JP3865528B2 - Semiconductor memory device - Google Patents
Semiconductor memory device Download PDFInfo
- Publication number
- JP3865528B2 JP3865528B2 JP10097999A JP10097999A JP3865528B2 JP 3865528 B2 JP3865528 B2 JP 3865528B2 JP 10097999 A JP10097999 A JP 10097999A JP 10097999 A JP10097999 A JP 10097999A JP 3865528 B2 JP3865528 B2 JP 3865528B2
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- ferroelectric thin
- lower electrode
- crystal grain
- ferroelectric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000004065 semiconductor Substances 0.000 title claims description 30
- 239000010409 thin film Substances 0.000 claims description 78
- 239000013078 crystal Substances 0.000 claims description 64
- 239000010408 film Substances 0.000 claims description 32
- 230000015654 memory Effects 0.000 claims description 28
- 239000003990 capacitor Substances 0.000 claims description 26
- 230000003746 surface roughness Effects 0.000 claims description 22
- 239000000758 substrate Substances 0.000 claims description 17
- 229910052779 Neodymium Inorganic materials 0.000 claims description 6
- 239000012790 adhesive layer Substances 0.000 claims description 6
- 229910052787 antimony Inorganic materials 0.000 claims description 6
- 229910052738 indium Inorganic materials 0.000 claims description 6
- 229910052746 lanthanum Inorganic materials 0.000 claims description 6
- 229910052745 lead Inorganic materials 0.000 claims description 6
- 229910052749 magnesium Inorganic materials 0.000 claims description 6
- 229910052748 manganese Inorganic materials 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- 229910052758 niobium Inorganic materials 0.000 claims description 6
- 229910052712 strontium Inorganic materials 0.000 claims description 6
- 229910052718 tin Inorganic materials 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- 229910052788 barium Inorganic materials 0.000 claims description 4
- 229910052796 boron Inorganic materials 0.000 claims description 3
- 230000010287 polarization Effects 0.000 description 20
- 239000010410 layer Substances 0.000 description 17
- 238000010586 diagram Methods 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 8
- 239000000523 sample Substances 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 229910052726 zirconium Inorganic materials 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 4
- 230000008025 crystallization Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 238000004151 rapid thermal annealing Methods 0.000 description 3
- 238000010079 rubber tapping Methods 0.000 description 3
- 238000003980 solgel method Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 229910001260 Pt alloy Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000005380 borophosphosilicate glass Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000004439 roughness measurement Methods 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Landscapes
- Semiconductor Memories (AREA)
- Non-Volatile Memory (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、強誘電体不揮発性メモリ及び高密度DRAMに最適な強誘電体薄膜コンデンサを用いた半導体メモリ素子及びその製造方法に関する。
【0002】
【従来の技術】
従来の強誘電体薄膜コンデンサを用いた半導体メモリでは、例えば「強誘電体薄膜メモリ」(サイエンスフォーラム刊,1995年)227頁に記載されているように、Pt上部電極/強誘電体層(PZT)/Pt下部電極の積層構造を持っている。この強誘電体層の製造方法としては、ゾル・ゲル法,スパッタリング法,CVD(Chemical Vapor Deposition)法等が知られている。
【0003】
例えば、特開平7−142600号公報に記載された薄膜の形成方法では、BaTiO3の化合物をPt下部電極上に形成している。Pt薄膜の結晶配向をそのまま受け継ぐことにより、強誘電性薄膜の配向性を制御し、残留分極を確保していた。
【0004】
