状のガ−ドリングGが形成されている。このガ−ドリングGは、空洞31に形成されるバリア層27c及び金属28cと、空洞38,40に形成されるバリア層34c及び金属35cとから構成されている。
【0761】
空洞31に形成されるバリア層27c及び金属28cは、配線W1と同じ構成を有し、空洞38,40に形成されるバリア層34c及び金属35cは、配線W2と同じ構成を有している。
【0762】
上記構成の半導体装置によれば、配線W1間には、酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞31が形成され、配線W2間には、酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞38が形成されている。
【0763】
さらに、導電層35a,35bの間、即ち、配線W1と配線W2の間には、酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞40が形成されている。
この混合ガスの誘電率εは、1.0程度である。これにより、同一層(左右)の配線間及び異なる層(上下)の配線間をシリコン酸化層などの絶縁層で満たす場合に比べて、極端に誘電率を低下させることができる。
【0764】
従って、素子の集積度の向上とLSIの性能の向上を同時に達成することができる。
【0765】
さらに、チップの縁部には、リング状のガ−ドリングGが形成されている。従って、ウェハから個々のチップを切り出した後において、水分H2 Oがチップの縁から空洞31,38,40を介して配線W1,W2に達するという事態が回避できる。
【0766】
即ち、ガ−ドリングGを設けることにより、チップ内の配線W1,W2を、水分H2 Oに対して保護することができる。
【0767】
また、この実施の形態における半導体装置は、上述の第8の実施の形態における製造方法を用いることにより、容易に形成することができる。
【0768】
図85は、本発明の第17の実施の形態に関わる半導体装置を示している。
【0769】
この半導体装置は、図74に示すように、ウェハ47に形成される複数のチップ48の各々に形成される。
【0770】
図85を参照して、この実施の形態に関わる半導体装置について説明する。
【0771】
半導体基板(例えば、シリコンウェハ)21上には、フィ−ルド酸化層(例えば、シリコン酸化層)22が形成されている。フィ−ルド酸化層22に囲まれた素子領域には、MOSトランジスタが形成されている。このMOSトランジスタは、ゲ−ト電極23及びソ−ス・ドレイン領域24a,24bを有している。
【0772】
絶縁層25は、MOSトランジスタを覆っている。絶縁層25は、例えば、硼素燐ケイ酸ガラス(BPSG)や燐ケイ酸ガラス(PSG)などから構成することができる。
【0773】
絶縁層25の表面は、平坦である。絶縁層25の表面は、化学機械的研磨(CMP)により平坦にすることができる。絶縁層25には、ソ−ス・ドレイン領域24a,24bに達するコンタクトホ−ルが形成されている。
【0774】
このコンタクトホ−ル内には、タングステンなどの高融点金属から構成される導電層26a,26bが埋め込まれている。但し、導電層26a,26bは、高融点金属以外の他の材料から構成しても構わない。
【0775】
配線W1は、絶縁層25上に配置され、導電層26a,26bに接続されている。配線W1は、銅、アルミニウム合金などの金属層28a,28bと、この金属層28a,28bの底面及び側面を覆うU字溝状のバリア層27a,27bとから構成されている。
【0776】
なお、配線W1は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属から構成してもよい。また、バリア層27a,27bは、例えば、チタンと窒化チタンの積層などから構成することができる。
【0777】
配線W1の上部には、絶縁層30が形成されている。この絶縁層30は、配線W1に支えられている。配線W1間は、空洞(キャビティ)31になっている。この空洞31には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【0778】
絶縁層30は、配線W1間に空洞31を設ける際に重要となると共に、絶縁層30上に層を積み重ねる際の土台となる重要なものである。絶縁層30は、例えば、シリコン酸化膜などから構成される。
【0779】
絶縁層30には、配線W1に達するコンタクトホ−ルが形成されている。このコンタクトホ−ル内及びコンタクトホ−ル上には、銅、アルミニウム合金などの金属層35a,35bと、この金属層35a,35bの底面及び側面を覆うバリア層34a,34bとから構成される配線W2が形成されている。
【0780】
なお、配線W2は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属から構成してもよい。また、バリア層34a,34bは、例えば、チタンと窒化チタンの積層などから構成することができる。
【0781】
配線W2の上部と下部の間には、絶縁層(例えば、シリコン酸化層)43が形成されている。この絶縁層43は、配線W2に支えられている。配線W2の下部は、柱状であり、また、配線W2の上部は、線状であり、絶縁層43上に配置されている。
【0782】
配線W2上には、絶縁層(例えば、シリコン酸化層)37が形成されている。配線W2の下部の間(上下の配線W1と配線W2の間)は、空洞(キャビティ)40になっている。この空洞40には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【0783】
配線W2の上部の間(左右の配線W2の間)は、空洞(キャビティ)38になっている。この空洞38には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【0784】
また、各チップの縁部には、そのチップの縁に沿ってリング状のガ−ドリングGが形成されている。このガ−ドリングGは、空洞31に形成されるバリア層27c及び金属28cと、空洞38,40に形成されるバリア層34c及び金属35cとから構成されている。
【0785】
空洞31に形成されるバリア層27c及び金属28cは、配線W1と同じ構成を有し、空洞38,40に形成されるバリア層34c及び金属35cは、配線W2と同じ構成を有している。
【0786】
上記構成の半導体装置によれば、配線W1間には、酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞31が形成され、配線W2間には、酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞38が形成されている。
【0787】
さらに、導電層35a,35bの間、即ち、配線W1と配線W2の間には、酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞40が形成されている。
この混合ガスの誘電率εは、1.0程度である。これにより、同一層(左右)の配線間及び異なる層(上下)の配線間をシリコン酸化層などの絶縁層で満たす場合に比べて、極端に誘電率を低下させることができる。
【0788】
従って、素子の集積度の向上とLSIの性能の向上を同時に達成することができる。
【0789】
さらに、チップの縁部には、リング状のガ−ドリングGが形成されている。従って、ウェハから個々のチップを切り出した後において、水分H2 Oがチップの縁から空洞31,38,40を介して配線W1,W2に達するという事態が回避できる。
【0790】
即ち、ガ−ドリングGを設けることにより、チップ内の配線W1,W2を、水分H2 Oに対して保護することができる。
【0791】
また、この実施の形態における半導体装置は、上述の第9の実施の形態における製造方法を用いることにより、容易に形成することができる。
【0792】
図86は、本発明の第18の実施の形態に関わる半導体装置を示している。
【0793】
半導体基板(例えば、シリコンウェハ)21上には、フィ−ルド酸化層(例えば、シリコン酸化層)22が形成されている。フィ−ルド酸化層22に囲まれた素子領域には、MOSトランジスタが形成されている。このMOSトランジスタは、ゲ−ト電極23及びソ−ス・ドレイン領域24a,24bを有している。
【0794】
絶縁層25は、MOSトランジスタを覆っている。絶縁層25は、例えば、硼素燐ケイ酸ガラス(BPSG)や燐ケイ酸ガラス(PSG)などから構成することができる。
【0795】
絶縁層25の表面は、平坦である。絶縁層25の表面は、化学機械的研磨(CMP)により平坦にすることができる。絶縁層25には、ソ−ス・ドレイン領域24a,24bに達するコンタクトホ−ルが形成されている。
【0796】
このコンタクトホ−ル内には、タングステンなどの高融点金属から構成される導電層26a,26bが埋め込まれている。但し、導電層26a,26bは、高融点金属以外の他の材料から構成しても構わない。
【0797】
配線W1は、絶縁層25上に配置され、導電層26a,26bに接続されている。配線W1は、銅、アルミニウム合金などの金属層28a,28bと、この金属層28a,28bの底面及び側面を覆うU字溝状の配線保護層50a,50bとから構成されている。
【0798】
なお、配線W1は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属から構成してもよい。
【0799】
また、配線保護層50a,50bは、例えば、窒化チタニウム、チタニウムとタングステンの合金、白金などの遷移金属又はその合金、モリブデンなどから構成することができる。即ち、配線保護層50a,50bは、導電性を有し、薬品に腐食され難く、酸化され難いものであれば何でもよい。
【0800】
配線W1の上部には、絶縁層29,30が形成されている。この絶縁層29,30は、配線W1に支えられている。配線W1間は、空洞(キャビティ)31になっている。この空洞31には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【0801】
なお、絶縁層29は、配線W1のパタ−ンを決定するもので、例えば、シリコン酸化層やシリコン窒化層などから構成される。絶縁層30は、配線W1間に空洞31を設ける際に重要となると共に、絶縁層30上に層を積み重ねる際の土台となる重要なものである。絶縁層30は、例えば、シリコン酸化膜などから構成される。
【0802】
絶縁層30上には、絶縁層32が形成されている。絶縁層32は、例えば、シリコン酸化層から構成される。絶縁層32には、配線W1に達するコンタクトホ−ルが形成されている。
【0803】
このコンタクトホ−ル内には、タングステンなどの高融点金属から構成される導電層33a,33bが埋め込まれている。但し、導電層33a,33bは、高融点金属以外の他の材料から構成しても構わない。
【0804】
配線W2は、絶縁層32上に配置され、導電層33a,33bに接続されている。配線W2は、銅、アルミニウム合金などの金属35a,35bと、この金属35a,35bの底面及び側面を覆うU字溝状の配線保護層51a,51bとから構成されている。
【0805】
なお、配線W2は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属から構成してもよい。
【0806】
また、配線保護層51a,51bは、例えば、窒化チタニウム、チタニウムとタングステンの合金、白金などの遷移金属又はその合金、モリブデンなどから構成することができる。即ち、配線保護層51a,51bは、導電性を有し、薬品に腐食され難く、酸化され難いものであれば何でもよい。
【0807】
配線W2の上部には、絶縁層36,37が形成されている。この絶縁層36,37は、配線W2に支えられている。配線W2間は、空洞(キャビティ)38になっている。この空洞38には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【0808】
なお、絶縁層36は、配線W2のパタ−ンを決定するもので、例えば、シリコン酸化層やシリコン窒化層などから構成される。絶縁層37は、配線W2間に空洞38を設ける際に重要となると共に、絶縁層37上に層を積み重ねる際の土台となる重要なものである。絶縁層37は、例えば、シリコン酸化膜などから構成される。
【0809】
上記構成の半導体装置によれば、配線W1間には、酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞31が形成され、配線W2間には、酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞38が形成されている。
【0810】
この混合ガスの誘電率εは、1.0程度である。これにより、配線W1間及び配線W2間をシリコン酸化層などの絶縁層で満たす場合に比べて、極端に誘電率を低下させることができる。
【0811】
従って、素子の集積度の向上とLSIの性能の向上を同時に達成することができる。
【0812】
また、少なくとも配線W1,W2の側面は、配線保護層50a,50b;51a,51bに覆われているため、チップの縁から空洞31,38を介して進入してきた水分H2 Oは、配線W1,W2の金属に直接到達することがない。
【0813】
従って、個々の配線W1,W2を水分H2 Oから保護することができる。
【0814】
また、この実施の形態における半導体装置(チップ)が搭載されるパッケ−ジに、パッケ−ジ外部と内部を接続する穴を設けておけば、空洞31,38は、空気で満たされると共に、この空気が循環することにより、チップ内で生じる熱は、パッケ−ジ外部へ効率よく排出される。
【0815】
従って、熱による不良が発生し難い半導体装置を提供することができる。
【0816】
また、配線W1,W2は、配線保護膜50a,50b;51a,51bに覆われているため、配線W1,W2にヒロックが発生し難くなる。
【0817】
次に、図86の半導体装置の製造方法について説明する。
【0818】
まず、図87に示すように、LOCOS法により半導体基板21上にフィ−ルド酸化層22を形成する。また、フィ−ルド酸化層22に囲まれた素子領域に、例えば、ゲ−ト電極23及びソ−ス・ドレイン領域24a,24bを有するMOSトランジスタを形成する。
【0819】
半導体基板21上の全面に、MOSトランンジスタを完全に覆う絶縁層(BPSGやPSGなど)25を形成する。この後、化学機械的研磨(CMP)を行い、絶縁層25の表面を平坦にする。
【0820】
PEP(写真蝕刻工程)により、絶縁層25にソ−ス・ドレイン領域24a,24bに達するコンタクトホ−ルを形成する。選択成長法により、絶縁層25のコンタクトホ−ル内のみに、タングステンなどの高融点金属から構成される導電層26a,26bを埋め込む。
【0821】
なお、絶縁層25のコンタクトホ−ル内には、高融点金属以外の他の材料を埋め込んでも構わない。
【0822】
次に、図88に示すように、スパッタリング法により、絶縁層25上に炭素(カ−ボン)層39を形成する。ここで、炭素層39の厚さは、LSIの内部配線の厚さと等しい値(例えば、約0.7〜約0.2μm)に設定される。
【0823】
次に、図89に示すように、スパッタリング法により、炭素層39上にマスク材(例えば、シリコン酸化層やシリコン窒化層など)29を、約0.05μmの厚さで形成する。ここで、マスク材29は、炭素層39の消滅を防ぐため、CVD法でなく、スパッタリング法で形成する。
【0824】
次に、図90に示すように、マスク材29上にレジストを塗布し、PEP(写真蝕刻工程)を用いてこのレジストをパタ−ニングする。また、パタ−ニングされたレジストをマスクにしてマスク材29をパタ−ニングする。この後、レジストを剥離する。マスク材29のパタ−ンは、配線のパタ−ンと同じになる。
【0825】
次に、図91に示すように、マスク材29をマスクにして、異方性エッチングにより炭素層39をエッチングする。
【0826】
なお、本実施例では、PEPにより、直接、炭素層39をエッチングすることなく、PEPで加工したマスク材29をマスクにして炭素層39をエッチングしている。
【0827】
この理由は、以下のとおりである。PEPに用いるレジストは、酸素プラズマ処理(アッシャ−)、又はH2 SO4 とH2 2 の薬液により除去される。しかし、酸素プラズマ処理でレジストを除去する場合は、せっかくパタ−ニングした炭素層39が同時に除去されてしまう。一方、H2 SO4 とH2 2 の薬液によりレジストを除去する場合は、導電層(高融点金属の場合のみ)26a,26bが同時に除去されてしまう。
【0828】
そこで、導電層26a,26bが高融点金属の場合には、PEPで加工したマスク材29をマスクにして炭素層39をエッチングするのがよい。
【0829】
次に、図92に示すように、スパッタリング法又はCVD法により、例えば、モリブデンから構成される配線保護層50を、絶縁層25上及びマスク材29上に形成する。
【0830】
次に、図93に示すように、スパッタリング法又はCVD法により、配線保護層50上に、銅、アルミニウム合金などなどから構成される金属28を形成する。なお、配線は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属であってもよい。
【0831】
次に、図94に示すように、化学機械的研磨(CMP)により、炭素層39の間の溝内にのみ、配線保護層50a,50b及び金属28a,28bを残存させ、配線W1を形成する。
【0832】
なお、CMPに代えて、異方性エッチング又は等方性エッチングを用いることにより配線W1を形成するようにしてもよい。
【0833】
次に、図95に示すように、スパッタリング法により、マスク材29上及び配線W1上に絶縁層(例えば、シリコン酸化層)30を形成する。ここで、絶縁層30は、CVD法により形成しない方がよい。なぜなら、絶縁層30を形成する際の反応ガス中には、酸素O2 ガスが含まれているため、絶縁層30の形成時に、炭素層39が除去されてしまう可能性があるからである。
【0834】
また、絶縁層30の厚さは、絶縁層30がシリコン酸化層の場合は、0.01〜0.1μmの範囲にあるのが、絶縁層30の破裂なしに灰化を行うのに都合がよい。但し、絶縁層30の種類や質などにより、絶縁層30の最適な厚さは、それぞれ異なる。
【0835】
次に、図96及び図97に示すように、炭素層39を灰化し、炭素層39を、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞31に変換する。炭素層39の灰化は、以下の二つの方法のいずれかを使用することにより達成される。
【0836】
一つめは、酸素雰囲気中での熱処理(温度400〜450℃、時間2h程度)である。この方法では、炭素層39が二酸化炭素CO2 に変換する反応が緩やかに進むため、炭素層39の体積の膨脹による絶縁層29,30の破裂を防止できる利点がある反面、処理時間が長くなる欠点がある。
【0837】
二つめは、酸素プラズマ処理(アッシャ−)である。この方法では、炭素層39が二酸化炭素CO2 に変換する反応が速やかに進むため、処理時間が短くなる利点がある反面、炭素層39の体積の膨脹による絶縁層29,30の破裂が生じる可能性が高くなるという欠点がある。しかし、この欠点は、絶縁層29,30の質の改善や酸素プラズマ処理の温度の低下などにより回避できる。
【0838】
次に、図98に示すように、CVD法を用いて、絶縁層30上に低い誘電率を有する絶縁層(例えば、弗素を含むTEOSなど)32を形成する。
【0839】
次に、図99に示すように、PEP(写真蝕刻工程)及びRIE(反応性イオンエッチング)を用いて、配線W1に達するビアホ−ルを絶縁層30,32に設ける。
【0840】
次に、図100に示すように、選択成長法を用いて、ビアホ−ル内のみに、タングステンなどの高融点金属から構成される導電層33a,33bを埋め込む。なお、絶縁層30,32のビアホ−ル内には、高融点金属以外の他の材料を埋め込んでも構わない。
【0841】
次に、図101に示すように、配線W1を形成する際に使用した工程と同様の工程により配線W2を形成する。
【0842】
即ち、まず、スパッタリング法により、絶縁層32上に炭素(カ−ボン)層を形成する。ここで、炭素層の厚さは、配線W2の厚さと等しい値に設定されている。スパッタリング法により、炭素層上にマスク材(例えば、シリコン酸化層やシリコン窒化層など)36を、約0.05μmの厚さで形成する。
【0843】
この後、PEP(写真蝕刻工程)及び異方性エッチングを用いて、マスク材36をパタ−ニングする。マスク材36をマスクにして、異方性エッチングにより炭素層をエッチングする。スパッタリング法又はCVD法により、例えば、モリブデンから構成される配線保護層51a,51bを、絶縁層32上及びマスク材36上に形成する。
【0844】
スパッタリング法又はCVD法により、配線保護層51a,51b上に、銅、アルミニウム合金などなどから構成される金属35a,35bを形成する。化学機械的研磨(CMP)により、炭素層の間の溝内にのみ、配線保護層51a,51b及び金属層35a,35bを残存させ、配線W2を形成する。
【0845】
なお、CMPに代えて、異方性エッチング又は等方性エッチングにより、配線W2を形成するようにしてもよい。
【0846】
スパッタリング法により、マスク材36上及び配線W2上に絶縁層(例えば、シリコン酸化層)37を形成する。この後、炭素層を灰化し、炭素層を、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞38に変換する。
【0847】
上述の製造方法によれば、配線W1,W2を形成するための溝を有する絶縁層に炭素層を用い、かつ、溝内に配線を形成した後にこの炭素層を灰化してガスが満たされた空洞に変換している。従って、容易に、図86の半導体装置を提供することができる。
【0848】
図102は、本発明の第19の実施の形態に関わる半導体装置を示している。
半導体基板(例えば、シリコンウェハ)21上には、フィ−ルド酸化層(例えば、シリコン酸化層)22が形成されている。フィ−ルド酸化層22に囲まれた素子領域には、MOSトランジスタが形成されている。このMOSトランジスタは、ゲ−ト電極23及びソ−ス・ドレイン領域24a,24bを有している。
【0849】
絶縁層25は、MOSトランジスタを覆っている。絶縁層25は、例えば、硼素燐ケイ酸ガラス(BPSG)や燐ケイ酸ガラス(PSG)などから構成することができる。
【0850】
絶縁層25の表面は、平坦である。絶縁層25の表面は、化学機械的研磨(CMP)により平坦にすることができる。絶縁層25には、ソ−ス・ドレイン領域24a,24bに達するコンタクトホ−ルが形成されている。
【0851】
このコンタクトホ−ル内には、タングステンなどの高融点金属から構成される導電層26a,26bが埋め込まれている。但し、導電層26a,26bは、高融点金属以外の他の材料から構成しても構わない。
【0852】
配線W1は、絶縁層25上に配置され、導電層26a,26bに接続されている。配線W1は、銅、アルミニウム合金などの金属層28a,28bと、この金属層28a,28bの底面及び側面を覆うU字溝状の配線保護層50a,50bとから構成されている。
【0853】
なお、配線W1は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属から構成してもよい。
【0854】
また、配線保護層50a,50bは、例えば、例えば、窒化チタニウム、チタニウムとタングステンの合金、白金などの遷移金属又はその合金、モリブデンなどから構成することができる。即ち、配線保護層50a,50bは、導電性を有し、薬品に腐食され難く、酸化され難いものであれば何でもよい。
【0855】
配線W1の上部には、絶縁層30が形成されている。この絶縁層30は、配線W1に支えられている。配線W1間は、空洞(キャビティ)31になっている。この空洞31には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【0856】
絶縁層30は、配線W1間に空洞31を設ける際に重要となると共に、絶縁層30上に層を積み重ねる際の土台となる重要なものである。絶縁層30は、例えば、シリコン酸化膜などから構成される。
【0857】
絶縁層30上には、絶縁層32が形成されている。絶縁層32は、例えば、シリコン酸化層から構成される。絶縁層32には、配線W1に達するコンタクトホ−ルが形成されている。
【0858】
このコンタクトホ−ル内には、タングステンなどの高融点金属から構成される導電層33a,33bが埋め込まれている。但し、導電層33a,33bは、高融点金属以外の他の材料から構成しても構わない。
【0859】
配線W2は、絶縁層32上に配置され、導電層33a,33bに接続されている。配線W2は、銅、アルミニウム合金などの金属層35a,35bと、この金属層35a,35bの底面及び側面を覆うU字溝状の配線保護層51a,51bとから構成されている。
【0860】
なお、配線W2は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステン、タンタルなどの高融点金属から構成してもよい。
【0861】
また、例えば、窒化チタニウム、チタニウムとタングステンの合金、白金などの遷移金属又はその合金、モリブデンなどから構成することができる。即ち、配線保護層51a,51bは、導電性を有し、薬品に腐食され難く、酸化され難いものであれば何でもよい。
【0862】
配線W2の上部には、絶縁層37が形成されている。この絶縁層37は、配線W2に支えられている。配線W2間は、空洞(キャビティ)38になっている。この空洞38には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【0863】
絶縁層37は、配線W2間に空洞38を設ける際に重要となると共に、絶縁層37上に層を積み重ねる際の土台となる重要なものである。絶縁層37は、例えば、シリコン酸化膜などから構成される。
【0864】
上記構成の半導体装置によれば、配線W1間には、酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞31が形成され、配線W2間には、酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞38が形成されている。
【0865】
この混合ガスの誘電率εは、1.0程度である。これにより、配線W1間及び配線W2間をシリコン酸化層などの絶縁層で満たす場合に比べて、極端に誘電率を低下させることができる。
【0866】
従って、素子の集積度の向上とLSIの性能の向上を同時に達成することができる。
【0867】
また、少なくとも配線W1,W2の側面は、配線保護層50a,50b;51a,51bに覆われているため、チップの縁から空洞31,38を介して進入してきた水分H2 Oは、配線W1,W2の金属に直接到達することがない。
【0868】
従って、個々の配線W1,W2を水分H2 Oから保護することができる。
【0869】
また、この実施の形態における半導体装置(チップ)が搭載されるパッケ−ジに、パッケ−ジ外部と内部を接続する穴を設けておけば、空洞31,38は、空気で満たされると共に、この空気が循環することにより、チップ内で生じる熱は、パッケ−ジ外部へ効率よく排出される。
【0870】
従って、熱による不良が発生し難い半導体装置を提供することができる。
【0871】
また、配線W1,W2は、配線保護膜50a,50b;51a,51bに覆われているため、配線W1,W2にヒロックが発生し難くなる。
【0872】
次に、図102の半導体装置の製造方法について説明する。
【0873】
まず、図103に示すように、絶縁層25上に炭素層39を形成するまでを、上述の第18の実施の形態における製造方法と同様の方法により行う。
【0874】
即ち、LOCOS法により半導体基板21上にフィ−ルド酸化層22を形成する。また、フィ−ルド酸化層22に囲まれた素子領域に、例えば、ゲ−ト電極23及びソ−ス・ドレイン領域24a,24bを有するMOSトランジスタを形成する。
【0875】
半導体基板21上の全面に、MOSトランンジスタを完全に覆う絶縁層(BPSGやPSGなど)25を形成する。この後、化学機械的研磨(CMP)を行い、絶縁層25の表面を平坦にする。
【0876】
PEP(写真蝕刻工程)により、絶縁層25にソ−ス・ドレイン領域24a,24bに達するコンタクトホ−ルを形成する。選択成長法により、絶縁層25のコンタクトホ−ル内のみに、タングステンなどの高融点金属から構成される導電層26a,26bを埋め込む。
【0877】
なお、絶縁層25のコンタクトホ−ル内には、高融点金属以外の他の材料を埋め込んでも構わない。
【0878】
