[go: up one dir, main page]

JP3859306B2 - Main combustion control method and control apparatus for surface melting furnace - Google Patents

Main combustion control method and control apparatus for surface melting furnace Download PDF

Info

Publication number
JP3859306B2
JP3859306B2 JP13563297A JP13563297A JP3859306B2 JP 3859306 B2 JP3859306 B2 JP 3859306B2 JP 13563297 A JP13563297 A JP 13563297A JP 13563297 A JP13563297 A JP 13563297A JP 3859306 B2 JP3859306 B2 JP 3859306B2
Authority
JP
Japan
Prior art keywords
main combustion
temperature
inner cylinder
value
t0max
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13563297A
Other languages
Japanese (ja)
Other versions
JPH10325530A (en
Inventor
和男 長▲濱▼
寛通 安東
出 島本
光雄 田崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP13563297A priority Critical patent/JP3859306B2/en
Publication of JPH10325530A publication Critical patent/JPH10325530A/en
Application granted granted Critical
Publication of JP3859306B2 publication Critical patent/JP3859306B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Incineration Of Waste (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、下水汚泥などの汚泥を燃焼・溶融する表面溶融炉の主燃焼制御方法および制御装置に関する。
【0002】
【従来の技術】
従来の表面溶融炉として、たとえば図2に示したような、上下動可能な内筒と回転可能な外筒との内外二重構造をなす竪型回転炉がある。
【0003】
この表面溶融炉では、下水汚泥などの有機物を含んだ汚泥1を供給ホッパ2より内筒3と外筒4との間の供給路5に投入すると、供給路5内の汚泥1は、外筒4の回転によって周方向に均一に配分されつつ自重下降して炉心方向に移動し、内筒3の内側の主燃焼室6内で、燃料7が主燃焼空気8によって燃焼する燃焼装置9の燃焼熱及び汚泥1が主燃焼空気8によって燃焼する自己燃焼熱で内周面側が燃焼・溶融する。
【0004】
燃焼・溶融により生じた溶融スラグは、燃焼ガスとともに炉底部のスラグポート8より連続的に二次燃焼室10,ピット11に流下して凝固し、スラグコンベア12などで搬出される。
【0005】
二次燃焼室10内に流入した燃焼ガス中の未燃ガスは、室内に供給される二次燃焼空気13と、燃料14が燃焼する助燃バーナ15の燃焼熱とによって燃焼し、煙道16を通じて排出され、排煙処理装置(図示せず)で処理された後に大気中に放出される。
【0006】
このとき、安定した溶融を継続するために、主燃焼室温度の管理を行っており、その手段として、主燃焼室6への汚泥1の供給を左右する外筒4の回転速度を調節するとともに、それとバランスをとって燃料7や主燃焼空気8の温度、供給量などを調節している。
【0007】
なおこのとき、溶融処理量を増やすためには主燃焼室温度が高い方がよいので、通常はできるだけ主燃焼空気供給量を上げ、汚泥1の自己燃焼を促進している。
【0008】
【発明が解決しようとする課題】
ところで、上記した方法において、主燃焼室6内の汚泥1が表面全体において溶融し、図示したような逆円錐状の溶融面を形成している状態であれば、主燃焼空気供給量を均一に増やすことで汚泥1の自己燃焼・溶融を促進することができ、結果として処理量が増加する。
【0009】
しかし、表面汚泥の一部は溶融し、一部は未燃の状態であれば、主燃焼空気供給量を増やすことによって未燃汚泥が浮遊し、スラグポート8より落下して、二次燃焼室10内で燃焼が起こってしまうことがある。そのような場合、主燃焼室6では、供給した主燃焼空気が十分に燃焼に活かされず、処理量増加につながらないばかりでなく、二次燃焼室10の損傷という弊害も生んでしまう。
【0010】
本発明は上記問題を解決するもので、汚泥を表面全体において燃焼・溶融させることができ、処理量を増加できる溶融炉の主燃焼制御方法および制御装置を提供することを目的とするものである。
【0011】
【課題を解決するための手段】
上記問題を解決するために、本発明の溶融炉の主燃焼制御方法は、同心状に配置した内筒と外筒との間に供給される汚泥を、前記外筒の回転により内筒の下方を通って炉心方向へ移動させ、内筒の内側の主燃焼室内で、主燃焼空気を供給しつつ、内周表面の汚泥を燃焼・溶融させ、生じた溶融スラグを主燃焼室底部中央の排出口より排出するに際し、主燃焼室内の頂部近傍温度と内筒下端近傍温度とを同一時に測定して両者間の温度差値T0を逐次算出し、直前の所定時間内における前記温度差値T0の最大値T0max と最小値T0min を算出し、算出した温度差値T0max とT0min との振れ幅値T0max −T0min を求め、求めた振れ幅値T0max −T0min が予め設定した許容温度幅を超えた時は、未燃汚泥の浮遊の原因となる主燃焼空気の供給量の増加を停止するとともに、前記振れ幅値T0max −T0min と許容温度幅との差に応じて、外筒の回転速度を低下させて主燃焼室内への汚泥の供給量を低減することにより、均一な溶融面の形成を優先した燃焼・溶融を行うようにしたものである。
【0012】
また本発明の溶融炉の主燃焼制御装置は、上記した溶融炉の主燃焼制御方法を行う制御装置であって、主燃焼室の内部に主燃焼空気を供給する主燃焼空気供給手段に接続して設けられ、主燃焼空気の供給量を調節する主燃焼空気供給量調節手段と、主燃焼室を形成する内筒との間に汚泥供給路を形成する外筒の回転駆動装置に接続して設けられ、外筒の回転速度を調節する回転速度調節手段と、主燃焼室内の頂部近傍温度を検出する頂部温度検出手段と、主燃焼室内の内筒下端近傍温度を検出する内筒下端温度検出手段とを備えるとともに、前記主燃焼空気供給量調節手段と回転速度調節手段と頂部温度検出手段と内筒下端温度検出手段とに電気的に接続した制御装置を備え、前記制御装置は、均一な溶融面が形成された時に検出される頂部近傍温度と内筒下端近傍温度との温度差の振れ幅に相応する許容温度幅を予め記憶し、前記頂部温度検出手段と内筒下端温度検出手段のそれぞれより同一時に測定された頂部近傍温度値と内筒下端近傍温度値との温度差T0を逐次算出し、直前の所定時間内における前記温度差値T0の最大値T0max と最小値T0min を算出し、算出した温度差値T0max とT0min との振れ幅値T0max −T0min を求め、求めた振れ幅値T0max −T0min が前記許容温度幅を超えた時は、主燃焼空気供給量調節手段により、未燃汚泥の浮遊の原因となる主燃焼空気の供給量の増加を停止するとともに、前記振れ幅値T0max −T0min と許容温度幅との差に応じて、回転速度調節手段により、外筒の回転速度を低下させて主燃焼室内への汚泥の供給量を低減することによって、均一な溶融面の形成を優先した燃焼・溶融を行うように構成したものである。
【0013】
上記した構成において、主燃焼室内の頂部近傍温度は汚泥の溶融面全体の平均的な温度を表わし、内筒下端近傍温度は外筒の回転によって移動している汚泥の溶融面のうち、温度検出センサ部に近接した局所的な部分の影響を強く受ける。したがって、平均的な温度に対して局所的な溶融面近傍の温度の振れ幅値が大きいということは、汚泥表面全体には均一に溶融面が形成されておらず、未燃部分が存在していることを意味する。
【0014】
このため、上記した構成では、汚泥浮遊が生じないように主燃焼空気の供給量の増加を停止し、均一な溶融面の形成を促進することにより、未燃汚泥の落下、二次燃焼室での燃焼を防止する。またこれと連動して、外筒の回転速度を低下させて主燃焼室内への汚泥の供給量をも低減することにより、より早く均一な溶融面を形成させる。これらにより、一時的に処理量が落ちるが、自動運転の中で、長期的には安定した溶融を継続でき、処理量も確保できる。
【0015】
【発明の実施の形態】
以下、本発明の実施形態を図面を参照しながら説明する。
図1において、下水汚泥などの汚泥を焼却・溶融する表面溶融炉は、先に図2を用いて説明したものと同様に、上下動可能な内筒20と回転可能な外筒21との内外二重構造をなしており、内筒20と外筒21との間に、供給ホッパ22を備えた供給路23が形成され、供給路23と連通した内筒20の内側に主燃焼室24が形成されている。外筒21の外側には、外筒21を回転させる駆動装置25が設けられている。