また例えば、Integrated Ferroelectrics ,1995,Vol10,pp.145-154に記載されたPZT強誘電体薄膜は、下部電極上にスパッタ法でPZTを成膜し、アニールで結晶化させている。この強誘電体薄膜の走査電子顕微鏡による表面観察写真では、平均結晶粒径は約180nmであり、結晶粒径の相対標準偏差は約15%であった。
【0005】
【発明が解決しようとする課題】
上記従来技術では、強誘電体薄膜の結晶粒径を制御することが困難であった。強誘電体薄膜をパターニングし、メモリキャパシタとしたときに、結晶粒径のばらつきが大きいために、メモリセル間の特性ばらつきが大きくなる。その結果、すべてのメモリセルで同時に十分な特性を得ることが困難であり、製造上の歩留り低下を引き起こすという問題があった。またメモリセル内での結晶粒子の粒径ばらつきが大きいために、リーク電流の発生、あるいは粒界部分の電界集中による膜疲労の発生等が起こり、メモリセル性能上の問題となっていた。
【0006】
本発明の目的は、上記課題を解決するために、メモリセル間で特性ばらつきの少ない強誘電体薄膜キャパシタを提供し、高集積強誘電体メモリを高性能化すると同時に製造歩留りを向上することにある。
【0007】
【課題を解決するための手段】
上記課題を解決するために、本発明の半導体メモリ素子は、強誘電体薄膜コンデンサをメモリキャパシタとして用いる半導体メモリ素子であって、前記コンデンサが、少なくとも接着層、下部電極、強誘電体薄膜及び上部電極を基板上に順次形成した積層構造を備え、前記下部電極が、前記基板面に対して(111)優先配向してなり、前記強誘電体薄膜の結晶粒子が、初期核から形成された微小核を基に結晶成長させた前記下部電極と同じ(111)優先配向を有する膜厚方向に平行な柱状形状であり、前記強誘電体薄膜の表面粗さとして、前記強誘電体薄膜の表面の平均面に対する最高値と最低値との差が、前記強誘電体薄膜の平均膜厚に対して40%以下となるように、前記強誘電体薄膜が前記下部電極の上に形成されてなり、前記強誘電体薄膜の膜厚方向を法線とした面内であって、前記柱状形状の結晶粒子における平均結晶粒径の相対標準偏差が13%以下の範囲であり、前記強誘電体薄膜がペロブスカイト構造を有するABO 3 型酸化物であり、その組成として、AはPb、La、Sr、Nd、Baの中から選ばれた少なくともひとつの元素からなり、BはZr、Ti、Mn、Mg、Nb、Sn、Sb、Inの中から選ばれた少なくともひとつの元素からなるものである。
本発明においては、基板上の少なくとも下部電極,強誘電体薄膜及び上部電極の積層構造よりなる強誘電体薄膜コンデンサをメモリキャパシタとして使用する半導体メモリ素子において、該強誘電体薄膜の結晶粒径の相対標準偏差を13%以下に制御し、かつ膜厚方向に平行な柱状形状とし、かつ膜厚方向に粒界を有さないとすることにより、リーク電流や強誘電体薄膜内部や強誘電体薄膜と電極等との界面での電界集中によるキャパシタ間の印加実効電圧の低下を防ぐことができる。
【0008】
また上記キャパシタの下部電極としてPt電極、あるいはPt合金を使用し、該下部電極を基板面に対して垂直方向に(111)優先配向とすることにより、その上に形成した強誘電体結晶粒子の配向性を向上することができる。これにより、メモリセル間の均一性を更に向上することができる。また上記下部電極としてRu,Ir乃至同酸化物やPtと強誘電体薄膜中に含む元素との化合物を使用することによっても同様に達成される。
【0009】
また強誘電体材料として、ペロブスカイト構造を有するABO3型酸化物を使用し、各強誘電体結晶粒子を基板面に対して垂直方向に(111)優先配向とすることにより、配向性ばらつきによる特性の不均一性を低減できる。該強誘電体の組成として、A=Pb,La,Sr,Nd及びBaの中から選択される少なくとも1つの元素、B=Zr,Ti,Mn,Mg,Nb,Sn,Sb及びInの中から選択される少なくとも1つの元素を用いることにより、不揮発性メモリに好適な残留分極の大きい強誘電体薄膜を得ることができる。また該強誘電体組成がA=Pb,La,Sr,Nd及びBaの中から選択される少なくとも1つの元素であり、B=Zr,Ti,Mn,Mg,Nb,Sn,Sb及びInの中から選択される少なくとも1つの元素を用いることにより、メモリ使用温度においてヒステリシスのない常誘電層を得ることができ、DRAM等のキャパシタに好適な膜を得ることができる。
【0010】
また、強誘電体薄膜の結晶粒径の相対標準偏差を小さくする方法として、下部電極上にばらつきの少ない晶粒子成長に必要な微小核形成のために、該強誘電体材料に含まれる少なくとも1つ以上の元素の金属,酸化物あるいは化合物の初期核を形成し、あるいは下部電極形成後に高温熱処理を行い、下部電極表面に接着層(下部電極とCMOS基板との密着層)に含まれる少なくとも1つ以上の元素の金属,酸化物あるいは化合物を析出させることにより、微小核形成に必要な初期核を形成し、該初期核層の上に半導体装置に要求される膜厚の強誘電体薄膜を形成して結晶化を行うことにより、結晶粒径の相対標準偏差の小さく、各結晶粒子が基板面に対し垂直方向に(111)優先配向である、表面粗さの小さい強誘電体キャパシタを得ることができる。
【0011】
あるいは、下部電極表面に形成させる初期核層に、ペロブスカイト構造を有するABO3型酸化物を使用し、その組成としてA=Pb,La,Sr,NdおよびBaの中から選択される少なくとも1つの元素、B=Zr,Ti,Mn,Mg,Nb,Sn,Sb及びInの中から選択される少なくとも1つの元素を用いることにより、結晶粒径が小さく、結晶粒径の相対標準偏差が小さい強誘電体薄膜を得ることができる。その結果、強誘電性低下の原因である、絶縁物であるパイロクロア構造の結晶粒子や、ロゼッタ状の酸化物結晶粒子成長の抑制を可能となり、不揮発性メモリに最適な、残留分極値が大きい、かつリーク電流が小さい、かつ膜疲労(書き換えによる残留分極の低下)の小さい強誘電体薄膜を得ることができる。
【0012】
【発明の実施の形態】
以下本発明の実施の形態を説明する。
(1)強誘電体薄膜を搭載した半導体メモリ素子
図9は、本発明装置の一実施の形態となる強誘電体薄膜を用いた半導体メモリ素子のキャパシタ部分の概要を示す断面図である。基板99上に、下地LSI91であるメモリセルのトランジスタ部分となるCMOSを形成し、更にその上に平坦化及び絶縁、保護のため絶縁層92を形成する。本発明の実施の形態では,BPSGと呼ばれるSiO2ガラス膜を膜厚300nmで形成している。SiO2絶縁層92の上に、接着層81(20nm),下部電極11(200nm),本発明の結晶粒径の相対標準偏差が13%以下の結晶粒子の集合体で構成される強誘電体層94(250nm),上部電極95(10nm)の積層構造よりなる強誘電体キャパシタを形成する。キャパシタ上には、層間絶縁層96及び配線層93を積層し、キャパシタ電極6,8とトランジスタとの配線を行っている。更に上部にはSiO2等よりなる保護層97を成膜し、封止樹脂98でパッケージングを行っている。
【0013】
(2)強誘電体薄膜の結晶粒径の相対標準偏差
図1は、本発明装置の一実施の形態となる、下部電極11上に形成された結晶粒子13で構成された結晶粒径の相対標準偏差が13%以下の強誘電体薄膜12を用いた半導体メモリ素子のキャパシタ部分の概要を示す上面及び断面図である。このとき該結晶粒径14のばらつきは相対標準偏差σとして定義され、(数1)で表される。単位は%であり、数値の大小によって、結晶粒径の大きさが揃っているか否かを判断できる。
【0014】
【数1】
【0015】