スパッタリング法により、絶縁層25上に炭素(カ−ボン)層39を形成する。ここで、炭素層39の厚さは、LSIの内部配線の厚さと等しい値(例えば、約0.7〜約0.2μm)に設定される。
【0879】
スパッタリング法により、炭素層39上にマスク材(例えば、シリコン酸化層やシリコン窒化層など)を、約0.05μmの厚さで形成する。PEP(写真蝕刻工程)及び異方性エッチングを用いて、マスク材をパタ−ニングする。このマスク材をマスクにして、異方性エッチングにより炭素層39をエッチングする。
なお、PEPにより、直接、炭素層39をエッチングすることなく、PEPで加工したマスク材をマスクにして炭素層39をエッチングする理由は、上述の第2の実施の形態における製造方法で説明した理由と同じである。
【0880】
従って、導電層26a,26bが高融点金属の場合には、PEPで加工したマスク材をマスクに炭素層39をエッチングし、導電層26a,26bがH2 SO4 とH2 2 の薬液により腐蝕されないような材質である場合には、レジストをマスクに炭素層39をエッチングするのがよい。
【0881】
この後、マスク材を除去し、スパッタリング法又はCVD法により、例えば、モリブデンから構成される配線保護層50を、絶縁層25上及び炭素層39上に形成する。
【0882】
次に、図104に示すように、スパッタリング法又はCVD法により、配線保護層50上に、銅、アルミニウム合金などなどから構成される金属層28を形成する。なお、配線は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属であってもよい。
【0883】
次に、図105に示すように、化学機械的研磨(CMP)により、炭素層39の間の溝内にのみ、配線保護層50a,50b及び金属28a,28bを残存させ、配線W1を形成する。
【0884】
なお、CMPに代えて、異方性エッチング又は等方性エッチングを用いて配線W1を形成するようにしてもよい。
【0885】
次に、図106に示すように、スパッタリング法により、炭素層39上及び配線W1上に絶縁層(例えば、シリコン酸化層)30を形成する。ここで、絶縁層30は、CVD法により形成しない方がよい。なぜなら、絶縁層30を形成する際の反応ガス中には、酸素O2 ガスが含まれているため、絶縁層30の形成時に、炭素層39が除去されてしまう可能性があるからである。
【0886】
また、絶縁層30の厚さは、絶縁層30がシリコン酸化層の場合は、0.01〜0.1μmの範囲にあるのが、絶縁層30の破裂なしに灰化を行うのに都合がよい。但し、絶縁層30の種類や質などにより、絶縁層30の最適な厚さは、それぞれ異なる。
【0887】
次に、図107及び図108に示すように、炭素層39を灰化し、炭素層39を、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞31に変換する。炭素層39の灰化は、以下の二つの方法のいずれかを使用することにより達成される。
【0888】
一つめは、酸素雰囲気中での熱処理(温度400〜450℃、時間2h程度)である。この方法では、炭素層39が二酸化炭素CO2 に変換する反応が緩やかに進むため、炭素層39の体積の膨脹による絶縁層30の破裂を防止できる利点がある反面、処理時間が長くなる欠点がある。
【0889】
二つめは、酸素プラズマ処理(アッシャ−)である。この方法では、炭素層39が二酸化炭素CO2 に変換する反応が速やかに進むため、処理時間が短くなる利点がある反面、炭素層39の体積の膨脹による絶縁層30の破裂が生じる可能性が高くなるという欠点がある。しかし、この欠点は、絶縁層30の質の改善や酸素プラズマ処理の温度の低下などにより回避できる。
【0890】
次に、図109に示すように、CVD法を用いて、絶縁層30上に低い誘電率を有する絶縁層(例えば、弗素を含むTEOSなど)32を形成する。
【0891】
次に、図110に示すように、PEP(写真蝕刻工程)及びRIE(反応性イオンエッチング)を用いて、配線W1に達するビアホ−ルを絶縁層30,32に設ける。
【0892】
次に、図111に示すように、選択成長法を用いて、ビアホ−ル内のみに、タングステンなどの高融点金属から構成される導電層33a,33bを埋め込む。なお、絶縁層30,32のビアホ−ル内には、高融点金属以外の他の材料を埋め込んでも構わない。
【0893】
次に、図112に示すように、配線W1を形成する際に使用した工程と同様の工程により配線W2を形成する。
【0894】
即ち、まず、スパッタリング法により、絶縁層32上に炭素(カ−ボン)層を形成する。ここで、炭素層の厚さは、配線W2の厚さと等しい値に設定されている。スパッタリング法により、炭素層上にマスク材(例えば、シリコン酸化層やシリコン窒化層など)を、約0.05μmの厚さで形成する。
【0895】
この後、PEP(写真蝕刻工程)及び異方性エッチングを用いて、マスク材をパタ−ニングする。マスク材をマスクにして、異方性エッチングにより炭素層をエッチングする。マスク材を除去し、スパッタリング法又はCVD法により、例えば、モリブデンから構成される配線保護層51a,51bを、絶縁層32上及び炭素層上に形成する。
【0896】
スパッタリング法又はCVD法により、配線保護層51a,51b上に、銅、アルミニウム合金などなどから構成される金属層35a,35bを形成する。化学機械的研磨(CMP)により、炭素層の間の溝内にのみ、配線保護層51a,51b及び金属層35a,35bを残存させ、配線W2を形成する。
【0897】
なお、CMPに代えて、異方性エッチング又は等方性エッチングを用いることにより配線W2を形成するようにしてもよい。
【0898】
スパッタリング法により、炭素層上及び配線W2上に絶縁層(例えば、シリコン酸化層)37を形成する。この後、炭素層を灰化し、炭素層を、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞38に変換する。
【0899】
上述の製造方法によれば、配線W1,W2を形成するための溝を有する絶縁層に炭素層を用い、かつ、溝内に配線を形成した後にこの炭素層を灰化してガスが満たされた空洞に変換している。従って、容易に、図102の半導体装置を提供することができる。
【0900】
また、マスク材は、炭素層をパタ−ニングした後、炭素層の灰化前に、除去されている。従って、炭素層の灰化を迅速かつ正確に行うことができる。
【0901】
図113は、本発明の第20の実施の形態に関わる半導体装置を示している。
半導体基板(例えば、シリコンウェハ)21上には、フィ−ルド酸化層(例えば、シリコン酸化層)22が形成されている。フィ−ルド酸化層22に囲まれた素子領域には、MOSトランジスタが形成されている。このMOSトランジスタは、ゲ−ト電極23及びソ−ス・ドレイン領域24a,24bを有している。
【0902】
絶縁層25は、MOSトランジスタを覆っている。絶縁層25は、例えば、硼素燐ケイ酸ガラス(BPSG)や燐ケイ酸ガラス(PSG)などから構成することができる。
【0903】
絶縁層25の表面は、平坦である。絶縁層25の表面は、化学機械的研磨(CMP)により平坦にすることができる。絶縁層25には、ソ−ス・ドレイン領域24a,24bに達するコンタクトホ−ルが形成されている。
【0904】
このコンタクトホ−ル内には、タングステンなどの高融点金属から構成される導電層26a,26bが埋め込まれている。但し、導電層26a,26bは、高融点金属以外の他の材料から構成しても構わない。
【0905】
配線W1は、絶縁層25上に配置され、導電層26a,26bに接続されている。配線W1は、銅、アルミニウム合金などの金属層28a,28bと、この金属層28a,28bの底面及び側面を覆うU字溝状の配線保護層50a,50bとから構成されている。
【0906】
なお、配線W1は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属から構成してもよい。
【0907】
また、配線保護層50a,50bは、例えば、窒化チタニウム、チタニウムとタングステンの合金、白金などの遷移金属又はその合金、モリブデンなどから構成することができる。即ち、配線保護層50a,50bは、導電性を有し、薬品に腐食され難く、酸化され難いものであれば何でもよい。
【0908】
配線W1の上部には、絶縁層29,30が形成されている。この絶縁層29,30は、配線W1に支えられている。配線W1間は、空洞(キャビティ)31になっている。この空洞31には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【0909】
なお、絶縁層29は、配線W1のパタ−ンを決定するもので、例えば、シリコン酸化層やシリコン窒化層などから構成される。絶縁層30は、配線W1間に空洞31を設ける際に重要となると共に、絶縁層30上に層を積み重ねる際の土台となる重要なものである。絶縁層30は、例えば、シリコン酸化膜などから構成される。
【0910】
絶縁層30には、配線W1に達するコンタクトホ−ルが形成されている。このコンタクトホ−ル内及びコンタクトホ−ル上には、銅、アルミニウム合金などの金属層35a,35bと、この金属層35a,35bの底面及び側面を覆う配線保護層51a,51bとから構成される配線W2が形成されている。
【0911】
なお、配線W2は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属から構成してもよい。
【0912】
また、配線保護層51a,51bは、例えば、窒化チタニウム、チタニウムとタングステンの合金、白金などの遷移金属又はその合金、モリブデンなどから構成することができる。即ち、配線保護層51a,51bは、導電性を有し、薬品に腐食され難く、酸化され難いものであれば何でもよい。
【0913】
配線W2の上部と下部の間には、絶縁層(例えば、シリコン酸化層)43が形成されている。この絶縁層43は、配線W2に支えられている。配線W2の下部は、柱状であり、また、配線W2の上部は、線状であり、絶縁層43上に配置されている。
【0914】
配線W2上には、絶縁層(例えば、シリコン酸化層)37が形成されている。配線W2の下部の間(上下の配線W1と配線W2の間)は、空洞(キャビティ)40になっている。この空洞40には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【0915】
配線W2の上部の間(左右の配線W2の間)は、空洞(キャビティ)38になっている。この空洞38には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【0916】
なお、空洞31,38,40を製造時に空気に接触させることにより、又はパッケ−ジに穴を設けておくことにより、空洞31,38,40内に空気を満たすようにしてもよい。
【0917】
上記構成の半導体装置によれば、配線W1間には、酸素O2 と二酸化炭素CO2 の混合ガス又は空気が満たされた空洞31が形成され、配線W2間には、酸素O2 と二酸化炭素CO2 の混合ガス又は空気が満たされた空洞38が形成されている。
【0918】
さらに、導電層35a,35bの間、即ち、配線W1と配線W2の間には、酸素O2 と二酸化炭素CO2 の混合ガス又は空気が満たされた空洞40が形成されている。
【0919】
この混合ガス又は空気の誘電率εは、1.0程度である。これにより、同一層(左右)の配線間及び異なる層(上下)の配線間をシリコン酸化層などの絶縁層で満たす場合に比べて、極端に誘電率を低下させることができる。
【0920】
従って、素子の集積度の向上とLSIの性能の向上を同時に達成することができる。
【0921】
また、少なくとも配線W1,W2の側面は、配線保護層50a,50b;51a,51bに覆われているため、チップの縁から空洞31,38,40を介して進入してきた水分H2 Oは、配線W1,W2の金属に直接到達することがない。
従って、個々の配線W1,W2を水分H2 Oから保護することができる。
【0922】
また、この実施の形態における半導体装置(チップ)が搭載されるパッケ−ジに、パッケ−ジ外部と内部を接続する穴を設けておけば、空洞31,38は、空気で満たされると共に、この空気が循環することにより、チップ内で生じる熱は、パッケ−ジ外部へ効率よく排出される。
【0923】
従って、熱による不良が発生し難い半導体装置を提供することができる。
【0924】
また、配線W1,W2は、配線保護膜50a,50b;51a,51bに覆われているため、配線W1,W2にヒロックが発生し難くなる。
【0925】
次に、図113の半導体装置の製造方法について説明する。
【0926】
まず、図114に示すように、絶縁層25上に配線W1を形成するまでを、上述の第18の実施の形態における製造方法と同様の方法により行う。
【0927】
即ち、LOCOS法により半導体基板21上にフィ−ルド酸化層22を形成する。また、フィ−ルド酸化層22に囲まれた素子領域に、例えば、ゲ−ト電極23及びソ−ス・ドレイン領域24a,24bを有するMOSトランジスタを形成する。
【0928】
半導体基板21上の全面に、MOSトランンジスタを完全に覆う絶縁層(BPSGやPSGなど)25を形成する。この後、化学機械的研磨(CMP)を行い、絶縁層25の表面を平坦にする。
【0929】
PEP(写真蝕刻工程)により、絶縁層25にソ−ス・ドレイン領域24a,24bに達するコンタクトホ−ルを形成する。選択成長法により、絶縁層25のコンタクトホ−ル内のみに、タングステンなどの高融点金属から構成される導電層26a,26bを埋め込む。
【0930】
なお、絶縁層25のコンタクトホ−ル内には、高融点金属以外の他の材料を埋め込んでも構わない。
【0931】
スパッタリング法により、絶縁層25上に炭素(カ−ボン)層を形成する。ここで、炭素層の厚さは、LSIの内部配線の厚さと等しい値(例えば、約0.7〜約0.2μm)に設定される。
【0932】
スパッタリング法により、炭素層上にマスク材(例えば、シリコン酸化層やシリコン窒化層など)29を、約0.05μmの厚さで形成する。PEP(写真蝕刻工程)及び異方性エッチングを用いて、マスク材29をパタ−ニングする。このマスク材29をマスクにして、異方性エッチングにより炭素層をエッチングする。
【0933】
なお、PEPにより、直接、炭素層をエッチングすることなく、PEPで加工したマスク材をマスクにして炭素層をエッチングする理由は、上述の第2の実施の形態における製造方法で説明した理由と同じである。
【0934】
従って、導電層26a,26bが高融点金属の場合には、PEPで加工したマスク材29をマスクに炭素層をエッチングし、導電層26a,26bがH2 SO4 とH2 2 の薬液により腐蝕されないような材質である場合には、レジストをマスクに炭素層をエッチングするのがよい。
【0935】
この後、スパッタリング法又はCVD法により、例えば、モリブデンから構成される配線保護層50a,50bを、マスク材29上及び炭素層に形成された溝内に形成する。スパッタリング法又はCVD法により、配線保護層50a,50b上に、銅、アルミニウム合金などから構成される金属層28a,28bを形成する。
【0936】
なお、配線は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステン、タンタルなどの高融点金属であってもよい。
【0937】
化学機械的研磨(CMP)により、炭素層の間の溝内にのみ、配線保護層50a,50b及び金属層28a,28bを残存させ、配線W1を形成する。なお、CMPに代えて、異方性エッチング又は等方性エッチングにより配線W1を形成するようにしてもよい。
【0938】
スパッタリング法により、マスク材29上及び配線W1上に絶縁層(例えば、シリコン酸化層)30を形成する。ここで、絶縁層30は、CVD法により形成しない方がよい。なぜなら、絶縁層30を形成する際の反応ガス中には、酸素O2 ガスが含まれているため、絶縁層30の形成時に、炭素層が除去されてしまう可能性があるからである。
【0939】
また、絶縁層30の厚さは、絶縁層30がシリコン酸化層の場合は、0.01〜0.1μmの範囲にあるのが、絶縁層30の破裂なしに灰化を行うのに都合がよい。但し、絶縁層30の種類や質などにより、絶縁層30の最適な厚さは、それぞれ異なる。
【0940】
この後、炭素層を灰化し、この炭素層を、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞31に変換する。
【0941】
上述の工程により配線W1を形成した後、スパッタリング法により、絶縁層30上に炭素層41を形成する。また、スパッタリング法により、炭素層41上に絶縁層(例えば、シリコン酸化層)43を約0.05μmの厚さで形成する。
【0942】
なお、絶縁層43は、CVD法により形成しない方がよい。なぜなら、絶縁層43を形成する際の反応ガス中には、酸素O2 ガスが含まれているため、絶縁層43の形成時に、炭素層41が除去されてしまう可能性があるからである。
【0943】
また、絶縁層43の厚さは、絶縁層43がシリコン酸化層の場合は、0.01〜0.1μmの範囲にあるのが、絶縁層43の破裂なしに灰化を行うのに都合がよい。但し、絶縁層43の種類や質などにより、絶縁層43の最適な厚さは、それぞれ異なる。
【0944】
続けて、スパッタリング法により、絶縁層43上に炭素層44を形成する。
【0945】
この後、炭素層44をパタ−ニングして、配線を形成するための溝を炭素層44に設ける。炭素層44のパタ−ニングには、PEP(写真蝕刻工程)とRIEを用いる方法と、PEPとRIEで加工したマスク材をマスクにパタ−ニングする方法の2つがある。
【0946】
本実施例では、PEPとRIEを用いる方法について述べる。即ち、炭素層44上にレジスト45を形成する。レジスト45をパタ−ニングした後、このレジスト45をマスクに異方性エッチングにより炭素層44をエッチングし、炭素層44に溝を形成する。
【0947】
この後、H2 SO4 とH2 2 の薬液を用いて、レジスト45を除去する。なお、酸素プラズマ処理は炭素層44の消滅を招くため、この酸素プラズマ処理はレジスト45の剥離に用いない。
【0948】
次に、図115に示すように、炭素層44上に再びレジスト46を形成する。レジスト46をパタ−ニングした後、このレジスト46をマスクにして異方性エッチングにより溝の底部に露出した絶縁層43及び炭素層41をエッチングする。
【0949】
この後、H2 SO4 とH2 2 の薬液を用いて、レジスト46を除去する。なお、酸素プラズマ処理は炭素層46の消滅を招くため、この酸素プラズマ処理はレジスト46の剥離に用いない。
【0950】
次に、図116に示すように、異方性エッチングにより、溝の底部に露出した絶縁層30を除去し、配線W1に達するビアホ−ルを形成する。
【0951】
スパッタリング法又はCVD法により、例えば、モリブデンから構成される配線保護層51を、炭素層44上、炭素層44の間の溝内及び炭素層41のビアホ−ル内に形成する。また、スパッタリング法又はCVD法により、配線保護層51上に、銅、アルミニウム合金などなどから構成される金属層35を形成する。次に、図117に示すように、化学機械的研磨(CMP)により、炭素層44の間の溝内及び炭素層41のビアホ−ル内に、それぞれ配線保護層51a,51b及び金属35a,35bを残存させる。
【0952】
また、スパッタリング法により、炭素層44上に絶縁層(例えば、シリコン酸化層)37を、約0.05μmの厚さで形成する。
【0953】
なお、絶縁層37,43の厚さは、絶縁層37,43がシリコン酸化層の場合は、0.01〜0.1μmの範囲にあるのが、絶縁層37,43の破裂なしに灰化を行うのに都合がよい。但し、絶縁層37,43の種類や質などにより、絶縁層37,43の最適な厚さは、それぞれ異なる。
【0954】
次に、図118及び図119に示すように、酸素雰囲気中での熱処理又は酸素プラズマ処理により、炭素層41,44を同時を灰化し、炭素層41を、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞40に変換し、炭素層44を、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞38に変換する。
【0955】
上述の製造方法によれば、配線W1,W2を形成するための溝又はビアホ−ルを有する絶縁層に炭素層を用い、かつ、溝内及びビアホ−ル内に配線を形成した後にこの炭素層を灰化してガスが満たされた空洞に変換している。
【0956】
また、配線W2は、コンタクトプラグを用いることなく、配線W1に直接接続されるているため、上述の第2〜7の実施の形態における製造方法に比べて大幅に工程数を減らすことができる。
【0957】
これにより、多層配線構造の半導体装置において、同一層(左右)の配線間に酸素O2 と二酸化炭素CO2 の混合ガス又は空気を満たし、かつ、異なる層(上下)の配線間に酸素O2 と二酸化炭素CO2 の混合ガス又は空気を満たすことができる。
【0958】
図120は、本発明の第21の実施の形態に関わる半導体装置を示している。
半導体基板(例えば、シリコンウェハ)21上には、フィ−ルド酸化層(例えば、シリコン酸化層)22が形成されている。フィ−ルド酸化層22に囲まれた素子領域には、MOSトランジスタが形成されている。このMOSトランジスタは、ゲ−ト電極23及びソ−ス・ドレイン領域24a,24bを有している。
【0959】
絶縁層25は、MOSトランジスタを覆っている。絶縁層25は、例えば、硼素燐ケイ酸ガラス(BPSG)や燐ケイ酸ガラス(PSG)などから構成することができる。
【0960】
絶縁層25の表面は、平坦である。絶縁層25の表面は、化学機械的研磨(CMP)により平坦にすることができる。絶縁層25には、ソ−ス・ドレイン領域24a,24bに達するコンタクトホ−ルが形成されている。
【0961】
このコンタクトホ−ル内には、タングステンなどの高融点金属から構成される導電層26a,26bが埋め込まれている。但し、導電層26a,26bは、高融点金属以外の他の材料から構成しても構わない。
【0962】
配線W1は、絶縁層25上に配置され、導電層26a,26bに接続されている。配線W1は、銅、アルミニウム合金などの金属層28a,28bと、この金属層28a,28bの底面及び側面を覆うU字溝状の配線保護層50a,50bとから構成されている。
【0963】
なお、配線W1は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属から構成してもよい。
【0964】
また、配線保護層50a,50bは、例えば、例えば、窒化チタニウム、チタニウムとタングステンの合金、白金などの遷移金属又はその合金、モリブデンなどから構成することができる。即ち、配線保護層50a,50bは、導電性を有し、薬品に腐食され難く、酸化され難いものであれば何でもよい。
【0965】
配線W1の上部には、絶縁層30が形成されている。この絶縁層30は、配線W1に支えられている。配線W1間は、空洞(キャビティ)31になっている。この空洞31には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【0966】
絶縁層30は、配線W1間に空洞31を設ける際に重要となると共に、絶縁層30上に層を積み重ねる際の土台となる重要なものである。絶縁層30は、例えば、シリコン酸化膜などから構成される。
【0967】
絶縁層30には、配線W1に達するコンタクトホ−ルが形成されている。このコンタクトホ−ル内及びコンタクトホ−ル上には、銅、アルミニウム合金などの金属層35a,35bと、この金属層35a,35bの底面及び側面を覆う配線保護層51a,51bとから構成される配線W2が形成されている。
【0968】
なお、配線W2は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステン、タンタルなどの高融点金属から構成してもよい。
【0969】
また、配線保護層51a,51bは、例えば、例えば、窒化チタニウム、チタニウムとタングステンの合金、白金などの遷移金属又はその合金、モリブデンなどから構成することができる。即ち、配線保護層51a,51bは、導電性を有し、薬品に腐食され難く、酸化され難いものであれば何でもよい。
【0970】
配線W2の上部と下部の間には、絶縁層(例えば、シリコン酸化層)43が形成されている。この絶縁層43は、配線W2に支えられている。配線W2の下部は、柱状であり、また、配線W2の上部は、線状であり、絶縁層43上に配置されている。
【0971】
配線W2上には、絶縁層(例えば、シリコン酸化層)37が形成されている。配線W2の下部の間(上下の配線W1と配線W2の間)は、空洞(キャビティ)40になっている。この空洞40には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【0972】
配線W2の上部の間(左右の配線W2の間)は、空洞(キャビティ)38になっている。この空洞38には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【0973】
上記構成の半導体装置によれば、配線W1間には、酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞31が形成され、配線W2間には、酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞38が形成されている。
【0974】
さらに、導電層35a,35bの間、即ち、配線W1と配線W2の間には、酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞40が形成されている。
この混合ガスの誘電率εは、1.0程度である。これにより、同一層(左右)の配線間及び異なる層(上下)の配線間をシリコン酸化層などの絶縁層で満たす場合に比べて、極端に誘電率を低下させることができる。
【0975】
従って、素子の集積度の向上とLSIの性能の向上を同時に達成することができる。
【0976】
また、少なくとも配線W1,W2の側面は、配線保護層50a,50b;51a,51bに覆われているため、チップの縁から空洞31,38,40を介して進入してきた水分H2 Oは、配線W1,W2の金属に直接到達することがない。
従って、個々の配線W1,W2を水分H2 Oから保護することができる。
【0977】
また、この実施の形態における半導体装置(チップ)が搭載されるパッケ−ジに、パッケ−ジ外部と内部を接続する穴を設けておけば、空洞31,38は、空気で満たされると共に、この空気が循環することにより、チップ内で生じる熱は、パッケ−ジ外部へ効率よく排出される。
【0978】
従って、熱による不良が発生し難い半導体装置を提供することができる。
【0979】
また、配線W1,W2は、配線保護膜50a,50b;51a,51bに覆われているため、配線W1,W2にヒロックが発生し難くなる。
【0980】
次に、図120の半導体装置の製造方法について説明する。
【0981】
まず、図121に示すように、絶縁層25上に配線W1を形成するまでを、上述の第19の実施の形態における製造方法と同様の方法により行う。
【0982】
即ち、LOCOS法により半導体基板21上にフィ−ルド酸化層22を形成する。また、フィ−ルド酸化層22に囲まれた素子領域に、例えば、ゲ−ト電極23及びソ−ス・ドレイン領域24a,24bを有するMOSトランジスタを形成する。
【0983】
半導体基板21上の全面に、MOSトランンジスタを完全に覆う絶縁層(BPSGやPSGなど)25を形成する。この後、化学機械的研磨(CMP)を行い、絶縁層25の表面を平坦にする。
【0984】
PEP(写真蝕刻工程)により、絶縁層25にソ−ス・ドレイン領域24a,24bに達するコンタクトホ−ルを形成する。選択成長法により、絶縁層25のコンタクトホ−ル内のみに、タングステンなどの高融点金属から構成される導電層26a,26bを埋め込む。
【0985】
なお、絶縁層25のコンタクトホ−ル内には、高融点金属以外の他の材料を埋め込んでも構わない。
【0986】
スパッタリング法により、絶縁層25上に炭素(カ−ボン)層を形成する。ここで、炭素層の厚さは、LSIの内部配線の厚さと等しい値(例えば、約0.7〜約0.2μm)に設定される。
【0987】
スパッタリング法により、炭素層上にマスク材(例えば、シリコン酸化層やシリコン窒化層など)を、約0.05μmの厚さで形成する。PEP(写真蝕刻工程)及び異方性エッチングを用いて、マスク材をパタ−ニングする。このマスク材をマスクにして、異方性エッチングにより炭素層をエッチングする。
【0988】
なお、PEPにより、直接、炭素層をエッチングすることなく、PEPで加工したマスク材をマスクにして炭素層をエッチングする理由は、上述の第2の実施の形態における製造方法で説明した理由と同じである。
【0989】
従って、導電層26a,26bが高融点金属の場合には、PEPで加工したマスク材をマスクに炭素層をエッチングし、導電層26a,26bがH2 SO4 とH2 2 の薬液により腐蝕されないような材質である場合には、レジストをマスクに炭素層をエッチングするのがよい。
【0990】
この後、マスク材を除去し、スパッタリング法又はCVD法により、例えば、モリブデンから構成される配線保護層50a,50bを、絶縁層25上及び炭素層上に形成する。スパッタリング法又はCVD法により、配線保護層50a,50b上に、銅、アルミニウム合金などから構成される金属層28a,28bを形成する。
【0991】
なお、配線は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステン、タンタルなどの高融点金属であってもよい。
【0992】
化学機械的研磨(CMP)により、炭素層の間の溝内にのみ、配線保護層50a,50b及び金属層28a,28bを残存させ、配線W1を形成する。なお、CMPに代えて、異方性エッチング又は等方性エッチングにより配線W1を形成するようにしてもよい。
【0993】
スパッタリング法により、マスク材29上及び配線W1上に絶縁層(例えば、シリコン酸化層)30を形成する。ここで、絶縁層30は、CVD法により形成しない方がよい。なぜなら、絶縁層30を形成する際の反応ガス中には、酸素O2 ガスが含まれているため、絶縁層30の形成時に、炭素層が除去されてしまう可能性があるからである。
【0994】
また、絶縁層30の厚さは、絶縁層30がシリコン酸化層の場合は、0.01〜0.1μmの範囲にあるのが、絶縁層30の破裂なしに灰化を行うのに都合がよい。但し、絶縁層30の種類や質などにより、絶縁層30の最適な厚さは、それぞれ異なる。
【0995】
この後、炭素層を灰化し、この炭素層を、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞31に変換する。
【0996】
上述の工程により配線W1を形成した後、スパッタリング法により、絶縁層30上に炭素層41を形成する。また、スパッタリング法により、炭素層41上に絶縁層(例えば、シリコン酸化層)43を約0.05μmの厚さで形成する。
【0997】
なお、絶縁層43は、CVD法により形成しない方がよい。なぜなら、絶縁層43を形成する際の反応ガス中には、酸素O2 ガスが含まれているため、絶縁層43の形成時に、炭素層41が除去されてしまう可能性があるからである。
【0998】
また、絶縁層43の厚さは、絶縁層43がシリコン酸化層の場合は、0.01〜0.1μmの範囲にあるのが、絶縁層43の破裂なしに灰化を行うのに都合がよい。但し、絶縁層43の種類や質などにより、絶縁層43の最適な厚さは、それぞれ異なる。
【0999】
続けて、スパッタリング法により、絶縁層43上に炭素層44を形成する。
【1000】
この後、炭素層44をパタ−ニングして、配線を形成するための溝を炭素層44に設ける。炭素層44のパタ−ニングには、PEP(写真蝕刻工程)とRIEを用いる方法と、PEPとRIEで加工したマスク材をマスクにパタ−ニングする方法の2つがある。
【1001】
本実施例では、PEPとRIEを用いる方法について述べる。即ち、炭素層44上にレジスト45を形成する。レジスト45をパタ−ニングした後、このレジスト45をマスクに異方性エッチングにより炭素層44をエッチングし、炭素層44に溝を形成する。
【1002】
この後、H2 SO4 とH2 2 の薬液を用いて、レジスト45を除去する。なお、酸素プラズマ処理は炭素層44の消滅を招くため、この酸素プラズマ処理はレジスト45の剥離に用いない。
【1003】
次に、図122に示すように、炭素層44上に再びレジスト46を形成する。レジスト46をパタ−ニングした後、このレジスト46をマスクにして異方性エッチングにより溝の底部に露出した絶縁層43及び炭素層41をエッチングする。
【1004】
この後、H2 SO4 とH2 2 の薬液を用いて、レジスト46を除去する。なお、酸素プラズマ処理は炭素層46の消滅を招くため、この酸素プラズマ処理はレジスト46の剥離に用いない。
【1005】
次に、図123に示すように、異方性エッチングにより、溝の底部に露出した絶縁層30を除去し、配線W1に達するビアホ−ルを形成する。
【1006】
スパッタリング法又はCVD法により、例えば、モリブデンから構成される配線保護層51を、炭素層44上、炭素層44の間の溝内及び炭素層41のビアホ−ル内に形成する。また、スパッタリング法又はCVD法により、配線保護層51上に、銅、アルミニウム合金などなどから構成される金属層35を形成する。
次に、図124に示すように、化学機械的研磨(CMP)により、炭素層44の間の溝内及び炭素層41のビアホ−ル内に、それぞれ配線保護層51a,51b及び金属層35a,35bを残存させる。また、スパッタリング法により、炭素層44上に絶縁層(例えば、シリコン酸化層)37を、約0.05μmの厚さで形成する。
【1007】
なお、絶縁層37,43の厚さは、絶縁層37,43がシリコン酸化層の場合は、0.01〜0.1μmの範囲にあるのが、絶縁層37,43の破裂なしに灰化を行うのに都合がよい。但し、絶縁層37,43の種類や質などにより、絶縁層37,43の最適な厚さは、それぞれ異なる。
【1008】
次に、図125及び図126に示すように、酸素雰囲気中での熱処理又は酸素プラズマ処理により、炭素層41,44を同時を灰化し、炭素層41を、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞40に変換し、炭素層44を、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞38に変換する。
【1009】
上述の製造方法によれば、配線W1,W2を形成するための溝又はビアホ−ルを有する絶縁層に炭素層を用い、かつ、溝内及びビアホ−ル内に配線を形成した後にこの炭素層を灰化してガスが満たされた空洞に変換している。
【1010】
また、配線W2は、コンタクトプラグを用いることなく、配線W1に直接接続されるているため、上述の第2〜7の実施の形態における製造方法に比べて大幅に工程数を減らすことができる。
【1011】
これにより、多層配線構造の半導体装置において、同一層(左右)の配線間に酸素O2 と二酸化炭素CO2 の混合ガス又は空気を満たし、かつ、異なる層(上下)の配線間に酸素O2 と二酸化炭素CO2 の混合ガス又は空気を満たすことができる。
【1012】
また、マスク材は、炭素層をパタ−ニングした後、炭素層の灰化前に、除去されている。従って、炭素層の灰化を迅速かつ正確に行うことができる。
【1013】
図127は、本発明の第22の実施の形態に関わる半導体装置を示している。
半導体基板(例えば、シリコンウェハ)21上には、フィ−ルド酸化層(例えば、シリコン酸化層)22が形成されている。フィ−ルド酸化層22に囲まれた素子領域には、MOSトランジスタが形成されている。このMOSトランジスタは、ゲ−ト電極23及びソ−ス・ドレイン領域24a,24bを有している。
【1014】
絶縁層25は、MOSトランジスタを覆っている。絶縁層25は、例えば、硼素燐ケイ酸ガラス(BPSG)や燐ケイ酸ガラス(PSG)などから構成することができる。
【1015】
絶縁層25の表面は、平坦である。絶縁層25の表面は、化学機械的研磨(CMP)により平坦にすることができる。絶縁層25には、ソ−ス・ドレイン領域24a,24bに達するコンタクトホ−ルが形成されている。
【1016】
このコンタクトホ−ル内には、タングステンなどの高融点金属から構成される導電層26a,26bが埋め込まれている。但し、導電層26a,26bは、高融点金属以外の他の材料から構成しても構わない。
【1017】
配線W1は、絶縁層25上に配置され、導電層26a,26bに接続されている。配線W1は、銅、アルミニウム合金などの金属層28a,28bと、この金属層28a,28bの側面を覆う配線保護層50a,50bとから構成されている。
【1018】
なお、配線W1は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属から構成してもよい。
【1019】
また、配線保護層50a,50bは、例えば、酸化シリコン、窒化シリコンなどの絶縁体、窒化チタニウム、チタニウムとタングステンの合金、白金などの遷移金属又はその合金、又はモリブデンなどから構成することができる。即ち、配線保護層50a,50bは、薬品に腐食され難く、酸化され難いものであれば何でもよい。
【1020】
配線W1の上部には、絶縁層29,30が形成されている。この絶縁層29,30は、配線W1に支えられている。配線W1間は、空洞(キャビティ)31になっている。この空洞31には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【1021】
なお、絶縁層29は、配線W1のパタ−ンを決定するもので、例えば、シリコン酸化層やシリコン窒化層などから構成される。絶縁層30は、配線W1間に空洞31を設ける際に重要となると共に、絶縁層30上に層を積み重ねる際の土台となる重要なものである。絶縁層30は、例えば、シリコン酸化膜などから構成される。
【1022】
絶縁層30上には、絶縁層32が形成されている。絶縁層32は、例えば、シリコン酸化層から構成される。絶縁層32には、配線W1に達するコンタクトホ−ルが形成されている。
【1023】
このコンタクトホ−ル内には、タングステンなどの高融点金属から構成される導電層33a,33bが埋め込まれている。但し、導電層33a,33bは、高融点金属以外の他の材料から構成しても構わない。
【1024】
配線W2は、絶縁層32上に配置され、導電層33a,33bに接続されている。配線W2は、銅、アルミニウム合金などの金属35a,35bと、この金属35a,35bの側面を覆う配線保護層51a,51bとから構成されている。
なお、配線W2は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属から構成してもよい。
【1025】
また、配線保護層51a,51bは、例えば、酸化シリコン、窒化シリコンなどの絶縁体、窒化チタニウム、チタニウムとタングステンの合金、白金などの遷移金属又はその合金、又はモリブデンなどから構成することができる。即ち、配線保護層51a,51bは、薬品に腐食され難く、酸化され難いものであれば何でもよい。
【1026】
配線W2の上部には、絶縁層36,37が形成されている。この絶縁層36,37は、配線W2に支えられている。配線W2間は、空洞(キャビティ)38になっている。この空洞38には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【1027】
なお、絶縁層36は、配線W2のパタ−ンを決定するもので、例えば、シリコン酸化層やシリコン窒化層などから構成される。絶縁層37は、配線W2間に空洞38を設ける際に重要となると共に、絶縁層37上に層を積み重ねる際の土台となる重要なものである。絶縁層37は、例えば、シリコン酸化膜などから構成される。
【1028】
上記構成の半導体装置によれば、配線W1間には、酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞31が形成され、配線W2間には、酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞38が形成されている。
【1029】
この混合ガスの誘電率εは、1.0程度である。これにより、配線W1間及び配線W2間をシリコン酸化層などの絶縁層で満たす場合に比べて、極端に誘電率を低下させることができる。
【1030】
従って、素子の集積度の向上とLSIの性能の向上を同時に達成することができる。
【1031】
また、配線W1,W2の側面は、配線保護層50a,50b;51a,51bに覆われているため、チップの縁から空洞31,38を介して進入してきた水分H2 Oは、配線W1,W2の金属に直接到達することがない。
【1032】
従って、個々の配線W1,W2を水分H2 Oから保護することができる。
【1033】
また、この実施の形態における半導体装置(チップ)が搭載されるパッケ−ジに、パッケ−ジ外部と内部を接続する穴を設けておけば、空洞31,38は、空気で満たされると共に、この空気が循環することにより、チップ内で生じる熱は、パッケ−ジ外部へ効率よく排出される。
【1034】
従って、熱による不良が発生し難い半導体装置を提供することができる。
【1035】
また、配線W1,W2の側面は、配線保護膜50a,50b;51a,51bに覆われているため、配線W1,W2にヒロックが発生し難くなる。
【1036】
次に、図127の半導体装置の製造方法について説明する。
【1037】
まず、図128に示すように、LOCOS法により半導体基板21上にフィ−ルド酸化層22を形成する。また、フィ−ルド酸化層22に囲まれた素子領域に、例えば、ゲ−ト電極23及びソ−ス・ドレイン領域24a,24bを有するMOSトランジスタを形成する。
【1038】
半導体基板21上の全面に、MOSトランンジスタを完全に覆う絶縁層(BPSGやPSGなど)25を形成する。この後、化学機械的研磨(CMP)を行い、絶縁層25の表面を平坦にする。
【1039】
PEP(写真蝕刻工程)により、絶縁層25にソ−ス・ドレイン領域24a,24bに達するコンタクトホ−ルを形成する。選択成長法により、絶縁層25のコンタクトホ−ル内のみに、タングステンなどの高融点金属から構成される導電層26a,26bを埋め込む。
【1040】
なお、絶縁層25のコンタクトホ−ル内には、高融点金属以外の他の材料を埋め込んでも構わない。
【1041】
次に、図129に示すように、スパッタリング法により、絶縁層25上に炭素(カ−ボン)層39を形成する。ここで、炭素層39の厚さは、LSIの内部配線の厚さと等しい値(例えば、約0.7〜約0.2μm)に設定される。
【1042】
次に、図130に示すように、スパッタリング法により、炭素層39上にマスク材(例えば、シリコン酸化層やシリコン窒化層など)29を、約0.05μmの厚さで形成する。ここで、マスク材29は、炭素層39の消滅を防ぐため、CVD法でなく、スパッタリング法で形成する。
【1043】
次に、図131に示すように、PEP(写真蝕刻工程)及び異方性エッチングを用いて、マスク材29をパタ−ニングする。このマスク材29のパタ−ンは、配線のパタ−ンと同じになる。
【1044】
次に、図132に示すように、マスク材29をマスクにして、異方性エッチングにより炭素層39をエッチングする。
【1045】
なお、本実施例では、PEPにより、直接、炭素層39をエッチングすることなく、PEPで加工したマスク材29をマスクにして炭素層39をエッチングしている。
【1046】
この理由は、以下のとおりである。PEPに用いるレジストは、酸素プラズマ処理(アッシャ−)、又はH2 SO4 とH2 2 の薬液により除去される。しかし、酸素プラズマ処理でレジストを除去する場合は、せっかくパタ−ニングした炭素層39が同時に除去されてしまう。一方、H2 SO4 とH2 2 の薬液によりレジストを除去する場合は、導電層(高融点金属の場合のみ)26a,26bが同時に除去されてしまう。
【1047】
そこで、導電層26a,26bが高融点金属の場合には、PEPで加工したマスク材29をマスクにして炭素層39をエッチングするのがよい。
【1048】
次に、図133に示すように、スパッタリング法又はCVD法により、例えば、酸化シリコンから構成される配線保護層50a,50bを、絶縁層25上、マスク材29上、及び炭素層39に形成された溝の側壁に形成する。また、この配線保護層50a,50bをエッチングし、配線保護層50a,50bを炭素層39に形成された溝の側壁のみに残存させる。
【1049】
次に、図134に示すように、スパッタリング法又はCVD法により、配線保護層50上に、銅、アルミニウム合金などなどから構成される金属層28を形成する。なお、配線は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属であってもよい。
【1050】
次に、図135に示すように、化学機械的研磨(CMP)により、炭素層39の間の溝内にのみ、配線保護層50a,50b及び金属28a,28bを残存させ、配線W1を形成する。
【1051】
なお、CMPに代えて、異方性エッチング又は等方性エッチングにより配線W1を形成するようにしてもよい。
【1052】
次に、図136に示すように、スパッタリング法により、マスク材29上及び配線W1上に絶縁層(例えば、シリコン酸化層)30を形成する。ここで、絶縁層30は、CVD法により形成しない方がよい。なぜなら、絶縁層30を形成する際の反応ガス中には、酸素O2 ガスが含まれているため、絶縁層30の形成時に、炭素層39が除去されてしまう可能性があるからである。
【1053】
また、絶縁層30の厚さは、絶縁層30がシリコン酸化層の場合は、0.01〜0.1μmの範囲にあるのが、絶縁層30の破裂なしに灰化を行うのに都合がよい。但し、絶縁層30の種類や質などにより、絶縁層30の最適な厚さは、それぞれ異なる。
【1054】
次に、図137及び図138に示すように、炭素層39を灰化し、炭素層39を、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞31に変換する。炭素層39の灰化は、以下の二つの方法のいずれかを使用することにより達成される。
【1055】
一つめは、酸素雰囲気中での熱処理(温度400〜450℃、時間2h程度)である。この方法では、炭素層39が二酸化炭素CO2 に変換する反応が緩やかに進むため、炭素層39の体積の膨脹による絶縁層29,30の破裂を防止できる利点がある反面、処理時間が長くなる欠点がある。
【1056】
二つめは、酸素プラズマ処理(アッシャ−)である。この方法では、炭素層39が二酸化炭素CO2 に変換する反応が速やかに進むため、処理時間が短くなる利点がある反面、炭素層39の体積の膨脹による絶縁層29,30の破裂が生じる可能性が高くなるという欠点がある。しかし、この欠点は、絶縁層29,30の質の改善や酸素プラズマ処理の温度の低下などにより回避できる。
【1057】
次に、図139に示すように、CVD法を用いて、絶縁層30上に低い誘電率を有する絶縁層(例えば、弗素を含むTEOSなど)32を形成する。
【1058】
次に、図140に示すように、PEP(写真蝕刻工程)及びRIE(反応性イオンエッチング)を用いて、配線W1に達するビアホ−ルを絶縁層30,32に設ける。
【1059】
次に、図141に示すように、選択成長法を用いて、ビアホ−ル内のみに、タングステンなどの高融点金属から構成される導電層33a,33bを埋め込む。なお、絶縁層30,32のビアホ−ル内には、高融点金属以外の他の材料を埋め込んでも構わない。
【1060】
次に、図142に示すように、配線W1を形成する際に使用した工程と同様の工程により配線W2を形成する。
【1061】
即ち、まず、スパッタリング法により、絶縁層32上に炭素(カ−ボン)層を形成する。ここで、炭素層の厚さは、配線W2の厚さと等しい値に設定されている。スパッタリング法により、炭素層上にマスク材(例えば、シリコン酸化層やシリコン窒化層など)36を、約0.05μmの厚さで形成する。
【1062】
この後、PEP(写真蝕刻工程)及び異方性エッチングを用いて、マスク材36をパタ−ニングする。マスク材36をマスクにして、異方性エッチングにより炭素層をエッチングする。
【1063】
スパッタリング法又はCVD法、及びRIEを用いて、例えば、酸化シリコンから構成される配線保護層51a,51bを炭素層の側壁に形成する。
【1064】
スパッタリング法又はCVD法により、炭素層上及び炭素層に設けられた溝内に、銅、アルミニウム合金などなどから構成される金属35a,35bを形成する。化学機械的研磨(CMP)により、炭素層の間の溝内にのみ、配線保護層51a,51b及び金属35a,35bを残存させ、配線W2を形成する。
【1065】
なお、CMPに代えて、異方性エッチング又は等方性エッチングにより配線W2を形成するようにしてもよい。
【1066】
スパッタリング法により、マスク材36上及び配線W2上に絶縁層(例えば、シリコン酸化層)37を形成する。この後、炭素層を灰化し、炭素層を、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞38に変換する。
【1067】
上述の製造方法によれば、配線W1,W2を形成するための溝を有する絶縁層に炭素層を用い、かつ、溝内に配線を形成した後にこの炭素層を灰化してガスが満たされた空洞に変換している。従って、容易に、図127の半導体装置を提供することができる。
【1068】
図143は、本発明の第23の実施の形態に関わる半導体装置を示している。
半導体基板(例えば、シリコンウェハ)21上には、フィ−ルド酸化層(例えば、シリコン酸化層)22が形成されている。フィ−ルド酸化層22に囲まれた素子領域には、MOSトランジスタが形成されている。このMOSトランジスタは、ゲ−ト電極23及びソ−ス・ドレイン領域24a,24bを有している。
【1069】
絶縁層25は、MOSトランジスタを覆っている。絶縁層25は、例えば、硼素燐ケイ酸ガラス(BPSG)や燐ケイ酸ガラス(PSG)などから構成することができる。
【1070】
絶縁層25の表面は、平坦である。絶縁層25の表面は、化学機械的研磨(CMP)により平坦にすることができる。絶縁層25には、ソ−ス・ドレイン領域24a,24bに達するコンタクトホ−ルが形成されている。
【1071】
このコンタクトホ−ル内には、タングステンなどの高融点金属から構成される導電層26a,26bが埋め込まれている。但し、導電層26a,26bは、高融点金属以外の他の材料から構成しても構わない。
【1072】
配線W1は、絶縁層25上に配置され、導電層26a,26bに接続されている。配線W1は、銅、アルミニウム合金などの金属層28a,28bと、この金属層28a,28bの側面を覆う配線保護層50a,50bとから構成されている。
【1073】
なお、配線W1は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属から構成してもよい。
【1074】
また、配線保護層50a,50bは、例えば、酸化シリコン、窒化シリコンなどの絶縁体、窒化チタニウム、チタニウムとタングステンの合金、白金などの遷移金属又はその合金、又はモリブデンなどから構成することができる。即ち、配線保護層50a,50bは、薬品に腐食され難く、酸化され難いものであれば何でもよい。
【1075】
配線W1の上部には、絶縁層30が形成されている。この絶縁層30は、配線W1に支えられている。配線W1間は、空洞(キャビティ)31になっている。この空洞31には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【1076】
絶縁層30は、配線W1間に空洞31を設ける際に重要となると共に、絶縁層30上に層を積み重ねる際の土台となる重要なものである。絶縁層30は、例えば、シリコン酸化膜などから構成される。
【1077】
絶縁層30上には、絶縁層32が形成されている。絶縁層32は、例えば、シリコン酸化層から構成される。絶縁層32には、配線W1に達するコンタクトホ−ルが形成されている。
【1078】
このコンタクトホ−ル内には、タングステンなどの高融点金属から構成される導電層33a,33bが埋め込まれている。但し、導電層33a,33bは、高融点金属以外の他の材料から構成しても構わない。
【1079】
配線W2は、絶縁層32上に配置され、導電層33a,33bに接続されている。配線W2は、銅、アルミニウム合金などの金属35a,35bと、この金属35a,35bの側面を覆う配線保護層51a,51bとから構成されている。
なお、配線W2は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステン、タンタルなどの高融点金属から構成してもよい。
【1080】
また、配線保護層51a,51bは、例えば、酸化シリコン、窒化シリコンなどの絶縁体、窒化チタニウム、チタニウムとタングステンの合金、白金などの遷移金属又はその合金、又はモリブデンなどから構成することができる。即ち、配線保護層51a,51bは、薬品に腐食され難く、酸化され難いものであれば何でもよい。
【1081】
配線W2の上部には、絶縁層37が形成されている。この絶縁層37は、配線W2に支えられている。配線W2間は、空洞(キャビティ)38になっている。この空洞38には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【1082】
絶縁層37は、配線W2間に空洞38を設ける際に重要となると共に、絶縁層37上に層を積み重ねる際の土台となる重要なものである。絶縁層37は、例えば、シリコン酸化層などから構成される。
【1083】
上記構成の半導体装置によれば、配線W1間には、酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞31が形成され、配線W2間には、酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞38が形成されている。
【1084】
この混合ガスの誘電率εは、1.0程度である。これにより、配線W1間及び配線W2間をシリコン酸化層などの絶縁層で満たす場合に比べて、極端に誘電率を低下させることができる。
【1085】
従って、素子の集積度の向上とLSIの性能の向上を同時に達成することができる。
【1086】
また、配線W1,W2の側面は、配線保護層50a,50b;51a,51bに覆われているため、チップの縁から空洞31,38を介して進入してきた水分H2 Oは、配線W1,W2の金属に直接到達することがない。
【1087】
従って、個々の配線W1,W2を水分H2 Oから保護することができる。
【1088】
また、この実施の形態における半導体装置(チップ)が搭載されるパッケ−ジに、パッケ−ジ外部と内部を接続する穴を設けておけば、空洞31,38は、空気で満たされると共に、この空気が循環することにより、チップ内で生じる熱は、パッケ−ジ外部へ効率よく排出される。
【1089】
従って、熱による不良が発生し難い半導体装置を提供することができる。
【1090】
また、配線W1,W2の側面は、配線保護膜50a,50b;51a,51bに覆われているため、配線W1,W2にヒロックが発生し難くなる。
【1091】
次に、図143の半導体装置の製造方法について説明する。
【1092】
まず、図144に示すように、絶縁層25上に炭素層39を形成するまでを、上述の第18の実施の形態における製造方法と同様の方法により行う。
【1093】
即ち、LOCOS法により半導体基板21上にフィ−ルド酸化層22を形成する。また、フィ−ルド酸化層22に囲まれた素子領域に、例えば、ゲ−ト電極23及びソ−ス・ドレイン領域24a,24bを有するMOSトランジスタを形成する。
【1094】
半導体基板21上の全面に、MOSトランンジスタを完全に覆う絶縁層(BPSGやPSGなど)25を形成する。この後、化学機械的研磨(CMP)を行い、絶縁層25の表面を平坦にする。
【1095】
PEP(写真蝕刻工程)により、絶縁層25にソ−ス・ドレイン領域24a,24bに達するコンタクトホ−ルを形成する。選択成長法により、絶縁層25のコンタクトホ−ル内のみに、タングステンなどの高融点金属から構成される導電層26a,26bを埋め込む。
【1096】
なお、絶縁層25のコンタクトホ−ル内には、高融点金属以外の他の材料を埋め込んでも構わない。
【1097】
スパッタリング法により、絶縁層25上に炭素(カ−ボン)層39を形成する。ここで、炭素層39の厚さは、LSIの内部配線の厚さと等しい値(例えば、約0.7〜約0.2μm)に設定される。
【1098】
スパッタリング法により、炭素層39上にマスク材(例えば、シリコン酸化層やシリコン窒化層など)を、約0.05μmの厚さで形成する。PEP(写真蝕刻工程)及び異方性エッチングを用いて、マスク材をパタ−ニングする。このマスク材をマスクにして、異方性エッチングにより炭素層39をエッチングする。
なお、PEPにより、直接、炭素層39をエッチングすることなく、PEPで加工したマスク材をマスクにして炭素層39をエッチングする理由は、上述の第2の実施の形態における製造方法で説明した理由と同じである。
【1099】
従って、導電層26a,26bが高融点金属の場合には、PEPで加工したマスク材をマスクに炭素層39をエッチングし、導電層26a,26bがH2 SO4 とH2 2 の薬液により腐蝕されないような材質である場合には、レジストをマスクに炭素層39をエッチングするのがよい。
【1100】
この後、マスク材を除去し、スパッタリング法又はCVD法により、例えば、酸化シリコンから構成される配線保護層50を、絶縁層25上及び炭素層39上に形成する。