【0016】
主燃焼室24の底部中央にスラグポート26が形成され、スラグポート26の下方に、主燃焼室24より流入する未燃ガスを完全燃焼させる二次燃焼室27が形成され、二次燃焼室27の下方にスラグピット(図示せず)が設けられている。
【0017】
主燃焼室24の天井部をなす内筒20の中央部には、ブロワ28に連通した複数の主燃焼空気供給口29が形成されるとともに、燃料タンク(図示せず)より燃料供給されるバーナー30が設けられている。
【0018】
主燃焼室24の内部には、主燃焼室24内の頂部近傍温度を検出する頂部温度検出装置31のセンサ部31aと、内筒下端近傍温度を検出する内筒下端温度検出装置32のセンサ部32aとが設けられている。
【0019】
炉の外部には、ブロワ28による主燃焼空気供給量をラインL1,調節弁33を介して調節する主燃焼空気供給量調節装置34が設けられるとともに、駆動装置25による外筒21の回転速度をラインL2を通じて調節する回転速度調節装置35とが設けられており、これら主燃焼空気供給量調節装置34と回転速度調節装置35はそれぞれL3,L4により電気的に頂部温度検出装置31に接続している。
【0020】
主燃焼空気供給量調節装置34と回転速度調節装置35と頂部温度検出装置31と内筒下端温度検出装置32とにラインL5,L6,L7,L8により電気的に接続して制御装置36が設けられている。
【0021】
制御装置36は、溶融面の均一度が適正である時に検出される頂部近傍温度と内筒下端近傍温度との温度差の振れ幅に相応する許容温度幅(たとえば20℃)を予め記憶しており、頂部温度検出装置31と内筒下端温度検出装置32のそれぞれにより連続的に測定される温度間の温度差を逐次算出し、直前の所定時間(たとえば1時間)内における温度差の振れ幅値を算出し、算出した振れ幅値を前記許容温度幅に比較し、その結果に基づき、主燃焼空気供給量調節装置34と回転速度調節装置35とを所定の条件で制御するように構成されている。
【0022】
上記した構成における作用を説明する。
下水汚泥などの汚泥37を、供給ホッパ22より内筒20と外筒21との間の供給路23に投入すると、供給路23内の汚泥37は、駆動装置25による外筒21の回転によって周方向に均一に配分されつつ自重下降して、内筒20の下方を通って炉心方向に移動し、内筒20の内側の主燃焼室24内で、ブロワ28より主燃焼空気供給口29を通じて供給される主燃焼空気によって、内周面側の汚泥37が燃焼・溶融する。バーナー30は燃焼開始時のみ使用される。
【0023】
燃焼・溶融により生じた溶融スラグは、燃焼ガスとともにスラグポート26から連続的に二次燃焼室27,ピット(図示せず)に流下して凝固し、搬出される。燃焼ガス中の未燃ガスは二次燃焼室27内で燃焼し、煙道,排煙処理装置(図示せず)を経て大気中に放出される。
【0024】
このとき、頂部温度検出装置31のセンサ部31aによって主燃焼室24内の頂部近傍温度が検出されるとともに、内筒下端温度検出装置32のセンサ部32aによって内筒下端近傍温度が検出され、検出された頂部近傍温度データはラインL3,L4を通じて主燃焼空気供給量調節装置34と回転速度調節装置35とに送信され、それに基づき、主燃焼空気供給量調節装置34がラインL1,調節弁33,ブロワ28によって主燃焼空気供給量を調節し、回転速度調節装置35がラインL2,駆動装置25によって外筒21の回転速度を調節する。
【0025】
またこのとき、検出された頂部近傍温度データと内筒下端近傍温度データはそれぞれラインL7,L8を通じて制御装置36へ送信される。そして、制御装置36において、同一時に測定された頂部近傍温度と内筒下端近傍温度との間の温度差値が逐次算出され、直前の所定時間内における温度差の振れ幅値が算出され、この振れ幅値が予め記憶された許容温度幅に比較される。
【0026】
そして、振れ幅値が許容温度幅を超えた時は、溶融面の均一度が適正でないと判断され、ラインL5,主燃焼空気供給量調節装置34によって、未燃汚泥の浮遊の原因となる主燃焼空気の供給量の増加が禁止されるとともに、ラインL6,回転速度調節装置35によって、前記振れ幅値と許容温度幅との差に応じて、外筒21の回転速度が低下されて主燃焼室24内への汚泥の供給量が低減され、均一な溶融面の形成を優先した燃焼・溶融が行われる。
【0027】
その後に同様にして求めた振れ幅値が許容温度幅内であれば、通常の運転に戻る。
このようにして主燃焼を制御することにより、一時的には処理量が低下するが、自動運転の中で、長期的に安定した溶融の継続と処理量の確保を実現できる。
【0028】
【発明の効果】
以上のように、本発明によれば、溶融面全体の平均的な温度を表わす頂部近傍温度と、近傍の局所的な溶融面の影響を強く受ける内筒下端近傍温度とを測定し、両温度間の差の所定時間内における振れ幅を比較し、振れ幅値が大きい時は、未燃汚泥が表面に存在すると判断して、主燃焼空気供給量と外筒の回転速度を操作し、均一な溶融面の形成を促進するようにしたことにより、一時的に処理量が落ちるものの、自動運転の中で、長期的には、安定した溶融の継続と処理量の確保とを実現できる。
【図面の簡単な説明】
【図1】本発明の一実施形態における表面溶融炉の主燃焼制御装置の構成を示した説明図である。
【図2】図1の装置により温度制御可能な従来の表面溶融炉の概略全体構成を示した説明図である。
【符号の説明】
20 内筒
21 外筒
23 供給路
24 主燃焼室
25 駆動装置
28 ブロワ
31 頂部温度検出装置
32 内筒下端温度検出装置
34 主燃焼空気供給量調節装置
35 回転速度調節装置
36 制御装置
37 汚泥
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a main combustion control method and control device for a surface melting furnace for burning and melting sludge such as sewage sludge.
[0002]
[Prior art]
As a conventional surface melting furnace, for example, there is a vertical rotary furnace having an internal / external double structure of an inner cylinder capable of moving up and down and a rotatable outer cylinder as shown in FIG.
[0003]
In this surface melting furnace, when the sludge 1 containing organic matter such as sewage sludge is introduced from the supply hopper 2 into the supply path 5 between the inner cylinder 3 and the outer cylinder 4, the sludge 1 in the supply path 5 becomes the outer cylinder. Combustion of the combustion device 9 in which the fuel 7 is burned by the main combustion air 8 in the main combustion chamber 6 inside the inner cylinder 3 while moving down in its own weight while being distributed uniformly in the circumferential direction by the rotation of 4. The inner peripheral surface is combusted and melted by self-combustion heat in which heat and sludge 1 are combusted by the main combustion air 8.
[0004]
The molten slag generated by the combustion and melting flows into the secondary combustion chamber 10 and the pit 11 continuously from the slag port 8 at the bottom of the furnace together with the combustion gas, solidifies, and is carried out by the slag conveyor 12 or the like.
[0005]