結晶粒径の相対標準偏差の解析については、走査型電子顕微鏡(SEM),原子間力顕微鏡(AFM)あるいは断面TEM(透過型電子顕微鏡)により薄膜表面または断面像を測定して、強誘電体薄膜の膜厚方向を法線とした面内の結晶粒径とその相対標準偏差σを求めた。図2に実施の形態の1つとして、結晶粒径の求め方を示す。AFMで得られた強誘電体薄膜の1μm角の観察像について、縦横方向に直線(結晶粒径計算走査線21)を設ける。このとき、各走査線に対する結晶粒子の数を求める。(数1)に結晶粒径の相対標準偏差の計算式を示す。求めた結晶粒子数を(数1)に代入することにより、平均結晶粒径とその相対標準偏差が得られる。ここで使用したAFMは、米国デジタルインスツルメンツ社製の走査型プローブ顕微鏡NanoScopeIIIである。該AFMのプローブ(探針)先端の曲率半径は10nmであり、そのテーパ角は35゜である。このプローブを用いたとき、最表面の粒子と粒子間が80nmのとき、プローブの侵入深さの限界は110nmである。本実施の形態のAFM測定では、タッピングモードで行った。タッピングモードの詳細な原理は、東陽テクニカ発行の大型サンプルSPM観測システムオペレーションガイド(平成8年4月)に記載されている。
【0016】
図3に、本発明のPZT強誘電体薄膜のX線回折パターン例を示す。横軸に回折角2θ,縦軸にX線回折強度を示している。測定装置については、CuターゲットのX線管球をX線源に用いた粉末X線回折装置を使用した。このとき、強誘電体薄膜については111と222の回折ピークが主に測定され、他の100,110,200,210,211及び220の回折ピークは小さく、ほとんど測定できなかった。したがって、本発明の強誘電体薄膜は、基板面に対し垂直方向に(111)優先配向であることが分かった。すなわち、該強誘電体薄膜の結晶面(111)に対応する逆格子ベクトルが、基板面に対して垂直であることを示している。また、電極Ptの回折ピーク111と222や下地Tiの回折ピークが確認された。
【0017】
図4(a)及び(b)に平均結晶粒径aと残留分極値P及び膜疲労との相関図を示す。
【0018】
ここで記述する膜疲労は、108回まで書き込んだ後の残留分極値を書き込む前の初期残留分極値で割った百分率で定義する。単位は%である。この膜疲労が小さいとき書き換え可能回数は大きく、膜疲労が大きいとき書き換え可能回数は小さいことを表している。尚、残留分極値Pや膜疲労の物理的意味や定義、また測定・解析方法は、「強誘電体薄膜メモリ」(サイエンスフォーラム刊,1995年)や Integrated Ferroelectrics Vol18,pp.1−17(1997)など強誘電体材料に関する文献に記載されている。図4からわかるように、平均結晶粒径が80nmまでは、粒径粒径が小さくなるにつれて、残留分極値Pは大きくなり、膜疲労は小さくなる(書き換え可能回数は大きくなる)。該平均結晶粒径が80nm以下では、残留分極値Pは高い値を、膜疲労は小さい(書き換え可能回数は大きい)値を保ったまま一定となる。
【0019】
図5(a)及び(b)に結晶粒径の相対標準偏差σと残留分極値P及び膜疲労との相関図を示す。このとき横軸は、前記したAFMを用いて(数1)で求めた結晶粒径の相対標準偏差σである。単位はnmである。この図から、該結晶粒径の相対標準偏差σが13%までは、該結晶粒径の相対標準偏差σが小さくなるにつれて残留分極値Pは大きくなり、膜疲労は小さくなる(書き換え可能回数は大きくなる)ことがわかる。該結晶粒径の相対標準偏差σが13%以下では、残留分極値Pは高い値を、膜疲労は小さい(書き換え可能回数は大きい)値を保ったまま一定となる。
【0020】
(3)強誘電体薄膜の表面粗さ
図6に、AFMを用いた表面凹凸測定の断面概要図を示す。AFMプローブ62で、CMOS基板63上の下部電極11を介して作製された強誘電体薄膜12表面上を振動(タッピング)させながら走査させたとき、強誘電体薄膜表面の凹面すなわち粒界部分では大きく振幅し、凸面すなわち結晶粒子部分では小さく振幅する。この振幅を電気信号に変換して、表面粗さ61の凹凸を測定する。
【0021】
強誘電体薄膜表面粗さの算出については、実施の形態1で記述した、AFM,SEMあるいはTEMで求めた強誘電体薄膜の表面凹凸形状(曲面)に対して、以下の方法で表面粗さを見積もった。本実施の形態の一例として、表面粗さはAFMで測定した凹凸全データの最高値と最低値の差の標準偏差で表した。(数2)は表面粗さRmsを、標準偏差で表した式である。単位はnmである。または、他の表面粗さの定義として、(数3)に中心面(この平面と表面形状がつくる体積はこの面に対し上下で等しくなる)に対する3次元の平均表面粗さを表す。単位はnmである。詳細は、東陽テクニカ発行の大型サンプルSPM観測システムオペレーションガイド(平成8年4月)に記載されている。
【0022】
【数2】
【0023】
【数3】
【0024】
図7(a)及び(b)に、本実施の形態の1つとして表面粗さRmsと残留分極値P及び膜疲労との相関図を示す。このとき横軸は、前記AFMを用いて表面凹凸を測定し、(数2)で求めた表面粗さRmsである。単位はnmである。この図から、該表面粗さRmsが10nmまでは、表面粗さRmsが小さくなるにつれて残留分極値Pは大きくなり、膜疲労は小さくなる(書き換え可能回数は大きくなる)。該表面粗さRmsが10nm以下では、残留分極値Pは高い値を保ったまま一定となる。
【0025】
(4)強誘電体薄膜の製造方法
図8に本実施の形態における強誘電体薄膜の製造方法を示す。結晶粒径の相対標準偏差が13%以下の強誘電体薄膜を得るためには、結晶粒子成長に必要な初期核形成が必要である。はじめに強誘電体薄膜形成の前に、スパッタリング法、CVD法あるいはゾル・ゲル法で、該強誘電体材料に含まれる少なくとも1つ以上の元素の金属,酸化物あるいは化合物の極薄膜層を設け、その後高温熱処理により初期核82を形成する(図8(b))。または、下部電極形成後に高温熱処理を行い、下部電極11表面に、接着層81(下部電極11とCMOS基板64との接着層)に含まれる少なくとも1つ以上の元素の金属,酸化物あるいは化合物を析出させることにより、微小核形成に必要な初期核82を形成する(図8(b))。ここで記載した初期核82として、ペロブスカイト構造を有するABO3型酸化物を使用し、その組成としてA=Pb,La,Sr,Nd及びBaの中から少なくとも1つの元素、B=Zr,Ti,Mn,Mg,Nb,Sn,Sb及びInの中から選択される少なくとも1つの元素を用いる。あるいは、上記A,Bに含まれる少なくとも1つの元素で構成された酸化物を使用する。次に、該初期核82の上に、スパッタリング法、CVD法あるいはゾル・ゲル法等で、半導体メモリ素子に要求される膜厚分だけ、結晶化前誘電体膜83を成膜する(図8(c))。その後、RTA(Rapid Thermal Annealing)装置を用い、ランプによる迅速な熱処理を行って、結晶化後誘電体膜84が得られる(図8(d))。本発明の実施の形態における熱処理では、各結晶粒子がペロブスカイト構造であり、かつ基板面に対し垂直方向に(111)優先配向である強誘電体薄膜を得ることができる。以上の製造方法により、平均結晶粒径が約80nmであり、結晶粒径の相対標準偏差が約13%、かつ表面粗さの標準偏差が約10nmである(111)優先配向の強誘電体薄膜を得ることができるので、強誘電性劣化の原因であるパイロクロア構造を有する結晶粒子やロゼッタ状の酸化物結晶粒子の成長を抑制できる。したがって、高い残留分極値を有し、かつ膜疲労の小さい(書き換え可能回数の大きい)強誘電体キャパシタを得ることができる。
【0026】
(5)強誘電体薄膜を備えた半導体メモリを搭載したICカード
ICカードは、その場の要求に応じて様々な半導体メモリが使用されている。本発明の強誘電体薄膜を用いた半導体メモリは、不揮発性メモリである。本発明のICカードは、SRAM(Static Random Access Memory)のようにデータ保持に電池を内蔵する必要がないので、チップサイズの制限,携帯性,メンテナンスフリーの点で有利である。本発明の強誘電体薄膜を備えた半導体メモリは、高歩留りに製造できるので、低コストでICカードを供給することができる。また、不揮発性メモリの1つであるEEPROM(Electrically Erasable Programmable Read Only Memory)(書き換え可能回数104〜105回)より書き換え回数の向上が図られているので、ICカードの耐用年数が向上し、ランニングコストが低くなる。尚、ICカードの簡単なシステム構成の一例が、川合 知二編著「消えないICメモリFRAMのすべて」(工業調査会刊,1996年)やリアライズ社最新技術講座資料集「不揮発性強誘電体薄膜メモリの最新技術とプロセス技術課題」(リアライズ社,1996年)に記載されている。
【0027】
(6)強誘電体薄膜を備えた半導体メモリを搭載したコンピュータ
従来のDRAM(Dinamic Random Access Memory)を搭載したコンピュータは、電源切断による作業データの消滅を防ぐことができない。本発明の強誘電体薄膜を用いた半導体メモリは不揮発性メモリである。したがって、本発明のコンピュータは、不意の停電でも直前までの作業状態を保持できる。また、電源投入毎にシステムやアプリケーショーンを読み込む必要はなく、電源投入後すぐに作業を開始できる。また,無停電電源や電池を内蔵する必要がないので、コンピュータの小型化や重量軽減による携帯性の向上あるいは省スペース化を図ることができる。
【0028】
(7)強誘電体薄膜を備えた半導体メモリを搭載した携帯情報端末機器
本発明の携帯情報端末機器の1つである携帯電話について、その内蔵半導体メモリは小電力で駆動できる。また不揮発性メモリであるので、データ保存用の電源が不要になる。したがって従来のDRAMやSRAMやEEPROMを搭載した携帯情報端末機器に比べて、内蔵電池の小型化による本体重量の軽減や、電池の大容量化なしで本体駆動時間の長時間化が実現する。
【0029】
(8)強誘電体薄膜を備えた半導体メモリを搭載した映像音響機器
本発明の映像音響機器の1つであるビデオカメラは、画像や音声情報記録用のDRAMやSRAMやEEPROM等の半導体メモリ素子を内蔵した従来のビデオカメラに比べて、内蔵半導体メモリ素子の駆動電力は少なくて済み、またデータ保存用の電源が不要になる。そのため、内蔵電池の小型化による本体重量の軽減や、電池の大容量化なしで本体駆動時間の長時間化が可能になる。
【0030】
【発明の効果】
本発明により、メモリセル間の特性ばらつきの少ない強誘電体キャパシタを実現でき、高品質で製造歩留りの高い半導体メモリ素子を得ることが可能になる。本発明の半導体メモリ素子は、データ保存用の電源不要,省電力駆動あるいは書き換え回数向上を可能にした不揮発性メモリである。したがって、本発明の半導体メモリ素子を搭載したシステム装置については、内部電源の小容量化や非内蔵化が可能になり、本体システム装置の小型化、耐用年数の増加あるいは低価格化が実現できる。
【図面の簡単な説明】
【図1】本発明の一実施の形態となる結晶粒径の相対標準偏差が13%以下の強誘電体薄膜を用いた半導体メモリ素子のキャパシタ部分の概要を示す上面図である。
【図2】本発明の一実施の形態となるAFMで得られた強誘電体薄膜の1μm角領域観察像における結晶粒径の求め方を示す上面図である。
【図3】本発明の一実施の形態となる半導体メモリ素子中の強誘電体キャパシタのX線回折図である。
【図4】図4(a)は、本発明の一実施の形態となる平均結晶粒径aと残留分極値Pとの相関図であり、図4(b)は、本発明の一実施の形態となる平均結晶粒径aと膜疲労との相関図である。
【図5】図5(a)は、本発明の一実施の形態となる強誘電体薄膜における結晶粒径の相対標準偏差σと残留分極値Pの相関図であり、図5(b)は、本発明の一実施の形態となる強誘電体薄膜の結晶粒径の相対標準偏差σと膜疲労との相関図である。
【図6】本発明の一実施の形態となる強誘電体薄膜のAFMによる表面凹凸測定の断面概要図である。
【図7】図7(a)は、本発明の一実施の形態となる表面粗さRmsと残留分極値Pのの相関図であり、図7(b)は、本発明の一実施の形態となる表面粗さRmsと膜疲労の相関図である。
【図8】本発明の一実施の形態となる強誘電体薄膜を製造方法である。
【図9】本発明装置の一実施の形態となる強誘電体薄膜を用いた半導体メモリ素子のキャパシタ部分の概要を示す断面図である。
【符号の説明】
11…下部電極, 12…強誘電体薄膜,
13…結晶粒子, 14…結晶粒径,
21…結晶粒径計算走査線,
61…表面粗さ, 62…AFMプローブ
63…CMOS基板
81…接着層, 82…初期核
83…結晶化前誘電体膜 84…結晶化後誘電体膜
91…下地LSI, 92…絶縁層
93…配線層, 94…強誘電体層,
95…上部電極, 96…層間絶縁層,
97…保護層, 98…封止樹脂
99…基板[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor memory device using a ferroelectric thin film capacitor that is most suitable for a ferroelectric nonvolatile memory and a high-density DRAM, and a manufacturing method thereof.
[0002]
[Prior art]
In a conventional semiconductor memory using a ferroelectric thin film capacitor, for example, as described in “Ferroelectric Thin Film Memory” (Science Forum, 1995), page 227, Pt upper electrode / ferroelectric layer (PZT) ) / Pt lower electrode laminated structure. As a method for manufacturing this ferroelectric layer, a sol-gel method, a sputtering method, a CVD (Chemical Vapor Deposition) method and the like are known.
[0003]
For example, in the method for forming a thin film described in JP-A-7-142600, a BaTiO 3 compound is formed on a Pt lower electrode. By inheriting the crystal orientation of the Pt thin film as it is, the orientation of the ferroelectric thin film is controlled and the residual polarization is secured.
[0004]
For example, in the PZT ferroelectric thin film described in Integrated Ferroelectrics, 1995, Vol. 10, pp. 145-154, PZT is formed on the lower electrode by sputtering and crystallized by annealing. In the surface observation photograph of this ferroelectric thin film with a scanning electron microscope, the average crystal grain size was about 180 nm, and the relative standard deviation of the crystal grain size was about 15%.
[0005]
[Problems to be solved by the invention]
In the above prior art, it has been difficult to control the crystal grain size of the ferroelectric thin film. When the ferroelectric thin film is patterned to form a memory capacitor, the variation in crystal grain size is large, so that the variation in characteristics between memory cells becomes large. As a result, it has been difficult to obtain sufficient characteristics for all the memory cells at the same time, and there has been a problem in that the manufacturing yield is reduced. In addition, since the grain size variation of the crystal grains in the memory cell is large, the occurrence of leak current or the occurrence of film fatigue due to the electric field concentration at the grain boundary portion has occurred, which has been a problem in memory cell performance.
[0006]
In order to solve the above problems, an object of the present invention is to provide a ferroelectric thin film capacitor with little characteristic variation between memory cells, to improve the performance of a highly integrated ferroelectric memory and at the same time improve the manufacturing yield. is there.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, a semiconductor memory device of the present invention is a semiconductor memory device using a ferroelectric thin film capacitor as a memory capacitor, and the capacitor includes at least an adhesive layer, a lower electrode, a ferroelectric thin film, and an upper portion. It has a laminated structure in which electrodes are sequentially formed on a substrate, the lower electrode is (111) preferentially oriented with respect to the substrate surface, and the ferroelectric thin film crystal particles are formed from initial nuclei. A columnar shape parallel to the film thickness direction having the same (111) preferred orientation as the lower electrode grown based on the nucleus, and the surface roughness of the ferroelectric thin film is the surface roughness of the ferroelectric thin film. The ferroelectric thin film is formed on the lower electrode such that the difference between the maximum value and the minimum value with respect to the average surface is 40% or less with respect to the average film thickness of the ferroelectric thin film, Strong Within the plane with the thickness direction of the electric thin film as a normal line, the relative standard deviation of the average crystal grain size in the columnar crystal grains is in the range of 13% or less, and the ferroelectric thin film has a perovskite structure. ABO 3 type oxide having the following composition: A is composed of at least one element selected from Pb, La, Sr, Nd, Ba, and B is Zr, Ti, Mn, Mg, Nb, It consists of at least one element selected from Sn, Sb, and In.
In the present invention, in a semiconductor memory device using a ferroelectric thin film capacitor having a laminated structure of at least a lower electrode, a ferroelectric thin film and an upper electrode on a substrate as a memory capacitor, the crystal grain size of the ferroelectric thin film is By controlling the relative standard deviation to 13% or less, forming a columnar shape parallel to the film thickness direction, and having no grain boundary in the film thickness direction, leakage current, the inside of the ferroelectric thin film, and the ferroelectric material It is possible to prevent a decrease in effective voltage applied between the capacitors due to electric field concentration at the interface between the thin film and the electrode.
[0008]
Further, a Pt electrode or a Pt alloy is used as the lower electrode of the capacitor, and the lower electrode is made (111) preferential orientation in a direction perpendicular to the substrate surface, whereby the ferroelectric crystal particles formed thereon are formed. The orientation can be improved. Thereby, the uniformity between memory cells can be further improved. The same effect can be achieved by using Ru, Ir or the same oxide or a compound of Pt and an element contained in the ferroelectric thin film as the lower electrode.
[0009]
In addition, by using an ABO 3 type oxide having a perovskite structure as a ferroelectric material, each ferroelectric crystal particle is given a (111) preferential orientation in a direction perpendicular to the substrate surface. Non-uniformity can be reduced. As the composition of the ferroelectric material, at least one element selected from A = Pb, La, Sr, Nd and Ba, B = Zr, Ti, Mn, Mg, Nb, Sn, Sb and In By using at least one selected element, a ferroelectric thin film having a large remanent polarization suitable for a nonvolatile memory can be obtained. The ferroelectric composition is at least one element selected from A = Pb, La, Sr, Nd and Ba, and B = Zr, Ti, Mn, Mg, Nb, Sn, Sb and In. By using at least one element selected from the above, it is possible to obtain a paraelectric layer having no hysteresis at the memory operating temperature, and to obtain a film suitable for a capacitor such as a DRAM.
[0010]
Further, as a method of reducing the relative standard deviation of the crystal grain size of the ferroelectric thin film, at least one contained in the ferroelectric material is necessary for forming micronuclei necessary for crystal grain growth with little variation on the lower electrode. Form an initial nucleus of metal, oxide or compound of two or more elements, or perform high-temperature heat treatment after forming the lower electrode, and at least one included in the adhesion layer (adhesion layer between the lower electrode and the CMOS substrate) on the lower electrode surface By depositing a metal, oxide or compound of two or more elements, an initial nucleus required for micronucleation is formed, and a ferroelectric thin film having a thickness required for a semiconductor device is formed on the initial nucleus layer. By forming and crystallizing, a ferroelectric capacitor with a small surface roughness is obtained in which the relative standard deviation of the crystal grain size is small and each crystal grain has a (111) preferential orientation in the direction perpendicular to the substrate surface. Door can be.
[0011]
Alternatively, an ABO 3 type oxide having a perovskite structure is used for the initial nucleus layer formed on the surface of the lower electrode, and the composition is at least one element selected from A = Pb, La, Sr, Nd and Ba By using at least one element selected from B = Zr, Ti, Mn, Mg, Nb, Sn, Sb and In, a ferroelectric having a small crystal grain size and a small relative standard deviation of the crystal grain size A body thin film can be obtained. As a result, it is possible to suppress pyrochlore structure crystal particles that are the cause of ferroelectric degradation and rosette-like oxide crystal particle growth, and the remanent polarization value is large, which is optimal for nonvolatile memories. In addition, a ferroelectric thin film having a small leakage current and a small film fatigue (reduction in residual polarization due to rewriting) can be obtained.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
(1) Semiconductor Memory Device Mounted with Ferroelectric Thin Film FIG. 9 is a cross-sectional view showing an outline of a capacitor portion of a semiconductor memory device using a ferroelectric thin film which is an embodiment of the device of the present invention. On the substrate 99, a CMOS to be a transistor portion of the memory cell which is the base LSI 91 is formed, and an insulating layer 92 is formed thereon for planarization, insulation and protection. In the embodiment of the present invention, a SiO 2 glass film called BPSG is formed with a film thickness of 300 nm. A ferroelectric material comprising an adhesive layer 81 (20 nm), a lower electrode 11 (200 nm), and an aggregate of crystal grains having a relative standard deviation of crystal grain size of 13% or less of the present invention on an SiO 2 insulating layer 92. A ferroelectric capacitor having a laminated structure of the layer 94 (250 nm) and the upper electrode 95 (10 nm) is formed. On the capacitor, an interlayer insulating layer 96 and a wiring layer 93 are laminated, and wiring between the
[0013]
(2) Relative Standard Deviation of Crystal Grain Size of Ferroelectric Thin Film FIG. 1 shows the relative crystal grain size composed of crystal grains 13 formed on the lower electrode 11, which is an embodiment of the apparatus of the present invention. It is the upper surface and sectional drawing which show the outline | summary of the capacitor part of the semiconductor memory element using the ferroelectric
[0014]
[Expression 1]
[0015]
For the analysis of the relative standard deviation of the crystal grain size, a thin film surface or a cross-sectional image is measured with a scanning electron microscope (SEM), an atomic force microscope (AFM), or a cross-sectional TEM (transmission electron microscope). The in-plane crystal grain size and its relative standard deviation σ were determined with the thickness direction of the thin film as the normal. FIG. 2 shows how to determine the crystal grain size as one embodiment. A straight line (crystal grain size calculation scanning line 21) is provided in the vertical and horizontal directions for the 1 μm square observation image of the ferroelectric thin film obtained by AFM. At this time, the number of crystal grains for each scanning line is obtained. (Equation 1) shows the calculation formula for the relative standard deviation of the crystal grain size. By substituting the obtained number of crystal grains into (Equation 1), the average crystal grain size and its relative standard deviation are obtained. The AFM used here is a scanning probe microscope NanoScope III manufactured by Digital Instruments Inc., USA. The radius of curvature of the tip of the AFM probe is 10 nm, and the taper angle is 35 °. When this probe is used and the distance between the outermost surface particles is 80 nm, the limit of the penetration depth of the probe is 110 nm. The AFM measurement of this embodiment was performed in the tapping mode. The detailed principle of the tapping mode is described in the large sample SPM observation system operation guide (April 1996) published by Toyo Technica.
[0016]
FIG. 3 shows an example of an X-ray diffraction pattern of the PZT ferroelectric thin film of the present invention. The horizontal axis represents the diffraction angle 2θ, and the vertical axis represents the X-ray diffraction intensity. As a measuring apparatus, a powder X-ray diffractometer using an X-ray tube of a Cu target as an X-ray source was used. At this time, the diffraction peaks of 111 and 222 were mainly measured for the ferroelectric thin film, and the diffraction peaks of the other 100, 110, 200, 210, 211, and 220 were small and could hardly be measured. Therefore, it was found that the ferroelectric thin film of the present invention has (111) preferential orientation in the direction perpendicular to the substrate surface. That is, the reciprocal lattice vector corresponding to the crystal plane (111) of the ferroelectric thin film is perpendicular to the substrate plane. Further, diffraction peaks 111 and 222 of the electrode Pt and a diffraction peak of the underlying Ti were confirmed.
[0017]
FIGS. 4A and 4B show correlation diagrams between the average crystal grain size a, the remanent polarization value P, and film fatigue.
[0018]
The film fatigue described here is defined as a percentage obtained by dividing the residual polarization value after writing up to 10 8 times by the initial residual polarization value before writing. The unit is%. When the film fatigue is small, the rewritable number is large, and when the film fatigue is large, the rewritable number is small. The physical meaning and definition of remanent polarization value P and film fatigue, and the measurement and analysis method are described in “Ferroelectric Thin Film Memory” (Science Forum, 1995) and Integrated Ferroelectrics Vol 18, pp. 1-17 (1997). As can be seen from FIG. 4, when the average crystal grain size is up to 80 nm, as the grain size decreases, the remanent polarization value P increases and the film fatigue decreases (the number of rewritable times increases). When the average crystal grain size is 80 nm or less, the remanent polarization value P is constant while maintaining a high value and film fatigue is small (the number of rewrites is large).
[0019]
FIGS. 5A and 5B show correlation diagrams between the relative standard deviation σ of the crystal grain size, the remanent polarization value P, and film fatigue. At this time, the horizontal axis represents the relative standard deviation σ of the crystal grain size obtained by (Equation 1) using the AFM described above. The unit is nm. From this figure, when the relative standard deviation σ of the crystal grain size is up to 13%, as the relative standard deviation σ of the crystal grain size decreases, the remanent polarization value P increases and the film fatigue decreases (the number of rewritable times is (It becomes larger). When the relative standard deviation σ of the crystal grain size is 13% or less, the remanent polarization value P is constant while maintaining a high value and the film fatigue is small (the number of rewrites is large).
[0020]
(3) Surface Roughness of Ferroelectric Thin Film FIG. 6 shows a schematic sectional view of surface roughness measurement using AFM. When the AFM probe 62 scans the surface of the ferroelectric
[0021]
Regarding the calculation of the surface roughness of the ferroelectric thin film, the surface roughness of the surface of the ferroelectric thin film (curved surface) obtained by AFM, SEM or TEM described in the first embodiment is as follows. Estimated. As an example of the present embodiment, the surface roughness is represented by the standard deviation of the difference between the highest value and the lowest value of all the unevenness data measured by AFM. (Equation 2) is an expression that expresses the surface roughness Rms by the standard deviation. The unit is nm. Alternatively, as another definition of the surface roughness, (Equation 3) represents a three-dimensional average surface roughness with respect to the central plane (the volume created by this plane and the surface shape is equal above and below this plane). The unit is nm. Details are described in the large sample SPM observation system operation guide (April 1996) published by Toyo Technica.
[0022]
[Expression 2]
[0023]
[Equation 3]
[0024]
FIGS. 7A and 7B show a correlation diagram between the surface roughness Rms, the remanent polarization value P, and film fatigue as one of the present embodiments. At this time, the horizontal axis represents the surface roughness Rms obtained by (Equation 2) by measuring surface irregularities using the AFM. The unit is nm. From this figure, when the surface roughness Rms is up to 10 nm, as the surface roughness Rms decreases, the remanent polarization value P increases and the film fatigue decreases (the number of rewritable times increases). When the surface roughness Rms is 10 nm or less, the remanent polarization value P remains constant while maintaining a high value.
[0025]
(4) Method for Manufacturing Ferroelectric Thin Film FIG. 8 shows a method for manufacturing a ferroelectric thin film in the present embodiment. In order to obtain a ferroelectric thin film having a relative standard deviation of crystal grain size of 13% or less, initial nucleation necessary for crystal grain growth is required. First, before forming a ferroelectric thin film, an ultrathin layer of a metal, oxide or compound of at least one element contained in the ferroelectric material is provided by a sputtering method, a CVD method or a sol-gel method, Thereafter, initial nuclei 82 are formed by high-temperature heat treatment (FIG. 8B). Alternatively, high-temperature heat treatment is performed after forming the lower electrode, and a metal, oxide or compound of at least one element contained in the adhesive layer 81 (adhesive layer between the lower electrode 11 and the CMOS substrate 64) is formed on the surface of the lower electrode 11. By precipitating, initial nuclei 82 necessary for micronucleus formation are formed (FIG. 8B). As the initial nucleus 82 described here, an ABO 3 type oxide having a perovskite structure is used, and the composition thereof is at least one element selected from A = Pb, La, Sr, Nd and Ba, B = Zr, Ti, At least one element selected from Mn, Mg, Nb, Sn, Sb and In is used. Or the oxide comprised with the at least 1 element contained in said A and B is used. Next, a dielectric film 83 before crystallization is formed on the initial nucleus 82 by a sputtering method, a CVD method, a sol-gel method, or the like by a thickness required for the semiconductor memory element (FIG. 8). (C)). Thereafter, a rapid thermal annealing with a lamp is performed using an RTA (Rapid Thermal Annealing) apparatus to obtain a dielectric film 84 after crystallization (FIG. 8D). In the heat treatment in the embodiment of the present invention, it is possible to obtain a ferroelectric thin film in which each crystal particle has a perovskite structure and has a (111) preferential orientation in a direction perpendicular to the substrate surface. By the above manufacturing method, the (111) preferentially oriented ferroelectric thin film having an average crystal grain size of about 80 nm, a relative standard deviation of crystal grain size of about 13%, and a standard deviation of surface roughness of about 10 nm. Therefore, the growth of crystal grains having a pyrochlore structure and rosette-like oxide crystal grains that cause ferroelectric deterioration can be suppressed. Therefore, it is possible to obtain a ferroelectric capacitor having a high remanent polarization value and a small film fatigue (a large number of rewritable times).
[0026]
(5) Various types of semiconductor memories are used for IC cards equipped with a semiconductor memory having a ferroelectric thin film according to the demands on the spot. The semiconductor memory using the ferroelectric thin film of the present invention is a nonvolatile memory. The IC card of the present invention does not need to incorporate a battery for data retention unlike an SRAM (Static Random Access Memory), and is advantageous in terms of chip size limitation, portability, and maintenance-free. Since the semiconductor memory provided with the ferroelectric thin film of the present invention can be manufactured at a high yield, an IC card can be supplied at a low cost. Moreover, since the improvement of the rewrite frequency than EEPROM, which is one of the non-volatile memory (Electrically Erasable Programmable Read Only Memory) ( the number of
[0027]
(6) Computer equipped with a semiconductor memory having a ferroelectric thin film A computer equipped with a conventional DRAM (Dynamic Random Access Memory) cannot prevent work data from being lost due to power-off. The semiconductor memory using the ferroelectric thin film of the present invention is a nonvolatile memory. Therefore, the computer of the present invention can maintain the work state up to immediately before a sudden power failure. Also, it is not necessary to load the system or application every time the power is turned on, and work can be started immediately after the power is turned on. Further, since there is no need to incorporate an uninterruptible power supply or a battery, it is possible to improve portability or save space by reducing the size and weight of the computer.
[0028]
(7) Portable information terminal device equipped with a semiconductor memory having a ferroelectric thin film With respect to a portable telephone which is one of the portable information terminal devices of the present invention, the built-in semiconductor memory can be driven with low power. Moreover, since it is a non-volatile memory, a power source for storing data is not required. Therefore, compared with a portable information terminal device equipped with a conventional DRAM, SRAM, or EEPROM, the weight of the main body can be reduced by reducing the size of the built-in battery, and the main body drive time can be extended without increasing the capacity of the battery.
[0029]
(8) Video / audio equipment equipped with a semiconductor memory having a ferroelectric thin film A video camera which is one of the video / audio equipment of the present invention is a semiconductor memory device such as a DRAM, SRAM, or EEPROM for recording image or audio information. Compared to a conventional video camera with a built-in, the drive power of the built-in semiconductor memory element is small, and a power source for storing data becomes unnecessary. Therefore, the weight of the main body can be reduced by reducing the size of the built-in battery, and the driving time of the main body can be extended without increasing the capacity of the battery.
[0030]
【The invention's effect】
According to the present invention, a ferroelectric capacitor with little variation in characteristics between memory cells can be realized, and a high-quality semiconductor memory device with a high manufacturing yield can be obtained. The semiconductor memory device of the present invention is a non-volatile memory that does not require a power source for storing data, can save power, or can be rewritten. Therefore, in the system device equipped with the semiconductor memory device of the present invention, the capacity of the internal power supply can be reduced or not incorporated, and the main system device can be downsized, the service life can be increased, or the price can be reduced.
[Brief description of the drawings]
FIG. 1 is a top view showing an outline of a capacitor portion of a semiconductor memory device using a ferroelectric thin film having a relative standard deviation of a crystal grain size of 13% or less according to an embodiment of the present invention.
FIG. 2 is a top view showing how to obtain a crystal grain size in a 1 μm square region observation image of a ferroelectric thin film obtained by an AFM according to an embodiment of the present invention.
FIG. 3 is an X-ray diffraction diagram of a ferroelectric capacitor in a semiconductor memory device according to an embodiment of the present invention.
FIG. 4 (a) is a correlation diagram between an average crystal grain size a and a remanent polarization value P according to an embodiment of the present invention, and FIG. 4 (b) is an embodiment of the present invention. It is a correlation diagram of the average crystal grain diameter a used as a form, and film | membrane fatigue.
FIG. 5 (a) is a correlation diagram between the relative standard deviation σ of crystal grain size and remanent polarization value P in a ferroelectric thin film according to an embodiment of the present invention, and FIG. FIG. 5 is a correlation diagram between the relative standard deviation σ of the crystal grain size of the ferroelectric thin film and the film fatigue according to one embodiment of the present invention.
FIG. 6 is a schematic cross-sectional view of surface unevenness measurement by AFM of a ferroelectric thin film according to an embodiment of the present invention.
FIG. 7 (a) is a correlation diagram between the surface roughness Rms and the remanent polarization value P according to one embodiment of the present invention, and FIG. 7 (b) is one embodiment of the present invention. It is a correlation diagram of surface roughness Rms and film fatigue.
FIG. 8 is a method for manufacturing a ferroelectric thin film according to an embodiment of the present invention.
FIG. 9 is a cross-sectional view showing an outline of a capacitor portion of a semiconductor memory element using a ferroelectric thin film according to an embodiment of the device of the present invention.
[Explanation of symbols]
11 ... Lower electrode, 12 ... Ferroelectric thin film,
13 ... crystal grain, 14 ... crystal grain size,
21 ... Crystal grain size calculation scanning line,
61 ... surface roughness, 62 ... AFM probe 63 ... CMOS substrate 81 ... adhesive layer, 82 ... initial nucleus 83 ... dielectric film before crystallization 84 ... dielectric film after crystallization 91 ... underlying LSI, 92 ... insulating layer 93 ... Wiring layer, 94 ... ferroelectric layer,
95 ... Upper electrode, 96 ... Interlayer insulating layer,
97 ... Protective layer, 98 ... Sealing resin 99 ... Substrate
Claims (1)
前記コンデンサは、少なくとも接着層、下部電極、強誘電体薄膜及び上部電極を基板上に順次形成した積層構造を備え、
前記下部電極が、前記基板面に対して(111)優先配向してなり、
前記強誘電体薄膜の結晶粒子が、初期核から形成された微小核を基に結晶成長させた前記下部電極と同じ(111)優先配向を有する膜厚方向に平行な柱状形状であり、
前記強誘電体薄膜の表面粗さとして、前記強誘電体薄膜の表面の平均面に対する最高値と最低値との差が、前記強誘電体薄膜の平均膜厚に対して40%以下となるように、前記強誘電体薄膜が前記下部電極の上に形成されてなり、
前記強誘電体薄膜の膜厚方向を法線とした面内であって、前記柱状形状の結晶粒子における平均結晶粒径の相対標準偏差が13%以下の範囲であり、
前記強誘電体薄膜がペロブスカイト構造を有するABO 3 型酸化物であり、その組成として、AはPb、La、Sr、Nd、Baの中から選ばれた少なくともひとつの元素からなり、BはZr、Ti、Mn、Mg、Nb、Sn、Sb、Inの中から選ばれた少なくともひとつの元素からなることを特徴とする半導体メモリ素子。A semiconductor memory device using a ferroelectric thin film capacitor as a memory capacitor,
The capacitor includes a laminated structure in which at least an adhesive layer, a lower electrode, a ferroelectric thin film, and an upper electrode are sequentially formed on a substrate ,
Before Symbol lower electrode is comprised by (111) preferential orientation with respect to the substrate surface,
Crystal grains of the ferroelectric thin film, Ri columnar shape der parallel to the film thickness direction with the same (111) preferentially oriented with the lower electrode by crystal growth on the basis of the micronucleus formed from the initial nucleus,
As the surface roughness of the ferroelectric thin film, the difference between the maximum value and the minimum value with respect to the average surface of the ferroelectric thin film is 40% or less with respect to the average film thickness of the ferroelectric thin film. Further, the ferroelectric thin film is formed on the lower electrode,
Within the plane with the film thickness direction of the ferroelectric thin film as a normal line, the relative standard deviation of the average crystal grain size in the columnar crystal grains is 13% or less,
The ferroelectric thin film is an ABO 3 type oxide having a perovskite structure , and as its composition, A is composed of at least one element selected from Pb, La, Sr, Nd, and Ba, and B is Zr, A semiconductor memory device comprising at least one element selected from Ti, Mn, Mg, Nb, Sn, Sb, and In .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10097999A JP3865528B2 (en) | 1998-04-09 | 1999-04-08 | Semiconductor memory device |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9711798 | 1998-04-09 | ||
JP10-97117 | 1998-04-09 | ||
JP10097999A JP3865528B2 (en) | 1998-04-09 | 1999-04-08 | Semiconductor memory device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11354729A JPH11354729A (en) | 1999-12-24 |
JP3865528B2 true JP3865528B2 (en) | 2007-01-10 |
Family
ID=26438323
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10097999A Expired - Fee Related JP3865528B2 (en) | 1998-04-09 | 1999-04-08 | Semiconductor memory device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3865528B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002073679A1 (en) * | 2001-03-09 | 2002-09-19 | Nec Corporation | Vapor growth method for metal oxide dielectric film and pzt film |
JP2004079675A (en) * | 2002-08-13 | 2004-03-11 | Fujitsu Ltd | Semiconductor device and manufacturing method thereof |
JP4601896B2 (en) * | 2002-10-30 | 2010-12-22 | 富士通セミコンダクター株式会社 | Semiconductor device and manufacturing method thereof |
JP4523299B2 (en) | 2003-10-31 | 2010-08-11 | 学校法人早稲田大学 | Thin film capacitor manufacturing method |
KR100585114B1 (en) * | 2003-12-05 | 2006-05-30 | 삼성전자주식회사 | Capacitor of semiconductor device having high dielectric film made of VTS or VAT material and manufacturing method thereof |
JP4817925B2 (en) * | 2006-03-29 | 2011-11-16 | 富士通セミコンダクター株式会社 | Method of inspecting ferroelectric film and method of manufacturing semiconductor device having the inspection process |
-
1999
- 1999-04-08 JP JP10097999A patent/JP3865528B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH11354729A (en) | 1999-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100322220B1 (en) | Semiconductor memory device and manufacturing method thereof | |
US5889696A (en) | Thin-film capacitor device and RAM device using ferroelectric film | |
JP2004214569A (en) | Ferroelectric capacitor, method of manufacturing the same, and semiconductor device | |
JPH10313097A (en) | Ferroelectric thin film, manufacturing method and device comprising ferroelectric thin film | |
JP3576788B2 (en) | Electronic component and method of manufacturing the same | |
JPH09198729A (en) | Recording medium and production therefor and information processor | |
JP4539844B2 (en) | Dielectric capacitor, method of manufacturing the same, and semiconductor device | |
JP2002151656A (en) | Semiconductor device and manufacturing method thereof | |
JP3865528B2 (en) | Semiconductor memory device | |
JPH11186523A (en) | Insulator material, insulating film-coated substrate, method for producing the same, and use thereof | |
JP2002016234A (en) | Ferroelectric thin-film memory device and method of manufacturing the same | |
JP2000156470A (en) | Ferroelectric memory element, storage device and manufacture of them | |
JP4507491B2 (en) | Thin film and element | |
JP2001094065A (en) | Ferroelectric memory and method of manufacturing the same | |
JP2004277200A (en) | Ferroelectric thin film and method of manufacturing ferroelectric thin film | |
JP2005197579A (en) | Semiconductor memory device | |
KR100967110B1 (en) | Method for forming ferroelectric film with orientation of lower layer and ferroelectric capacitor forming method using same | |
JP4349293B2 (en) | Ferroelectric thin film manufacturing method, piezoelectric element, and ferroelectric memory | |
JP2002057299A (en) | Semiconductor device and manufacturing method thereof | |
JPH09213899A (en) | Non-volatile memory device provided with ferroelectric film | |
JP2004080020A (en) | Method for forming a ferroelectric semiconductor device | |
JP4167792B2 (en) | Semiconductor device and manufacturing method thereof | |
JP2000077616A (en) | Dielectric element, method of manufacturing the same, and semiconductor device | |
JP3332014B2 (en) | Method for manufacturing semiconductor memory device | |
JP2010157748A (en) | Metal thin film and method for manufacturing the same, dielectric capacitor and method for manufacturing the same, and semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040309 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20040309 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040510 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040713 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040913 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20040929 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20041029 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060808 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061003 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |