[go: up one dir, main page]

JP3861083B2 - Capillary electrophoresis device - Google Patents

Capillary electrophoresis device Download PDF

Info

Publication number
JP3861083B2
JP3861083B2 JP2003309478A JP2003309478A JP3861083B2 JP 3861083 B2 JP3861083 B2 JP 3861083B2 JP 2003309478 A JP2003309478 A JP 2003309478A JP 2003309478 A JP2003309478 A JP 2003309478A JP 3861083 B2 JP3861083 B2 JP 3861083B2
Authority
JP
Japan
Prior art keywords
capillary
capillaries
electrophoresis apparatus
array
binding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003309478A
Other languages
Japanese (ja)
Other versions
JP2005077293A (en
Inventor
剛志 曽根原
隆 穴沢
友幸 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2003309478A priority Critical patent/JP3861083B2/en
Publication of JP2005077293A publication Critical patent/JP2005077293A/en
Application granted granted Critical
Publication of JP3861083B2 publication Critical patent/JP3861083B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

本発明は、蛍光標識されたDNA、RNA或いはたんぱく質などの生体高分子試料を電気泳動により分離し,レーザー励起蛍光検出することにより,DNAの塩基配列,塩基長,及びたんぱく質の分子量などを分析するキャピラリ電気泳動装置に関する。   The present invention analyzes a DNA base sequence, a base length, a protein molecular weight, and the like by separating a biopolymer sample such as fluorescently labeled DNA, RNA, or protein by electrophoresis and detecting by laser excitation fluorescence. The present invention relates to a capillary electrophoresis apparatus.

DNAなどの生体高分子試料を分離分析する技術として、内径50〜100μm程度の石英毛細管を用いるキャピラリ電気泳動法が広く用いられている。キャピラリは放熱性に優れるため、スラブゲルと比較し、より高い電圧を印加することができ、分離速度を10倍以上に向上させることができる。また,キャピラリ電気泳動法には,試料を調製した反応チューブから,ピペッティング操作によらずに試料を電気的に注入でき,その結果自動化しやすいという利点がある。現在はこのキャピラリを4〜100本配した「キャピラリアレイ」を用いた全自動のキャピラリ電気泳動装置、いわゆるキャピラリアレイ電気泳動装置の採用が盛んである。試料分子の検出には,感度の高さのため,もっぱらレーザー励起蛍光検出が用いられている。一般にキャピラリアレイ電気泳動装置は,レーザーや検出器を組み込んだ耐久財である電気泳動装置部と,1週間程度で交換が必要な消耗品であるキャピラリアレイで構成される。   As a technique for separating and analyzing a biopolymer sample such as DNA, capillary electrophoresis using a quartz capillary having an inner diameter of about 50 to 100 μm is widely used. Since the capillary is excellent in heat dissipation, a higher voltage can be applied and the separation speed can be improved by 10 times or more compared to the slab gel. In addition, the capillary electrophoresis method has an advantage that the sample can be electrically injected from the reaction tube in which the sample is prepared without using a pipetting operation, and as a result, automation is easy. Currently, a fully automatic capillary electrophoresis apparatus using a “capillary array” in which 4 to 100 capillaries are arranged, a so-called capillary array electrophoresis apparatus is actively employed. For detection of sample molecules, laser-excited fluorescence detection is used exclusively because of its high sensitivity. In general, a capillary array electrophoresis apparatus is composed of an electrophoresis apparatus section that is a durable article incorporating a laser and a detector, and a capillary array that is a consumable that needs to be replaced in about one week.

キャピラリアレイ電気泳動装置における複数キャピラリへのレーザー照射方法としては,例えば特許文献1に記載された,平面上に配列したキャピラリに配列の側面からレーザービームを配列軸に沿って照射し,キャピラリのレンズ作用によってすべてのキャピラリに同時に照射する,いわゆるマルチフォーカス方式が主流である。マルチフォーカス方式は,レーザービームをスキャンするビームスキャン方式に比べて励起ビームの利用効率が高く,高感度な蛍光検出が行えるという特長がある。しかしながら,マルチフォーカス方式は,非常に高いキャピラリの配列精度を必要とする。高い配列精度を実現するため,従来のマルチフォーカス方式のシステムにおけるキャピラリアレイでは,例えば特許文献2に記載されているように,非常に精密なV溝をフォトリソグラフィーにより形成した配列部材上にキャピラリが配列され,接着固定されている。   As a laser irradiation method for a plurality of capillaries in a capillary array electrophoresis apparatus, for example, as disclosed in Patent Document 1, a capillary arrayed on a plane is irradiated with a laser beam from the side surface of the array along the array axis, and the capillary lens The so-called multi-focus method, which irradiates all capillaries simultaneously by action, is the mainstream. The multi-focus method has the advantage that the excitation beam is used more efficiently than the beam scanning method that scans the laser beam and fluorescence detection can be performed with high sensitivity. However, the multi-focus method requires very high capillary array accuracy. In order to realize high alignment accuracy, in a conventional multi-focus system capillary array, as described in Patent Document 2, for example, capillaries are formed on an array member in which very precise V grooves are formed by photolithography. Arranged and bonded and fixed.

特開平9-152418号公報JP-A-9-152418

特開2001-264293号公報JP 2001-264293 A

特許文献2の方式では,高精度のキャピラリアレイが実現できるものの,キャピラリアレイに高価な精密部品の付加が必要とされる。また,精密部品である配列部材そのものは高精度であったとしても,組立・接着の工程でこのV溝に対してキャピラリを精密に並べる必要がある。これは容易な作業ではなく,熟練工による長時間の作業が必要である。この結果,キャピラリアレイの製造コスト低減が難しく,高い歩留まりを維持することも容易ではなかった。キャピラリアレイは,耐久財である電気泳動装置本体とは異なり,数週間〜数ヶ月で交換を要する消耗品であるから,この部分が高価格であることはキャピラリアレイ電気泳動装置のランニングコスト低減を妨げる。さらに,接着固定方式では,キャピラリの配列精度は接着剤の性質によって影響を受け得る。また,キャピラリ自身の容積及び熱容量は非常に小さく,所定の温度の熱浴に接触させれば速やかに等しい温度になるが,配列部材を接着するとその周辺だけ熱容量が増大して周囲温度への応答が遅くなるという問題がある。   Although the method of Patent Document 2 can realize a high-precision capillary array, it is necessary to add expensive precision parts to the capillary array. In addition, even if the array member itself, which is a precision component, has high accuracy, it is necessary to precisely arrange the capillaries in the V-groove in the assembly / bonding process. This is not an easy task and requires a long time by skilled workers. As a result, it was difficult to reduce the manufacturing cost of the capillary array, and it was not easy to maintain a high yield. Capillary arrays are consumables that need to be replaced in weeks to months, unlike the electrophoresis device itself, which is a durable product. The high price of this part reduces the running cost of capillary array electrophoresis devices. Hinder. Furthermore, in the adhesive fixing method, the capillary arrangement accuracy can be influenced by the properties of the adhesive. In addition, the capillaries themselves have very small volumes and heat capacities, and if they are brought into contact with a heat bath at a predetermined temperature, the capillaries quickly reach the same temperature. There is a problem that becomes slow.

本発明は、簡便に高精度なキャピラリ配置を実現化し、接着固定方式で危惧される接着剤の膨潤による配列精度の悪化を防止し、さらに複数のキャピラリの全てを即時に均一温度とすることを可能とするキャピラリアレイ電気泳動装置、及びキャピラリアレイ電気泳動方法を提供する。構成としては、キャピラリアレイ中のキャピラリが平行に配列された範囲内に位置し,かつレーザービームを照射する位置を挟んで隔てられた2つの束縛領域の各々と、レーザービーム照射位置との間で,キャピラリを可動な押さえ部材で電気泳動装置に対して押し当てるものである。   The present invention realizes simple and highly accurate capillary arrangement, prevents deterioration of alignment accuracy due to adhesive swelling, which is a concern with the adhesive fixing method, and allows all of the plurality of capillaries to be immediately brought to a uniform temperature. A capillary array electrophoresis apparatus and a capillary array electrophoresis method are provided. As a configuration, between the laser beam irradiation position and each of the two constrained regions that are located in a range in which the capillaries in the capillary array are arranged in parallel and separated by the position where the laser beam is irradiated, The capillary is pressed against the electrophoresis apparatus with a movable pressing member.

より具体的には本発明のキャピラリ電気泳動装置は、試料を電気泳動させるための複数のキャピラリと、前記キャピラリの両端に電圧を印加する電圧印加手段、前記キャピラリへレーザービームを照射するレーザービーム照射手段、及び前記レーザービームの照射により生ずる光を検出する検出器を具備する電気泳動装置部と、キャピラリを前記電気泳動装置部に固定する押え部材とを有し、前記複数のキャピラリは、前記キャピラリの軸方向に沿って前記レーザービームの照射位置を挟んで位置する、少なくとも2つの束縛領域を有し、前記押え部材は、前記複数のキャピラリの前記照射位置と第1の前記束縛領域との間、前記複数のキャピラリの前記照射位置と第2の前記束縛領域との間の各々で、前記複数のキャピラリを前記電気泳動装置部に対して押し当てることを特徴とする。   More specifically, the capillary electrophoresis apparatus of the present invention includes a plurality of capillaries for electrophoresis of a sample, voltage applying means for applying a voltage to both ends of the capillary, and laser beam irradiation for irradiating the capillary with a laser beam. And an electrophoretic device part having a detector for detecting light generated by the irradiation of the laser beam, and a pressing member for fixing a capillary to the electrophoretic device part, wherein the plurality of capillaries are the capillaries And having at least two constraining regions located between the irradiation positions of the laser beams along the axial direction of the plurality of capillaries, wherein the pressing member is located between the irradiation positions of the plurality of capillaries and the first constraining regions. The plurality of capillaries are respectively connected between the irradiation positions of the plurality of capillaries and the second constrained region. It is characterized by being pressed against the mounting portion.

複数キャピラリへのレーザー照射方法であるマルチフォーカス方式においては,キャピラリ中心軸が位置すべき基準平面からのキャピラリ中心軸の数十μmのずれが、キャピラリ間に著しい蛍光検出感度むらをもたらす。検出感度のキャピラリ間変動係数を20%以下に抑えるには,キャピラリ中心軸は基準平面に対して10μm以内に収まることが望ましい。本発明に記載の構成をとることにより、基準平面からのキャピラリ中心軸の距離のずれを大幅に減少させて10μm以内とし、検出感度のむらを低下させることが出来る。 以上の構成をとることにより,キャピラリアレイ電気泳動装置において,配列部材及びその組立工程を省略した低コストなキャピラリアレイを用いることができ、低ランニングコストのキャピラリアレイ電気泳動装置を提供することができる。また,マルチフォーカス照射が可能な高いキャピラリ配列精度を得ることができる。また、配列部材を接着する場合に困難であった、キャピラリアレイの温度分布の速やかな均一化が可能となる。これにより、温度を変化させながらデータを取るような測定でも、キャピラリアレイの温度分布の不均一という問題を回避できる。さらに、複数のキャピラリが接着剤等により互いに固定されている場合、接着剤が経時的に変形して配列精度の経時的劣化が生じる場合があるが、本発明の構成によればこのような配列精度の劣化を解消することもできる。さらに、レーザー照射位置の近傍のキャピラリーを接着剤で固定する場合には、接着剤に起因する散乱光や蛍光が発生して検出ノイズを生じるおそれがあるが、本発明の構成によればレーザー照射位置のごく近傍におけるキャピラリの位置制御を、接着剤によるのではなく、押し当てるための固定具によるので、上記のようなおそれも回避することが出来る。   In the multi-focus method, which is a laser irradiation method for a plurality of capillaries, a deviation of several tens of μm in the center axis of the capillary from the reference plane where the center axis of the capillaries should be located causes significant variations in fluorescence detection sensitivity between the capillaries. In order to suppress the coefficient of variation of detection sensitivity between capillaries to 20% or less, it is desirable that the capillary central axis be within 10 μm with respect to the reference plane. By adopting the configuration described in the present invention, it is possible to greatly reduce the deviation of the distance between the central axis of the capillary from the reference plane to within 10 μm and to reduce the unevenness of detection sensitivity. By adopting the above configuration, in the capillary array electrophoresis apparatus, it is possible to use a low-cost capillary array in which the arrangement member and the assembly process thereof are omitted, and it is possible to provide a low running cost capillary array electrophoresis apparatus. . In addition, it is possible to obtain a high capillary array accuracy capable of multifocus irradiation. In addition, it is possible to quickly uniformize the temperature distribution of the capillary array, which is difficult when bonding the array members. As a result, the problem of non-uniform temperature distribution in the capillary array can be avoided even in measurements in which data is acquired while changing the temperature. Further, when a plurality of capillaries are fixed to each other with an adhesive or the like, the adhesive may be deformed with time, resulting in deterioration of arrangement accuracy over time. According to the configuration of the present invention, It is also possible to eliminate the deterioration of accuracy. Furthermore, when the capillary near the laser irradiation position is fixed with an adhesive, there is a risk that scattered light or fluorescence due to the adhesive may be generated, resulting in detection noise. Since the position control of the capillary in the very vicinity of the position is not performed by the adhesive but by the fixing tool for pressing, the above-described fear can be avoided.

以上に説明したとおり、本発明によって、配列部材及びその組立工程を省略した低コストなキャピラリアレイを用い,かつ配列精度の経時的劣化が起こらず,キャピラリアレイの温度分布が速やかに均一になる,低ランニングコストのキャピラリアレイ電気泳動装置を実現できる。   As described above, according to the present invention, a low-cost capillary array that omits the array member and its assembly process is used, and the temperature distribution of the capillary array becomes uniform quickly without degradation of the array accuracy over time. A capillary array electrophoresis apparatus with a low running cost can be realized.

以下,本発明の実施の形態を,図を用いて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は,本発明の第一の実施例における,キャピラリアレイと,配列部材,押さえ部材の説明図である。本実施例のキャピラリアレイ1は,シート状の束縛部材3と,その上に所定の設計パターンに従って配線され接着固定された16本のキャピラリ2-1〜2-16から構成される。ここで束縛部材とは、複数のキャピラリを保持するための部材である。キャピラリを束縛部材の上に固定する変わりに、束縛部材に穴を開けてその中にキャピラリを通してももちろん良い。あるいは、束縛部材の素材を融解したプラスチップや揮発性の溶剤に溶解したプラスチックなどの液体状態から固化する素材として、キャピラリを束縛部材中に埋め込んでも良い。図1では電気泳動等の操作のための電気泳動装置部については、説明の簡単のためキャピラリアレイの設置に関わる配列部材5のみの図示とし、他の部分を省略してある。本実施例で用いたキャピラリは外径250±6μm,内径50±3μmである。上記設計パターンにおける設計値に対するキャピラリ中心軸位置の誤差は,xyzいずれの方向についても±25μm程度である。本実施例における束縛部材3の素材はポリイミドであるが,絶縁性の高い素材なら何でも好適に使用できる。束縛部材3は,励起ビーム照射位置11を内部に含む矩形状の開口4を有しており,開口4内に位置するキャピラリはレーザービーム照射位置11の上下の束縛領域7a,7bで支持され,その間は束縛されず大気にさらされている。束縛領域7aと7bの間に位置するキャピラリは互いに実質的に平行である。キャピラリの上端及び下端は,図のように束縛部材3から飛び出ているので,それぞれ分離媒体の充填及び試料の注入に使用することができる。キャピラリ下端のピッチは384ウェルのマイクロタイタープレートのウェルピッチと同一の4.5mmであり,マイクロタイタープレートから直接の試料注入を容易にしている。全てのキャピラリに対し,下端からビーム照射位置までの長さ(有効長)はキャピラリ2-1〜2-16のすべてに対し11±0.05cmである。必要とされる電気泳動分離能に応じて、有効長を21cm、36cm、50cmなど任意の長さにすることが勿論可能である。本実施例におけるキャピラリはポリイミドでコーティングされた石英キャピラリであり,束縛部材に接着されていない部分でも容易には折れない強度を持っている。ただし,照射位置11においては幅2mmに渡ってポリイミドコーティングが燃焼によって除去されており,石英部分が露出している。しかしながら一枚につながった束縛部材3に位置する束縛領域7a,7bによって脆い石英部分の上下が支持されているので,容易に折損することは無い。なお,束縛部材3には位置決め用の穴12a, 12bが設けられている。   FIG. 1 is an explanatory diagram of a capillary array, an array member, and a pressing member in the first embodiment of the present invention. The capillary array 1 of this embodiment is composed of a sheet-like constraining member 3 and 16 capillaries 2-1 to 2-16 which are wired and bonded and fixed thereon according to a predetermined design pattern. Here, the binding member is a member for holding a plurality of capillaries. Instead of fixing the capillary on the binding member, it is of course possible to make a hole in the binding member and pass the capillary through the hole. Alternatively, the capillary may be embedded in the constraining member as a material that solidifies from a liquid state such as a plus chip in which the constraining member material is melted or a plastic dissolved in a volatile solvent. In FIG. 1, only the arrangement member 5 related to the installation of the capillary array is illustrated for the electrophoretic device section for operations such as electrophoresis, and other portions are omitted for the sake of simplicity. The capillary used in this example has an outer diameter of 250 ± 6 μm and an inner diameter of 50 ± 3 μm. The error of the capillary center axis position with respect to the design value in the design pattern is about ± 25 μm in any direction of xyz. The material of the constraining member 3 in this embodiment is polyimide, but any material having a high insulating property can be suitably used. The constraining member 3 has a rectangular opening 4 including an excitation beam irradiation position 11 therein, and capillaries located in the opening 4 are supported by upper and lower constraining regions 7a and 7b of the laser beam irradiation position 11, Meanwhile, they are exposed to the atmosphere without being bound. The capillaries located between the binding regions 7a and 7b are substantially parallel to each other. Since the upper end and the lower end of the capillary protrude from the binding member 3 as shown in the figure, they can be used for filling the separation medium and injecting the sample, respectively. The pitch at the lower end of the capillary is 4.5 mm, which is the same as the well pitch of a 384-well microtiter plate, facilitating direct sample injection from the microtiter plate. For all capillaries, the length (effective length) from the lower end to the beam irradiation position is 11 ± 0.05 cm for all capillaries 2-1 to 2-16. Of course, the effective length can be set to any length such as 21 cm, 36 cm, and 50 cm according to the required electrophoretic separation ability. The capillary in this embodiment is a quartz capillary coated with polyimide, and has a strength that does not easily break even in a portion that is not bonded to the binding member. However, at the irradiation position 11, the polyimide coating is removed by combustion over a width of 2 mm, and the quartz portion is exposed. However, since the upper and lower sides of the brittle quartz portion are supported by the constraining regions 7a and 7b located in the constraining member 3 connected to one sheet, they are not easily broken. The binding member 3 is provided with positioning holes 12a and 12b.

キャピラリアレイ1を電気泳動装置本体に取り付けると,キャピラリ2-1〜2-16はビーム照射位置11と束縛領域7a,7bの各々の間で,電気泳動装置本体に固定された配列部材5の配列面44a及び44bに,押さえ部材8の押え面46a,46bによって押し当てられる。レーザービーム6aと6bが,キャピラリの配列平面上でキャピラリに実質的に直行する2つの方向から照射される。押さえ部材8は,カバー9とカバー9に接着されたクッション10a, 10bから構成される。図1では,配列部材5と押さえ部材8については開口4の近傍だけを示し,それ以外の部分は省略してある。配列部材と押さえ部材周辺部の詳細を以下で説明する。   When the capillary array 1 is attached to the main body of the electrophoresis apparatus, the capillaries 2-1 to 2-16 are arranged between the beam irradiation position 11 and the constraining regions 7a and 7b in the arrangement of the array members 5 fixed to the main body of the electrophoresis apparatus. The pressing surfaces 46a and 46b of the pressing member 8 are pressed against the surfaces 44a and 44b. Laser beams 6a and 6b are irradiated from two directions substantially perpendicular to the capillaries on the capillary array plane. The pressing member 8 includes a cover 9 and cushions 10 a and 10 b bonded to the cover 9. In FIG. 1, the arrangement member 5 and the pressing member 8 are shown only in the vicinity of the opening 4, and other portions are omitted. Details of the arrangement member and the periphery of the pressing member will be described below.

図2(a)はキャピラリ2-1を通り,キャピラリ配列平面に垂直な平面による,ビーム照射位置11周辺の断面図である。配列部材5は図2(a)に示した断面を有し,温調板13にねじ止めされている。温調板13の素材としては絶縁性と熱伝導度の高い物質を好適に用いることができる。本実施例ではシェイパルMソフト(住金セラミックスアンドクオーツ)を使用した。配列部材5の素材としては高い剛性と寸法安定性を有する物質が好ましい。例えば、金属全般を用いることが可能である。このような素材を用いることにより、キャピラリの配列の安定度を高めることが出来る。本実施例における配列部材5は,表面が黒アルマイト処理されたアルミニウム製ブロックである。また、配列部材5の素材を熱伝導度の高い物質とすると、配列部材を介したキャピラリの温度制御が容易になる。本実施例で用いるアルミニウムは熱伝導度が非常に高いため,温調板13を所定の温度に制御すると,配列部材5もほぼ所定の温度になる。アルミニウム以外でも,銅や真鍮等でも同様の効果が得られることはいうまでもない。   FIG. 2A is a cross-sectional view around the beam irradiation position 11 taken along a plane that passes through the capillary 2-1 and is perpendicular to the capillary array plane. The array member 5 has the cross section shown in FIG. 2A and is screwed to the temperature control plate 13. As the material for the temperature control plate 13, a material having high insulation and thermal conductivity can be suitably used. In this example, Shapel M software (Sumikin Ceramics and Quartz) was used. The material of the array member 5 is preferably a substance having high rigidity and dimensional stability. For example, all metals can be used. By using such a material, the stability of the capillary array can be increased. The array member 5 in the present embodiment is an aluminum block whose surface is black anodized. Further, if the material of the array member 5 is a substance having high thermal conductivity, the temperature control of the capillaries via the array member becomes easy. Since aluminum used in this embodiment has a very high thermal conductivity, when the temperature control plate 13 is controlled to a predetermined temperature, the array member 5 also has a substantially predetermined temperature. Needless to say, the same effect can be obtained with copper, brass or the like other than aluminum.

キャピラリアレイ1は,まず束縛部材3が温調版13に接するよう設置される。配列面44a, 44bは実質的に一つの基準平面上にあり,レーザービーム6a,6bの光軸は,この基準平面からの距離がキャピラリー外径の公称値の半分±3μm(すなわち本実施例では125±3μm)に調整されている。これは、基準平面とキャピラリーの中心軸との距離にほぼ等しい。しかしながら束縛部材3を温調板13に接触させただけの状態では,キャピラリ2-1〜2-16の束縛部材に対する相対位置誤差やキャピラリのたわみのため,キャピラリ2-1〜2-16の中心軸とレーザービーム6a,6bの光軸の間には数十μmの距離が生じうる。図2(a)の矢印で示したように、押さえ部材8のカバー9に、クッション10aと10bを設置するための凹部9’を設け、押さえ部材8の束縛領域7a,7bに各々接する少なくとも2つのカバー9上の面を実質的に1つの平面上に位置させる。さらに、この平面をキャピラリアレイ1の束縛部材3もしくは少なくとも束縛領域7a,7bに押し付けた際に,クッション10aと10bにつき、配列面44a、44b上のキャピラリへの押付けにより縮む構成とする。具体的には、0.5mm程度縮んだ状態となる。押し付けた際には、束縛部材8の束縛領域7a,7bに各々接する少なくともカバー9上の2つの面と、クッション10a、10bの押え面46a,46bとが実質的に1つの平面上に位置するような構成となる。その結果,クッション10aと10bの応力によってキャピラリ2-1〜2-16は配列部材5の配列面44aと44bに押し付けられ,キャピラリの外周はほぼ完全に配列面に接触し、配列精度が向上する。   The capillary array 1 is first installed so that the binding member 3 contacts the temperature control plate 13. The array planes 44a and 44b are substantially on one reference plane, and the optical axes of the laser beams 6a and 6b have a distance from the reference plane that is half of the nominal value of the capillary outer diameter ± 3 μm (that is, in this embodiment). 125 ± 3 μm). This is approximately equal to the distance between the reference plane and the central axis of the capillary. However, in the state in which the binding member 3 is merely brought into contact with the temperature control plate 13, the center of the capillaries 2-1 to 2-16 is caused by the relative position error of the capillaries 2-1 to 2-16 and the deflection of the capillaries. A distance of several tens of μm can occur between the axis and the optical axis of the laser beams 6a and 6b. As shown by the arrows in FIG. 2 (a), the cover 9 of the pressing member 8 is provided with a recess 9 'for installing the cushions 10a and 10b, and at least 2 that are in contact with the binding regions 7a and 7b of the pressing member 8, respectively. The surfaces on the two covers 9 are positioned substantially on one plane. Further, when this flat surface is pressed against the binding member 3 of the capillary array 1 or at least the binding regions 7a and 7b, the cushions 10a and 10b are contracted by pressing the capillaries on the arrangement surfaces 44a and 44b. Specifically, it is in a contracted state by about 0.5 mm. When pressed, at least two surfaces on the cover 9 and the pressing surfaces 46a and 46b of the cushions 10a and 10b, which are in contact with the binding regions 7a and 7b of the binding member 8, respectively, are substantially located on one plane. It becomes the composition like this. As a result, the capillaries 2-1 to 2-16 are pressed against the arrangement surfaces 44a and 44b of the arrangement member 5 by the stress of the cushions 10a and 10b, and the outer periphery of the capillaries almost completely contacts the arrangement surface, thereby improving the arrangement accuracy. .

一方,配列面44aと44bの間のキャピラリが配列面に接触していない状態の区間の長さは3mm程度であり,この区間でのキャピラリは実質的に直線とみなし得る。また,照射位置に照射されるレーザービームの直径は0.2 mm なので,配列面に接触していない状態の区間の長さより十分小さくビームは配列面によって散乱されない。本実施例と同様に外径0.25mmのキャピラリを用いるならば,この非接触区間の長さが5mm程度でも同様の結果を得ることができる。このキャピラリが配列面に接触していない状態の区間の長さは0.3mm以上10mm以下の範囲にあれば、ビーム照射が適切に行える。より一般的には、このキャピラリが配列面に接触していない状態の区間の長さをレーザービームの直径の1.5倍よりも大きな値とすれば同様の結果を得ることができる。ここでレーザービームの直径は、ビーム断面のパワー密度が光軸上の値の1/e^2になる円周の直径で定義される。パワー密度が1/e^2〜1/8となる円周上ではパワーは十分減衰しておらず、この位置に物体があるとレーザービームは散乱される。上記で定義されるビーム径の1.5倍の直径を有する円周の外では、レーザービームのパワー密度は1/100以下に減衰する。そのため、この円周の外では、物体があっても実用上ビームの散乱は無視できる。すなわち、キャピラリが配列面に接触していない状態の区間の長さをビーム径の1.5倍以上とすれば、配列面によって生じるビームの散乱光が無視できる。さらに、キャピラリが配列面に接触していない状態の区間の長さをキャピラリの外径の40倍以下としても同様の結果を得ることができる。この上限を設けることにより、キャピラリが配列面に接触していない状態の区間内のキャピラリを実質的に直線に維持できるなどの当該区間の性能を保持することができる。全てのキャピラリに効率よくレーザービームを照射するには、キャピラリ中心軸とレーザービーム光軸が交錯することが理想的である。キャピラリ外径の誤差や装置製造上の誤差のため、常に完全に交錯させることは不可能であるが、キャピラリ中心軸とレーザービーム光軸の間の距離は10μm以下に保たれることが望ましい。本実施例では,キャピラリ外周からキャピラリの中心軸への距離及び基準平面とレーザービーム光軸の距離はいずれも125±3μmである。したがって、双方の誤差分の±3μmを加えても、誤差の最大値は6μmとなり、キャピラリ中心軸とレーザービームの光軸の間の距離は最悪でも6μm以下に押さえられる。クッション10a,10bの素材としては可逆的に伸縮する弾性体が好ましく、例えばフッ素ゴム全般を使用できる。本実施例では黒色のフッ素ゴムのバイトン(Viton、登録商標)を使用した。また本実施例ではカバー9の材質としてポリカーボネートを使用したが固体の素材なら何でも使用できる。   On the other hand, the length of the section in a state where the capillaries between the array surfaces 44a and 44b are not in contact with the array surface is about 3 mm, and the capillary in this section can be regarded as a substantially straight line. In addition, since the diameter of the laser beam irradiated to the irradiation position is 0.2 mm, the beam is sufficiently smaller than the length of the section that is not in contact with the array surface, and the beam is not scattered by the array surface. If a capillary with an outer diameter of 0.25 mm is used as in this embodiment, the same result can be obtained even if the length of this non-contact section is about 5 mm. If the length of the section where the capillaries are not in contact with the array surface is in the range of 0.3 mm or more and 10 mm or less, beam irradiation can be performed appropriately. More generally, the same result can be obtained if the length of the section in which the capillary is not in contact with the array surface is set to a value larger than 1.5 times the diameter of the laser beam. Here, the diameter of the laser beam is defined by the diameter of the circumference where the power density of the beam cross section is 1 / e ^ 2 of the value on the optical axis. On the circumference where the power density is 1 / e ^ 2 to 1/8, the power is not sufficiently attenuated, and if there is an object at this position, the laser beam is scattered. Outside the circumference having a diameter 1.5 times the beam diameter defined above, the power density of the laser beam is attenuated to 1/100 or less. Therefore, outside this circumference, even if there is an object, the scattering of the beam can be ignored in practice. That is, if the length of the section in which the capillaries are not in contact with the array surface is set to 1.5 times or more of the beam diameter, the scattered light of the beam generated by the array surface can be ignored. Further, the same result can be obtained even when the length of the section in which the capillaries are not in contact with the array surface is 40 times or less the outer diameter of the capillaries. By providing this upper limit, it is possible to maintain the performance of the section such that the capillaries in the section where the capillaries are not in contact with the arrangement surface can be maintained substantially linear. In order to efficiently irradiate all the capillaries with a laser beam, it is ideal that the capillary central axis and the laser beam optical axis intersect. Although it is impossible to always completely intersect due to errors in the outer diameter of the capillary and errors in manufacturing the apparatus, it is desirable that the distance between the capillary central axis and the laser beam optical axis be kept at 10 μm or less. In this embodiment, the distance from the outer circumference of the capillary to the central axis of the capillary and the distance between the reference plane and the laser beam optical axis are both 125 ± 3 μm. Therefore, even when ± 3 μm for both errors is added, the maximum value of the error is 6 μm, and the distance between the capillary central axis and the optical axis of the laser beam is suppressed to 6 μm or less at the worst. The material of the cushions 10a and 10b is preferably an elastic body that reversibly expands and contracts, and for example, fluorocarbon rubber in general can be used. In this example, a black fluororubber Viton (registered trademark) was used. In this embodiment, polycarbonate is used as the material for the cover 9, but any solid material can be used.

また,束縛部材の厚さは50μmと薄く,熱容量は非常に小さいので,温調板13と接触することにより速やかに束縛部材3上のキャピラリの温度は温調板の温度にほぼ等しくなる。配列部材5に押し付けられたキャピラリの温度はすみやかに配列部材5の温度と等しくなるが,前述したようにそれは予め温調板13の温度とほぼ等しくなっている。この結果,キャピラリアレイ全体で,キャピラリ温度の均一性が速やかに実現される。   Further, since the thickness of the constraining member is as thin as 50 μm and the heat capacity is very small, the temperature of the capillary on the constraining member 3 quickly becomes substantially equal to the temperature of the temperature control plate by contacting the temperature control plate 13. The temperature of the capillaries pressed against the array member 5 quickly becomes equal to the temperature of the array member 5, but as described above, it is approximately equal to the temperature of the temperature control plate 13 in advance. As a result, uniform capillary temperature can be realized quickly throughout the entire capillary array.

また,配列部材5はレーザービーム光軸の近傍に開口14を有し,図に示したようにキャピラリ中の試料から放射された蛍光15はこの開口14を通して観測される。ビーム照射位置11と蛍光検出のための開口14との間に実質的に透明な窓45を設けた。窓の材質としては任意の透明な物質が使用可能であるが,本実施例ではBK7を採用した。このような透明な窓をキャピラリの近くに設けることにより,測定中に装置内のほこりがビーム照射位置に付着する危険性を軽減することができる。本実施例では窓材として実質的に無色透明なBK7を使用したが,短波長の光を遮断する色ガラスを使用すると照射ビームの散乱光を遮断することもできる。   The array member 5 has an opening 14 in the vicinity of the optical axis of the laser beam, and the fluorescence 15 emitted from the sample in the capillary is observed through the opening 14 as shown in the figure. A substantially transparent window 45 is provided between the beam irradiation position 11 and the opening 14 for detecting fluorescence. Although any transparent material can be used as the material of the window, BK7 is adopted in this embodiment. By providing such a transparent window near the capillary, it is possible to reduce the risk that dust in the apparatus will adhere to the beam irradiation position during measurement. In this embodiment, BK7 that is substantially colorless and transparent is used as the window material. However, if colored glass that blocks light having a short wavelength is used, the scattered light of the irradiation beam can also be blocked.

図2(b)は第1の実施例に関する他の例における,キャピラリ2-1を通り,キャピラリ配列平面に垂直な平面による,ビーム照射位置11近傍の断面図である。基本的構造は第一の実施例と同一であるが,本実施例ではクッション10a,10bをばねとし、ばねの先端に板材49a、49bを取り付け,この板材の表面を押え面46a,46bとした。このようにすることにより,クッション10a,10bをゴムとした場合に生じる塑性変形のおそれを除去できる。図2(b)では,押え面を有する板材が49a、49bの二つに分離されているが,図2(c)のように、コの字状の断面を有する一つの板材49でももちろん良い。図2(c)ではこの板材49が取り付けられたクッション10が1つのばねであるが、図2(b)のように複数のばねであってももちろんよい。   FIG. 2B is a cross-sectional view of the vicinity of the beam irradiation position 11 by a plane that passes through the capillary 2-1 and is perpendicular to the capillary array plane in another example relating to the first embodiment. Although the basic structure is the same as that of the first embodiment, in this embodiment, the cushions 10a and 10b are springs, plate members 49a and 49b are attached to the tips of the springs, and the surfaces of the plate members are pressing surfaces 46a and 46b. . By doing in this way, the possibility of plastic deformation generated when the cushions 10a and 10b are made of rubber can be eliminated. In FIG. 2B, the plate material having the pressing surface is separated into two parts 49a and 49b. However, as shown in FIG. 2C, a single plate material 49 having a U-shaped cross section may of course be used. . In FIG. 2 (c), the cushion 10 to which the plate member 49 is attached is one spring, but a plurality of springs may be used as shown in FIG. 2 (b).

図3(a)は配列部材5の正面図である。図3(a)に示した配列部材では配列面44a、44bは単純な平面であるが、キャピラリの中心軸がこの平面に平行な1つの平面上に精度良く配列する結果、蛍光検出のキャピラリ間感度むらを20%以下に押えることができる。図3(b)は配列面を変更した配列部材5の,正面から見た拡大図である。この配列部材はシリコン製であり,エッチングによりキャピラリ配列面44a,44bに16個のV溝が精密に250μmピッチで形成されている。キャピラリアレイを温調板に載せただけの段階では,キャピラリ中心軸はこのV溝の谷に対して±25μm程度の誤差を持っている。押さえ部材8でキャピラリが配列部材5に押し当てられることにより,キャピラリ中心軸が強制的にV溝の中心に一致させられ,キャピラリ外径の誤差の範囲内で同一平面上に配列される。図3(b)の方式に固有の効果は,キャピラリ配列面内に生じ得る25μm程度の隙間が消滅し,キャピラリ間変動係数が10%以下の極めて一様な蛍光検出感度が可能になることである。キャピラリアレイ1の温調板13への具体的取付け方法及び蛍光検出法の詳細は以下で説明する。   FIG. 3A is a front view of the array member 5. In the arrangement member shown in FIG. 3 (a), the arrangement surfaces 44a and 44b are simple planes. However, as a result of accurately arranging the central axes of the capillaries on one plane parallel to the plane, the gaps between the fluorescence detection capillaries Sensitivity unevenness can be suppressed to 20% or less. FIG. 3B is an enlarged view of the array member 5 with the array surface changed as seen from the front. This array member is made of silicon, and 16 V-grooves are precisely formed at a pitch of 250 μm on the capillary array surfaces 44a and 44b by etching. At the stage where the capillary array is simply placed on the temperature control plate, the capillary central axis has an error of about ± 25 μm with respect to the valley of the V groove. When the capillaries are pressed against the array member 5 by the pressing member 8, the capillary central axis is forcibly made to coincide with the center of the V-groove, and the capillaries are arrayed on the same plane within the range of the error of the capillary outer diameter. The effect inherent to the method of FIG. 3B is that a gap of about 25 μm that may occur in the capillary array plane disappears, and an extremely uniform fluorescence detection sensitivity with a coefficient of variation between capillaries of 10% or less becomes possible. is there. Details of a specific method for attaching the capillary array 1 to the temperature control plate 13 and the fluorescence detection method will be described below.

図4(a)はキャピラリアレイ電気泳動装置の,ビーム照射位置11においてキャピラリ2-1〜2-16がなす面と直行する平面による断面図である。キャピラリアレイ1は温調板13上の位置決めピン16a,16bが束縛部材3の穴12a, 12bを通るように設置される。その後に押さえ部材8が取り付けられる。なお,図4(a)の断面では押さえ部材8はカバー9だけであり,このカバー9には位置決めピン16a,16bを通すための穴が空いている。位置決めピン16a,16bに設けられたネジ穴と,ボルト17a,17bによってキャピラリアレイ1と押さえ部材8が温調板13に対して友締めで固定される。この結果キャピラリアレイ1の束縛部材の片面が温調板13に押し付けられる。また,同時にキャピラリがビーム照射位置11と束縛領域7aの間,およびビーム照射位置11と束縛領域7bの間の各々で配列部材5に押し当てられる。本実施例では押さえ部材8が温調板13から着脱可能な固定する構造となっているが,図4(b)に示したように押さえ部材が温調板と蝶番で連結されていても勿論良い。   FIG. 4A is a cross-sectional view of the capillary array electrophoresis apparatus by a plane orthogonal to the surface formed by the capillaries 2-1 to 2-16 at the beam irradiation position 11. FIG. The capillary array 1 is installed so that the positioning pins 16 a and 16 b on the temperature control plate 13 pass through the holes 12 a and 12 b of the binding member 3. Thereafter, the pressing member 8 is attached. In the cross section of FIG. 4A, the pressing member 8 is only the cover 9, and the cover 9 has holes for passing the positioning pins 16a and 16b. The capillary array 1 and the pressing member 8 are fastened to the temperature control plate 13 by screwing the screw holes provided in the positioning pins 16a and 16b and the bolts 17a and 17b. As a result, one side of the binding member of the capillary array 1 is pressed against the temperature control plate 13. At the same time, the capillaries are pressed against the array member 5 between the beam irradiation position 11 and the constraining region 7a and between the beam irradiation position 11 and the constraining region 7b. In this embodiment, the pressing member 8 is fixed to be detachable from the temperature adjusting plate 13, but it goes without saying that the pressing member may be connected to the temperature adjusting plate with a hinge as shown in FIG. 4 (b). good.

次に図4(a)を用いて蛍光励起・検出の詳細を説明する。レーザー19は波長594 nm, 出力8mWの連続波ヘリウムネオンレーザーである。レーザーから放出されたビームはビームスプリッタ20で2分割され,ミラー21a,21b,21c及びプリズム18-1〜18-4によってキャピラリ2-nに両側から照射される。両端のキャピラリに照射された光は,特許文献1に記されているように,キャピラリ自身のレンズ作用により,ビームは発散することなく次々と隣のキャピラリへと照射される。ビームを2分割して両側から照射したことにより反射による損失も相殺され,全16本のキャピラリ内を透過する光量のばらつきは±20%以内となる。キャピラリ2-nから放射された光はカメラレンズ22-1によって平行光束にされ,バンドパスフィルタ23で試料からの蛍光以外の背景光を除去した後に第2のカメラレンズ22-2で検出器25の光電面24に、キャピラリの実体と像の大きさの比が1:1になるように結像される。検出器25は画素ピッチ25μmのCCDであるので,各キャピラリからの蛍光を分離して検出することができる。   Next, details of fluorescence excitation / detection will be described with reference to FIG. The laser 19 is a continuous wave helium neon laser with a wavelength of 594 nm and an output of 8 mW. The beam emitted from the laser is divided into two by the beam splitter 20 and irradiated to the capillary 2-n from both sides by the mirrors 21a, 21b, 21c and the prisms 18-1 to 18-4. As described in Patent Document 1, the light irradiated to the capillaries at both ends is irradiated to the adjacent capillaries one after another without diverging by the lens action of the capillary itself. By irradiating the beam into two parts and irradiating from both sides, the loss due to reflection is offset, and the variation in the amount of light transmitted through all 16 capillaries is within ± 20%. The light emitted from the capillary 2-n is converted into a parallel light beam by the camera lens 22-1, and after the background light other than the fluorescence from the sample is removed by the bandpass filter 23, the detector 25 is detected by the second camera lens 22-2. An image is formed on the photocathode 24 so that the ratio between the capillary body and the image size is 1: 1. Since the detector 25 is a CCD having a pixel pitch of 25 μm, fluorescence from each capillary can be separated and detected.

図5は本実施例の電気泳動系の説明図である。温調板13はその裏側に取り付けられたペルチェ素子30によって温度が所定の値に保たれる。ペルチェ素子30で発生した熱あるいは冷気はヒートパイプ39によって側方に逃され,ファン40によって大気中に廃棄される。キャピラリアレイ1のキャピラリ上端はT字状の流路を有する分岐ブロック26に挿入され,ゴム製ガスケット43によってシールされる。分岐ブロック26の流路の一方はチューブ29-2によって分離媒体が充填されたシリンジ27に接続され,他方の流路はチューブ29−1を介してバッファーブロック28に接続される。チューブは内径1mmのテフロン(登録商標)チューブ,分岐ブロックとバッファーブロックは実質的に透明なアクリル製でその流路内径は1mmである。バッファーブロック28内の流路はブロック内で折れて鉛直上方に向いた後に,直径30mmの甕状に広がったバッファータンクに接続する。バッファーブロック内の流路とバッファータンクの連結部はピストン31の上下によって開閉される。この連結部が開の状態でシリンジ27が押されて,分離媒体がチューブ29−1,29−2の内部とそれらを繋ぐ分岐ブロック26の流路,およびバッファーブロック28内の流路に充填される。バッファータンクは上方が開放されており,そこからバッファが所定の量注入される。その後ピストン31が下がってバッファーブロックの流路が閉じた状態でシリンジ27が再び押され,分離媒体が今度は電気泳動部材のキャピラリに充填される。シリンジは電動ステージ34によって押され,ピストンの上下は電動ソレノイド32によって行われる。分離媒体としてはアクリルアミド,ヒドロキシエチルセルロースの水溶液などを好適に用いることができる。   FIG. 5 is an explanatory diagram of the electrophoresis system of this example. The temperature control plate 13 is maintained at a predetermined value by the Peltier element 30 attached to the back side thereof. The heat or cold generated in the Peltier element 30 is released to the side by the heat pipe 39 and discarded into the atmosphere by the fan 40. The upper ends of the capillaries of the capillary array 1 are inserted into a branch block 26 having a T-shaped channel and sealed with a rubber gasket 43. One of the flow paths of the branch block 26 is connected to the syringe 27 filled with the separation medium by the tube 29-2, and the other flow path is connected to the buffer block 28 through the tube 29-1. The tube is a Teflon (registered trademark) tube having an inner diameter of 1 mm, the branch block and the buffer block are made of substantially transparent acrylic, and the flow path has an inner diameter of 1 mm. The flow path in the buffer block 28 is bent in the block and directed vertically upward, and then connected to a buffer tank having a diameter of 30 mm and spreading in a bowl shape. The connecting portion between the flow path in the buffer block and the buffer tank is opened and closed by the upper and lower sides of the piston 31. The syringe 27 is pushed in a state in which the connecting portion is open, and the separation medium is filled in the tubes 29-1 and 29-2, the flow path of the branch block 26 connecting them, and the flow path in the buffer block 28. The The buffer tank is open at the top, and a predetermined amount of buffer is injected from there. Thereafter, with the piston 31 lowered and the flow path of the buffer block closed, the syringe 27 is pushed again, and the separation medium is now filled into the capillary of the electrophoresis member. The syringe is pushed by the electric stage 34, and the piston is moved up and down by the electric solenoid 32. As the separation medium, an aqueous solution of acrylamide, hydroxyethyl cellulose, or the like can be suitably used.

キャピラリの下端は各キャピラリに対応した16本の突起部を有する電極37と共にバッファー槽内のバッファーに浸かっている。バッファーブロック28内のバッファーには電極33が浸かっている。電極33,37に接続された高圧電源38により,キャピラリの上端と下端の間に高圧が印加される。   The lower end of the capillary is immersed in the buffer in the buffer tank together with the electrode 37 having 16 protrusions corresponding to each capillary. An electrode 33 is immersed in the buffer in the buffer block 28. A high voltage is applied between the upper and lower ends of the capillary by a high voltage power supply 38 connected to the electrodes 33 and 37.

図6は,図5の電気泳動系の主要部を側面から見た図である。バッファー槽36とマイクロタイタープレート41が電動xzステージ35に載っている。電動xzステージ35が動くことによってキャピラリの下端がマイクロタイタープレート41の測定対象となる試料ウェルに浸かった状態で,高圧電源38によって試料注入が行われ,その後に再びキャピラリ下端がバッファ36に戻った状態でキャピラリの上端と下端の間に高圧が印加され,キャピラリ内に注入された試料が電気泳動と分離がなされる。試料が電気泳動されてビーム照射位置に到着した時に蛍光が励起される。分離媒体の充填,試料注入,電気泳動などの一連の操作はコンピュータ制御によって全自動で行われる。   FIG. 6 is a side view of the main part of the electrophoresis system of FIG. A buffer tank 36 and a microtiter plate 41 are mounted on the electric xz stage 35. When the electric xz stage 35 moves, the lower end of the capillary is immersed in the sample well to be measured on the microtiter plate 41, and then the sample is injected by the high voltage power source 38, and then the lower end of the capillary returns to the buffer 36 again. In this state, a high pressure is applied between the upper and lower ends of the capillary, and the sample injected into the capillary is subjected to electrophoresis and separation. Fluorescence is excited when the sample is electrophoresed and arrives at the beam irradiation position. A series of operations such as filling of the separation medium, sample injection, and electrophoresis are performed automatically by computer control.

図7は本実施例によって,キャピラリ2-1〜2-16から同時に得られた蛍光強度の時間変化を示す図(電気泳動図)である。試料はApplied Biosystems社のGeneScan Size Standard 500 Roxであり,500bpまでの末端をROXで標識されたDNAが含まれている。この試料をホルムアミドで1/20に希釈し,DNAを一本鎖の状態にしてキャピラリに注入した。図7のピークに付記された数値は,ピークに対応するDNAの塩基長である。分離媒体としては同社のPOP7を使用し,泳動電界は319 V/cm,温調板の温度は50℃とした。ここで、注入された試料は全てのキャピラリにおいて同一であるから,同一断片に帰属されるピークの高さはキャピラリごとにばらつかないことが望ましい。このばらつきが大きいとキャピラリ間の定量比較が困難になるだけでなく,あるキャピラリでは分析可能な試料が,他のキャピラリでは信号対雑音比が低すぎて分析不可能ということにもなりかねない。押え部材8が無い状態ではキャピラリ中心軸がビーム光軸にたいして±25μm程度ばらついていたため,ピーク高さのキャピラリ間変動係数は20%以上であった。押え部材8でキャピラリを配列面に押し当てることにより,キャピラリ中心軸とビーム光軸の距離が10μm以下に押さえられた結果,同一塩基長に対応するピーク高さのキャピラリ間変動係数は15%以下に抑えられている。また,図7のグラフにおける横軸は,一番下の電気泳動図に対する蛍光強度=0の線に一致している。この線と電気泳動図のベースラインの差(バックグラウンド)は,分離媒体からのラマン散乱光と,ビーム照射位置近傍にある物体からの散乱光と蛍光に起因する。ビーム照射位置近傍に接着剤が有る場合,それによるバックグラウンドは,ラマン散乱によるバックグラウンドより遥かに大きくなる。本方式ではビーム照射位置近傍の接着剤が無く,その散乱光と蛍光は無いので,バックグラウンドはピーク高さの1/10以下の小さい値に押えられている。その結果,バックグラウンドノイズが少ない電気泳動図が得られた。また,非常に短い有効長で短時間に分離を行ったにもかかわらず,50塩基から500塩基の15断片が完全に分離され, 10塩基差でのベースライン分離が得られている。従って,キャピラリアレイ全面にわたり非常に高い温度均一性が得られて高分解能を得るに至ったことがわかる。図7の結果はキャピラリアレイを電気泳動装置に装着した直後の測定結果であり,装着直後に瞬時にして温度の均一性が得られ、このような高分解能を得るに至ったことを示している。本実施例ではROX標識されたDNAの断片長解析を行っているが,フィルタの替わりに回折格子を用いて蛍光を分光することにより,多色検出に基づく塩基配列決定も勿論可能である。その場合は光源19として,488nmと514.5nmの2波長で発振するアルゴンイオンレーザーを好適に用いることができる。   FIG. 7 is a diagram (electrophoretic diagram) showing temporal changes in fluorescence intensity simultaneously obtained from the capillaries 2-1 to 2-16 according to this example. The sample is GeneScan Size Standard 500 Rox from Applied Biosystems, and contains DNA labeled with ROX at the end of up to 500 bp. This sample was diluted 1/20 with formamide, and DNA was made into a single strand state and injected into the capillary. The numerical value attached to the peak in FIG. 7 is the base length of DNA corresponding to the peak. As a separation medium, POP7 of the same company was used, the electrophoretic electric field was 319 V / cm, and the temperature of the temperature control plate was 50 ° C. Here, since the injected sample is the same in all capillaries, it is desirable that the height of the peak attributed to the same fragment does not vary from capillary to capillary. If this variation is large, not only can quantitative comparison between capillaries be difficult, but a sample that can be analyzed in one capillary may not be analyzed because the signal-to-noise ratio is too low in another capillary. In the state where the pressing member 8 is not present, the capillary center axis varies about ± 25 μm with respect to the beam optical axis, so that the peak height variation coefficient between capillaries is 20% or more. By pressing the capillaries against the array surface with the holding member 8, the distance between the capillary center axis and the beam optical axis is suppressed to 10 μm or less. As a result, the inter-capillary variation coefficient of the peak height corresponding to the same base length is 15% or less. Is suppressed. Further, the horizontal axis in the graph of FIG. 7 corresponds to the line of fluorescence intensity = 0 with respect to the bottom electropherogram. The difference (background) between this line and the baseline of the electropherogram is due to Raman scattered light from the separation medium, scattered light from an object in the vicinity of the beam irradiation position, and fluorescence. When there is an adhesive in the vicinity of the beam irradiation position, the background due to it is much larger than the background due to Raman scattering. In this method, there is no adhesive near the beam irradiation position, and there is no scattered light and fluorescence, so the background is suppressed to a small value of 1/10 or less of the peak height. As a result, an electropherogram with less background noise was obtained. In addition, 15 fragments from 50 bases to 500 bases were completely separated despite the very short effective length and separation in a short time, and baseline separation with 10 base differences was obtained. Therefore, it can be seen that very high temperature uniformity is obtained over the entire surface of the capillary array and high resolution is obtained. The result of FIG. 7 is a measurement result immediately after mounting the capillary array on the electrophoresis apparatus, and shows that the temperature uniformity was obtained instantaneously immediately after mounting, and such high resolution was achieved. . In this example, fragment length analysis of ROX-labeled DNA is performed, but it is of course possible to determine a base sequence based on multicolor detection by using a diffraction grating instead of a filter to separate fluorescence. In that case, an argon ion laser that oscillates at two wavelengths of 488 nm and 514.5 nm can be suitably used as the light source 19.

図8は本発明の第2の実施例におけるキャピラリアレイである。キャピラリの配線パターンは第一の実施例と同一であるが,本実施例では束縛部材が3a,3b,3cの3つに分離されている。束縛部材3aと3bはそれぞれ束縛領域7aと7bだけでキャピラリ2−1〜2−16を束縛している。束縛部材3cはキャピラリ下端近傍でキャピラリ間隔を4.5±0.1mmに保っている。本実施例で使用したキャピラリの外径寸法は第一の実施例と同一であり,心材が石英であることも共通であるが,コーティングをポリイミドではなく,実質的に無色透明な樹脂とした。この結果,ビーム照射位置においてもコーティングを除去せずに用いることができ,ビーム照射位置11を挟む束縛部材3a,3bが分離されていても,キャピラリだけで十分な強度を保つことができる。本実施例における無色透明な樹脂はデュポン社のフッ素系樹脂AF1600であるが,アクリル系樹脂でももちろん適用できる。ビーム照射位置のビーム照射方向における側方に束縛部材が存在しないため,第一の実施例のようにキャピラリの近くでビームをプリズムで反射する必要が無く,ビームの側方照射のための光学系を単純化できる。   FIG. 8 shows a capillary array according to the second embodiment of the present invention. The capillary wiring pattern is the same as that of the first embodiment, but in this embodiment, the constraining members are separated into three, 3a, 3b and 3c. The binding members 3a and 3b bind the capillaries 2-1 to 2-16 only by the binding regions 7a and 7b, respectively. The binding member 3c keeps the capillary interval at 4.5 ± 0.1 mm in the vicinity of the lower end of the capillary. The outer diameter of the capillary used in this example is the same as that of the first example, and the core material is also quartz, but the coating is not a polyimide but a substantially colorless and transparent resin. As a result, it can be used without removing the coating even at the beam irradiation position, and even if the binding members 3a and 3b sandwiching the beam irradiation position 11 are separated, a sufficient strength can be maintained with only the capillary. The colorless and transparent resin in this embodiment is a fluorine resin AF1600 manufactured by DuPont, but an acrylic resin can of course be applied. Since there is no binding member at the side of the beam irradiation position in the beam irradiation direction, there is no need to reflect the beam by a prism near the capillary as in the first embodiment, and an optical system for side beam irradiation Can be simplified.

本発明の第3の実施例におけるキャピラリアレイを図9に示す。このキャピラリアレイの構造は第1の実施例のそれに類似であるが,第1の実施例のようにビーム照射位置周囲の束縛部材3に、閉曲線の外周を有する開口を設ける替わりに,側方の片側を除去し、ビーム照射位置周囲の束縛部材3に開口部を設けたことである。束縛部材をこのような形状にした結果,キャピラリのビーム照射位置の片側からは,第2の実施例と同様にプリズムで反射することなく,励起ビームを照射することが可能である。本実施例ではキャピラリ本数を4本に減らしたので,片側だけの照射でキャピラリ間の蛍光検出感度の変動係数を20%以下に抑えることができる。キャピラリの数は4本には限られず10本くらいまで増設可能である。キャピラリ周囲に石英と空気の中間の屈折率を有する媒質を充填すれば、50本くらいまで増設が可能である。キャピラリを透過した後の励起ビームは,束縛部材によって散乱されないようにビームストッパ47で吸収される。本実施例におけるビームストッパは黒色ポリカーボネートを素材とする円錐状の部材である。ビームストッパ47の素材としては黒色ベークライトなどの黒色の樹脂なら何でも使用可能であり、表面を黒色処理してあれば金属でもよい。また,本実施例ではビーム照射位置11の前後が連結された束縛部材で支持されるので,照射位置11でのキャピラリの樹脂コーティングを除去して低バックグラウンドの蛍光検出をすることが可能である。   A capillary array in the third embodiment of the present invention is shown in FIG. The structure of this capillary array is similar to that of the first embodiment, but instead of providing an opening having an outer periphery of a closed curve in the constraining member 3 around the beam irradiation position as in the first embodiment, One side is removed, and an opening is provided in the binding member 3 around the beam irradiation position. As a result of the constraining member having such a shape, it is possible to irradiate the excitation beam from one side of the beam irradiation position of the capillary without being reflected by the prism as in the second embodiment. In this embodiment, since the number of capillaries is reduced to four, the variation coefficient of fluorescence detection sensitivity between capillaries can be suppressed to 20% or less by irradiation on only one side. The number of capillaries is not limited to four and can be increased to about ten. If the capillary is filled with a medium having an intermediate refractive index between quartz and air, it can be expanded to about 50. The excitation beam after passing through the capillary is absorbed by the beam stopper 47 so as not to be scattered by the binding member. The beam stopper in this embodiment is a conical member made of black polycarbonate. As the material of the beam stopper 47, any black resin such as black bakelite can be used, and metal may be used as long as the surface is black-treated. Further, in this embodiment, since the front and rear of the beam irradiation position 11 are supported by the constraining members connected to each other, it is possible to detect fluorescence in the low background by removing the resin coating on the capillary at the irradiation position 11. .

第1の実施例のキャピラリアレイ,配列部材及び押さえ部材の一例の図。The figure of an example of the capillary array of 1st Example, an arrangement | sequence member, and a pressing member. 第1の実施例のビーム照射位置周辺における,キャピラリ2−1中心軸を通りキャピラリ配列平面に垂直な平面による断面図。Sectional drawing by the plane perpendicular | vertical to a capillary arrangement plane through the capillary 2-1 central axis in the beam irradiation position periphery of 1st Example. 第1の実施例の他の例におけるキャピラリ2−1中心軸を通りキャピラリ配列平面に垂直な平面による断面図。Sectional drawing by the plane perpendicular to the capillary arrangement | positioning plane which passes along the capillary 2-1 central axis in the other example of a 1st Example. 第1の実施例の他の例におけるキャピラリ2−1中心軸を通りキャピラリ配列平面に垂直な平面による断面図。Sectional drawing by the plane perpendicular to the capillary arrangement | positioning plane which passes along the capillary 2-1 central axis in the other example of a 1st Example. 第1の実施例における配列部材の正面図。The front view of the arrangement | sequence member in a 1st Example. 第1の実施例における配列部材の正面図の拡大図および断面図。The enlarged view and sectional drawing of the front view of the arrangement | sequence member in a 1st Example. 第1の実施例の,ビーム照射位置においてキャピラリと直行する平面による断面図。Sectional drawing by the plane orthogonal to a capillary in the beam irradiation position of 1st Example. 第1の実施例の他の例におけるビーム照射位置においてキャピラリと直行する平面による断面図。Sectional drawing by the plane orthogonal to a capillary in the beam irradiation position in the other example of a 1st Example. 第1の実施例における電気泳動系の概念図。The conceptual diagram of the electrophoresis system in a 1st Example. 第1の実施例における電気泳動系の断面図。1 is a cross-sectional view of an electrophoresis system in a first embodiment. 第1の実施例において得られた電気泳動図。The electropherogram obtained in the first example. 第2の実施例におけるキャピラリアレイの正面図。The front view of the capillary array in a 2nd Example. 第3の実施例におけるキャピラリアレイの正面図。The front view of the capillary array in a 3rd Example.

符号の説明Explanation of symbols

1 キャピラリアレイ
2−1〜2−16 キャピラリ
3,3a,3b,3c 束縛部材
4 開口
5 配列部材
6a,6b 励起ビーム
7a,7b 束縛領域
8 押さえ部材
9 カバー
10a,10b、10 クッション
11 ビーム照射位置
12a,12b 穴
13 温調板
14 開口
15 蛍光
16a,16b 位置決めピン
17a,17b ボルト
18−1〜18−4 プリズム
19 レーザー
20 ビームスプリッタ
21a,21b,21c ミラー
22−1,22−2 カメラレンズ
23 バンドパスフィルタ
24 検出器
25 光電面
26 分岐ブロック
27 シリンジ
28 バッファーブロック
29−1,29−2 テフロン(登録商標)チューブ
30 ペルチェ素子
31 ピストン
32 ソレノイド
33 電極
34 自動Xステージ
35 自動XZステージ
36 バッファータンク
37 電極
38 高圧電源
39 ヒートパイプ
40 ファン
41 マイクロタイタープレート
42 フランジ
43 Oリング
44a,44b 配列面
45 窓
46a,46b 押さえ面
47 ビームストッパ
48 蝶番
49,49a,49b 板材。
DESCRIPTION OF SYMBOLS 1 Capillary array 2-1 to 2-16 Capillary 3, 3a, 3b, 3c Binding member 4 Opening 5 Array member 6a, 6b Excitation beam 7a, 7b Binding area 8 Holding member 9 Cover 10a, 10b, 10 Cushion 11 Beam irradiation position 12a, 12b Hole 13 Temperature control plate 14 Opening 15 Fluorescence 16a, 16b Positioning pins 17a, 17b Bolts 18-1 to 18-4 Prism 19 Laser 20 Beam splitters 21a, 21b, 21c Mirrors 22-1, 22-2 Camera lens 23 Bandpass filter 24 Detector 25 Photocathode 26 Branch block 27 Syringe 28 Buffer block 29-1, 29-2 Teflon (registered trademark) tube 30 Peltier element 31 Piston 32 Solenoid 33 Electrode 34 Automatic X stage 35 Automatic XZ stage 36 Buffer tongue 37 electrodes 38 high voltage power supply 39 heat pipe 40 fan 41 microtiter plate 42 flange 43 O-ring 44a, 44b arranged surface 45 windows 46a, 46b pressing surface 47 the beam stopper 48 hinges 49, 49a, 49b plate.

Claims (10)

試料を電気泳動させるための複数のキャピラリーと、
前記キャピラリの両端に電圧を印加する電圧印加手段、前記キャピラリへレーザービー
ムを照射するレーザービーム照射手段、及び前記レーザービームの照射により生ずる光を
検出する検出器を具備する電気泳動装置部と、
前記キャピラリを前記電気泳動装置部に固定する押え部材とを有し、
前記複数のキャピラリは、前記キャピラリの軸方向に沿って前記レーザービームの照射
位置を挟んで位置する、少なくとも2つの束縛領域を有し、
前記押え部材は、前記複数のキャピラリの前記照射位置と第1の前記束縛領域との間、
前記複数のキャピラリの前記照射位置と第2の前記束縛領域との間の各々で、前記複数の
キャピラリを前記電気泳動装置部に対して押し当てることを特徴とするキャピラリ電気泳
動装置。
A plurality of capillaries for electrophoresis of the sample;
An electrophoretic device section comprising a voltage applying means for applying a voltage to both ends of the capillary, a laser beam irradiating means for irradiating the capillary with a laser beam, and a detector for detecting light generated by the irradiation of the laser beam;
And a pressing member for fixing the capillary into the electrophoresis apparatus unit,
The plurality of capillaries have at least two constrained regions located across the irradiation position of the laser beam along the axial direction of the capillaries,
The pressing member is between the irradiation position of the plurality of capillaries and the first constraining region,
A capillary electrophoresis apparatus, wherein the plurality of capillaries are pressed against the electrophoresis apparatus unit at each of the irradiation positions of the plurality of capillaries and the second constrained region.
前記複数のキャピラリは、前記2つの束縛領域の間の少なくとも一部で、実質的に平行
に配列されるものであることを特徴とする請求項1に記載のキャピラリ電気泳動装置。
The capillary electrophoresis apparatus according to claim 1, wherein the plurality of capillaries are arranged substantially in parallel at least at a part between the two constrained regions.
前記複数のキャピラリを束縛する束縛部材をさらに有し、前記複数のキャピラリは、前記束縛領域において前記束縛部材に接着固定されることを特徴とする請求項1に記載のキャピラリ電気泳動装置。 The capillary electrophoresis apparatus according to claim 1, further comprising a binding member that binds the plurality of capillaries, wherein the plurality of capillaries are bonded and fixed to the binding member in the binding region. 前記キャピラリは、前記2つの束縛領域の間に相互の位置を束縛されない領域を有し、
前記押え部材は、前記束縛されない領域で前記キャピラリを前記電気泳動装置部に押し当
てることを特徴とする請求項1に記載のキャピラリ電気泳動装置。
The capillary has a region where the mutual position is not constrained between the two constrained regions,
The capillary electrophoresis apparatus according to claim 1, wherein the pressing member presses the capillary against the electrophoresis apparatus unit in the unbound region.
前記レーザービーム照射手段は、前記レーザービームを前記キャピラリが配列される方
向と実質的に平行な方向から照射することを特徴とする請求項1に記載のキャピラリ電気
泳動装置。
The capillary electrophoresis apparatus according to claim 1, wherein the laser beam irradiation unit irradiates the laser beam from a direction substantially parallel to a direction in which the capillaries are arranged.
前記電気泳動装置部が,前記照射位置の近傍に窓部材を具備することを特徴とする請求
項1に記載のキャピラリ電気泳動装置。
The capillary electrophoresis apparatus according to claim 1, wherein the electrophoresis apparatus unit includes a window member in the vicinity of the irradiation position.
前記押え部材は前記束縛部材の位置を固定させる固定ボルトをさらに有し、
前記電気泳動装置部は少なくとも1つの位置決めピンをさらに有し、
前記束縛部材は前記位置決めピンを貫通させるための位置決め孔をさらに有し、
前記押え部材と前記複数のキャピラリは、前記位置決めピンを位置決め孔に通して前期
固定ボルトで固定することにより位置固定されることを特徴とする請求項1に記載のキャ
ピラリ電気泳動装置。
The pressing member further has a fixing bolt for fixing the position of the binding member,
The electrophoresis apparatus unit further includes at least one positioning pin,
The binding member further has a positioning hole for penetrating the positioning pin;
2. The capillary electrophoresis apparatus according to claim 1, wherein the pressing member and the plurality of capillaries are fixed in position by passing the positioning pin through a positioning hole and fixing with a fixing bolt in the previous period.
前記押え部材は蝶番によって前記電気泳動装置部に連結されていることを特徴とする請
求項7に記載のキャピラリ電気泳動装置。
The capillary electrophoresis apparatus according to claim 7, wherein the pressing member is connected to the electrophoresis apparatus unit by a hinge.
前記複数のキャピラリを前記少なくとも2つの束縛領域の各々で束縛する少なくとも2
つの束縛部材をさらに有し、前記少なくとも2つの束縛部材は互いに分離されていること
を特徴とする請求項1に記載のキャピラリ電気泳動装置。
At least two binding the plurality of capillaries in each of the at least two binding regions;
The capillary electrophoresis apparatus according to claim 1, further comprising one binding member, wherein the at least two binding members are separated from each other.
前記複数のキャピラリを束縛する束縛部材をさらに有し、前記束縛部材は,前記複数のキャピラリの2つの側方の一方に開口部を有することを特徴とする請求項1に記載のキャピラリ電気泳動装置。 The capillary electrophoresis apparatus according to claim 1, further comprising a binding member that binds the plurality of capillaries, wherein the binding member has an opening in one of two sides of the plurality of capillaries. .
JP2003309478A 2003-09-02 2003-09-02 Capillary electrophoresis device Expired - Lifetime JP3861083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003309478A JP3861083B2 (en) 2003-09-02 2003-09-02 Capillary electrophoresis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003309478A JP3861083B2 (en) 2003-09-02 2003-09-02 Capillary electrophoresis device

Publications (2)

Publication Number Publication Date
JP2005077293A JP2005077293A (en) 2005-03-24
JP3861083B2 true JP3861083B2 (en) 2006-12-20

Family

ID=34411602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003309478A Expired - Lifetime JP3861083B2 (en) 2003-09-02 2003-09-02 Capillary electrophoresis device

Country Status (1)

Country Link
JP (1) JP3861083B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4431518B2 (en) * 2005-04-05 2010-03-17 株式会社日立ハイテクノロジーズ Electrophoresis device and capillary array
JP4909744B2 (en) * 2006-01-16 2012-04-04 株式会社日立ハイテクノロジーズ Capillary electrophoresis apparatus and electrophoresis method
JP4286269B2 (en) 2006-06-05 2009-06-24 株式会社日立ハイテクノロジーズ Capillary electrophoresis device
US9494553B2 (en) 2007-04-27 2016-11-15 National Institute Of Advanced Industrial Science And Technology Electrophoresis chip, electrophoresis apparatus, and method for analyzing sample by capillary electrophoresis
JP4937934B2 (en) * 2008-01-22 2012-05-23 株式会社日立ハイテクノロジーズ Capillary array unit and capillary electrophoresis apparatus
JP5568948B2 (en) * 2009-10-21 2014-08-13 東ソー株式会社 Pipe connection mechanism for capillary tube, capillary column and flow analyzer
JP5443527B2 (en) * 2012-02-21 2014-03-19 株式会社日立ハイテクノロジーズ Capillary array unit and capillary electrophoresis apparatus
JP2014145698A (en) * 2013-01-30 2014-08-14 Nitto Denko Corp Sample fixing member for raman spectroscopic analyzer
CN116818872A (en) * 2018-10-29 2023-09-29 株式会社日立高新技术 Electrophoresis device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0720090A (en) * 1993-07-02 1995-01-24 Hitachi Ltd Capillary electrophoresis device
JP3828350B2 (en) * 1999-09-29 2006-10-04 株式会社日立製作所 Capillary electrophoresis apparatus and capillary array assembly
JP3818187B2 (en) * 2001-04-02 2006-09-06 株式会社日立製作所 Capillary array device
JP3897277B2 (en) * 2001-04-02 2007-03-22 株式会社日立製作所 Capillary array and capillary array photodetector

Also Published As

Publication number Publication date
JP2005077293A (en) 2005-03-24

Similar Documents

Publication Publication Date Title
US5790727A (en) Laser illumination of multiple capillaries that form a waveguide
US8512538B2 (en) Capillary electrophoresis device
US5192412A (en) Electrophoretic apparatus having arrayed electrophoresis lanes
US7419578B2 (en) Capillary electrophoresis apparatus
US20070158195A1 (en) Multi-capillary array electrophoresis device
JP3861083B2 (en) Capillary electrophoresis device
US20110188038A1 (en) Label-Independent Optical Reader System And Methods With Optical Scanning
JP6286028B2 (en) Fluorescence analyzer
JP4408906B2 (en) Capillary electrophoresis device
CN110520719A (en) Disposable multichannel bio-analysis cartridge and the capillary electrophoresis system for bioanalysis using it
US6969452B2 (en) Two-dimensional protein separations using chromatofocusing and multiplexed capillary gel electrophoresis
JP6361516B2 (en) Capillary electrophoresis apparatus and capillary cassette used therefor
JP2007198845A (en) Capillary electrophoresis apparatus and electrophoresis method
Dada et al. Capillary array isoelectric focusing with laser-induced fluorescence detection: milli-pH unit resolution and yoctomole mass detection limits in a 32-channel system
CN102466624A (en) Microchip used for surface plasma resonance measurement and surface plasma resonance measuring device
Olivares et al. Liquid core waveguide for full imaging of electrophoretic separations
JP4857384B2 (en) Electrophoresis device
JP4616051B2 (en) Electrophoresis apparatus and electrophoresis method
JP4512465B2 (en) Electrophoresis device
EP2426489B1 (en) Multi-capillary array electrophoresis device
JP4431421B2 (en) Capillary electrophoresis device
US6485626B1 (en) Multiple capillary electrophoresis devices with detection in capillary output
GB2629971A (en) Electrophoresis device
JP4521347B2 (en) Capillary array
JP4474258B2 (en) Electrophoresis device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060125

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060511

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060925

R150 Certificate of patent or registration of utility model

Ref document number: 3861083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term