The unburned gas in the combustion gas flowing into the secondary combustion chamber 10 is combusted by the secondary combustion air 13 supplied into the chamber and the combustion heat of the auxiliary burner 15 in which the fuel 14 is combusted. After being discharged and treated by a smoke treatment device (not shown), it is released into the atmosphere.
[0006]
At this time, in order to continue stable melting, the temperature of the main combustion chamber is controlled, and as a means for that, the rotational speed of the outer cylinder 4 that affects the supply of the sludge 1 to the main combustion chamber 6 is adjusted. The temperature and supply amount of the fuel 7 and the main combustion air 8 are adjusted in a balanced manner.
[0007]
At this time, in order to increase the melt processing amount, it is better that the temperature of the main combustion chamber is high. Therefore, the main combustion air supply amount is usually increased as much as possible to promote the self-combustion of the sludge 1.
[0008]
[Problems to be solved by the invention]
By the way, in the above-described method, if the sludge 1 in the main combustion chamber 6 is melted on the entire surface and forms an inverted conical melting surface as shown, the main combustion air supply amount is made uniform. By increasing, self-combustion and melting of the sludge 1 can be promoted, and as a result, the amount of treatment increases.
[0009]
However, if a part of the surface sludge is melted and a part is unburned, the unburned sludge is floated by increasing the supply amount of the main combustion air, falls from the slag port 8, and is discharged into the secondary combustion chamber. Combustion may occur within 10. In such a case, in the main combustion chamber 6, the supplied main combustion air is not fully utilized for combustion, and not only does not lead to an increase in the processing amount, but also causes a harmful effect such as damage to the secondary combustion chamber 10.
[0010]
SUMMARY OF THE INVENTION The present invention solves the above-described problems, and an object of the present invention is to provide a main combustion control method and control device for a melting furnace that can burn and melt sludge over the entire surface and increase the throughput. .
[0011]
[Means for Solving the Problems]
In order to solve the above problem, the main combustion control method for a melting furnace according to the present invention is configured such that the sludge supplied between the inner cylinder and the outer cylinder arranged concentrically is moved below the inner cylinder by the rotation of the outer cylinder. Through the core, and in the main combustion chamber inside the inner cylinder, while supplying main combustion air, the sludge on the inner peripheral surface is burned and melted, and the resulting molten slag is discharged at the center of the bottom of the main combustion chamber. When discharging from the outlet, the temperature near the top of the main combustion chamber and the temperature near the lower end of the inner cylinder are measured at the same time, and the temperature difference value T0 between them is sequentially calculated. When the maximum value T0max and the minimum value T0min are calculated, the fluctuation value T0max -T0min between the calculated temperature difference values T0max and T0min is obtained, and when the calculated fluctuation value T0max -T0min exceeds the preset allowable temperature range Supply of main combustion air, which causes floating of unburned sludge By increasing the amount of sludge into the main combustion chamber by reducing the rotational speed of the outer cylinder according to the difference between the fluctuation value T0max-T0min and the allowable temperature range. Combustion / melting is performed with priority given to the formation of a stable melting surface.
[0012]
A main combustion control device for a melting furnace according to the present invention is a control device that performs the above-described main combustion control method for a melting furnace, and is connected to main combustion air supply means for supplying main combustion air into the main combustion chamber. A main combustion air supply amount adjusting means for adjusting the supply amount of the main combustion air, and a rotary drive device for an outer cylinder that forms a sludge supply path between the inner cylinder that forms the main combustion chamber. Rotational speed adjusting means for adjusting the rotational speed of the outer cylinder, top temperature detecting means for detecting the temperature near the top in the main combustion chamber, and inner cylinder lower end temperature detection for detecting the temperature near the lower end of the inner cylinder in the main combustion chamber And a control device electrically connected to the main combustion air supply amount adjusting means, the rotational speed adjusting means, the top temperature detecting means, and the inner cylinder lower end temperature detecting means. The top detected when the melt surface is formed The allowable temperature range corresponding to the fluctuation width of the temperature difference between the side temperature and the temperature near the bottom end of the inner cylinder is stored in advance, and the temperature value near the top measured at the same time by each of the top temperature detecting means and the inner cylinder lower end temperature detecting means. And the temperature difference T0 between the temperature near the lower end of the inner cylinder is sequentially calculated, the maximum value T0max and the minimum value T0min of the temperature difference value T0 within the predetermined time immediately before are calculated, and the calculated temperature difference values T0max and T0min The fluctuation value T0max−T0min is obtained, and when the obtained fluctuation value T0max−T0min exceeds the allowable temperature range, the main combustion air supply amount adjusting means causes the main combustion air that causes unburned sludge to float. Supply of sludge to the main combustion chamber by stopping the increase of the supply amount and lowering the rotation speed of the outer cylinder by the rotation speed adjusting means according to the difference between the fluctuation value T0max−T0min and the allowable temperature range. Reducing the amount Therefore, which is constituted to perform the priority combustion and melting the formation of a homogeneous melt surface.
[0013]
In the above configuration, the temperature near the top in the main combustion chamber represents the average temperature of the entire sludge melting surface, and the temperature near the lower end of the inner cylinder is the temperature detection of the melting surface of the sludge moving by the rotation of the outer cylinder. It is strongly influenced by local parts close to the sensor part. Therefore, the fact that the temperature fluctuation range in the vicinity of the local melt surface is larger than the average temperature means that the melt surface is not uniformly formed on the entire sludge surface, and there is an unburned portion. Means that
[0014]
For this reason, in the configuration described above, the increase in the supply amount of the main combustion air is stopped so that sludge floating does not occur, and the formation of a uniform molten surface is promoted. Prevent burning. In conjunction with this, a uniform molten surface is formed more quickly by reducing the rotational speed of the outer cylinder and reducing the amount of sludge supplied into the main combustion chamber. As a result, the throughput is temporarily reduced, but stable melting can be continued in the long term in automatic operation, and the throughput can be secured.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
In FIG. 1, the surface melting furnace for incinerating / melting sludge such as sewage sludge is similar to that described above with reference to FIG. A supply path 23 having a supply hopper 22 is formed between the inner cylinder 20 and the outer cylinder 21, and the main combustion chamber 24 is located inside the inner cylinder 20 communicating with the supply path 23. Is formed. A driving device 25 that rotates the outer cylinder 21 is provided outside the outer cylinder 21.
[0016]
A slag port 26 is formed at the center of the bottom of the main combustion chamber 24, and a secondary combustion chamber 27 for completely burning unburned gas flowing in from the main combustion chamber 24 is formed below the slag port 26. A slug pit (not shown) is provided below the bottom.
[0017]
A plurality of main combustion air supply ports 29 communicating with the blower 28 are formed in the central portion of the inner cylinder 20 forming the ceiling of the main combustion chamber 24, and a burner supplied with fuel from a fuel tank (not shown). 30 is provided.
[0018]
Inside the main combustion chamber 24, there are a sensor portion 31a of a top temperature detection device 31 for detecting the temperature in the vicinity of the top portion in the main combustion chamber 24, and a sensor portion of the inner cylinder lower end temperature detection device 32 for detecting the temperature in the vicinity of the inner cylinder lower end. 32a.
[0019]
Outside the furnace, a main combustion air supply amount adjusting device 34 for adjusting the main combustion air supply amount by the blower 28 via the line L1 and the control valve 33 is provided, and the rotational speed of the outer cylinder 21 by the drive device 25 is adjusted. A rotation speed adjusting device 35 for adjusting through the line L2 is provided, and the main combustion air supply amount adjusting device 34 and the rotation speed adjusting device 35 are electrically connected to the top temperature detecting device 31 by L3 and L4, respectively. Yes.
[0020]
A control device 36 is provided by electrically connecting the main combustion air supply amount adjusting device 34, the rotation speed adjusting device 35, the top temperature detecting device 31 and the inner cylinder lower end temperature detecting device 32 by lines L5, L6, L7, and L8. It has been.
[0021]
The control device 36 stores in advance an allowable temperature width (for example, 20 ° C.) corresponding to the fluctuation width of the temperature difference between the temperature near the top and the temperature near the lower end of the inner cylinder that is detected when the uniformity of the molten surface is appropriate. The temperature difference between the temperatures continuously measured by the top temperature detection device 31 and the inner cylinder lower end temperature detection device 32 is sequentially calculated, and the fluctuation width of the temperature difference within a predetermined time immediately before (for example, 1 hour). A value is calculated, the calculated fluctuation width value is compared with the allowable temperature range, and based on the result, the main combustion air supply amount adjusting device 34 and the rotation speed adjusting device 35 are controlled under predetermined conditions. ing.
[0022]
The operation of the above configuration will be described.
When sludge 37 such as sewage sludge is introduced into the supply path 23 between the inner cylinder 20 and the outer cylinder 21 from the supply hopper 22, the sludge 37 in the supply path 23 is rotated by the rotation of the outer cylinder 21 by the driving device 25. While being uniformly distributed in the direction, it descends its own weight, moves in the direction of the core through the lower part of the inner cylinder 20, and is supplied from the blower 28 through the main combustion air supply port 29 in the main combustion chamber 24 inside the inner cylinder 20. The sludge 37 on the inner peripheral surface side is combusted and melted by the main combustion air. The burner 30 is used only at the start of combustion.
[0023]
The molten slag generated by the combustion / melting flows together with the combustion gas continuously from the slag port 26 to the secondary combustion chamber 27 and pits (not shown), solidifies, and is carried out. Unburned gas in the combustion gas burns in the secondary combustion chamber 27 and is released into the atmosphere through a flue and a flue gas treatment device (not shown).
[0024]
At this time, the temperature near the top in the main combustion chamber 24 is detected by the sensor 31a of the top temperature detection device 31, and the temperature near the bottom of the inner cylinder is detected by the sensor 32a of the inner cylinder lower end temperature detection device 32. The temperature data near the top is transmitted to the main combustion air supply amount adjusting device 34 and the rotation speed adjusting device 35 through the lines L3 and L4, and based on this, the main combustion air supply amount adjusting device 34 is connected to the line L1, the control valve 33, The main combustion air supply amount is adjusted by the blower 28, and the rotation speed adjustment device 35 adjusts the rotation speed of the outer cylinder 21 by the line L2 and the drive device 25.
[0025]
At this time, the detected top vicinity temperature data and inner cylinder lower end vicinity temperature data are transmitted to the control device 36 through lines L7 and L8, respectively. Then, in the control device 36, the temperature difference value between the temperature near the top and the temperature near the lower end of the inner cylinder measured at the same time is sequentially calculated, and the fluctuation value of the temperature difference within the predetermined time immediately before is calculated. The amplitude value is compared with the allowable temperature range stored in advance.
[0026]
When the fluctuation value exceeds the allowable temperature range, it is determined that the uniformity of the melting surface is not appropriate, and the main combustion air supply amount adjusting device 34 causes the unburned sludge to float. The increase in the supply amount of the combustion air is prohibited, and the rotational speed of the outer cylinder 21 is reduced by the line L6 and the rotational speed adjusting device 35 according to the difference between the fluctuation value and the allowable temperature range, and the main combustion. The amount of sludge supplied into the chamber 24 is reduced, and combustion and melting are performed with priority given to the formation of a uniform melting surface.
[0027]
Thereafter, if the runout value obtained in the same manner is within the allowable temperature range, the operation returns to the normal operation.
By controlling the main combustion in this way, the throughput is temporarily reduced, but it is possible to realize stable continuation of melting and securing of the throughput in the long term in the automatic operation.
[0028]
【The invention's effect】
As described above, according to the present invention, the temperature near the top representing the average temperature of the entire melting surface and the temperature near the lower end of the inner cylinder that is strongly influenced by the local melting surface in the vicinity are measured. Compare the fluctuation width within a predetermined time of the difference between them, and when the fluctuation value is large, judge that unburned sludge exists on the surface, and operate the main combustion air supply amount and the outer cylinder rotation speed to make it uniform By promoting the formation of a stable melting surface, although the throughput is temporarily reduced, it is possible to realize stable continuation of melting and securing of the throughput in the long term in the automatic operation.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing the configuration of a main combustion control device for a surface melting furnace in an embodiment of the present invention.
FIG. 2 is an explanatory view showing a schematic overall configuration of a conventional surface melting furnace capable of controlling the temperature by the apparatus of FIG. 1;
[Explanation of symbols]
20 inner cylinder
21 outer cylinder
23 Supply channel
24 Main combustion chamber
25 Drive unit
28 Blower
31 Top temperature detector
32 Inner cylinder lower end temperature detector
34 Main combustion air supply control device
35 Rotational speed adjustment device
36 Control unit
37 Sludge

Claims (2)

同心状に配置した内筒と外筒との間に供給される汚泥を、前記外筒の回転により内筒の下方を通って炉心方向へ移動させ、内筒の内側の主燃焼室内で、主燃焼空気を供給しつつ、内周表面の汚泥を燃焼・溶融させ、生じた溶融スラグを主燃焼室底部中央の排出口より排出するに際し、主燃焼室内の頂部近傍温度と内筒下端近傍温度とを同一時に測定して両者間の温度差値T0を逐次算出し、直前の所定時間内における前記温度差値T0の最大値T0max と最小値T0min を算出し、算出した温度差値T0max とT0min との振れ幅値T0max −T0min を求め、求めた振れ幅値T0max −T0min が予め設定した許容温度幅を超えた時は、未燃汚泥の浮遊の原因となる主燃焼空気の供給量の増加を停止するとともに、前記振れ幅値T0max −T0min と許容温度幅との差に応じて、外筒の回転速度を低下させて主燃焼室内への汚泥の供給量を低減することにより、均一な溶融面の形成を優先した燃焼・溶融を行うことを特徴とする表面溶融炉の主燃焼制御方法。The sludge supplied between the inner cylinder and the outer cylinder arranged concentrically is moved in the direction of the core through the lower part of the inner cylinder by the rotation of the outer cylinder, and in the main combustion chamber inside the inner cylinder, While supplying combustion air, the sludge on the inner peripheral surface is combusted and melted, and when the generated molten slag is discharged from the discharge port at the center of the bottom of the main combustion chamber, the temperature near the top of the main combustion chamber and the temperature near the bottom of the inner cylinder Are measured at the same time to sequentially calculate the temperature difference value T0 between the two, calculate the maximum value T0max and the minimum value T0min of the temperature difference value T0 within the immediately preceding predetermined time, and calculate the calculated temperature difference values T0max and T0min The fluctuation value T0max -T0min is calculated, and when the calculated fluctuation value T0max -T0min exceeds the preset allowable temperature range, the increase in the supply amount of the main combustion air that causes the unburned sludge to float is stopped. And the deflection value T0max−T0min Combustion and melting giving priority to the formation of a uniform melting surface by reducing the amount of sludge supplied to the main combustion chamber by reducing the rotational speed of the outer cylinder according to the difference between the allowable temperature range and the allowable temperature range A main combustion control method for a surface melting furnace. 請求項1記載の表面溶融炉の主燃焼制御方法を行う制御装置であって、主燃焼室の内部に主燃焼空気を供給する主燃焼空気供給手段に接続して設けられ、主燃焼空気の供給量を調節する主燃焼空気供給量調節手段と、主燃焼室を形成する内筒との間に汚泥供給路を形成する外筒の回転駆動装置に接続して設けられ、外筒の回転速度を調節する回転速度調節手段と、主燃焼室内の頂部近傍温度を検出する頂部温度検出手段と、主燃焼室内の内筒下端近傍温度を検出する内筒下端温度検出手段とを備えるとともに、前記主燃焼空気供給量調節手段と回転速度調節手段と頂部温度検出手段と内筒下端温度検出手段とに電気的に接続した制御装置を備え、前記制御装置は、均一な溶融面が形成された時に検出される頂部近傍温度と内筒下端近傍温度との温度差の振れ幅に相応する許容温度幅を予め記憶し、前記頂部温度検出手段と内筒下端温度検出手段のそれぞれより同一時に測定された頂部近傍温度値と内筒下端近傍温度値との温度差T0を逐次算出し、直前の所定時間内における前記温度差値T0の最大値T0max と最小値T0min を算出し、算出した温度差値T0max とT0min との振れ幅値T0max −T0min を求め、求めた振れ幅値T0max −T0min が前記許容温度幅を超えた時は、主燃焼空気供給量調節手段により、未燃汚泥の浮遊の原因となる主燃焼空気の供給量の増加を停止するとともに、前記振れ幅値T0max −T0min と許容温度幅との差に応じて、回転速度調節手段により、外筒の回転速度を低下させて主燃焼室内への汚泥の供給量を低減することによって、均一な溶融面の形成を優先した燃焼・溶融を行うように構成したことを特徴とする表面溶融炉の主燃焼制御装置。A control apparatus for performing a main combustion control method for a surface melting furnace according to claim 1, wherein the main combustion air supply means is connected to a main combustion air supply means for supplying main combustion air into the main combustion chamber. A main combustion air supply amount adjusting means for adjusting the amount and an inner cylinder forming a main combustion chamber are connected to a rotation driving device of an outer cylinder that forms a sludge supply path, and the rotation speed of the outer cylinder is set. A rotation speed adjusting means for adjusting; a top temperature detecting means for detecting a temperature near the top in the main combustion chamber; and an inner cylinder lower end temperature detecting means for detecting a temperature near the lower end of the inner cylinder in the main combustion chamber, and the main combustion. A control device electrically connected to the air supply amount adjusting means, the rotation speed adjusting means, the top temperature detecting means, and the inner cylinder lower end temperature detecting means is provided, which is detected when a uniform molten surface is formed. The temperature near the top and the temperature near the bottom of the inner cylinder The allowable temperature range corresponding to the fluctuation width of the temperature difference is stored in advance, and the temperature between the top vicinity temperature value and the inner cylinder lower end temperature value measured at the same time from the top temperature detection means and the inner cylinder lower end temperature detection means, respectively. The difference T0 is sequentially calculated, the maximum value T0max and the minimum value T0min of the temperature difference value T0 within the immediately preceding predetermined time are calculated, and the fluctuation value T0max-T0min between the calculated temperature difference values T0max and T0min is obtained and obtained. When the fluctuation range value T0max−T0min exceeds the allowable temperature range, the main combustion air supply amount adjusting means stops the increase in the supply amount of the main combustion air that causes the unburned sludge to float, and Uniform melting by reducing the amount of sludge supplied to the main combustion chamber by reducing the rotational speed of the outer cylinder by the rotational speed adjusting means according to the difference between the swing width value T0max-T0min and the allowable temperature range. surface A main combustion control device for a surface melting furnace, characterized in that combustion / melting is performed with priority given to formation of the surface melting furnace.
JP13563297A 1997-05-27 1997-05-27 Main combustion control method and control apparatus for surface melting furnace Expired - Lifetime JP3859306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13563297A JP3859306B2 (en) 1997-05-27 1997-05-27 Main combustion control method and control apparatus for surface melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13563297A JP3859306B2 (en) 1997-05-27 1997-05-27 Main combustion control method and control apparatus for surface melting furnace

Publications (2)

Publication Number Publication Date
JPH10325530A JPH10325530A (en) 1998-12-08
JP3859306B2 true JP3859306B2 (en) 2006-12-20

Family

ID=15156354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13563297A Expired - Lifetime JP3859306B2 (en) 1997-05-27 1997-05-27 Main combustion control method and control apparatus for surface melting furnace

Country Status (1)

Country Link
JP (1) JP3859306B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3633343B2 (en) 1999-02-23 2005-03-30 日産自動車株式会社 Diesel engine control device

Also Published As

Publication number Publication date
JPH10325530A (en) 1998-12-08

Similar Documents

Publication Publication Date Title
JPH03156206A (en) Waste treatment method
US5957064A (en) Method and apparatus for operating a multiple hearth furnace
JP3859306B2 (en) Main combustion control method and control apparatus for surface melting furnace
JP3361721B2 (en) Combustion control method and control device for surface melting furnace
JP3681521B2 (en) Temperature control method for carbonization equipment
JP3522090B2 (en) High efficiency melting method in waste melting furnace
JPH10318519A (en) Method of controlling temperature of melting furnace and control device
JPH10318520A (en) Method of controlling temperature of secondary combustion chamber and control device
JP3727205B2 (en) Combustion control device for waste melting furnace
JPH10332123A (en) Method and device for controlling sludge supply in melting furnace
KR0137640B1 (en) Waste melting furnace
JP3971919B2 (en) Carbonization equipment for organic waste
JPH01302018A (en) Automatic combustion control method of rotary type incinerator
JP3361728B2 (en) Control method and apparatus for rebuilding surface melting furnace
JPH08596Y2 (en) Scraper structure of slag slag device
JP2692876B2 (en) NOx control device for incinerator
JPH04208303A (en) Incinerator
KR100406410B1 (en) Apparatus and method for controlling drying of stainless sludge
JPH08595Y2 (en) Damper structure of slag slag device
JPH0320511A (en) Burner of melting furnace
CA1058862A (en) Continuous melt furnace
JPS609556Y2 (en) waste melting furnace
JP3891686B2 (en) Ash melting method and its ash melting furnace
JP3024029B2 (en) Waste melting method
JPH11237019A (en) Waste melting furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060919

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5