【1101】
次に、図145に示すように、RIEにより配線保護層をエッチングし、配線保護層50a,50bを炭素層39の溝の側壁のみに残存させる。スパッタリング法又はCVD法により、炭素層39上及び炭素層39に形成された溝内に、銅、アルミニウム合金などなどから構成される金属層28を形成する。
【1102】
なお、配線は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステン、タンタルなどの高融点金属であってもよい。
【1103】
次に、図146に示すように、化学機械的研磨(CMP)により、炭素層39の間の溝内にのみ、配線保護層50a,50b及び金属層28a,28bを残存させ、配線W1を形成する。
【1104】
なお、CMPに代えて、異方性エッチング又は等方性エッチングにより配線W1を形成するようにしてもよい。
【1105】
次に、図147に示すように、スパッタリング法により、炭素層39上及び配線W1上に絶縁層(例えば、シリコン酸化層)30を形成する。ここで、絶縁層30は、CVD法により形成しない方がよい。なぜなら、絶縁層30を形成する際の反応ガス中には、酸素O2 ガスが含まれているため、絶縁層30の形成時に、炭素層39が除去されてしまう可能性があるからである。
【1106】
また、絶縁層30の厚さは、絶縁層30がシリコン酸化層の場合は、0.01〜0.1μmの範囲にあるのが、絶縁層30の破裂なしに灰化を行うのに都合がよい。但し、絶縁層30の種類や質などにより、絶縁層30の最適な厚さは、それぞれ異なる。
【1107】
次に、図148及び図149に示すように、炭素層39を灰化し、炭素層39を、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞31に変換する。炭素層39の灰化は、以下の二つの方法のいずれかを使用することにより達成される。
【1108】
一つめは、酸素雰囲気中での熱処理(温度400〜450℃、時間2h程度)である。この方法では、炭素層39が二酸化炭素CO2 に変換する反応が緩やかに進むため、炭素層39の体積の膨脹による絶縁層30の破裂を防止できる利点がある反面、処理時間が長くなる欠点がある。
【1109】
二つめは、酸素プラズマ処理(アッシャ−)である。この方法では、炭素層39が二酸化炭素CO2 に変換する反応が速やかに進むため、処理時間が短くなる利点がある反面、炭素層39の体積の膨脹による絶縁層30の破裂が生じる可能性が高くなるという欠点がある。しかし、この欠点は、絶縁層30の質の改善や酸素プラズマ処理の温度の低下などにより回避できる。
【1110】
次に、図150に示すように、CVD法を用いて、絶縁層30上に低い誘電率を有する絶縁層(例えば、弗素を含むTEOSなど)32を形成する。
【1111】
次に、図151に示すように、PEP(写真蝕刻工程)及びRIE(反応性イオンエッチング)を用いて、配線W1に達するビアホ−ルを絶縁層30,32に設ける。
【1112】
次に、図152に示すように、選択成長法を用いて、ビアホ−ル内のみに、タングステンやタンタルなどの高融点金属から構成される導電層33a,33bを埋め込む。
【1113】
なお、絶縁層30,32のビアホ−ル内には、高融点金属以外の他の材料を埋め込んでも構わない。
【1114】
次に、図153に示すように、配線W1を形成する際に使用した工程と同様の工程により配線W2を形成する。
【1115】
即ち、まず、スパッタリング法により、絶縁層32上に炭素(カ−ボン)層を形成する。ここで、炭素層の厚さは、配線W2の厚さと等しい値に設定されている。スパッタリング法により、炭素層上にマスク材(例えば、シリコン酸化層やシリコン窒化層など)を、約0.05μmの厚さで形成する。
【1116】
この後、PEP(写真蝕刻工程)及び異方性エッチングを用いて、マスク材をパタ−ニングする。マスク材をマスクにして、異方性エッチングにより炭素層をエッチングする。マスク材を除去し、スパッタリング法又はCVD法、及びRIEを用いて、例えば、酸化シリコンから構成される配線保護層51a,51bを、炭素層の溝の側壁に形成する。
【1117】
スパッタリング法又はCVD法により、炭素層上及び炭素層に形成された溝内に、銅、アルミニウム合金などなどから構成される金属35a,35bを形成する。化学機械的研磨(CMP)により、炭素層の溝内にのみ、配線保護層51a,51b及び金属35a,35bを残存させ、配線W2を形成する。
【1118】
スパッタリング法により、炭素層上及び配線W2上に絶縁層(例えば、シリコン酸化層)37を形成する。この後、炭素層を灰化し、炭素層を、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞38に変換する。
【1119】
上述の製造方法によれば、配線W1,W2を形成するための溝を有する絶縁層に炭素層を用い、かつ、溝内に配線を形成した後にこの炭素層を灰化してガスが満たされた空洞に変換している。従って、容易に、図143の半導体装置を提供することができる。
【1120】
また、マスク材は、炭素層をパタ−ニングした後、炭素層の灰化前に、除去されている。従って、炭素層の灰化を迅速かつ正確に行うことができる。
【1121】
図154は、本発明の第24の実施の形態に関わる半導体装置を示している。
半導体基板(例えば、シリコンウェハ)21上には、フィ−ルド酸化層(例えば、シリコン酸化層)22が形成されている。フィ−ルド酸化層22に囲まれた素子領域には、MOSトランジスタが形成されている。このMOSトランジスタは、ゲ−ト電極23及びソ−ス・ドレイン領域24a,24bを有している。
【1122】
絶縁層25は、MOSトランジスタを覆っている。絶縁層25は、例えば、硼素燐ケイ酸ガラス(BPSG)や燐ケイ酸ガラス(PSG)などから構成することができる。
【1123】
絶縁層25の表面は、平坦である。絶縁層25の表面は、化学機械的研磨(CMP)により平坦にすることができる。絶縁層25には、ソ−ス・ドレイン領域24a,24bに達するコンタクトホ−ルが形成されている。
【1124】
このコンタクトホ−ル内には、タングステンなどの高融点金属から構成される導電層26a,26bが埋め込まれている。但し、導電層26a,26bは、高融点金属以外の他の材料から構成しても構わない。
【1125】
配線W1は、絶縁層25上に配置され、導電層26a,26bに接続されている。配線W1は、銅、アルミニウム合金などの金属層28a,28bと、この金属層28a,28bの側面を覆う配線保護層50a,50bとから構成されている。
【1126】
なお、配線W1は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属から構成してもよい。
【1127】
また、配線保護層50a,50bは、例えば、酸化シリコン、窒化シリコンなどの絶縁体、窒化チタニウム、チタニウムとタングステンの合金、白金などの遷移金属又はその合金、又はモリブデンなどから構成することができる。即ち、配線保護層50a,50bは、薬品に腐食され難く、酸化され難いものであれば何でもよい。
【1128】
配線W1の上部には、絶縁層29,30が形成されている。この絶縁層29,30は、配線W1に支えられている。配線W1間は、空洞(キャビティ)31になっている。この空洞31には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【1129】
なお、絶縁層29は、配線W1のパタ−ンを決定するもので、例えば、シリコン酸化層やシリコン窒化層などから構成される。絶縁層30は、配線W1間に空洞31を設ける際に重要となると共に、絶縁層30上に層を積み重ねる際の土台となる重要なものである。絶縁層30は、例えば、シリコン酸化膜などから構成される。
【1130】
絶縁層30には、配線W1に達するコンタクトホ−ルが形成されている。このコンタクトホ−ル内及びコンタクトホ−ル上には、銅、アルミニウム合金などの金属層35a,35bと、この金属層35a,35bの側面を覆う配線保護層51a,51bとから構成される配線W2が形成されている。
【1131】
なお、配線W2は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステン、タンタルなどの高融点金属から構成してもよい。
【1132】
また、配線保護層51a,51bは、例えば、酸化シリコン、窒化シリコンなどの絶縁体、窒化チタニウム、チタニウムとタングステンの合金、白金などの遷移金属又はその合金、又はモリブデンなどから構成することができる。即ち、配線保護層51a,51bは、薬品に腐食され難く、酸化され難いものであれば何でもよい。
【1133】
配線W2の上部と下部の間には、絶縁層(例えば、シリコン酸化層)43が形成されている。この絶縁層43は、配線W2に支えられている。配線W2の下部は、柱状であり、また、配線W2の上部は、線状であり、絶縁層43上に配置されている。
【1134】
配線W2上には、絶縁層(例えば、シリコン酸化層)37が形成されている。配線W2の下部の間(上下の配線W1と配線W2の間)は、空洞(キャビティ)40になっている。この空洞40には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【1135】
配線W2の上部の間(左右の配線W2の間)は、空洞(キャビティ)38になっている。この空洞38には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【1136】
なお、空洞31,38,40を製造時に空気に接触させることにより、又はパッケ−ジに穴を設けておくことにより、空洞31,38,40内に空気を満たすようにしてもよい。
【1137】
上記構成の半導体装置によれば、配線W1間には、酸素O2 と二酸化炭素CO2 の混合ガス又は空気が満たされた空洞31が形成され、配線W2間には、酸素O2 と二酸化炭素CO2 の混合ガス又は空気が満たされた空洞38が形成されている。
【1138】
さらに、導電層35a,35bの間、即ち、配線W1と配線W2の間には、酸素O2 と二酸化炭素CO2 の混合ガス又は空気が満たされた空洞40が形成されている。
【1139】
この混合ガス又は空気の誘電率εは、1.0程度である。これにより、同一層(左右)の配線間及び異なる層(上下)の配線間をシリコン酸化層などの絶縁層で満たす場合に比べて、極端に誘電率を低下させることができる。
【1140】
従って、素子の集積度の向上とLSIの性能の向上を同時に達成することができる。
【1141】
また、配線W1,W2の側面は、配線保護層50a,50b;51a,51bに覆われているため、チップの縁から空洞31,38,40を介して進入してきた水分H2 Oは、配線W1,W2の金属に直接到達することがない。
【1142】
従って、個々の配線W1,W2を水分H2 Oから保護することができる。
【1143】
また、この実施の形態における半導体装置(チップ)が搭載されるパッケ−ジに、パッケ−ジ外部と内部を接続する穴を設けておけば、空洞31,38は、空気で満たされると共に、この空気が循環することにより、チップ内で生じる熱は、パッケ−ジ外部へ効率よく排出される。
【1144】
従って、熱による不良が発生し難い半導体装置を提供することができる。
【1145】
また、配線W1,W2の側面は、配線保護膜50a,50b;51a,51bに覆われているため、配線W1,W2にヒロックが発生し難くなる。
【1146】
次に、図154の半導体装置の製造方法について説明する。
【1147】
まず、図155に示すように、絶縁層25上に配線W1を形成するまでを、上述の第22の実施の形態における製造方法と同様の方法により行う。
【1148】
即ち、LOCOS法により半導体基板21上にフィ−ルド酸化層22を形成する。また、フィ−ルド酸化層22に囲まれた素子領域に、例えば、ゲ−ト電極23及びソ−ス・ドレイン領域24a,24bを有するMOSトランジスタを形成する。
【1149】
半導体基板21上の全面に、MOSトランンジスタを完全に覆う絶縁層(BPSGやPSGなど)25を形成する。この後、化学機械的研磨(CMP)を行い、絶縁層25の表面を平坦にする。
【1150】
PEP(写真蝕刻工程)により、絶縁層25にソ−ス・ドレイン領域24a,24bに達するコンタクトホ−ルを形成する。選択成長法により、絶縁層25のコンタクトホ−ル内のみに、タングステンなどの高融点金属から構成される導電層26a,26bを埋め込む。
【1151】
なお、絶縁層25のコンタクトホ−ル内には、高融点金属以外の他の材料を埋め込んでも構わない。
【1152】
スパッタリング法により、絶縁層25上に炭素(カ−ボン)層を形成する。ここで、炭素層の厚さは、LSIの内部配線の厚さと等しい値(例えば、約0.7〜約0.2μm)に設定される。
【1153】
スパッタリング法により、炭素層上にマスク材(例えば、シリコン酸化層やシリコン窒化層など)29を、約0.05μmの厚さで形成する。PEP(写真蝕刻工程)及び異方性エッチングを用いて、マスク材29をパタ−ニングする。このマスク材29をマスクにして、異方性エッチングにより炭素層をエッチングする。
【1154】
なお、PEPにより、直接、炭素層をエッチングすることなく、PEPで加工したマスク材をマスクにして炭素層をエッチングする理由は、上述の第2の実施の形態における製造方法で説明した理由と同じである。
【1155】
従って、導電層26a,26bが高融点金属の場合には、PEPで加工したマスク材29をマスクに炭素層をエッチングし、導電層26a,26bがH2 SO4 とH2 2 の薬液により腐蝕されないような材質である場合には、レジストをマスクに炭素層をエッチングするのがよい。
【1156】
この後、スパッタリング法又はCVD法により、例えば、酸化シリコンから構成される配線保護層を、炭素層上及び炭素層に形成された溝内に形成する。RIEにより配線保護層をエッチングし、配線保護層50a,50bを炭素層に形成された溝の側壁のみに残存させる。スパッタリング法又はCVD法により、配線保護層50上に、銅、アルミニウム合金などから構成される金属層28a,28bを形成する。
【1157】
なお、配線は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステン、タンタルなどの高融点金属であってもよい。
【1158】
化学機械的研磨(CMP)により、炭素層の間の溝内にのみ、配線保護層50a,50b及び金属28a,28bを残存させ、配線W1を形成する。なお、CMPに代えて、異方性エッチング又は等方性エッチングにより配線W1を形成するようにしてもよい。
【1159】
スパッタリング法により、マスク材29上及び配線W1上に絶縁層(例えば、シリコン酸化層)30を形成する。ここで、絶縁層30は、CVD法により形成しない方がよい。なぜなら、絶縁層30を形成する際の反応ガス中には、酸素O2 ガスが含まれているため、絶縁層30の形成時に、炭素層が除去されてしまう可能性があるからである。
【1160】
また、絶縁層30の厚さは、絶縁層30がシリコン酸化層の場合は、0.01〜0.1μmの範囲にあるのが、絶縁層30の破裂なしに灰化を行うのに都合がよい。但し、絶縁層30の種類や質などにより、絶縁層30の最適な厚さは、それぞれ異なる。
【1161】
この後、炭素層を灰化し、この炭素層を、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞31に変換する。
【1162】
上述の工程により配線W1を形成した後、スパッタリング法により、絶縁層30上に炭素層41を形成する。また、スパッタリング法により、炭素層41上に絶縁層(例えば、シリコン酸化層)43を約0.05μmの厚さで形成する。
【1163】
なお、絶縁層43は、CVD法により形成しない方がよい。なぜなら、絶縁層43を形成する際の反応ガス中には、酸素O2 ガスが含まれているため、絶縁層43の形成時に、炭素層41が除去されてしまう可能性があるからである。
【1164】
また、絶縁層43の厚さは、絶縁層43がシリコン酸化層の場合は、0.01〜0.1μmの範囲にあるのが、絶縁層43の破裂なしに灰化を行うのに都合がよい。但し、絶縁層43の種類や質などにより、絶縁層43の最適な厚さは、それぞれ異なる。
【1165】
続けて、スパッタリング法により、絶縁層43上に炭素層44を形成する。
【1166】
この後、炭素層44をパタ−ニングして、配線を形成するための溝を炭素層44に設ける。炭素層44のパタ−ニングには、PEP(写真蝕刻工程)とRIEを用いる方法と、PEPとRIEで加工したマスク材をマスクにパタ−ニングする方法の2つがある。
【1167】
本実施例では、PEPとRIEを用いる方法について述べる。即ち、炭素層44上にレジスト45を形成する。レジスト45をパタ−ニングした後、このレジスト45をマスクに異方性エッチングにより炭素層44をエッチングし、炭素層44に溝を形成する。
【1168】
この後、H2 SO4 とH2 2 の薬液を用いて、レジスト45を除去する。なお、酸素プラズマ処理は炭素層44の消滅を招くため、この酸素プラズマ処理はレジスト45の剥離に用いない。
【1169】
次に、図156に示すように、炭素層44上に再びレジスト46を形成する。レジスト46をパタ−ニングした後、このレジスト46をマスクにして異方性エッチングにより溝の底部に露出した絶縁層43及び炭素層41をエッチングする。
【1170】
この後、H2 SO4 とH2 2 の薬液を用いて、レジスト46を除去する。なお、酸素プラズマ処理は炭素層46の消滅を招くため、この酸素プラズマ処理はレジスト46の剥離に用いない。
【1171】
次に、図157に示すように、異方性エッチングにより、溝の底部に露出した絶縁層30を除去し、配線W1に達するビアホ−ルを形成する。
【1172】
スパッタリング法又はCVD法により、例えば、酸化シリコンから構成される配線保護層51a,51bを、炭素層44の溝の側壁及び炭素層41のビアホ−ルの側壁に形成する。また、スパッタリング法又はCVD法により、炭素層44上、炭素層44の溝内及び炭素層41のビアホ−ル内に、銅、アルミニウム合金などなどから構成される金属層35を形成する。
【1173】
次に、図158に示すように、化学機械的研磨(CMP)により、炭素層44の間の溝内及び炭素層41のビアホ−ル内に、それぞれ配線保護層51a,51b及び金属35a,35bを残存させる。また、スパッタリング法により、炭素層44上に絶縁層(例えば、シリコン酸化層)37を、約0.05μmの厚さで形成する。
【1174】
なお、絶縁層37,43の厚さは、絶縁層37,43がシリコン酸化層の場合は、0.01〜0.1μmの範囲にあるのが、絶縁層37,43の破裂なしに灰化を行うのに都合がよい。但し、絶縁層37,43の種類や質などにより、絶縁層37,43の最適な厚さは、それぞれ異なる。
【1175】
次に、図159及び図160に示すように、酸素雰囲気中での熱処理又は酸素プラズマ処理により、炭素層41,44を同時を灰化し、炭素層41を、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞40に変換し、炭素層44を、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞38に変換する。
【1176】
上述の製造方法によれば、配線W1,W2を形成するための溝又はビアホ−ルを有する絶縁層に炭素層を用い、かつ、溝内及びビアホ−ル内に配線を形成した後にこの炭素層を灰化してガスが満たされた空洞に変換している。
【1177】
また、配線W2は、コンタクトプラグを用いることなく、配線W1に直接接続されるているため、製造工程数を減らすことができる。
【1178】
これにより、多層配線構造の半導体装置において、同一層(左右)の配線間に酸素O2 と二酸化炭素CO2 の混合ガス又は空気を満たし、かつ、異なる層(上下)の配線間に酸素O2 と二酸化炭素CO2 の混合ガス又は空気を満たすことができる。
【1179】
図161は、本発明の第25の実施の形態に関わる半導体装置を示している。
半導体基板(例えば、シリコンウェハ)21上には、フィ−ルド酸化層(例えば、シリコン酸化層)22が形成されている。フィ−ルド酸化層22に囲まれた素子領域には、MOSトランジスタが形成されている。このMOSトランジスタは、ゲ−ト電極23及びソ−ス・ドレイン領域24a,24bを有している。
【1180】
絶縁層25は、MOSトランジスタを覆っている。絶縁層25は、例えば、硼素燐ケイ酸ガラス(BPSG)や燐ケイ酸ガラス(PSG)などから構成することができる。
【1181】
絶縁層25の表面は、平坦である。絶縁層25の表面は、化学機械的研磨(CMP)により平坦にすることができる。絶縁層25には、ソ−ス・ドレイン領域24a,24bに達するコンタクトホ−ルが形成されている。
【1182】
このコンタクトホ−ル内には、タングステンなどの高融点金属から構成される導電層26a,26bが埋め込まれている。但し、導電層26a,26bは、高融点金属以外の他の材料から構成しても構わない。
【1183】
配線W1は、絶縁層25上に配置され、導電層26a,26bに接続されている。配線W1は、銅、アルミニウム合金などの金属層28a,28bと、この金属層28a,28bの側面を覆う配線保護層50a,50bとから構成されている。
【1184】
なお、配線W1は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステン、タンタルなどの高融点金属から構成してもよい。
【1185】
また、配線保護層50a,50bは、例えば、酸化シリコン、窒化シリコンなどの絶縁体、窒化チタニウム、チタニウムとタングステンの合金、白金などの遷移金属又はその合金、又はモリブデンなどから構成することができる。即ち、配線保護層50a,50bは、薬品に腐食され難く、酸化され難いものであれば何でもよい。
【1186】
配線W1の上部には、絶縁層30が形成されている。この絶縁層30は、配線W1に支えられている。配線W1間は、空洞(キャビティ)31になっている。この空洞31には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【1187】
絶縁層30は、配線W1間に空洞31を設ける際に重要となると共に、絶縁層30上に層を積み重ねる際の土台となる重要なものである。絶縁層30は、例えば、シリコン酸化膜などから構成される。
【1188】
絶縁層30には、配線W1に達するコンタクトホ−ルが形成されている。このコンタクトホ−ル内及びコンタクトホ−ル上には、銅、アルミニウム合金などの金属層35a,35bと、この金属層35a,35bの側面を覆う配線保護層51a,51bとから構成される配線W2が形成されている。
【1189】
なお、配線W2は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属から構成してもよい。
【1190】
また、配線保護層51a,51bは、例えば、酸化シリコン、窒化シリコンなどの絶縁体、窒化チタニウム、チタニウムとタングステンの合金、白金などの遷移金属又はその合金、又はモリブデンなどから構成することができる。即ち、配線保護層51a,51bは、薬品に腐食され難く、酸化され難いものであれば何でもよい。
【1191】
配線W2の上部と下部の間には、絶縁層(例えば、シリコン酸化層)43が形成されている。この絶縁層43は、配線W2に支えられている。配線W2の下部は、柱状であり、また、配線W2の上部は、線状であり、絶縁層43上に配置されている。
【1192】
配線W2上には、絶縁層(例えば、シリコン酸化層)37が形成されている。配線W2の下部の間(上下の配線W1と配線W2の間)は、空洞(キャビティ)40になっている。この空洞40には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【1193】
配線W2の上部の間(左右の配線W2の間)は、空洞(キャビティ)38になっている。この空洞38には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【1194】
上記構成の半導体装置によれば、配線W1間には、酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞31が形成され、配線W2間には、酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞38が形成されている。
【1195】
さらに、導電層35a,35bの間、即ち、配線W1と配線W2の間には、酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞40が形成されている。
この混合ガスの誘電率εは、1.0程度である。これにより、同一層(左右)の配線間及び異なる層(上下)の配線間をシリコン酸化層などの絶縁層で満たす場合に比べて、極端に誘電率を低下させることができる。
【1196】
従って、素子の集積度の向上とLSIの性能の向上を同時に達成することができる。
【1197】
また、配線W1,W2の側面は、配線保護層50a,50b;51a,51bに覆われているため、チップの縁から空洞31,38,40を介して進入してきた水分H2 Oは、配線W1,W2の金属に直接到達することがない。
【1198】
従って、個々の配線W1,W2を水分H2 Oから保護することができる。
【1199】
また、この実施の形態における半導体装置(チップ)が搭載されるパッケ−ジに、パッケ−ジ外部と内部を接続する穴を設けておけば、空洞31,38は、空気で満たされると共に、この空気が循環することにより、チップ内で生じる熱は、パッケ−ジ外部へ効率よく排出される。
【1200】
従って、熱による不良が発生し難い半導体装置を提供することができる。
【1201】
また、配線W1,W2の側面は、配線保護膜50a,50b;51a,51bに覆われているため、配線W1,W2にヒロックが発生し難くなる。
【1202】
次に、図161の半導体装置の製造方法について説明する。
【1203】
まず、図162に示すように、絶縁層25上に配線W1を形成するまでを、上述の第23の実施の形態における製造方法と同様の方法により行う。
【1204】
即ち、LOCOS法により半導体基板21上にフィ−ルド酸化層22を形成する。また、フィ−ルド酸化層22に囲まれた素子領域に、例えば、ゲ−ト電極23及びソ−ス・ドレイン領域24a,24bを有するMOSトランジスタを形成する。
【1205】
半導体基板21上の全面に、MOSトランンジスタを完全に覆う絶縁層(BPSGやPSGなど)25を形成する。この後、化学機械的研磨(CMP)を行い、絶縁層25の表面を平坦にする。
【1206】
PEP(写真蝕刻工程)により、絶縁層25にソ−ス・ドレイン領域24a,24bに達するコンタクトホ−ルを形成する。選択成長法により、絶縁層25のコンタクトホ−ル内のみに、タングステンなどの高融点金属から構成される導電層26a,26bを埋め込む。
【1207】
なお、絶縁層25のコンタクトホ−ル内には、高融点金属以外の他の材料を埋め込んでも構わない。
【1208】
スパッタリング法により、絶縁層25上に炭素(カ−ボン)層を形成する。ここで、炭素層の厚さは、LSIの内部配線の厚さと等しい値(例えば、約0.7〜約0.2μm)に設定される。
【1209】
スパッタリング法により、炭素層上にマスク材(例えば、シリコン酸化層やシリコン窒化層など)を、約0.05μmの厚さで形成する。PEP(写真蝕刻工程)及び異方性エッチングを用いて、マスク材をパタ−ニングする。このマスク材をマスクにして、異方性エッチングにより炭素層をエッチングする。
【1210】
なお、PEPにより、直接、炭素層をエッチングすることなく、PEPで加工したマスク材をマスクにして炭素層をエッチングする理由は、上述の第2の実施の形態における製造方法で説明した理由と同じである。
【1211】
従って、導電層26a,26bが高融点金属の場合には、PEPで加工したマスク材をマスクに炭素層をエッチングし、導電層26a,26bがH2 SO4 とH2 2 の薬液により腐蝕されないような材質である場合には、レジストをマスクに炭素層をエッチングするのがよい。
【1212】
この後、マスク材を除去し、スパッタリング法又はCVD法により、例えば、酸化シリコンから構成される配線保護層50a,50bを、炭素層に形成された溝の側壁に形成する。スパッタリング法又はCVD法により、炭素層上及び炭素層に形成された溝内に、銅、アルミニウム合金などから構成される金属層28a,28bを形成する。
【1213】
なお、配線は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステン、タンタルなどの高融点金属であってもよい。
【1214】
化学機械的研磨(CMP)により、炭素層の間の溝内にのみ、配線保護層50a,50b及び金属28a,28bを残存させ、配線W1を形成する。なお、CMPに代えて、異方性エッチング又は等方性エッチングにより配線W1を形成するようにしてもよい。
【1215】
スパッタリング法により、マスク材29上及び配線W1上に絶縁層(例えば、シリコン酸化層)30を形成する。ここで、絶縁層30は、CVD法により形成しない方がよい。なぜなら、絶縁層30を形成する際の反応ガス中には、酸素O2 ガスが含まれているため、絶縁層30の形成時に、炭素層が除去されてしまう可能性があるからである。
【1216】
また、絶縁層30の厚さは、絶縁層30がシリコン酸化層の場合は、0.01〜0.1μmの範囲にあるのが、絶縁層30の破裂なしに灰化を行うのに都合がよい。但し、絶縁層30の種類や質などにより、絶縁層30の最適な厚さは、それぞれ異なる。
【1217】
この後、炭素層を灰化し、この炭素層を、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞31に変換する。
【1218】
上述の工程により配線W1を形成した後、スパッタリング法により、絶縁層30上に炭素層41を形成する。また、スパッタリング法により、炭素層41上に絶縁層(例えば、シリコン酸化層)43を約0.05μmの厚さで形成する。
【1219】
なお、絶縁層43は、CVD法により形成しない方がよい。なぜなら、絶縁層43を形成する際の反応ガス中には、酸素O2 ガスが含まれているため、絶縁層43の形成時に、炭素層41が除去されてしまう可能性があるからである。
【1220】
また、絶縁層43の厚さは、絶縁層43がシリコン酸化層の場合は、0.01〜0.1μmの範囲にあるのが、絶縁層43の破裂なしに灰化を行うのに都合がよい。但し、絶縁層43の種類や質などにより、絶縁層43の最適な厚さは、それぞれ異なる。
【1221】
続けて、スパッタリング法により、絶縁層43上に炭素層44を形成する。
【1222】
この後、炭素層44をパタ−ニングして、配線を形成するための溝を炭素層44に設ける。炭素層44パタ−ニングには、PEP(写真蝕刻工程)とRIEを用いる方法と、PEPとRIEで加工したマスク材をマスクにパタ−ニングする方法の2つがある。
【1223】
本実施例では、PEPとRIEを用いる方法について述べる。即ち、炭素層44上にレジスト45を形成する。レジスト45をパタ−ニングした後、このレジスト45をマスクに異方性エッチングにより炭素層44をエッチングし、炭素層44に溝を形成する。
【1224】
この後、H2 SO4 とH2 2 の薬液を用いて、レジスト45を除去する。なお、酸素プラズマ処理は炭素層44の消滅を招くため、この酸素プラズマ処理はレジスト45の剥離に用いない。
【1225】
次に、図163に示すように、炭素層44上に再びレジスト46を形成する。レジスト46をパタ−ニングした後、このレジスト46をマスクにして異方性エッチングにより溝の底部に露出した絶縁層43及び炭素層41をエッチングする。
【1226】
この後、H2 SO4 とH2 2 の薬液を用いて、レジスト46を除去する。なお、酸素プラズマ処理は炭素層46の消滅を招くため、この酸素プラズマ処理はレジスト46の剥離に用いない。
【1227】
次に、図164に示すように、異方性エッチングにより、溝の底部に露出した絶縁層30をエッチングし、溝の底部の一部に配線W1に達するビアホ−ルを形成する。
【1228】
スパッタリング法又はCVD法により、例えば、酸化シリコンから構成される配線保護層51a,51bを、炭素層44の溝の側壁及び炭素層41のビアホ−ルの側壁に形成する。また、スパッタリング法又はCVD法により、炭素層44上、炭素層44の溝内及び炭素層41のビアホ−ル内に、銅、アルミニウム合金などなどから構成される金属層35を形成する。
【1229】
次に、図165に示すように、化学機械的研磨(CMP)により、炭素層44の間の溝内及び炭素層41のビアホ−ル内に、それぞれ配線保護層51a,51b及び金属層35a,35bを残存させる。また、スパッタリング法により、炭素層44上に絶縁層(例えば、シリコン酸化層)37を、約0.05μmの厚さで形成する。
【1230】
なお、絶縁層37,43の厚さは、絶縁層37,43がシリコン酸化層の場合は、0.01〜0.1μmの範囲にあるのが、絶縁層37,43の破裂なしに灰化を行うのに都合がよい。但し、絶縁層37,43の種類や質などにより、絶縁層37,43の最適な厚さは、それぞれ異なる。
【1231】
次に、図166及び図167に示すように、酸素雰囲気中での熱処理又は酸素プラズマ処理により、炭素層41,44を同時を灰化し、炭素層41を、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞40に変換し、炭素層44を、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞38に変換する。
【1232】
上述の製造方法によれば、配線W1,W2を形成するための溝又はビアホ−ルを有する絶縁層に炭素層を用い、かつ、溝内及びビアホ−ル内に配線を形成した後にこの炭素層を灰化してガスが満たされた空洞に変換している。
【1233】
また、配線W2は、コンタクトプラグを用いることなく、配線W1に直接接続されるているため、製造工程数を減らすことができる。
【1234】
これにより、多層配線構造の半導体装置において、同一層(左右)の配線間に酸素O2 と二酸化炭素CO2 の混合ガス又は空気を満たし、かつ、異なる層(上下)の配線間に酸素O2 と二酸化炭素CO2 の混合ガス又は空気を満たすことができる。
【1235】
また、マスク材は、炭素層をパタ−ニングした後、炭素層の灰化前に、除去されている。従って、炭素層の灰化を迅速かつ正確に行うことができる。
【1236】
図168は、本発明の第26の実施の形態に関わる半導体装置を示している。
半導体基板(例えば、シリコンウェハ)21上には、絶縁層25が形成されている。絶縁層25上には、配線W1が形成されている。配線W1は、例えば、銅、アルミニウム合金などの金属28a,28bと、この金属28a,28bの底面及び側面を覆うU字溝状のバリア層27a,27bとから構成されている。
【1237】
なお、配線W1は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属から構成してもよい。また、バリア層27a,27bは、例えば、チタンと窒化チタンの積層などから構成することができる。
【1238】
互いに隣接する配線W1の間隔は、Hである。この間隔Hが非常に広い場合、配線W1の間には、ダミ−配線D1が形成される。
【1239】
ダミ−配線D1は、例えば、銅、アルミニウム合金などの金属層28d,28dと、この金属層28d,28dの底面及び側面を覆うU字溝状のバリア層27d,27dとから構成されている。
【1240】
なお、ダミ−配線D1は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属から構成してもよい。また、バリア層27d,27dは、例えば、チタンと窒化チタンの積層などから構成することができる。
【1241】
配線W1の上部には、絶縁層29,30が形成されている。この絶縁層29,30は、配線W1及びダミ−配線D1に支えられている。配線W1及びダミ−配線D1の間は、空洞(キャビティ)31になっている。この空洞31には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【1242】
なお、ダミ−配線D1は、絶縁層29,30が空洞31内に崩れ落ちないようにするためのものであり、通常の配線としての機能を有していない。
【1243】
また、絶縁層29は、配線W1及びダミ−配線D1のパタ−ンを決定するもので、例えば、シリコン酸化層やシリコン窒化層などから構成される。絶縁層30は、配線W1及びダミ−配線D1の間に空洞31を設ける際に重要となると共に、絶縁層30上に層を積み重ねる際の土台となる重要なものである。絶縁層30は、例えば、シリコン酸化膜などから構成される。
【1244】
絶縁層30上には、絶縁層32が形成されている。絶縁層32は、例えば、シリコン酸化層から構成される。
【1245】
絶縁層32上には、配線W2が形成されている。配線W2は、例えば、銅、アルミニウム合金などの金属層35a,35bと、この金属層35a,35bの底面及び側面を覆うU字溝状のバリア層34a,34bとから構成されている。
【1246】
なお、配線W2は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属から構成してもよい。また、バリア層34a,34bは、例えば、チタンと窒化チタンの積層などから構成することができる。
【1247】
互いに隣接する配線W2の間隔は、Hである。この間隔Hが非常に広い場合、配線W2の間には、ダミ−配線D2が形成される。
【1248】
ダミ−配線D2は、例えば、銅、アルミニウム合金などの金属層35d,35dと、この金属層35d,35dの底面及び側面を覆うU字溝状のバリア層34d,34dとから構成されている。
【1249】
なお、ダミ−配線D2は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属から構成してもよい。また、バリア層34d,34dは、例えば、チタンと窒化チタンの積層などから構成することができる。
【1250】
配線W2の上部には、絶縁層36,37が形成されている。この絶縁層36,37は、配線W2及びダミ−配線D2に支えられている。配線W2及びダミ−配線D2の間は、空洞(キャビティ)38になっている。この空洞38には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【1251】
なお、ダミ−配線D2は、絶縁層36,37が空洞38内に崩れ落ちないようにするためのものであり、通常の配線としての機能を有していない。
【1252】
また、絶縁層36は、配線W2及びダミ−配線D2のパタ−ンを決定するもので、例えば、シリコン酸化層やシリコン窒化層などから構成される。絶縁層37は、配線W2及びダミ−配線D2の間に空洞38を設ける際に重要となると共に、絶縁層37上に層を積み重ねる際の土台となる重要なものである。絶縁層37は、例えば、シリコン酸化膜などから構成される。
【1253】
上記構成の半導体装置によれば、配線W1間には、酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞31が形成され、配線W2間には、酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞38が形成されている。
【1254】
この混合ガスの誘電率εは、1.0程度である。これにより、配線W1間及び配線W2間をシリコン酸化層などの絶縁層で満たす場合に比べて、極端に誘電率を低下させることができる。
【1255】
従って、素子の集積度の向上とLSIの性能の向上を同時に達成することができる。
【1256】
また、互いに隣接する配線W1の間隔Hが非常に広い場合に、配線W1の間には、ダミ−配線D1を形成している。同様に、互いに隣接する配線W2の間隔Hが非常に広い場合に、配線W2の間には、ダミ−配線D2を形成している。
【1257】
従って、配線W1,W2上の絶縁膜が空洞31,38内に崩れ落ちるという事態が生じることもない。
【1258】
図169は、本発明の第27の実施の形態に関わる半導体装置を示している。
半導体基板(例えば、シリコンウェハ)21上には、絶縁層25が形成されている。絶縁層25上には、配線W1が形成されている。配線W1は、例えば、銅、アルミニウム合金などの金属層28a,28bと、この金属層28a,28bの底面及び側面を覆うU字溝状のバリア層27a,27bとから構成されている。
【1259】
なお、配線W1は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属から構成してもよい。また、バリア層27a,27bは、例えば、チタンと窒化チタンの積層などから構成することができる。
【1260】
互いに隣接する配線W1の間隔は、Hである。この間隔Hが非常に広い場合、配線W1の間には、ダミ−配線D1が形成される。
【1261】
ダミ−配線D1は、例えば、銅、アルミニウム合金などの金属層28d,28dと、この金属層28d,28dの底面及び側面を覆うU字溝状のバリア層27d,27dとから構成されている。
【1262】
なお、ダミ−配線D1は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属から構成してもよい。また、バリア層27d,27dは、例えば、チタンと窒化チタンの積層などから構成することができる。
【1263】
配線W1の上部には、絶縁層30が形成されている。この絶縁層30は、配線W1及びダミ−配線D1に支えられている。配線W1及びダミ−配線D1の間は、空洞(キャビティ)31になっている。この空洞31には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【1264】
なお、ダミ−配線D1は、絶縁層30が空洞31内に崩れ落ちないようにするためのものであり、通常の配線としての機能を有していない。
【1265】
絶縁層30は、配線W1及びダミ−配線D1の間に空洞31を設ける際に重要となると共に、絶縁層30上に層を積み重ねる際の土台となる重要なものである。絶縁層30は、例えば、シリコン酸化膜などから構成される。
【1266】
絶縁層30上には、絶縁層32が形成されている。絶縁層32は、例えば、シリコン酸化層から構成される。
【1267】
絶縁層32上には、配線W2が形成されている。配線W2は、例えば、銅、アルミニウム合金などの金属層35a,35bと、この金属層35a,35bの底面及び側面を覆うU字溝状のバリア層34a,34bとから構成されている。
【1268】
なお、配線W2は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属から構成してもよい。また、バリア層34a,34bは、例えば、チタンと窒化チタンの積層などから構成することができる。
【1269】
互いに隣接する配線W2の間隔は、Hである。この間隔Hが非常に広い場合、配線W2の間には、ダミ−配線D2が形成される。
【1270】
ダミ−配線D2は、例えば、銅、アルミニウム合金などの金属35d,35dと、この金属35d,35dの底面及び側面を覆うU字溝状のバリア層34d,34dとから構成されている。
【1271】
なお、ダミ−配線D2は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属から構成してもよい。また、バリア層34d,34dは、例えば、チタンと窒化チタンの積層などから構成することができる。
【1272】
配線W2の上部には、絶縁層37が形成されている。この絶縁層37は、配線W2及びダミ−配線D2に支えられている。配線W2及びダミ−配線D2の間は、空洞(キャビティ)38になっている。この空洞38には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【1273】
なお、ダミ−配線D2は、絶縁層37が空洞38内に崩れ落ちないようにするためのものであり、通常の配線としての機能を有していない。
【1274】
絶縁層37は、配線W2及びダミ−配線D2の間に空洞38を設ける際に重要となると共に、絶縁層37上に層を積み重ねる際の土台となる重要なものである。絶縁層37は、例えば、シリコン酸化膜などから構成される。
【1275】
上記構成の半導体装置によれば、配線W1間には、酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞31が形成され、配線W2間には、酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞38が形成されている。
【1276】
この混合ガスの誘電率εは、1.0程度である。これにより、配線W1間及び配線W2間をシリコン酸化層などの絶縁層で満たす場合に比べて、極端に誘電率を低下させることができる。
【1277】
従って、素子の集積度の向上とLSIの性能の向上を同時に達成することができる。
【1278】
また、互いに隣接する配線W1の間隔Hが非常に広い場合に、配線W1の間には、ダミ−配線D1を形成している。同様に、互いに隣接する配線W2の間隔Hが非常に広い場合に、配線W2の間には、ダミ−配線D2を形成している。
【1279】
従って、配線W1,W2上の絶縁膜が空洞31,38内に崩れ落ちるという事態が生じることもない。
【1280】
図170は、本発明の第28の実施の形態に関わる半導体装置を示している。
半導体基板(例えば、シリコンウェハ)11上には、絶縁層(例えば、シリコン酸化層)12が形成されている。配線13は、絶縁層12上に配置されている。配線13は、銅、アルミニウム合金などの金属、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属から構成されている。
【1281】
配線13間を満たすことがない板状の絶縁層14は、配線13を柱として、配線13上に形成されている。つまり、配線13間は、空洞(キャビティ)15になっている。空洞15内には、誘電率εが1.0程度のガス、即ち、酸素O2 と二酸化炭素CO2 の混合ガスが主として満たされている。
【1282】
絶縁層14は、例えば、酸化シリコン、酸化ジルコニウム、酸化ハフニウム、酸化クロムなどから構成される。
【1283】
なお、空洞15を、製造時に空気に接触させることにより、又はパッケ−ジに穴を設けておくことにより、空洞15内に空気を満たすようにしてもよい。
【1284】
さらに、配線13と絶縁層14の間には、結合層61が形成されている。この結合層61は、配線13と絶縁層14を互いに強固に結合する役割を果たしている。
【1285】
結合層61は、配線13を構成する金属と、シリコン、ジルコニウム、ハフニウム、クロムなどの材料とから構成される。
【1286】
上記構成の半導体装置によれば、配線13間には、主として酸素O2 と二酸化炭素CO2 の混合ガス、又は空気が満たされている。この混合ガス又は空気の誘電率εは、1.0程度である。これにより、配線13間をシリコン酸化層などの絶縁層で満たす場合に比べて、極端に誘電率を低下させることができる。従って、素子の集積度の向上とLSIの性能の向上を同時に達成することができる。
【1287】
また、配線13と絶縁層14の間には結合層61が形成されているため、配線13と絶縁層14は、この結合層61により互いに強固に結合される。従って、配線間が空洞であっても、強度的に十分な半導体装置を提供できる。
【1288】
次に、図170の半導体装置の製造方法について説明する。
【1289】
まず、図171に示すように、半導体基板11上に絶縁層12を形成する。スパッタリング法などにより絶縁層12上に炭素(カ−ボン)層16を形成する。ここで、炭素層16の厚さは、LSIの内部配線の厚さと等しい値(例えば、約0.7〜約0.2μm)に設定される。
【1290】
スパッタリング法又はCVD法により、炭素層16上にマスク材(例えば、シリコン酸化層やシリコン窒化層など)17を形成する。ここで、マスク材17が酸化物により構成されている場合には、マスク材17は、スパッタリング法により形成するのがよい。CVD法を用いる場合、反応ガスに含まれる酸素により炭素層16が消滅する場合があるからである。
【1291】
次に、図172に示すように、マスク材17上にレジストを塗布し、PEP(写真蝕刻工程)を用いてこのレジストをパタ−ニングする。また、パタ−ニングされたレジストをマスクにしてマスク材17をパタ−ニングする。この後、レジストを剥離し、マスク材17をマスクにして、異方性エッチングにより炭素層16をエッチングし、炭素層16に溝を形成する。
【1292】
なお、炭素層16は、レジストをマスクにしてエッチングしてもよい。
【1293】
レジストの剥離は、H2 SO4 とH2 2 の薬液により行われる。レジストは、酸素プラズマ処理でも剥離できるが、酸素プラズマ処理を用いると、炭素層16も消滅してしまうからである。
【1294】
次に、図173に示すように、CVD法又はスパッタリング法により、半導体基板11上の全面に銅などから構成される導電層を形成する。化学機械的研磨(CMP)により、炭素層16の間の溝内にのみ導電層を残存させ、配線13を形成する。
【1295】
なお、CMPの代わりに、異方性エッチング又は等方性エッチングを用いて配線13を形成するようにしてもよい。
【1296】
この後、マスク材17は、剥離される。
【1297】
次に、図174に示すように、スパッタリング法により、配線13及び炭素層16上に、シリコン層(アモルファスシリコン、多結晶シリコンなど)60を形成する。
【1298】
次に、図175及び図176に示すように、炭素層16を灰化し、炭素層16を、酸素O2 と二酸化炭素CO2 の混合ガスが主として満たされた空洞15に変換する。なお、炭素層16の灰化は、以下の二つの方法のいずれかを使用することにより達成される。
【1299】
一つめは、酸素雰囲気中(酸素を含む雰囲気のことをいう、例えば大気中でもよい)での熱処理(温度400〜450℃、時間2h程度)である。この方法では、炭素層16が二酸化炭素CO2 に変換する反応が緩やかに進むため、炭素層16の体積の膨脹による絶縁層14の破裂を防止できる利点がある反面、処理時間が長くなる欠点がある。
【1300】
二つめは、酸素プラズマ処理(アッシャ−)である。この方法では、炭素層16が二酸化炭素CO2 に変換する反応が速やかに進むため、処理時間が短くなる利点がある反面、炭素層16の体積の膨脹による絶縁層14の破裂が生じる可能性が高くなるという欠点がある。しかし、この欠点は、絶縁層14の質の改善や酸素プラズマ処理の温度の低下などにより回避できる。
【1301】
炭素層16の灰化の際、シリコン層60は、絶縁層(シリコン酸化層)14に変化する。即ち、炭素層16の灰化に使用する酸素がシリコン層60と反応して絶縁層14が形成される。
【1302】
また、同時に、配線13と絶縁層14の間には、結合層61が形成される。この結合層61は、炭素層16の灰化時に、配線13を構成する材料(銅、アルミニウムなど)とシリコンが反応することにより形成される。
【1303】
なお、灰化処理前に配線13上に設ける層は、シリコン層に限られない。即ち、炭素層16の灰化時に、絶縁層に変わると共に、配線を構成する材料と反応して結合層を形成する材料であればよい。
【1304】
そのような材料としては、例えば、ハフニウム、ジルコニウム、クロムなどが考えられる。
【1305】
上述の方法によれば、配線を形成するための溝を有する絶縁層に炭素層を用い、かつ、溝内に配線を形成した後にこの炭素層を灰化してガスが満たされた空洞に変換している。従って、容易に、図170の半導体装置を提供することができる。また、炭素層の灰化時に、シリコン層が絶縁層に変化すると共に、シリコン層と配線との間に結合層が形成され、シリコン層と配線が強固に結合される。従って、配線間が空洞である半導体装置の機械的強度を改善することができる。
【1306】
図177は、本発明の第29の実施の形態に関わる半導体装置を示している。
半導体基板(例えば、シリコンウェハ)11上には、絶縁層(例えば、シリコン酸化層)12が形成されている。配線13は、絶縁層12上に配置されている。配線13は、銅、アルミニウム合金などの金属、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属から構成されている。
【1307】
絶縁層12と配線13の間には、金属層62が形成されている。金属層62は、ジルコニウム、ハフニウム、ベリリウム、マグネシウム、スカンジウム、チタン、マンガン、コバルト、ニッケル、イットリウム、インジウム、バリウム、ランタン、セリウム、ルテニウム、鉛、ビスマス、トリウム、クロムなどの材料から構成される。
【1308】
配線13間は、空洞(キャビティ)15になっている。空洞15内には、誘電率εが1.0程度のガス、即ち、酸素O2 と二酸化炭素CO2 の混合ガスが主として満たされている。
【1309】
配線13の側壁及び配線間の空洞15上には、酸化金属層63が形成されている。酸化金属層63は、金属層62を構成する材料の酸化物から構成される。なお、配線13の側壁及び配線間の空洞15上には、酸化金属層でなく、窒化金属層を設けてもよい。この場合、窒化金属層は、金属層62を構成する材料の窒化物から構成される。
【1310】
配線13上及び酸化金属層63上には、絶縁層64が形成されている。絶縁層64は、例えば、酸化シリコン、酸化ジルコニウム、酸化ハフニウム、酸化クロムなどから構成される。
【1311】
なお、空洞15を、製造時に空気に接触させることにより、又はパッケ−ジに穴を設けておくことにより、空洞15内に空気を満たすようにしてもよい。
【1312】
上記構成の半導体装置によれば、配線13間には、主として酸素O2 と二酸化炭素CO2 の混合ガス、又は空気が満たされている。この混合ガス又は空気の誘電率εは、1.0程度である。これにより、配線13間をシリコン酸化層などの絶縁層で満たす場合に比べて、極端に誘電率を低下させることができる。従って、素子の集積度の向上とLSIの性能の向上を同時に達成することができる。
【1313】
また、配線13の側壁及び配線間の空洞15上には、酸化金属層63が形成されている。この酸化金属層63は、機械的強度に優れているため、配線間が空洞15であっても、強度的に十分な半導体装置を提供できる。
【1314】
次に、図177の半導体装置の製造方法について説明する。
【1315】
まず、図178に示すように、半導体基板11上に絶縁層12を形成する。スパッタリング法などにより絶縁層12上に炭素(カ−ボン)層16を形成する。ここで、炭素層16の厚さは、LSIの内部配線の厚さと等しい値(例えば、約0.7〜約0.2μm)に設定される。
【1316】
スパッタリング法又はCVD法により、炭素層16上にマスク材(例えば、シリコン酸化層やシリコン窒化層など)17を形成する。ここで、マスク材17が酸化物により構成されている場合には、マスク材17は、スパッタリング法により形成するのがよい。CVD法を用いる場合、反応ガスに含まれる酸素により炭素層16が消滅する場合があるからである。
【1317】
次に、マスク材17上にレジストを塗布し、PEP(写真蝕刻工程)を用いてこのレジストをパタ−ニングする。また、パタ−ニングされたレジストをマスクにしてマスク材17をパタ−ニングする。この後、レジストを剥離し、マスク材17をマスクにして、異方性エッチングにより炭素層16をエッチングし、炭素層16に溝を形成する。
【1318】
なお、炭素層16は、レジストをマスクにしてエッチングしてもよい。
【1319】
レジストの剥離は、H2 SO4 とH2 2 の薬液により行われる。レジストは、酸素プラズマ処理でも剥離できるが、酸素プラズマ処理を用いると、炭素層16も消滅してしまうからである。
【1320】
この後、マスク材17は、剥離される。
【1321】
次に、図179に示すように、CVD法又はスパッタリング法により、半導体基板11上の全面、即ち炭素層16の溝の内面及び上面に、金属層62を形成する。この金属層62は、ジルコニウム、ハフニウム、ベリリウム、マグネシウム、スカンジウム、チタン、マンガン、コバルト、ニッケル、イットリウム、インジウム、バリウム、ランタン、セリウム、ルテニウム、鉛、ビスマス、トリウム、クロムなどの材料から構成される。
【1322】
続けて、CVD法又はスパッタリング法により、金属層62上に銅、アルミニウムなどから構成される導電層を形成する。化学機械的研磨(CMP)により、炭素層16の間の溝内にのみ導電層を残存させ、配線13を形成する。
【1323】
なお、CMPの代わりに、異方性エッチング又は等方性エッチングを用いて配線13を形成するようにしてもよい。
【1324】
次に、図180及び図181に示すように、炭素層16を灰化し、炭素層16を、酸素O2 と二酸化炭素CO2 の混合ガスが主として満たされた空洞15に変換する。なお、炭素層16の灰化は、以下の二つの方法のいずれかを使用することにより達成される。
【1325】
一つめは、酸素雰囲気中(酸素を含む雰囲気のことをいう、例えば大気中でもよい)での熱処理(温度400〜450℃、時間2h程度)である。この方法では、炭素層16が二酸化炭素CO2 に変換する反応が緩やかに進むため、炭素層16の体積の膨脹による絶縁層14の破裂を防止できる利点がある反面、処理時間が長くなる欠点がある。
【1326】
二つめは、酸素プラズマ処理(アッシャ−)である。この方法では、炭素層16が二酸化炭素CO2 に変換する反応が速やかに進むため、処理時間が短くなる利点がある反面、炭素層16の体積の膨脹による絶縁層14の破裂が生じる可能性が高くなるという欠点がある。しかし、この欠点は、絶縁層14の質の改善や酸素プラズマ処理の温度の低下などにより回避できる。
【1327】
次に、図182に示すように、酸素雰囲気中において、選択酸化処理(温度約450℃、時間30分程度)を行い、金属層62の一部、即ち配線13の側壁及び配線間の空洞15上に存在する金属層62を酸化する。その結果、配線13の側壁及び配線間の空洞15上の金属層62は、酸化金属層63に変化する。
【1328】
なお、選択酸化処理の温度、時間などは、配線13直下に存在する金属層62が酸化されないことを条件にして決定される。また、雰囲気は、H2 ,H2 O雰囲気などであってもよい。
【1329】
また、本実施の形態では、選択酸化処理を行っているが、これに変えて窒素雰囲気中での窒化処理を行ってもよい。この場合、配線13の側壁及び配線間の空洞15上の金属層62は、窒化金属層に変化する。
【1330】
また、本実施の形態では、炭素層16の灰化と金属層62の酸化を別工程で行っているが、同一の工程で行うようにしてもよい。例えば、金属層62がハフニウムから構成される場合には、灰化処理を、酸素雰囲気中で、温度約400℃、時間1h程度行えば、炭素層16の灰化と同時に、配線13の側壁及び配線間の空洞15上の金属層62のみが酸化される。
【1331】
次に、図183に示すように、CVD法又はスパッタリング法により、配線13上及び酸化金属層63上に、低い誘電率を有する絶縁層64を形成する。この絶縁層64は、弗素が添加された酸化シリコンなどを用いることができる。
【1332】
上述の方法によれば、配線を形成するための溝を有する絶縁層に炭素層を用い、かつ、溝内に配線を形成した後にこの炭素層を灰化してガスが満たされた空洞に変換している。従って、容易に、図177の半導体装置を提供することができる。また、選択酸化処理により、配線13の側壁及び配線間の空洞15上の金属層62を酸化金属層63に変換している。この酸化金属層63は、機械的強度が優れているため、配線間が空洞15であっても、この空洞15が潰れるということがない。
【1333】
図184は、本発明の第30の実施の形態に関わる半導体装置を示している。
半導体基板(例えば、シリコンウェハ)21上には、フィ−ルド酸化層(例えば、シリコン酸化層)22が形成されている。フィ−ルド酸化層22に囲まれた素子領域には、MOSトランジスタが形成されている。このMOSトランジスタは、ゲ−ト電極23及びソ−ス・ドレイン領域24a,24bを有している。
【1334】
絶縁層25は、MOSトランジスタを覆っている。絶縁層25は、例えば、硼素燐ケイ酸ガラス(BPSG)や燐ケイ酸ガラス(PSG)などから構成することができる。
【1335】
絶縁層25の表面は、平坦である。絶縁層25の表面は、化学機械的研磨(CMP)により平坦にすることができる。絶縁層25には、ソ−ス・ドレイン領域24a,24bに達するコンタクトホ−ルが形成されている。
【1336】
このコンタクトホ−ル内には、タングステンなどの高融点金属から構成される導電層26a,26bが埋め込まれている。但し、導電層26a,26bは、高融点金属以外の他の材料から構成しても構わない。
【1337】
配線W1は、絶縁層25上及び導電層26a,26b上に配置されている。また、配線W1と、絶縁層25及び導電層26a,26bとの間には、金属層62が形成されている。
【1338】
金属層62は、ジルコニウム、ハフニウム、ベリリウム、マグネシウム、スカンジウム、チタン、マンガン、コバルト、ニッケル、イットリウム、インジウム、バリウム、ランタン、セリウム、ルテニウム、鉛、ビスマス、トリウム、クロムなどの材料から構成される。
【1339】
従って、配線W1は、導電層26a,26bに電気的に接続されている。配線W1は、銅、アルミニウム合金などの金属28a,28bから構成される。
【1340】
なお、配線W1は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属から構成してもよい。また、バリア層27a,27bは、例えば、チタンと窒化チタンの積層などから構成することができる。
【1341】
配線W1間は、空洞(キャビティ)31になっている。この空洞31には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【1342】
配線W1の側壁及び配線間の空洞31上には、酸化金属層63が形成されている。この酸化金属層63は、金属層62を構成する材料を酸化したものから構成される。
【1343】
なお、配線W1の側壁及び配線間の空洞31上には、酸化金属層63に変えて、窒化金属層を設けるようにしてもよい。この場合、窒化金属層は、金属層62を構成する材料を窒化することにより形成される。
【1344】
配線W1上及び酸化金属層63上には、低い誘電率を有する絶縁層64が形成されている。絶縁層64は、例えば、弗素を含む酸化シリコンなどから構成することができる。
【1345】
上記構成の半導体装置によれば、配線W1間には、酸素O2 と二酸化炭素CO2 の混合ガス又は空気が満たされた空洞31が形成されている。
【1346】
この混合ガス又は空気の誘電率εは、1.0程度である。これにより、配線W1間及び配線W2間をシリコン酸化層などの絶縁層で満たす場合に比べて、極端に誘電率を低下させることができる。
【1347】
従って、素子の集積度の向上とLSIの性能の向上を同時に達成することができる。
【1348】
次に、図184の半導体装置の製造方法について説明する。
【1349】
まず、図185に示すように、LOCOS法により半導体基板21上にフィ−ルド酸化層22を形成する。また、フィ−ルド酸化層22に囲まれた素子領域に、例えば、ゲ−ト電極23及びソ−ス・ドレイン領域24a,24bを有するMOSトランジスタを形成する。
【1350】
半導体基板21上の全面に、MOSトランンジスタを完全に覆う絶縁層(BPSGやPSGなど)25を形成する。この後、化学機械的研磨(CMP)を行い、絶縁層25の表面を平坦にする。
【1351】
PEP(写真蝕刻工程)により、絶縁層25にソ−ス・ドレイン領域24a,24bに達するコンタクトホ−ルを形成する。選択成長法により、絶縁層25のコンタクトホ−ル内のみに、タングステンなどの高融点金属から構成される導電層26a,26bを埋め込む。
【1352】
なお、絶縁層25のコンタクトホ−ル内には、高融点金属以外の他の材料を埋め込んでも構わない。
【1353】
次に、図186に示すように、スパッタリング法により、絶縁層25上に炭素(カ−ボン)層39を形成する。ここで、炭素層39の厚さは、LSIの内部配線の厚さと等しい値(例えば、約0.7〜約0.2μm)に設定される。
【1354】
次に、図187に示すように、スパッタリング法により、炭素層39上にマスク材(例えば、シリコン酸化層やシリコン窒化層など)29を、約0.05μmの厚さで形成する。
【1355】
ここで、マスク材29が酸化物から構成される場合には、マスク材29は、炭素層39の消滅を防ぐため、CVD法でなく、スパッタリング法で形成するのがよい。
【1356】
次に、図188に示すように、マスク材29上にレジストを塗布し、PEP(写真蝕刻工程)を用いてこのレジストをパタ−ニングする。また、パタ−ニングされたレジストをマスクにしてマスク材29をパタ−ニングする。この後、レジストを剥離する。マスク材29のパタ−ンは、配線のパタ−ンと同じになる。
【1357】
次に、図189に示すように、マスク材29をマスクにして、異方性エッチングにより炭素層39をエッチングする。
【1358】
なお、本実施例では、PEPにより、直接、炭素層39をエッチングすることなく、PEPで加工したマスク材29をマスクにして炭素層39をエッチングしている。
【1359】
この理由は、以下のとおりである。PEPに用いるレジストは、酸素プラズマ処理(アッシャ−)、又はH2 SO4 とH2 2 の薬液により除去される。しかし、酸素プラズマ処理でレジストを除去する場合は、せっかくパタ−ニングした炭素層39が同時に除去されてしまう。一方、H2 SO4 とH2 2 の薬液によりレジストを除去する場合は、導電層(高融点金属の場合のみ)26a,26bが同時に除去されてしまう。
【1360】
そこで、導電層26a,26bが高融点金属の場合には、PEPで加工したマスク材29をマスクにして炭素層39をエッチングするのがよい。
【1361】
この後、マスク材29は、除去される。
【1362】
次に、図190に示すように、スパッタリング法又はCVD法により、炭素層39に形成された溝XXの内面及び炭素層39の上面に、金属層62を形成する。金属層62は、ジルコニウム、ハフニウム、ベリリウム、マグネシウム、スカンジウム、チタン、マンガン、コバルト、ニッケル、イットリウム、インジウム、バリウム、ランタン、セリウム、ルテニウム、鉛、ビスマス、トリウム、クロムなどの材料から構成される。
【1363】
次に、図191に示すように、スパッタリング法又はCVD法により、金属層62上に、銅、アルミニウム合金などなどから構成される金属28を形成する。なお、配線は、銅、アルミニウム合金などの金属に限られず、例えば、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属であってもよい。
【1364】
次に、図192に示すように、化学機械的研磨(CMP)により、炭素層39の間の溝内にのみ、金属28a,28bを残存させ、配線W1を形成する。なお、CMPに代えて、異方性エッチング又は等方性エッチングを用いて配線W1を形成してもよい。
【1365】
次に、図193及び図194に示すように、炭素層39を灰化し、炭素層39を、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞31に変換する。炭素層39の灰化は、以下の二つの方法のいずれかを使用することにより達成される。
【1366】
一つめは、酸素雰囲気中での熱処理(温度400〜450℃、時間2h程度)である。この方法では、炭素層39が二酸化炭素CO2 に変換する反応が緩やかに進むため、炭素層39の体積の膨脹による絶縁層29,30の破裂を防止できる利点がある反面、処理時間が長くなる欠点がある。
【1367】
二つめは、酸素プラズマ処理(アッシャ−)である。この方法では、炭素層39が二酸化炭素CO2 に変換する反応が速やかに進むため、処理時間が短くなる利点がある反面、炭素層39の体積の膨脹による絶縁層29,30の破裂が生じる可能性が高くなるという欠点がある。しかし、この欠点は、絶縁層29,30の質の改善や酸素プラズマ処理の温度の低下などにより回避できる。
【1368】
次に、図195に示すように、酸素雰囲気中において、選択酸化処理(温度約450℃、時間30分程度)を行い、金属層62の一部、即ち配線13の側壁及び配線間の空洞15上に存在する金属層62を酸化する。その結果、配線28a,28bの側壁及び配線間の空洞31上の金属層62は、酸化金属層63に変化する。
【1369】
なお、選択酸化処理の温度、時間などは、配線28a,28b直下に存在する金属層62が酸化されないことを条件にして決定される。また、雰囲気は、H2 ,H2 O雰囲気などであってもよい。
【1370】
また、本実施の形態では、選択酸化処理を行っているが、これに変えて窒素雰囲気中での窒化処理を行ってもよい。この場合、配線28a,28bの側壁及び配線間の空洞31上の金属層62は、窒化金属層に変化する。
【1371】
また、本実施の形態では、炭素層39の灰化と金属層62の酸化を別工程で行っているが、同一の工程で行うようにしてもよい。例えば、金属層62がハフニウムから構成される場合には、灰化処理を、酸素雰囲気中で、温度約400℃、時間1h程度行えば、炭素層39の灰化と同時に、配線28a,28bの側壁及び配線間の空洞31上の金属層62のみが酸化される。
【1372】
次に、図196に示すように、CVD法又はスパッタリング法により、配線28a,28b上及び酸化金属層63上に、低い誘電率を有する絶縁層64を形成する。この絶縁層64は、弗素が添加された酸化シリコンなどを用いることができる。
【1373】
上述の製造方法によれば、配線28a,28bを形成するための溝を有する絶縁層に炭素層を用い、かつ、溝内に配線を形成した後にこの炭素層を灰化してガスが満たされた空洞に変換している。従って、容易に、図184の半導体装置を提供することができる。また、選択酸化処理により、配線28a,28bの側壁及び配線間の空洞31上の金属層62を酸化金属層63に変換している。この酸化金属層63は、機械的強度が優れているため、配線間が空洞31であっても、この空洞31が潰れるということがない。
【1374】
以上、説明してきた各実施の形態において、炭素層の灰化は、酸素雰囲気中において行われる。
【1375】
図197及び図198は、配線に銅などの酸化され易い金属を用いた場合における炭素層の灰化工程を示すものである。
【1376】
配線13に銅などを用いる場合には、配線13と炭素層16の反応を防止するため、配線13の側面及び底面には、防護金属層65が形成される。この防護金属層65は、例えば、チタンと窒化チタンの積層や、窒化チタンシリコンなどから構成することができる。
【1377】
ところが、配線13上には、炭素層16を灰化するために、酸化シリコン層などの酸素(O2 )を透過するような絶縁層14が形成される。
【1378】
従って、炭素層16の灰化時には、必然的に配線13の上面も酸化され、酸化金属層66が形成される。この酸化金属層66は、配線13の抵抗値を増大させたり、配線13の信頼性を低下させる。
【1379】
以下の実施の形態では、炭素層の灰化時に、配線13が酸化されることがないような半導体装置及びその製造方法を提供する。
【1380】
図199は、本発明の第31の実施の形態に関わる半導体装置を示している。
半導体基板(例えば、シリコンウェハ)21上には、フィ−ルド酸化層(例えば、シリコン酸化層)22が形成されている。フィ−ルド酸化層22に囲まれた素子領域には、MOSトランジスタが形成されている。このMOSトランジスタは、ゲ−ト電極23及びソ−ス・ドレイン領域24a,24bを有している。
【1381】
絶縁層25は、MOSトランジスタを覆っている。絶縁層25は、例えば、硼素燐ケイ酸ガラス(BPSG)や燐ケイ酸ガラス(PSG)などから構成することができる。
【1382】
絶縁層25の表面は、平坦である。絶縁層25の表面は、化学機械的研磨(CMP)により平坦にすることができる。絶縁層25には、ソ−ス・ドレイン領域24a,24bに達するコンタクトホ−ルが形成されている。
【1383】
このコンタクトホ−ル内には、タングステンなどの高融点金属から構成される導電層26a,26bが埋め込まれている。但し、導電層26a,26bは、高融点金属以外の他の材料から構成しても構わない。
【1384】
配線28a,28bは、絶縁層25上及び導電層26a,26b上に配置されている。また、配線28a,28bの側面及び底面は、防護金属層65により覆われている。防護金属層65は、酸素を透過させないような層、例えばチタンと窒化チタンの積層や、窒化チタンシリコンなどから構成することができる。
【1385】
また、配線28a,28bの上面は、酸素を透過させないような防護層67、例えばチタンと窒化チタンの積層や、窒化チタンシリコンなどの金属層、又は窒化シリコンなどの絶縁層から構成することができる。
【1386】
即ち、配線28a,28bの少なくとも下面を覆う防護層は、導電層26a,26bと電気的に接続をとるため、金属層から構成される必要があるが、配線28a,28bの上面を覆う防護層は、金属層でも絶縁層でもよい。
【1387】
なお、配線28a,28bは、銅などの酸化され易い金属から構成される。
【1388】
配線28a,28b間は、空洞(キャビティ)31になっている。この空洞31には、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされている。
【1389】
配線28a,28b上には、絶縁層68が形成されている。絶縁層68は、酸化シリコンなどから構成される。
【1390】
上記構成の半導体装置によれば、配線28a,28b間には、酸素O2 と二酸化炭素CO2 の混合ガス又は空気が満たされた空洞31が形成されている。
【1391】
この混合ガス又は空気の誘電率εは、1.0程度である。これにより、配線W1間及び配線W2間をシリコン酸化層などの絶縁層で満たす場合に比べて、極端に誘電率を低下させることができる。
【1392】
従って、素子の集積度の向上とLSIの性能の向上を同時に達成することができる。
【1393】
また、少なくとも炭素層の灰化時には、配線28a,28bは、酸素を透過しないような防護層により完全に覆われている。
【1394】
従って、配線28a,28bの抵抗値の増大や信頼性の低下を防止することができる。
【1395】
次に、図199の半導体装置の製造方法について説明する。
【1396】
まず、図200に示すように、LOCOS法により半導体基板21上にフィ−ルド酸化層22を形成する。また、フィ−ルド酸化層22に囲まれた素子領域に、例えば、ゲ−ト電極23及びソ−ス・ドレイン領域24a,24bを有するMOSトランジスタを形成する。
【1397】
半導体基板21上の全面に、MOSトランンジスタを完全に覆う絶縁層(BPSGやPSGなど)25を形成する。この後、化学機械的研磨(CMP)を行い、絶縁層25の表面を平坦にする。
【1398】
PEP(写真蝕刻工程)により、絶縁層25にソ−ス・ドレイン領域24a,24bに達するコンタクトホ−ルを形成する。選択成長法により、絶縁層25のコンタクトホ−ル内のみに、タングステンなどの高融点金属から構成される導電層26a,26bを埋め込む。
【1399】
なお、絶縁層25のコンタクトホ−ル内には、高融点金属以外の他の材料を埋め込んでも構わない。
【1400】
次に、図201に示すように、スパッタリング法により、絶縁層25上に炭素(カ−ボン)層39を形成する。ここで、炭素層39の厚さは、LSIの内部配線の厚さと等しい値(例えば、約0.7〜約0.2μm)に設定される。
【1401】
次に、図202に示すように、スパッタリング法により、炭素層39上にマスク材(例えば、シリコン酸化層やシリコン窒化層など)29を、約0.05μmの厚さで形成する。
【1402】
ここで、マスク材29が酸化物から構成される場合には、マスク材29は、炭素層39の消滅を防ぐため、CVD法でなく、スパッタリング法で形成するのがよい。
【1403】
次に、図203に示すように、マスク材29上にレジストを塗布し、PEP(写真蝕刻工程)を用いてこのレジストをパタ−ニングする。また、パタ−ニングされたレジストをマスクにしてマスク材29をパタ−ニングする。この後、レジストを剥離する。マスク材29のパタ−ンは、配線のパタ−ンと同じになる。
【1404】
次に、図204に示すように、マスク材29をマスクにして、異方性エッチングにより炭素層39をエッチングする。
【1405】
なお、本実施例では、PEPにより、直接、炭素層39をエッチングすることなく、PEPで加工したマスク材29をマスクにして炭素層39をエッチングしている。
【1406】
この理由は、以下のとおりである。PEPに用いるレジストは、酸素プラズマ処理(アッシャ−)、又はH2 SO4 とH2 2 の薬液により除去される。しかし、酸素プラズマ処理でレジストを除去する場合は、せっかくパタ−ニングした炭素層39が同時に除去されてしまう。一方、H2 SO4 とH2 2 の薬液によりレジストを除去する場合は、導電層(高融点金属の場合のみ)26a,26bが同時に除去されてしまう。
【1407】
そこで、導電層26a,26bが高融点金属の場合には、PEPで加工したマスク材29をマスクにして炭素層39をエッチングするのがよい。
【1408】
この後、マスク材29は、除去される。
【1409】
次に、図205に示すように、スパッタリング法又はCVD法により、炭素層39に形成された溝XXの内面及び炭素層39の上面に、防護金属層65を形成する。防護金属層65は、チタンと窒化チタンの積層や、窒化チタンシリコンなどの材料から構成される。
【1410】
次に、図206に示すように、スパッタリング法又はCVD法により、防護金属層65上に、銅などの酸化され易い材料から構成される金属28を形成する。次に、図207に示すように、化学機械的研磨(CMP)により、炭素層39の間の溝内にのみ、金属を残存させ、配線28a,28bを形成する。なお、CMPに代えて、異方性エッチング又は等方性エッチングを用いて配線W1を形成してもよい。
【1411】
この時、配線28a,28bの上面は、炭素層39の上面よりも僅かに低いレベルに配置されるようにする。
【1412】
次に、図208に示すように、配線28a,28b上及び炭素層39上に、300〜600℃の範囲において酸素の透過を防止し得る防護層67を形成する。防護層67は、チタンと窒化チタンの積層や、窒化チタンシリコンなどの金属層、又は窒化シリコンなどの絶縁層から構成することができる。
【1413】
なお、300〜600℃の温度範囲において酸素の透過を防止し得るとしたのは、炭素層の灰化が、かかる温度範囲で行われるからである。
【1414】
次に、図209に示すように、CMPを行い、配線28a,28b上にのみ、防護層67を残存させる。ここで、炭素層39の上面と防護層67の上面は、同一面に配置されることになる。
【1415】
次に、図210及び図211に示すように、CVD法又はスパッタリング法により、炭素層39上及び防護層67上に、厚さ約0.05μmの絶縁層68を形成する。ここで、絶縁層68が酸化物から構成される場合には、絶縁層68は、炭素層39の消滅を防ぐため、CVD法でなく、スパッタリング法で形成するのがよい。
【1416】
この後、炭素層39を灰化し、炭素層39を、主として酸素O2 と二酸化炭素CO2 の混合ガスが満たされた空洞31に変換する。炭素層39の灰化は、以下の二つの方法のいずれかを使用することにより達成される。
【1417】
一つめは、酸素雰囲気中での熱処理(温度400〜450℃、時間2h程度)である。この方法では、炭素層39が二酸化炭素CO2 に変換する反応が緩やかに進むため、炭素層39の体積の膨脹による絶縁層29,30の破裂を防止できる利点がある反面、処理時間が長くなる欠点がある。
【1418】
二つめは、酸素プラズマ処理(アッシャ−)である。この方法では、炭素層39が二酸化炭素CO2 に変換する反応が速やかに進むため、処理時間が短くなる利点がある反面、炭素層39の体積の膨脹による絶縁層29,30の破裂が生じる可能性が高くなるという欠点がある。しかし、この欠点は、絶縁層29,30の質の改善や酸素プラズマ処理の温度の低下などにより回避できる。
【1419】
上述の製造方法によれば、配線28a,28bを形成するための溝を有する絶縁層に炭素層を用い、かつ、溝内に配線を形成した後にこの炭素層を灰化してガスが満たされた空洞に変換している。従って、容易に、図199の半導体装置を提供することができる。また、少なくとも灰化処理時には、配線28a,28bは、酸素を透過しない防護層により完全に覆われている。従って、炭素層39の灰化時に配線28a,28bが酸化されることがなく、配線28a,28bの抵抗値の増大や信頼性の低下を防止することができる。
【1420】
図212は、本発明の第32の実施の形態に関わる半導体装置を示している。半導体基板(例えば、シリコンウェハ)71上には、絶縁層(例えば、シリコン酸化層)72が形成されている。配線73は、絶縁層72上に配置されている。配線73は、銅、アルミニウム合金などの金属、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属から構成されている。
【1421】
絶縁層74は、配線73を完全に覆っている。但し、絶縁層74は、配線73に接触していない。従って、配線73と絶縁層74の間には、空洞(キャビティ)75が設けられている。空洞75内には、誘電率εが1.0程度のガス、即ち、酸素O2 と二酸化炭素CO2 の混合ガスが主として満たされている。
【1422】
絶縁層74は、例えば、酸化シリコン、酸化ジルコニウム、酸化ハフニウム、酸化クロムなどから構成される。絶縁層74上には、低い誘電率を有する絶縁層76、例えば弗素を含む酸化シリコン層が形成されている。
【1423】
なお、77は、配線73をパタ−ニングする際に用いたマスク材である。ところで、空洞75を、製造時に空気に接触させることにより、又はパッケ−ジに穴を設けておくことにより、空洞75内に空気を満たすようにしてもよい。
【1424】
上記構成の半導体装置によれば、配線73は、絶縁層74に覆われている。しかも、配線73と絶縁層74の間は、主として酸素O2 と二酸化炭素CO2 の混合ガス又は空気が満たされる空洞75となっている。この混合ガス又は空気の誘電率εは、1.0程度である。
【1425】
つまり、少なくとも電荷が集中し易い配線73の角部には、空洞75が形成されているため、配線73間をシリコン酸化層などの絶縁層で完全に満たす場合に比べて、極端に誘電率を低下させることができる。従って、素子の集積度の向上とLSIの性能の向上を同時に達成することができる。
【1426】
次に、図212の半導体装置の製造方法について説明する。
【1427】
まず、図213に示すように、半導体基板71上に絶縁層72を形成する。スパッタリング法などにより絶縁層72上に金属層73aを形成する。ここで、金属層73aの厚さは、0.7〜0.2μmに設定される。金属層73aは、アルミニウム、銅、チタン、窒化チタンなどから構成することができる。
【1428】
また、スパッタリング法などにより、金属層73a上に炭素層80aを形成する。さらに、スパッタリング法又はCVD法により、炭素層80a上にマスク材(例えば、シリコン酸化層やシリコン窒化層など)77を形成する。ここで、マスク材77が酸化物により構成されている場合には、マスク材77は、スパッタリング法により形成するのがよい。CVD法を用いる場合、反応ガスに含まれる酸素により炭素層80aが消滅する場合があるからである。
【1429】
次に、図214に示すように、マスク材77上にレジストを塗布し、PEP(写真蝕刻工程)を用いてこのレジストをパタ−ニングする。また、パタ−ニングされたレジストをマスクにしてマスク材77をパタ−ニングする。この後、レジストを剥離し、マスク材77をマスクにして、異方性エッチングにより炭素層及び金属層をエッチングし、配線73を形成する。
【1430】
なお、レジストの剥離は、H2 SO4 とH2 2 の薬液により行われる。レジストは、酸素プラズマ処理でも剥離できるが、酸素プラズマ処理を用いると、炭素層16も消滅してしまうからである。
【1431】
次に、図215に示すように、スパッタリング法などにより、配線73の側壁及び配線73上に炭素層80bを形成する。異方性エッチングにより、炭素層80bをエッチングし、この炭素層80bを配線73の側壁部のみに残存させる。
まず、図216及び図217に示すように、スパッタリング法又はCVD法により、半導体基板71上の全面、即ち絶縁層72上、炭素層80b上、及びマスク材77上に、厚さ約0.05μmの絶縁層(例えば、酸化シリコンなど)74を形成する。
【1432】
ここで、絶縁層74が酸化物により構成されている場合には、絶縁層74は、スパッタリング法により形成するのがよい。CVD法を用いる場合、反応ガスに含まれる酸素により炭素層80a,80bが消滅する場合があるからである。
【1433】
この後、炭素層80a,80bを灰化し、炭素層80a,80bを、酸素O2 と二酸化炭素CO2 の混合ガスが主として満たされた空洞75に変換する。なお、炭素層80a,80bの灰化は、以下の二つの方法のいずれかを使用することにより達成される。
【1434】
一つめは、酸素雰囲気中(酸素を含む雰囲気のことをいう、例えば大気中でもよい)での熱処理(温度400〜450℃、時間2h程度)である。この方法では、炭素層80a,80bが二酸化炭素CO2 に変換する反応が緩やかに進むため、炭素層80a,80bの体積の膨脹による絶縁層74の破裂を防止できる利点がある反面、処理時間が長くなる欠点がある。
【1435】
二つめは、酸素プラズマ処理(アッシャ−)である。この方法では、炭素層80a,80bが二酸化炭素CO2 に変換する反応が速やかに進むため、処理時間が短くなる利点がある反面、炭素層80a,80bの体積の膨脹による絶縁層74の破裂が生じる可能性が高くなるという欠点がある。しかし、この欠点は、絶縁層74の質の改善や酸素プラズマ処理の温度の低下などにより回避できる。
【1436】
なお、空洞75を、製造時に空気に接触させることにより、又はパッケ−ジに穴を開けておくことにより、空洞75内に空気を満たすようにしてもよい。
【1437】
次に、図218に示すように、絶縁層74上に低い誘電率を有する絶縁層76、例えば弗素を含む酸化シリコン層を形成する。なお、絶縁層76の表面は、CMP法などにより平坦化される。
【1438】
上述の方法によれば、配線73の側面及び上面に形成された炭素層80a,80bを灰化することにより、少なくとも配線73の周辺が空洞となるようにしている。従って、容易に、図212の半導体装置を提供することができる。また、本実施の形態では、電荷が蓄積され易い配線73のエッジ部分に空洞を設けているため、配線間の寄生容量の低減に効果的である。
【1439】
図219は、本発明の第33の実施の形態に関わる半導体装置を示している。
半導体基板(例えば、シリコンウェハ)71上には、絶縁層(例えば、シリコン酸化層)72が形成されている。配線73は、絶縁層72上に配置されている。配線73は、銅、アルミニウム合金などの金属、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属から構成されている。
【1440】
絶縁層74は、配線73を完全に覆っている。但し、絶縁層74は、配線73に接触していない。従って、配線73と絶縁層74の間には、空洞(キャビティ)75が設けられている。空洞75内には、誘電率εが1.0程度のガス、即ち、酸素O2 と二酸化炭素CO2 の混合ガスが主として満たされている。
【1441】
絶縁層74は、例えば、酸化シリコン、酸化ジルコニウム、酸化ハフニウム、酸化クロムなどから構成される。絶縁層74上には、低い誘電率を有する絶縁層76、例えば弗素を含む酸化シリコン層が形成されている。
【1442】
なお、空洞75を、製造時に空気に接触させることにより、又はパッケ−ジに穴を設けておくことにより、空洞75内に空気を満たすようにしてもよい。
【1443】
上記構成の半導体装置によれば、配線73は、絶縁層74に覆われている。しかも、配線73と絶縁層74の間は、主として酸素O2 と二酸化炭素CO2 の混合ガス又は空気が満たされる空洞75となっている。この混合ガス又は空気の誘電率εは、1.0程度である。
【1444】
つまり、少なくとも電荷が集中し易い配線73の角部には、空洞75が形成されているため、配線73間をシリコン酸化層などの絶縁層で完全に満たす場合に比べて、極端に誘電率を低下させることができる。従って、素子の集積度の向上とLSIの性能の向上を同時に達成することができる。
【1445】
次に、図219の半導体装置の製造方法について説明する。
【1446】
まず、図220に示すように、半導体基板71上に絶縁層72を形成する。スパッタリング法などにより絶縁層72上に金属層73aを形成する。ここで、金属層73aの厚さは、0.7〜0.2μmに設定される。金属層73aは、アルミニウム、銅、チタン、窒化チタンなどから構成することができる。
【1447】
また、スパッタリング法などにより、金属層73a上に炭素層80aを形成する。さらに、スパッタリング法又はCVD法により、炭素層80a上にマスク材(例えば、シリコン酸化層やシリコン窒化層など)77を形成する。ここで、マスク材77が酸化物により構成されている場合には、マスク材77は、スパッタリング法により形成するのがよい。CVD法を用いる場合、反応ガスに含まれる酸素により炭素層80aが消滅する場合があるからである。
【1448】
次に、図221に示すように、マスク材77上にレジストを塗布し、PEP(写真蝕刻工程)を用いてこのレジストをパタ−ニングする。また、パタ−ニングされたレジストをマスクにしてマスク材77をパタ−ニングする。この後、レジストを剥離し、マスク材77をマスクにして、異方性エッチングにより炭素層及び金属層をエッチングし、配線73を形成する。この後、マスク材77が残存している場合には、このマスク材77を剥離する。
【1449】
なお、レジストの剥離は、H2 SO4 とH2 2 の薬液により行われる。レジストは、酸素プラズマ処理でも剥離できるが、酸素プラズマ処理を用いると、炭素層16も消滅してしまうからである。
【1450】
次に、図222に示すように、スパッタリング法などにより、配線73の側壁及び配線73上に炭素層80bを形成する。異方性エッチングにより、炭素層80bをエッチングし、この炭素層80bを配線73の側壁部のみに残存させる。
まず、図223及び図224に示すように、スパッタリング法又はCVD法により、半導体基板71上の全面、即ち絶縁層72上及び炭素層80a,80b上に厚さ約0.05μmの絶縁層(例えば、酸化シリコンなど)74を形成する。
ここで、絶縁層74が酸化物により構成されている場合には、絶縁層74は、スパッタリング法により形成するのがよい。CVD法を用いる場合、反応ガスに含まれる酸素により炭素層80a,80bが消滅する場合があるからである。
【1451】
この後、炭素層80a,80bを灰化し、炭素層80a,80bを、酸素O2 と二酸化炭素CO2 の混合ガスが主として満たされた空洞75に変換する。なお、炭素層80a,80bの灰化は、以下の二つの方法のいずれかを使用することにより達成される。
【1452】
一つめは、酸素雰囲気中(酸素を含む雰囲気のことをいう、例えば大気中でもよい)での熱処理(温度400〜450℃、時間2h程度)である。この方法では、炭素層80a,80bが二酸化炭素CO2 に変換する反応が緩やかに進むため、炭素層80a,80bの体積の膨脹による絶縁層74の破裂を防止できる利点がある反面、処理時間が長くなる欠点がある。
【1453】
二つめは、酸素プラズマ処理(アッシャ−)である。この方法では、炭素層80a,80bが二酸化炭素CO2 に変換する反応が速やかに進むため、処理時間が短くなる利点がある反面、炭素層80a,80bの体積の膨脹による絶縁層74の破裂が生じる可能性が高くなるという欠点がある。しかし、この欠点は、絶縁層74の質の改善や酸素プラズマ処理の温度の低下などにより回避できる。
【1454】
なお、空洞75を、製造時に空気に接触させることにより、又はパッケ−ジに穴を開けておくことにより、空洞75内に空気を満たすようにしてもよい。
【1455】
次に、図225に示すように、絶縁層74上に低い誘電率を有する絶縁層76、例えば弗素を含む酸化シリコン層を形成する。なお、絶縁層76の表面は、CMP法などにより平坦化される。
【1456】
上述の方法によれば、配線73の側面及び上面に形成された炭素層80a,80bを灰化することにより、少なくとも配線73の周辺が空洞となるようにしている。従って、容易に、図212の半導体装置を提供することができる。また、本実施の形態では、電荷が蓄積され易い配線73のエッジ部分に空洞を設けているため、配線間の寄生容量の低減に効果的である。
【1457】
図226は、本発明の第34の実施の形態に関わる半導体装置を示している。
半導体基板(例えば、シリコンウェハ)71上には、絶縁層(例えば、シリコン酸化層)72が形成されている。配線73は、絶縁層72上に配置されている。配線73は、銅、アルミニウム合金などの金属、不純物を含むポリシリコンなどの半導体、タングステンなどの高融点金属から構成されている。
【1458】
絶縁層74は、配線73を完全に覆っている。但し、絶縁層74は、配線73の上面に接触し、側面には接触していない。従って、配線73の側面と絶縁層74の間には、空洞(キャビティ)75が設けられている。空洞75内には、誘電率εが1.0程度のガス、即ち、酸素O2 と二酸化炭素CO2 の混合ガスが主として満たされている。
【1459】
絶縁層74は、例えば、酸化シリコン、酸化ジルコニウム、酸化ハフニウム、酸化クロムなどから構成される。絶縁層74上には、低い誘電率を有する絶縁層76、例えば弗素を含む酸化シリコン層が形成されている。
【1460】
なお、空洞75を、製造時に空気に接触させることにより、又はパッケ−ジに穴を設けておくことにより、空洞75内に空気を満たすようにしてもよい。
【1461】
上記構成の半導体装置によれば、配線73は、絶縁層74に覆われている。しかも、配線73の側面と絶縁層74の間は、主として酸素O2 と二酸化炭素CO2 の混合ガス又は空気が満たされる空洞75となっている。この混合ガス又は空気の誘電率εは、1.0程度である。従って、配線73間をシリコン酸化層などの絶縁層で完全に満たす場合に比べて誘電率を低下させることができ、素子の集積度の向上とLSIの性能の向上を同時に達成することができる。
【1462】
次に、図226の半導体装置の製造方法について説明する。
【1463】
まず、図227に示すように、半導体基板71上に絶縁層72を形成する。スパッタリング法などにより絶縁層72上に金属層73aを形成する。ここで、金属層73aの厚さは、0.7〜0.2μmに設定される。金属層73aは、アルミニウム、銅、チタン、窒化チタンなどから構成することができる。
【1464】
スパッタリング法又はCVD法により、金属層73a上にマスク材(例えば、シリコン酸化層やシリコン窒化層など)77を形成する。
【1465】
次に、図228に示すように、マスク材77上にレジストを塗布し、PEP(写真蝕刻工程)を用いてこのレジストをパタ−ニングする。また、パタ−ニングされたレジストをマスクにしてマスク材77をパタ−ニングする。この後、レジストを剥離し、マスク材77をマスクにして、異方性エッチングにより金属層をエッチングし、配線73を形成する。この後、マスク材77が残存している場合には、このマスク材77を剥離する。
【1466】
なお、本実施の形態では、マスク材を用いずに、レジストをマスクにして、直接、金属層73aをエッチングするようにしてもよい。
【1467】
次に、図229に示すように、スパッタリング法などにより、配線73の側壁及び配線73上に炭素層80bを形成する。異方性エッチングにより、炭素層80bをエッチングし、この炭素層80bを配線73の側壁部のみに残存させる。
まず、図230及び図231に示すように、スパッタリング法又はCVD法により、半導体基板71上の全面、即ち絶縁層72上、炭素層80b上、及び配線73上に、厚さ約0.05μmの絶縁層(例えば、酸化シリコンなど)74を形成する。
【1468】
ここで、絶縁層74が酸化物により構成されている場合には、絶縁層74は、スパッタリング法により形成するのがよい。CVD法を用いる場合、反応ガスに含まれる酸素により炭素層80bが消滅する場合があるからである。
【1469】
この後、炭素層80bを灰化し、炭素層80bを、酸素O2 と二酸化炭素CO2 の混合ガスが主として満たされた空洞75に変換する。なお、炭素層80bの灰化は、以下の二つの方法のいずれかを使用することにより達成される。
【1470】
一つめは、酸素雰囲気中(酸素を含む雰囲気のことをいう、例えば大気中でもよい)での熱処理(温度400〜450℃、時間2h程度)である。この方法では、炭素層80a,80bが二酸化炭素CO2 に変換する反応が緩やかに進むため、炭素層80a,80bの体積の膨脹による絶縁層74の破裂を防止できる利点がある反面、処理時間が長くなる欠点がある。
【1471】
二つめは、酸素プラズマ処理(アッシャ−)である。この方法では、炭素層80a,80bが二酸化炭素CO2 に変換する反応が速やかに進むため、処理時間が短くなる利点がある反面、炭素層80a,80bの体積の膨脹による絶縁層74の破裂が生じる可能性が高くなるという欠点がある。しかし、この欠点は、絶縁層74の質の改善や酸素プラズマ処理の温度の低下などにより回避できる。
【1472】
なお、空洞75を、製造時に空気に接触させることにより、又はパッケ−ジに穴を開けておくことにより、空洞75内に空気を満たすようにしてもよい。
【1473】
次に、図232に示すように、絶縁層74上に低い誘電率を有する絶縁層76、例えば弗素を含む酸化シリコン層を形成する。なお、絶縁層76の表面は、CMP法などにより平坦化される。
【1474】
上述の方法によれば、配線73の側面及び上面に形成された炭素層80bを灰化することにより、少なくとも配線73の側壁部が空洞となるようにしている。従って、容易に、図226の半導体装置を提供することができる。
【1475】
【発明の効果】
以上、説明したように、本発明の半導体装置の製造方法によれば、次のような効果を奏する。
【1476】
左右の配線間又は上下の配線間には、それぞれ主として酸素O2 と二酸化炭素CO2 の混合ガス又は空気が満たされた空洞が形成されている。この混合ガス又は空気の誘電率εは、1.0程度である。これにより、同一層(左右)の配線間及び異なる層(上下)の配線間をシリコン酸化層などの絶縁層で満たす場合に比べて、極端に誘電率を低下させることができる。
【1477】
従って、素子の集積度の向上とLSIの性能の向上を同時に達成することができる。
【1478】
また、チップの縁部にリング状のガ−ドリングを形成しておけば、ウェハから個々のチップを切り出した後において、水分H2 Oがチップの縁から空洞を介して配線に達するという事態が回避できる。即ち、ガ−ドリングを設けることにより、チップ内の配線を水分H2 Oに対して保護することができる。
【1479】
また、少なくとも配線の側面を配線保護層で覆えば、チップの縁から空洞を介して進入してきた水分H2 Oは、配線の金属に直接到達することがない。従って、個々の配線を水分H2 Oから保護することができる。
【1480】
本発明の製造方法により形成された半導体装置(チップ)が搭載されるパッケージに、パッケージ外部と内部を接続する穴を設けておけば、空洞内の空気が循環し、チップ内で生じる熱は、パッケージ外部へ効率よく排出される。従って、熱による不良が発生し難い半導体装置を提供することができる。
【1481】
また、配線を配線保護層で覆うことによりヒロックを防止できる。
【1482】
また、配線間の空洞は、酸素雰囲気中でのアニ−ル又は酸素プラズマ処理を用いて炭素層を灰化することにより簡単に形成できる。
【1483】
半導体装置の機械的強度を増すためには、炭素層上及び配線上に、シリコンなどの配線と反応する材料を設ければよい。また、空洞上に酸化金属層を設けることによっても、半導体装置の機械的強度を増すことができる。
【1484】
また、炭素層の灰化時に、配線の酸化を防止するためには、配線を、酸素を透過しない防護層により取り囲めばよい。
【1485】
配線の周囲を空洞で取り囲んでしまえば、同一のレベルにおける配線間の寄生容量の低減に効果的である。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に関わる半導体装置を示す断面図。
【図2】図1の半導体装置の製造方法の一工程を示す断面図。
【図3】図1の半導体装置の製造方法の一工程を示す断面図。
【図4】図1の半導体装置の製造方法の一工程を示す断面図。
【図5】図1の半導体装置の製造方法の一工程を示す断面図。
【図6】図1の半導体装置の製造方法の一工程を示す断面図。
【図7】本発明の第2の実施の形態に関わる半導体装置を示す斜視図。
【図8】図7の半導体装置の製造方法の一工程を示す斜視図。
【図9】図7の半導体装置の製造方法の一工程を示す斜視図。
【図10】図7の半導体装置の製造方法の一工程を示す斜視図。
【図11】図7の半導体装置の製造方法の一工程を示す斜視図。
【図12】図7の半導体装置の製造方法の一工程を示す斜視図。
【図13】図7の半導体装置の製造方法の一工程を示す斜視図。
【図14】図7の半導体装置の製造方法の一工程を示す斜視図。
【図15】図7の半導体装置の製造方法の一工程を示す斜視図。
【図16】図7の半導体装置の製造方法の一工程を示す斜視図。
【図17】図7の半導体装置の製造方法の一工程を示す斜視図。
【図18】図7の半導体装置の製造方法の一工程を示す斜視図。
【図19】図7の半導体装置の製造方法の一工程を示す斜視図。
【図20】図7の半導体装置の製造方法の一工程を示す斜視図。
【図21】図7の半導体装置の製造方法の一工程を示す斜視図。
【図22】図7の半導体装置の製造方法の一工程を示す斜視図。
【図23】本発明の第3の実施の形態に関わる半導体装置を示す斜視図。
【図24】図23の半導体装置の製造方法の一工程を示す斜視図。
【図25】図23の半導体装置の製造方法の一工程を示す斜視図。
【図26】図23の半導体装置の製造方法の一工程を示す斜視図。
【図27】図23の半導体装置の製造方法の一工程を示す斜視図。
【図28】図23の半導体装置の製造方法の一工程を示す斜視図。
【図29】図23の半導体装置の製造方法の一工程を示す斜視図。
【図30】図23の半導体装置の製造方法の一工程を示す斜視図。
【図31】図23の半導体装置の製造方法の一工程を示す斜視図。
【図32】図23の半導体装置の製造方法の一工程を示す斜視図。
【図33】図23の半導体装置の製造方法の一工程を示す斜視図。
【図34】本発明の第4の実施の形態に関わる半導体装置を示す斜視図。
【図35】図34の半導体装置の製造方法の一工程を示す斜視図。
【図36】図34の半導体装置の製造方法の一工程を示す斜視図。
【図37】図34の半導体装置の製造方法の一工程を示す斜視図。
【図38】図34の半導体装置の製造方法の一工程を示す斜視図。
【図39】図34の半導体装置の製造方法の一工程を示す斜視図。
【図40】本発明の第5の実施の形態に関わる半導体装置を示す斜視図。
【図41】図40の半導体装置の製造方法の一工程を示す斜視図。
【図42】図40の半導体装置の製造方法の一工程を示す斜視図。
【図43】図40の半導体装置の製造方法の一工程を示す斜視図。
【図44】図40の半導体装置の製造方法の一工程を示す斜視図。
【図45】図40の半導体装置の製造方法の一工程を示す斜視図。
【図46】本発明の第6の実施の形態に関わる半導体装置を示す斜視図。
【図47】図46の半導体装置の製造方法の一工程を示す斜視図。
【図48】図46の半導体装置の製造方法の一工程を示す斜視図。
【図49】図46の半導体装置の製造方法の一工程を示す斜視図。
【図50】図46の半導体装置の製造方法の一工程を示す斜視図。
【図51】図46の半導体装置の製造方法の一工程を示す斜視図。
【図52】図46の半導体装置の製造方法の一工程を示す斜視図。
【図53】本発明の第7の実施の形態に関わる半導体装置を示す斜視図。
【図54】図53の半導体装置の製造方法の一工程を示す斜視図。
【図55】図53の半導体装置の製造方法の一工程を示す斜視図。
【図56】図53の半導体装置の製造方法の一工程を示す斜視図。
【図57】図53の半導体装置の製造方法の一工程を示す斜視図。
【図58】図53の半導体装置の製造方法の一工程を示す斜視図。
【図59】図53の半導体装置の製造方法の一工程を示す斜視図。
【図60】本発明の第8の実施の形態に関わる半導体装置を示す斜視図。
【図61】図60の半導体装置の製造方法の一工程を示す斜視図。
【図62】図60の半導体装置の製造方法の一工程を示す斜視図。
【図63】図60の半導体装置の製造方法の一工程を示す斜視図。
【図64】図60の半導体装置の製造方法の一工程を示す斜視図。
【図65】図60の半導体装置の製造方法の一工程を示す斜視図。
【図66】図60の半導体装置の製造方法の一工程を示す斜視図。
【図67】本発明の第9の実施の形態に関わる半導体装置を示す斜視図。
【図68】図67の半導体装置の製造方法の一工程を示す斜視図。
【図69】図67の半導体装置の製造方法の一工程を示す斜視図。
【図70】図67の半導体装置の製造方法の一工程を示す斜視図。
【図71】図67の半導体装置の製造方法の一工程を示す斜視図。
【図72】図67の半導体装置の製造方法の一工程を示す斜視図。
【図73】図67の半導体装置の製造方法の一工程を示す斜視図。
【図74】本発明の第10〜第17の実施の形態に関わるウェハを示す図。
【図75】本発明の第10〜第17の実施の形態に関わるウェハの一部を示す図。
【図76】本発明の第10の実施の形態に関わる半導体装置を示す斜視図。
【図77】本発明の第10の実施の形態に関わる半導体装置を示す斜視図。
【図78】本発明の第11の実施の形態に関わる半導体装置を示す斜視図。
【図79】本発明の第11の実施の形態に関わる半導体装置を示す斜視図。
【図80】本発明の第12の実施の形態に関わる半導体装置を示す斜視図。
【図81】本発明の第13の実施の形態に関わる半導体装置を示す斜視図。
【図82】本発明の第14の実施の形態に関わる半導体装置を示す斜視図。
【図83】本発明の第15の実施の形態に関わる半導体装置を示す斜視図。
【図84】本発明の第16の実施の形態に関わる半導体装置を示す斜視図。
【図85】本発明の第17の実施の形態に関わる半導体装置を示す斜視図。
【図86】本発明の第18の実施の形態に関わる半導体装置を示す斜視図。
【図87】図86の半導体装置の製造方法の一工程を示す斜視図。
【図88】図86の半導体装置の製造方法の一工程を示す斜視図。
【図89】図86の半導体装置の製造方法の一工程を示す斜視図。
【図90】図86の半導体装置の製造方法の一工程を示す斜視図。
【図91】図86の半導体装置の製造方法の一工程を示す斜視図。
【図92】図86の半導体装置の製造方法の一工程を示す斜視図。
【図93】図86の半導体装置の製造方法の一工程を示す斜視図。
【図94】図86の半導体装置の製造方法の一工程を示す斜視図。
【図95】図86の半導体装置の製造方法の一工程を示す斜視図。
【図96】図86の半導体装置の製造方法の一工程を示す斜視図。
【図97】図86の半導体装置の製造方法の一工程を示す斜視図。
【図98】図86の半導体装置の製造方法の一工程を示す斜視図。
【図99】図86の半導体装置の製造方法の一工程を示す斜視図。
【図100】図86の半導体装置の製造方法の一工程を示す斜視図。
【図101】図86の半導体装置の製造方法の一工程を示す斜視図。
【図102】本発明の第19の実施の形態に関わる半導体装置を示す斜視図。
【図103】図102の半導体装置の製造方法の一工程を示す斜視図。
【図104】図102の半導体装置の製造方法の一工程を示す斜視図。
【図105】図102の半導体装置の製造方法の一工程を示す斜視図。
【図106】図102の半導体装置の製造方法の一工程を示す斜視図。
【図107】図102の半導体装置の製造方法の一工程を示す斜視図。
【図108】図102の半導体装置の製造方法の一工程を示す斜視図。
【図109】図102の半導体装置の製造方法の一工程を示す斜視図。
【図110】図102の半導体装置の製造方法の一工程を示す斜視図。
【図111】図102の半導体装置の製造方法の一工程を示す斜視図。
【図112】図102の半導体装置の製造方法の一工程を示す斜視図。
【図113】本発明の第20の実施の形態に関わる半導体装置を示す斜視図。
【図114】図113の半導体装置の製造方法の一工程を示す斜視図。
【図115】図113の半導体装置の製造方法の一工程を示す斜視図。
【図116】図113の半導体装置の製造方法の一工程を示す斜視図。
【図117】図113の半導体装置の製造方法の一工程を示す斜視図。
【図118】図113の半導体装置の製造方法の一工程を示す斜視図。
【図119】図113の半導体装置の製造方法の一工程を示す斜視図。
【図120】本発明の第21の実施の形態に関わる半導体装置を示す斜視図。
【図121】図120の半導体装置の製造方法の一工程を示す斜視図。
【図122】図120の半導体装置の製造方法の一工程を示す斜視図。
【図123】図120の半導体装置の製造方法の一工程を示す斜視図。
【図124】図120の半導体装置の製造方法の一工程を示す斜視図。
【図125】図120の半導体装置の製造方法の一工程を示す斜視図。
【図126】図120の半導体装置の製造方法の一工程を示す斜視図。
【図127】本発明の第22の実施の形態に関わる半導体装置を示す斜視図。
【図128】図127の半導体装置の製造方法の一工程を示す斜視図。
【図129】図127の半導体装置の製造方法の一工程を示す斜視図。
【図130】図127の半導体装置の製造方法の一工程を示す斜視図。
【図131】図127の半導体装置の製造方法の一工程を示す斜視図。
【図132】図127の半導体装置の製造方法の一工程を示す斜視図。
【図133】図127の半導体装置の製造方法の一工程を示す斜視図。
【図134】図127の半導体装置の製造方法の一工程を示す斜視図。
【図135】図127の半導体装置の製造方法の一工程を示す斜視図。
【図136】図127の半導体装置の製造方法の一工程を示す斜視図。
【図137】図127の半導体装置の製造方法の一工程を示す斜視図。
【図138】図127の半導体装置の製造方法の一工程を示す斜視図。
【図139】図127の半導体装置の製造方法の一工程を示す斜視図。
【図140】図127の半導体装置の製造方法の一工程を示す斜視図。
【図141】図127の半導体装置の製造方法の一工程を示す斜視図。
【図142】図127の半導体装置の製造方法の一工程を示す斜視図。
【図143】本発明の第23の実施の形態に関わる半導体装置を示す斜視図。
【図144】図143の半導体装置の製造方法の一工程を示す斜視図。
【図145】図143の半導体装置の製造方法の一工程を示す斜視図。
【図146】図143の半導体装置の製造方法の一工程を示す斜視図。
【図147】図143の半導体装置の製造方法の一工程を示す斜視図。
【図148】図143の半導体装置の製造方法の一工程を示す斜視図。
【図149】図143の半導体装置の製造方法の一工程を示す斜視図。
【図150】図143の半導体装置の製造方法の一工程を示す斜視図。
【図151】図143の半導体装置の製造方法の一工程を示す斜視図。
【図152】図143の半導体装置の製造方法の一工程を示す斜視図。
【図153】図143の半導体装置の製造方法の一工程を示す斜視図。
【図154】本発明の第24の実施の形態に関わる半導体装置を示す斜視図。
【図155】図154の半導体装置の製造方法の一工程を示す斜視図。
【図156】図154の半導体装置の製造方法の一工程を示す斜視図。
【図157】図154の半導体装置の製造方法の一工程を示す斜視図。
【図158】図154の半導体装置の製造方法の一工程を示す斜視図。
【図159】図154の半導体装置の製造方法の一工程を示す斜視図。
【図160】図154の半導体装置の製造方法の一工程を示す斜視図。
【図161】本発明の第25の実施の形態に関わる半導体装置を示す斜視図。
【図162】図161の半導体装置の製造方法の一工程を示す斜視図。
【図163】図161の半導体装置の製造方法の一工程を示す斜視図。
【図164】図161の半導体装置の製造方法の一工程を示す斜視図。
【図165】図161の半導体装置の製造方法の一工程を示す斜視図。
【図166】図161の半導体装置の製造方法の一工程を示す斜視図。
【図167】図161の半導体装置の製造方法の一工程を示す斜視図。
【図168】本発明の第26の実施の形態に関わる半導体装置を示す斜視図。
【図169】本発明の第27の実施の形態に関わる半導体装置を示す斜視図。
【図170】本発明の第28の実施の形態に関わる半導体装置を示す断面図。
【図171】図170の半導体装置の製造方法の一工程を示す断面図。
【図172】図170の半導体装置の製造方法の一工程を示す断面図。
【図173】図170の半導体装置の製造方法の一工程を示す断面図。
【図174】図170の半導体装置の製造方法の一工程を示す断面図。
【図175】図170の半導体装置の製造方法の一工程を示す断面図。
【図176】図170の半導体装置の製造方法の一工程を示す断面図。
【図177】本発明の第29の実施の形態に関わる半導体装置を示す断面図。
【図178】図177の半導体装置の製造方法の一工程を示す断面図。
【図179】図177の半導体装置の製造方法の一工程を示す断面図。
【図180】図177の半導体装置の製造方法の一工程を示す断面図。
【図181】図177の半導体装置の製造方法の一工程を示す断面図。
【図182】図177の半導体装置の製造方法の一工程を示す断面図。
【図183】図177の半導体装置の製造方法の一工程を示す断面図。
【図184】本発明の第30の実施の形態に関わる半導体装置を示す斜視図。
【図185】図184の半導体装置の製造方法の一工程を示す斜視図。
【図186】図184の半導体装置の製造方法の一工程を示す斜視図。
【図187】図184の半導体装置の製造方法の一工程を示す斜視図。
【図188】図184の半導体装置の製造方法の一工程を示す斜視図。
【図189】図184の半導体装置の製造方法の一工程を示す斜視図。
【図190】図184の半導体装置の製造方法の一工程を示す斜視図。
【図191】図184の半導体装置の製造方法の一工程を示す斜視図。
【図192】図184の半導体装置の製造方法の一工程を示す斜視図。
【図193】図184の半導体装置の製造方法の一工程を示す斜視図。
【図194】図184の半導体装置の製造方法の一工程を示す斜視図。
【図195】図184の半導体装置の製造方法の一工程を示す斜視図。
【図196】図184の半導体装置の製造方法の一工程を示す斜視図。
【図197】炭素層の灰化処理の一工程を示す断面図。
【図198】炭素層の灰化処理の一工程を示す断面図。
【図199】本発明の第31の実施の形態に関わる半導体装置を示す斜視図。
【図200】図199の半導体装置の製造方法の一工程を示す斜視図。
【図201】図199の半導体装置の製造方法の一工程を示す斜視図。
【図202】図199の半導体装置の製造方法の一工程を示す斜視図。
【図203】図199の半導体装置の製造方法の一工程を示す斜視図。
【図204】図199の半導体装置の製造方法の一工程を示す斜視図。
【図205】図199の半導体装置の製造方法の一工程を示す斜視図。
【図206】図199の半導体装置の製造方法の一工程を示す斜視図。
【図207】図199の半導体装置の製造方法の一工程を示す斜視図。
【図208】図199の半導体装置の製造方法の一工程を示す斜視図。
【図209】図199の半導体装置の製造方法の一工程を示す斜視図。
【図210】図199の半導体装置の製造方法の一工程を示す斜視図。
【図211】図199の半導体装置の製造方法の一工程を示す斜視図。
【図212】本発明の第32の実施の形態に関わる半導体装置を示す断面図。
【図213】図212の半導体装置の製造方法の一工程を示す断面図。
【図214】図212の半導体装置の製造方法の一工程を示す断面図。
【図215】図212の半導体装置の製造方法の一工程を示す断面図。
【図216】図212の半導体装置の製造方法の一工程を示す断面図。
【図217】図212の半導体装置の製造方法の一工程を示す断面図。
【図218】図212の半導体装置の製造方法の一工程を示す断面図。
【図219】本発明の第33の実施の形態に関わる半導体装置を示す断面図。
【図220】図219の半導体装置の製造方法の一工程を示す断面図。
【図221】図219の半導体装置の製造方法の一工程を示す断面図。
【図222】図219の半導体装置の製造方法の一工程を示す断面図。
【図223】図219の半導体装置の製造方法の一工程を示す断面図。
【図224】図219の半導体装置の製造方法の一工程を示す断面図。
【図225】図219の半導体装置の製造方法の一工程を示す断面図。
【図226】本発明の第34の実施の形態に関わる半導体装置を示す断面図。
【図227】図226の半導体装置の製造方法の一工程を示す断面図。
【図228】図226の半導体装置の製造方法の一工程を示す断面図。
【図229】図226の半導体装置の製造方法の一工程を示す断面図。
【図230】図226の半導体装置の製造方法の一工程を示す断面図。
【図231】図226の半導体装置の製造方法の一工程を示す断面図。
【図232】図226の半導体装置の製造方法の一工程を示す断面図。
【図233】従来の半導体装置を示す斜視図。
【符号の説明】
11,71 :半導体基板、
12,14,72,74,76 :絶縁層、
13,73,W1,W2 :配線、
15,75 :空洞、
16,39,41,44,80a,80b :炭素層、
17,77 :マスク材、
21 :半導体基板、
22 :フィ−ルド酸化層、
23 :ゲ−ト電極、
24a,24b :ソ−ス・ドレイン領域、
25,32 :絶縁層、
26a〜26c,33a〜33c :導電層、
27a〜27d,34a〜34d :バリア層、
28a〜28d,35a〜35d :金属、
29,30,36,37,42,43 :絶縁層、
31,38,40 :空洞、
32 :絶縁層、
45,46 :レジスト、
47 :ウェハ、
48 :チップ、
49 :ダイシングライン
50a,50b,51a,51b :配線保護層、
60 :シリコン層、
61 :合金層、
62 :金属層、
63 :酸化金属層、
64,68 :絶縁層、
65 :防護金属層、
66 :酸化層、
67 :防護層、
G :ガ−ドリング、
D1 :ダミ−配線。

Claims (12)

  1. 半導体基板上に第1の絶縁層を形成する工程と、前記第1の絶縁層上に炭素層を形成する工程と、前記炭素層に複数の溝を形成する工程と、前記複数の溝内に導電体を埋め込んで複数の配線を形成する工程と、前記炭素層上及び前記複数の配線上に酸化物からなる第2の絶縁層を形成する工程と、酸素を前記第2の絶縁層を透過させて前記炭素層と反応させることにより前記炭素層を酸化し、前記炭素層をガス層に変換する工程とを具備することを特徴とする半導体装置の製造方法。
  2. 前記炭素層を灰化することにより、前記複数の配線の間を酸素と二酸化炭素の混合ガスが満たされた空洞にすることを特徴とする請求項1に記載の半導体装置の製造方法。
  3. 前記炭素層は、前記導電体を形成する際の温度以下で固体であることを特徴とする請求項1に記載の半導体装置の製造方法。
  4. 前記複数の溝は、
    前記炭素層上にマスク材を形成する工程と、写真蝕刻工程により前記マスク材を加工する工程と、このマスク材をマスクにして異方性エッチングにより前記炭素層をエッチングする工程と、前記マスク材を剥離する工程と
    を具備することにより形成されることを特徴とする請求項1に記載の半導体装置の製造方法。
  5. 前記マスク材は、酸化物から構成されることを特徴とする請求項4に記載の半導体装置の製造方法。
  6. 前記マスク材は、スパッタリング法により形成されることを特徴とする請求項5に記載の半導体装置の製造方法。
  7. 前記複数の溝は、
    前記炭素層上にレジストを形成する工程と、前記レジストをパターニングする工程と、このレジストをマスクにして異方性エッチングにより前記炭素層をエッチングする工程と、前記レジストを剥離する工程と
    を具備することにより形成されることを特徴とする請求項1に記載の半導体装置の製造方法。
  8. 前記レジストは、薬液により剥離されることを特徴とする請求項7に記載の半導体装置の製造方法。
  9. 前記第2の絶縁層は、酸化物から構成されることを特徴とする請求項1に記載の半導体装置の製造方法。
  10. 前記第2の絶縁層は、スパッタリング法により形成されることを特徴とする請求項9に記載の半導体装置の製造方法。
  11. 前記炭素層の酸化は、酸素雰囲気中での熱処理又は酸素プラズマ処理により達成されることを特徴とする請求項1に記載の半導体装置の製造方法。
  12. 前記ガス層内に空気を満たす工程を具備することを特徴とする請求項1に記載の半導体装置の製造方法。
JP09952996A 1995-12-28 1996-03-29 半導体装置の製造方法 Expired - Fee Related JP3887035B2 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP09952996A JP3887035B2 (ja) 1995-12-28 1996-03-29 半導体装置の製造方法
TW085106346A TW317010B (ja) 1995-12-28 1996-05-28
US08/698,335 US6307265B1 (en) 1995-12-28 1996-08-15 Feasible, gas-dielectric interconnect process
SG1996010573A SG60016A1 (en) 1995-12-28 1996-08-21 Feasible gas-dielectric interconnect process
EP96113827A EP0783178A3 (en) 1995-12-28 1996-08-29 Gas-dielectric interconnect process
KR1019960038590A KR100279790B1 (ko) 1995-12-28 1996-09-06 반도체장치 및 그 제조방법
CNB961179724A CN1160772C (zh) 1995-12-28 1996-12-27 半导体器件及其制造方法
US09/525,442 US6306753B1 (en) 1995-12-28 2000-03-14 Feasible, gas-dielectric interconnect process
KR1020000020962A KR100308240B1 (ko) 1995-12-28 2000-04-20 반도체장치의 제조방법

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-352196 1995-12-28
JP35219695 1995-12-28
JP09952996A JP3887035B2 (ja) 1995-12-28 1996-03-29 半導体装置の製造方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2005131770A Division JP4473775B2 (ja) 1995-12-28 2005-04-28 半導体装置及びその製造方法
JP2005131771A Division JP4427484B2 (ja) 1995-12-28 2005-04-28 半導体装置及びその製造方法

Publications (2)

Publication Number Publication Date
JPH09237831A JPH09237831A (ja) 1997-09-09
JP3887035B2 true JP3887035B2 (ja) 2007-02-28

Family

ID=26440655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09952996A Expired - Fee Related JP3887035B2 (ja) 1995-12-28 1996-03-29 半導体装置の製造方法

Country Status (7)

Country Link
US (2) US6307265B1 (ja)
EP (1) EP0783178A3 (ja)
JP (1) JP3887035B2 (ja)
KR (2) KR100279790B1 (ja)
CN (1) CN1160772C (ja)
SG (1) SG60016A1 (ja)
TW (1) TW317010B (ja)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1252810C (zh) * 1997-01-21 2006-04-19 B·F·谷德里奇公司 用于超低电容互连的有空气隙的半导体装置的制造
GB2330001B (en) * 1997-10-06 1999-09-01 United Microelectronics Corp Method of forming an integrated circuit device
NL1007464C2 (nl) * 1997-11-06 1999-05-07 United Microelectronics Corp Verbindingsstructuur met gas-diëlektricum die compatibel is met contactpuntloze doorgangen.
JP3519589B2 (ja) 1997-12-24 2004-04-19 株式会社ルネサステクノロジ 半導体集積回路の製造方法
WO2000060652A1 (fr) * 1999-03-30 2000-10-12 Citizen Watch Co., Ltd. Procede de fabrication d'un substrat a couches minces et substrat a couches minces fabrique selon ce procede
US6667502B1 (en) * 1999-08-31 2003-12-23 Micron Technology, Inc. Structurally-stabilized capacitors and method of making of same
US20020076917A1 (en) * 1999-12-20 2002-06-20 Edward P Barth Dual damascene interconnect structure using low stress flourosilicate insulator with copper conductors
JP3895126B2 (ja) * 2001-04-23 2007-03-22 株式会社東芝 半導体装置の製造方法
WO2003021659A1 (en) 2001-09-04 2003-03-13 Applied Materials, Inc. Methods and apparatus for etching metal layers on substrates
US6555467B2 (en) * 2001-09-28 2003-04-29 Sharp Laboratories Of America, Inc. Method of making air gaps copper interconnect
US7214594B2 (en) * 2002-03-26 2007-05-08 Intel Corporation Method of making semiconductor device using a novel interconnect cladding layer
US6734094B2 (en) * 2002-04-29 2004-05-11 Intel Corporation Method of forming an air gap within a structure by exposing an ultraviolet sensitive material to ultraviolet radiation
WO2004086143A2 (en) * 2003-03-21 2004-10-07 Applied Materials, Inc. Multi-step process for etching photomasks
US7077973B2 (en) * 2003-04-18 2006-07-18 Applied Materials, Inc. Methods for substrate orientation
US7169706B2 (en) * 2003-10-16 2007-01-30 Advanced Micro Devices, Inc. Method of using an adhesion precursor layer for chemical vapor deposition (CVD) copper deposition
US6875685B1 (en) * 2003-10-24 2005-04-05 International Business Machines Corporation Method of forming gas dielectric with support structure
US20050152594A1 (en) * 2003-11-10 2005-07-14 Hermes-Microvision, Inc. Method and system for monitoring IC process
US7084479B2 (en) * 2003-12-08 2006-08-01 International Business Machines Corporation Line level air gaps
TWI292933B (en) * 2004-03-17 2008-01-21 Imec Inter Uni Micro Electr Method of manufacturing a semiconductor device having damascene structures with air gaps
TWI273671B (en) * 2004-03-18 2007-02-11 Imec Inter Uni Micro Electr Method of manufacturing a semiconductor device having damascene structures with air gaps
US7339272B2 (en) * 2004-06-14 2008-03-04 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device with scattering bars adjacent conductive lines
JP4679193B2 (ja) 2005-03-22 2011-04-27 株式会社東芝 半導体装置の製造方法及び半導体装置
JP2007035996A (ja) * 2005-07-28 2007-02-08 Toshiba Corp 半導体装置およびその製造方法
JP4197694B2 (ja) * 2005-08-10 2008-12-17 株式会社東芝 半導体装置およびその製造方法
KR100780627B1 (ko) 2005-09-27 2007-11-29 주식회사 하이닉스반도체 탄화된 질화장벽층을 구비한 반도체 소자 및 그의 제조방법
JP2009094378A (ja) 2007-10-11 2009-04-30 Panasonic Corp 半導体装置及びその製造方法
US20090121356A1 (en) * 2007-11-12 2009-05-14 Rohm Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
US8237272B2 (en) * 2010-02-16 2012-08-07 Taiwan Semiconductor Manufacturing Company, Ltd. Conductive pillar structure for semiconductor substrate and method of manufacture
US8338917B2 (en) * 2010-08-13 2012-12-25 Taiwan Semiconductor Manufacturing Company, Ltd. Multiple seal ring structure
JP2014096553A (ja) * 2012-10-09 2014-05-22 Tokyo Electron Ltd プラズマ処理方法、及びプラズマ処理装置
KR102037830B1 (ko) 2013-05-20 2019-10-29 삼성전자주식회사 반도체 장치 및 그 제조 방법
JP5970004B2 (ja) * 2014-01-09 2016-08-17 東京エレクトロン株式会社 半導体装置の製造方法
KR102140048B1 (ko) * 2014-02-18 2020-07-31 삼성전자주식회사 자기 메모리 소자를 위한 자기 터널 접합 구조물 형성 방법
US10490497B2 (en) * 2014-06-13 2019-11-26 Taiwan Semiconductor Manufacturing Company, Ltd. Selective formation of conductor nanowires
US9818642B2 (en) 2015-04-15 2017-11-14 Nxp Usa, Inc. Method of forming inter-level dielectric structures on semiconductor devices
US9449871B1 (en) * 2015-11-18 2016-09-20 International Business Machines Corporation Hybrid airgap structure with oxide liner
WO2018063208A1 (en) * 2016-09-29 2018-04-05 Intel Corporation Metal aluminum gallium indium carbide thin films as liners and barriers for interconnects
US11171089B2 (en) * 2018-10-31 2021-11-09 Taiwan Semiconductor Manufacturing Company, Ltd. Line space, routing and patterning methodology
JP2022065303A (ja) * 2020-10-15 2022-04-27 東京エレクトロン株式会社 基板処理方法および基板処理装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4379307A (en) 1980-06-16 1983-04-05 Rockwell International Corporation Integrated circuit chip transmission line
US4975144A (en) * 1988-03-22 1990-12-04 Semiconductor Energy Laboratory Co., Ltd. Method of plasma etching amorphous carbon films
EP0343269B1 (en) 1988-05-26 1993-05-12 Fairchild Semiconductor Corporation High performance interconnect system for an integrated circuit
JPH0258221A (ja) 1988-08-23 1990-02-27 Semiconductor Energy Lab Co Ltd 炭素または炭素を主成分とするマスクを用いたエッチング方法
US4987101A (en) 1988-12-16 1991-01-22 International Business Machines Corporation Method for providing improved insulation in VLSI and ULSI circuits
US5119164A (en) 1989-07-25 1992-06-02 Advanced Micro Devices, Inc. Avoiding spin-on-glass cracking in high aspect ratio cavities
KR960000375B1 (ko) 1991-01-22 1996-01-05 가부시끼가이샤 도시바 반도체장치의 제조방법
JPH0722583A (ja) * 1992-12-15 1995-01-24 Internatl Business Mach Corp <Ibm> 多層回路装置
JP2555940B2 (ja) 1993-07-27 1996-11-20 日本電気株式会社 半導体装置及びその製造方法
US5494859A (en) * 1994-02-04 1996-02-27 Lsi Logic Corporation Low dielectric constant insulation layer for integrated circuit structure and method of making same
JP3441011B2 (ja) * 1994-03-18 2003-08-25 富士通株式会社 アモルファスカーボンを用いた半導体装置製造方法
US5461003A (en) * 1994-05-27 1995-10-24 Texas Instruments Incorporated Multilevel interconnect structure with air gaps formed between metal leads
US5527737A (en) * 1994-05-27 1996-06-18 Texas Instruments Incorporated Selective formation of low-density, low-dielectric-constant insulators in narrow gaps for line-to-line capacitance reduction
US5413962A (en) 1994-07-15 1995-05-09 United Microelectronics Corporation Multi-level conductor process in VLSI fabrication utilizing an air bridge
US5670828A (en) * 1995-02-21 1997-09-23 Advanced Micro Devices, Inc. Tunneling technology for reducing intra-conductive layer capacitance
US5953626A (en) * 1996-06-05 1999-09-14 Advanced Micro Devices, Inc. Dissolvable dielectric method
US6071805A (en) * 1999-01-25 2000-06-06 Chartered Semiconductor Manufacturing, Ltd. Air gap formation for high speed IC processing

Also Published As

Publication number Publication date
EP0783178A2 (en) 1997-07-09
JPH09237831A (ja) 1997-09-09
SG60016A1 (en) 1999-02-22
CN1160772C (zh) 2004-08-04
KR970053624A (ko) 1997-07-31
EP0783178A3 (en) 1998-10-07
KR100279790B1 (ko) 2001-03-02
TW317010B (ja) 1997-10-01
KR100308240B1 (ko) 2001-11-07
US6306753B1 (en) 2001-10-23
US6307265B1 (en) 2001-10-23
CN1157476A (zh) 1997-08-20

Similar Documents

Publication Publication Date Title
JP3887035B2 (ja) 半導体装置の製造方法
JP3354424B2 (ja) 半導体装置および半導体装置の製造方法
USRE46549E1 (en) Integrated circuit chip having anti-moisture-absorption film at edge thereof and method of forming anti-moisture-absorption film
US6498089B2 (en) Semiconductor integrated circuit device with moisture-proof ring and its manufacture method
US7635645B2 (en) Method for forming interconnection line in semiconductor device and interconnection line structure
US7671442B2 (en) Air-gap insulated interconnections
JP3183851B2 (ja) 半導体基板及びその製造方法
EP0680085B1 (en) Via formation in polymeric materials
JPH06224304A (ja) アンティフューズエレメントおよび製造方法
US20050093169A1 (en) Semiconductor device and method of manufacturing semiconductor device
JP4050876B2 (ja) 半導体集積回路装置とその製造方法
JPH1140564A (ja) 半導体装置およびその製造方法
US7332427B2 (en) Method of forming an interconnection line in a semiconductor device
JPH10189730A (ja) 半導体装置及びその製造方法
JP4427484B2 (ja) 半導体装置及びその製造方法
JP4473775B2 (ja) 半導体装置及びその製造方法
JP3278933B2 (ja) 半導体装置の製造方法
JP3534589B2 (ja) 多層配線装置及びその製造方法
JP4472286B2 (ja) 変形されたデュアルダマシン工程を利用した半導体素子の金属配線形成方法
JP4211910B2 (ja) 半導体装置の製造方法
JP3549425B2 (ja) 半導体装置及びその製造方法
JPH0955424A (ja) 多層配線の形成方法
JPH10189718A (ja) 半導体装置および半導体装置の製造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131201

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees