[go: up one dir, main page]

JP3836299B2 - Connecting method of oxide superconductor - Google Patents

Connecting method of oxide superconductor Download PDF

Info

Publication number
JP3836299B2
JP3836299B2 JP2000133857A JP2000133857A JP3836299B2 JP 3836299 B2 JP3836299 B2 JP 3836299B2 JP 2000133857 A JP2000133857 A JP 2000133857A JP 2000133857 A JP2000133857 A JP 2000133857A JP 3836299 B2 JP3836299 B2 JP 3836299B2
Authority
JP
Japan
Prior art keywords
oxide superconducting
layer
oxide
connection
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000133857A
Other languages
Japanese (ja)
Other versions
JP2001319750A (en
Inventor
和憲 尾鍋
隆 斉藤
重夫 長屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Chubu Electric Power Co Inc
Original Assignee
Fujikura Ltd
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd, Chubu Electric Power Co Inc filed Critical Fujikura Ltd
Priority to JP2000133857A priority Critical patent/JP3836299B2/en
Publication of JP2001319750A publication Critical patent/JP2001319750A/en
Application granted granted Critical
Publication of JP3836299B2 publication Critical patent/JP3836299B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Manufacturing Of Electrical Connectors (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、超電導電力ケーブル、超電導マグネット、超電導エネルギー貯蔵装置、超電導発電装置、医療用MRI装置、超電導電流リード等の分野で利用される酸化物超電導導体の接続方法に関する。
【0002】
【従来の技術】
酸化物超電導導体としては、銀、白金、ステンレス鋼、銅、ハステロイ等のニッケル合金などの各種金属材料等からなるテープ状の基材上に化学気相蒸着法(CVD法)等によって、YBCO等の酸化物超電導導体の薄膜を形成したものが知られている。
このようなテープ状の酸化物超電導導体においては、結晶配向性の優れた酸化物超電導層を得て、臨界電流密度の高い酸化物超電導導体を得るべく研究開発が進められている。このような酸化物超電導導体としては、基材上にイットリウム安定化ジルコニア(YSZ)等からなる結晶配向性に優れた中間層を形成し、その上に酸化物超電導導体を形成したもの等が知られている。
【0003】
ところで、このようなテープ状の酸化物超電導導体を実用機器に応用するには、酸化物超電導導体を接続技術の確立が不可欠とされ、その開発が要望されている。
このようなテープ状基材に酸化物超電導層を蒸着してなる酸化物超電導導体の接続方法としては、特許第2688923号公報の酸化物超電導導体の接続方法等が知られている。この酸化物超電導導体の接続方法では、真空容器内において、複数個の酸化物超電導導体を互いに当接して配置し、これら酸化物超電導導体を加熱し、その当接部に向けてノズルから上記当接部に上記酸化物超電導導体と同じ材料の超微紛を噴出させて堆積させ、これを焼結して、これらの酸化物超電導導体を接合している。
【0004】
【発明が解決しようとする課題】
しかしながら、このような酸化物超電導導体の接続方法においては、酸化物超電導導体の当接部上に、酸化物超電導薄膜を形成しただけであるので、種々の用途に用いるのには、その安定性が不十分であり、接合部の強度に問題があった。また、接続後の酸化物超電導導体における臨界電流密度が低下してしまうという問題もあった。
【0005】
このような接続部の強度、また臨界電流密度の低下等の問題を解決するために、本発明者らは、先に、特願平10−310264号公報において、以下のような酸化物超電導導体の接続構造および接続方法を提案している。
まず、第1の接続構造および接続方法として、図11に示すようなものを提案している。この例は、テープ状の基材1上に、中間層2を形成し、この中間層2上に、酸化物超電導層3を形成し、さらに、酸化物超電導層3上に安定化銀層4を形成した酸化物超電導導体5の接続に関するもので、テープ状の酸化物超電導導体5上に安定化銀層4を形成し、この安定化銀層4の一部を半田6を介して接合させ、2つの酸化物超電導導体5、5を接続する方法である。
この方法においては、半田6や安定化銀層4等の金属層における抵抗、また安定化銀層4と酸化物超電導層3との間で発生する接触抵抗を下げるために、酸化物超電導層3を添設させ、導体ラップ面積W(接触面)を小さくしている。
【0006】
また、第2の接続構造および接続方法として、図12に示すようなものを提案している。この例は、テープ状の基材11上に、中間層12を形成し、この中間層12上に、酸化物超電導層13を形成し、さらに、酸化物超電導層13上に安定化銀層14を形成した酸化物超電導導体15の接続に関するもので、酸化物超電導体15、15同士を、短尺の超電導テープ18を溶融バインダーとして用いて接続する方法である。詳しくは、酸化物超電導導体15、15の端部を突き合わせて、この接続部分上に、銀基材16上に酸化物超電導層17を形成した超電導テープ18を溶融接合し、これらの上に安定化銀層14を形成するものである。 この方法においては、上記接合部分の強度を確保するために、超電導テープ18を用いるとともに、接続部分の表面に安定化銀層14を被覆している。このようにすれば、基材11と中間層12とが、高強度、高融点材料で、基材11、11同士の接続が困難であり、基材11、11同士は突き合わされたままの状態な場合であっても、その接続部分の強度を確保することができる。
【0007】
本発明は、このような先の発明とその課題を同じくするとともに、これらの発明をより進め、より酸化物超電導導体の接続作業が簡単で、その接続部の強度が高く、酸化物超電導導体の安定性が向上され、接続後にも臨界電流密度の低下が少ない酸化物超電導導体の接続方法を得ることを目的とする。
【0008】
【課題を解決するための手段】
前記課題を解決するために、第1の発明においては、テープ状の基材上に酸化物超電導層が形成された酸化物超電導導体同士の接続方法であって、各酸化物超電導導体の端部で、その端部の酸化物超電導層を除去して基材の一部を露出させ、ついで、各酸化物超電導導体のこの露出した基材同士を突き合わせて接合し、ついで、この基材の接合部分上と露出部分上と各酸化物超電導層上に、これらにまたがるように各酸化物超電導層を接続するための接続用酸化物超電導層を形成し、ついで、酸化物超電導層上と接続用酸化物超電導層上に、これらにまたがるようにして表面保護層を形成する酸化物超電導導体の接続方法を提供する。
本接続方法では、前記接続用酸化物超電導層の、一方の酸化物超電導導体と他方の酸化物超電導導体との接触部のうち接合方向の長さが、10〜30mmであることが好ましい。
【0009】
また、第2の発明においては、テープ状の基材上に酸化物超電導層が形成された酸化物超電導導体同士の接続方法であって、各酸化物超電導導体の端部で、その端部の酸化物超電導層を除去して基材の一部を露出させ、ついで、各酸化物超電導導体のこの露出した基材同士を突き合わせて接合し、ついで、この基材の接合部分上と露出部分上に、接続用貴金属層を形成し、ついで、この接続用貴金属層上と酸化物超電導層上に、各酸化物超電導導体の酸化物超電導層を接続するための接続用酸化物超電導層をこれらにまたがるように形成し、ついで、酸化物超電導層上と接続用酸化物超電導層上に、これらにまたがるようにして表面保護層を形成する酸化物超電導導体の接続方法を提供する。
本接続方法では、前記接続用酸化物超電導層の、一方の酸化物超電導導体と他方の酸化物超電導導体との接触部の長さが、10〜30mmであることが好ましい。
また、これらの接続方法は、基材として銀を用いた酸化物超電導導体に有効に用いることができる。
【0010】
【発明の実施の形態】
本発明の酸化物超電導導体の接続方法を適用する酸化物超電導導体としては、例えば図1に示すような構造のものが適している。
この酸化物超電導導体25は、テープ状の基材21上に、酸化物超電導層23が形成されたものである。
このような構造の酸化物超電導導体25の基材21としては、銀、白金、ステンレス鋼、銅、ハステロイ等のニッケル合金などの各種金属材料などが用いられるが、中でも、銀(以下、Agとする)が好適に用いられる。
【0011】
また、酸化物超電導層23を構成する酸化物超電導体は、Y1Ba2Cu37-x、Y2Ba4 Cu8y、Y3Ba3 Cu6yなる組成に代表されるYBCO系のもの、あるいは(Bi,Pb)2Ca 2Sr2C u3y、(Bi,Pb)2Ca2Sr3Cu4yなる組成、あるいは、Tl2 Ba2Ca2Cu3y、 Tl1Ba2Ca2Cu3y、Tl1Ba2Ca3Cu4y なる組成などに代表される臨界温度の高い酸化物超電導体が用いられるが、基材21にAgを用いた場合には、YBCO系の酸化物超電導導体が好適に用いられる。
【0012】
このような構造の酸化物超電導導体25であれば、以下のような特性がある。Agは、非磁性で、低抵抗な金属材料であるとともに、酸化物超電導体を安定化させる役割を有する。よって、Agを基材21として用いた酸化物超電導導体25においては、基材21自体が安定化材としての役割を果たすので、安定化層、例えば安定化銀層等をその表面に設けなくてもよい。
また、Agは、酸化物超電導体、特にYBCO結晶に格子定数が近く、YBCOとの反応性も小さい。よって、Agを基材21に用いれば、その上に中間層を形成しないでも、面内配向性を有する酸化物超電導層23(特に、YBCO層)を形成することができる。
このような酸化物超電導導体25においては、他の金属基材上に中間層を形成した酸化物超電導導体に比べ、基材21部分の接続が比較的容易であると同時に、基材21自体が安定化材の役割を果たすため、安定化銀層を形成する必要がない。
【0013】
このような酸化物超電導導体25の接続方法としては、まず、図2に示すように、接続する複数の酸化物超電導導体25、25の接続端部の酸化物超電導層23、23の一部を除去して基材21を露出させる。
この酸化物超電導層23の除去方法としては、リン酸エッチング、レーザエッチング等が用いられる。
このようにしてエッチングされた接続部分は、1〜10mm程度とする。
【0014】
ついで、図3に示すように、これらの酸化物超電導導体25、25の基材21、21が露出した端部同士を突き合わせて当接し、これらを加熱圧接して、基材21、21を接合する。このときの加熱温度としては、基材21を半融解状態とする融点近傍の温度が好ましく、例えば、基材21に銀を用いた場合は、961〜963℃とされる。この場合、961℃未満であると、基材21が十分に接合されず、963℃を越えると、基材21部分が完全に液状となってしまい不都合となる。
ついで、結合部分の表面を研磨して平坦とする。
【0015】
ついで、図4に示すように、この接合部分に、酸化物超電導層23と同材料の酸化物超電導体からなる接続用酸化物超電導層26を形成する。
このときの接続用酸化物超電導層26の形成方法としては、RFスパッタリング法、CVD法の成膜法が用いられる。
このときのCVD法においては、通常よりもわずかに高い酸素分圧条件とし、すでに形成済みの酸化物超電導層23がダメージを受けないように、つまり溶けないようにする。
このときの接続用酸化物超電導層26の厚さとしては、酸化物超電導層23の厚さの2倍程度までとすることが好ましい。
【0016】
また、接続用酸化物超電導層26の、一方の酸化物超電導導体25と他方の酸化物超電導導体25との接触部の長さAとしては、目的とする接続部の強度によっても異なるが、10〜30mmの範囲が好ましい。このラップ長が、10mm未満であると、酸化物超電導導体25同士の接続が不十分となり、30mmを越えると、形成コストや手間がかかるため不経済である。
【0017】
ついで、図5に示すように、上記接続用酸化物超電導層26および酸化物超電導層23上に表面保護層24を形成する。
この表面保護層24は貴金属からなり、貴金属としては、金、白金、銀などがあげられ、中でも銀が安定化材として効果が高く、好適に用いられる。
このような酸化物超電導導体25の接続方法によれば、酸化物超電導導体の接続が容易にでき、基材21同士が接合されているため接続部の強度も高いものとなる。
【0018】
次に、本発明の酸化物超電導導体の接続方法の第2の実施の形態を説明する。この接続方法を実施するのに好適な酸化物超電導導体としては、上述の図1に示す構造のものが挙げられる。以下、この接続方法について図6〜10を利用して説明する。
まず、図6に示すように、第1の実施形態と同様にして、酸化物超電導導体25の接続端部の酸化物超電導層23、23の一部を除去して基材21、21を露出させる。
ついで、図7に示すように、第1の実施形態と同様にして、これらの酸化物超電導導体25、25を、基材21、21が露出した端部同士を突き合わせて当接し、これらを加熱圧接して、基材21、21部分を接合する。
ついで、結合部分の表面を研磨して平坦とする。
【0019】
ついで、図8に示すように、この接合部分に、貴金属からなる接続層31を形成する。この接続層31は、基材21と酸化物超電導層23との間段差を埋めるために設けられる。この接続層31を設けることにより、より接続部における安定性が向上し、段差における不連続性を解消できる。
この接続層31の厚さとしては、1×10-6〜2×10-6mとされるが、上記段差を解消できるものであればよい。
この接続層31は、RFスパッタ法、CVD法等の成膜法により形成することができ、酸化物超電導層23と同材料の酸化物超電導体からなる。このときのスパッタリングにおける条件としては、例えば、RFパワー300W、圧力6.5×10-1Pa、室温で行うことができる。
上記貴金属としては、金、白金、銀などがあげられ、中でも銀が安定化材として効果が高く、好適に用いられる。
【0020】
ついで、酸化物超電導層23を接続するために、酸化物超電導層23と同材料の酸化物超電導体からなる接続用酸化物超電導層32を形成する。
この接続用酸化物超電導層32の形成方法としては、CVD法等の成膜法が用いられる。
【0021】
また、接続用酸化物超電導層32の、一方の酸化物超電導導体25と他方の酸化物超電導導体25との接触部の長さBとしては、目的とする接続部の強度によっても異なるが、10〜30mmの範囲が好ましく、このラップ長の長さが、10mm未満であると、酸化物超電導導体25同士の接続が不十分となり、30mmを越えると、製造コストや手間がかかり不経済である。
【0022】
ついで、上記接続用酸化物超電導層32、酸化物超電導層23上に表面保護層34を形成する。この表面保護層34の厚さとしては、1×10-6〜3×10-6mが好ましい。
表面保護層34は貴金属からなり、貴金属としては、金、白金、銀などがあげられ、中でも銀が安定化材として効果が高く、好適に用いられる。
【0023】
このような接続方法によれば、酸化物超電導導体25同士の接続が容易にでき、基材21が接合されるとともに、接続層31、接続用酸化物超電導層32が形成されているため、接続部の強度も高いものとなる。
このような接続方法によれば、接続層31を設けているので、酸化物超電導導体25、25の接続部の安定性が高く、また強度も高い。また、臨界電流密度の低下を最小限にすることができ、酸化物超電導導体25の接続方法として有用である。
【0024】
【実施例】
(1)酸化物超電導導体の作製
Agからなる、幅10mm、長さ100mm、厚さ0.2mmのテープ状の基材21上に、CVD法により、YBa2Cu37-xなる組成の酸化物超電導層23を、厚さ0.5μmで形成して酸化物超電導導体を得た。
【0025】
(2)接続
(実施例1)
上記酸化物超電導導体25を2本用い、図1〜図5に示す接続方法により酸化物超電導導体を接続した。
まず、上記各酸化物超電導導体の一端部の酸化物超電導層を端から長さ5mmにわたって、リン酸エッチングにより除去し、基材を露出させた。
ついで、基材を露出させた端部同士を突き合わせて当接し、これらを962℃に加熱しながら圧接した。
ついで、この接合部分表面を研磨して平らにした。
ついで、CVD法により、この接続部分に、酸化物超電導層と同じ組成のYBa2Cu37-x の接続用酸化物超電導層を、厚さ0.5×10-6mで形成した。このときのラップ長Aを20mmとした。
ついで、各酸化物超電導導体における酸化物超電導層と接続用酸化物超電導層上に、表面保護層を形成した。
【0026】
(実施例2)
上記酸化物超電導導体25を2本用い、図6〜図10に示す接続方法により酸化物超電導導体を接続した。
まず、上記各酸化物超電導導体の一端部の酸化物超電導層を端から長さ5mmにわたって、リン酸エッチングにより除去し、基材を露出させた。
ついで、基材を露出させた端部同士を突き合わせて、当接し、これらを962℃に加熱しながら圧接した。
ついで、この接合部分表面を研磨して平らにした。
ついで、この接合部分上と基材の露出部分上とに、RFスパッタリング法において、Agからなる接続層を形成した。
ついで、CVD法により、この接続部分に、酸化物超電導層と同じ組成のYBa2Cu37-xの接続用酸化物超電導層を、厚さ0.5×10-6mで形成した。
このときのラップ長を20mmとした。
【0027】
(比較例1)
ラップ長Aの長さを5mmにした以外は、実施例1と同様にして酸化物超電導導体25の接続を行った。
【0028】
実施例1、2および比較例1において、接続割合を求めた。接続割合は、接続前の酸化物超電導導体25の臨界電流密度(Jc1)を4端子法(端子を図1に点線で示す)で測定し、接続後の酸化物超電導導体における臨界電流密度(Jc2)を4端子法(端子を図10に点線で示す)で測定して、これらの割合Jc2/Jc1×100(%)を示す。この値が低ければ、接続後の酸化物超電導導体の臨界電流密度(Jc)が低下したことを示す。
実施例1 82%
実施例2 100%
比較例1 32%
【0029】
この結果から、実施例において、接続後も良好な臨界電流密度が保たれていることがわかる。
【0030】
【発明の効果】
以上説明したように、このように本願発明の第1の酸化物超電導導体の接続方法は、酸化物超電導導体の接続を容易に行うことができる。また、基材同士は接合され、酸化物超電導層は、接続用酸化物超電導導体により接続されているので、接続部の強度は高く、接続部の安定性は高い。また、接続後の酸化物超電導導体において臨界電流密度の低下も少ない。
【0031】
また、本発明の第2の接続方法においては、第1の接続方法と同様に、酸化物超電導導体の接続を容易に行うことができる。また、基材同士は接合され、安定化銀からなる接続層が設けられ、その上に、接続用酸化物超電導層を形成して、酸化物超電導層同士の接続を行うものであるので、接続部における安定性がより高く、接続部の強度は高い。また、より接続の酸化物超電導導体において臨界電流密度の低下も少なくなる。
【0032】
さらに、上記接続方法を基材が銀である酸化物超電導導体にて起用すれば、構造が簡単なために、容易に接続でき、この接続部においては、安定性、強度が高く、また、臨界電流密度の低下が少ない。
【図面の簡単な説明】
【図1】本発明の酸化物超電導導体の接続方法を実施するのに適した酸化物超電導導体の一例を示す断面図である。
【図2】本発明の酸化物超電導導体の接続方法の一例の一工程を説明するための断面図である。
【図3】本発明の酸化物超電導導体の接続方法の一例の一工程を説明するための断面図である。
【図4】本発明の酸化物超電導導体の接続方法の一例の一工程を説明するための断面図である。
【図5】本発明の酸化物超電導導体の接続方法の一例の一工程を説明するための断面図である。
【図6】本発明の酸化物超電導導体の接続方法の一例の一工程を説明するための断面図である。
【図7】本発明の酸化物超電導導体の接続方法の一例の一工程を説明するための断面図である。
【図8】本発明の酸化物超電導導体の接続方法の一例の一工程を説明するための断面図である。
【図9】本発明の酸化物超電導導体の接続方法の一例の一工程を説明するための断面図である。
【図10】本発明の酸化物超電導導体の接続方法の一例の一工程を説明するための断面図である。
【図11】従来の酸化物超電導導体の接続構造の一例を示した断面図である。
【図12】従来の酸化物超電導導体の接続構造の一例を示した断面図である。
【符号の説明】
21・・・基材
23・・・酸化物超電導層
25・・・酸化物超電導導体
24、34・・・表面保護層
26・・・接続用酸化物超電導層
32・・・接続用酸化物超電導層
31・・・接続層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for connecting an oxide superconducting conductor used in the fields of superconducting power cables, superconducting magnets, superconducting energy storage devices, superconducting power generation devices, medical MRI devices, superconducting current leads, and the like.
[0002]
[Prior art]
Oxide superconducting conductors include YBCO, etc. by chemical vapor deposition (CVD) etc. on a tape-like substrate made of various metal materials such as silver, platinum, stainless steel, copper, nickel alloy such as Hastelloy. A thin film of an oxide superconducting conductor is known.
In such a tape-shaped oxide superconducting conductor, research and development have been advanced to obtain an oxide superconducting layer having excellent crystal orientation and to obtain an oxide superconducting conductor having a high critical current density. As such an oxide superconducting conductor, an intermediate layer made of yttrium-stabilized zirconia (YSZ) or the like having an excellent crystal orientation is formed on a base material, and an oxide superconducting conductor is formed thereon. It has been.
[0003]
By the way, in order to apply such a tape-shaped oxide superconducting conductor to practical equipment, it is indispensable to establish a technology for connecting the oxide superconducting conductor, and the development thereof is desired.
As a method for connecting an oxide superconducting conductor obtained by depositing an oxide superconducting layer on such a tape-like substrate, a method for connecting an oxide superconducting conductor disclosed in Japanese Patent No. 2688923 is known. In this method of connecting oxide superconductors, a plurality of oxide superconductors are placed in contact with each other in a vacuum vessel, the oxide superconductors are heated, and the above-mentioned contact is made from the nozzle toward the contact portion. Superfine powder of the same material as that of the oxide superconducting conductor is ejected and deposited at the contact portion, and is sintered to join these oxide superconducting conductors.
[0004]
[Problems to be solved by the invention]
However, in such an oxide superconductor connection method, since the oxide superconductor thin film is only formed on the contact portion of the oxide superconductor, its stability for use in various applications is obtained. Was insufficient, and there was a problem in the strength of the joint. There is also a problem that the critical current density in the oxide superconductor after connection is lowered.
[0005]
In order to solve the problems such as the strength of the connection part and the decrease in the critical current density, the present inventors previously described in Japanese Patent Application No. 10-310264 the following oxide superconductors: The connection structure and connection method are proposed.
First, a first connection structure and a connection method as shown in FIG. 11 have been proposed. In this example, an intermediate layer 2 is formed on a tape-like substrate 1, an oxide superconducting layer 3 is formed on the intermediate layer 2, and a stabilized silver layer 4 is further formed on the oxide superconducting layer 3. The stabilized silver layer 4 is formed on the tape-shaped oxide superconductor 5, and a part of the stabilized silver layer 4 is joined via the solder 6. In this method, two oxide superconducting conductors 5 and 5 are connected.
In this method, the oxide superconducting layer 3 is used to reduce the resistance in metal layers such as the solder 6 and the stabilized silver layer 4 and the contact resistance generated between the stabilized silver layer 4 and the oxide superconducting layer 3. Is added to reduce the conductor wrap area W (contact surface).
[0006]
Further, a second connection structure and a connection method as shown in FIG. 12 have been proposed. In this example, an intermediate layer 12 is formed on a tape-like substrate 11, an oxide superconducting layer 13 is formed on the intermediate layer 12, and a stabilized silver layer 14 is further formed on the oxide superconducting layer 13. This is a method for connecting the oxide superconductors 15 and 15 to each other using the short superconducting tape 18 as a molten binder. Specifically, the end portions of the oxide superconducting conductors 15 and 15 are butted together, and a superconducting tape 18 in which the oxide superconducting layer 17 is formed on the silver base material 16 is melt-bonded on the connecting portion, and stable on these. The silver halide layer 14 is formed. In this method, in order to ensure the strength of the joint portion, the superconducting tape 18 is used and the surface of the connection portion is covered with the stabilized silver layer 14. If it does in this way, the base material 11 and the intermediate | middle layer 12 are high intensity | strength and a high melting-point material, the connection of the base materials 11 and 11 is difficult, and the base materials 11 and 11 are still faced | matched Even in such a case, the strength of the connecting portion can be ensured.
[0007]
The present invention has the same problems as those of the preceding inventions, and further advances these inventions. The connection work of the oxide superconductor is easier, the strength of the connection is high, and the oxide superconductor It is an object of the present invention to obtain a method for connecting an oxide superconducting conductor that is improved in stability and has little reduction in critical current density even after connection.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, in the first invention, a method for connecting oxide superconducting conductors in which an oxide superconducting layer is formed on a tape-like base material, the ends of each oxide superconducting conductor Then, the oxide superconducting layer at the end portion is removed to expose a part of the base material, and then the exposed base materials of each oxide superconducting conductor are butted together and then joined. A connecting oxide superconducting layer for connecting each oxide superconducting layer is formed on the part, the exposed part, and each oxide superconducting layer so as to straddle them, and then connected to the oxide superconducting layer. Provided is a method for connecting an oxide superconducting conductor , in which a surface protective layer is formed on the oxide superconducting layer so as to straddle them.
In this connection method, it is preferable that the length in the joining direction of the contact portion between one oxide superconductor and the other oxide superconductor of the connecting oxide superconductor layer is 10 to 30 mm.
[0009]
The second invention is a method for connecting oxide superconducting conductors in which an oxide superconducting layer is formed on a tape-shaped base material, at the end of each oxide superconducting conductor, The oxide superconducting layer is removed to expose a part of the base material, and then the exposed base materials of each oxide superconducting conductor are butt-joined to each other. Then, a noble metal layer for connection is formed, and then an oxide superconductor layer for connection for connecting the oxide superconductor layer of each oxide superconductor is formed on the noble metal layer for connection and the oxide superconductor layer. Provided is a method for connecting an oxide superconducting conductor which is formed so as to straddle and then forms a surface protective layer on the oxide superconducting layer and the connecting oxide superconducting layer so as to straddle them.
In this connection method, it is preferable that the length of the contact portion between one oxide superconductor and the other oxide superconductor in the connection oxide superconductor layer is 10 to 30 mm.
Further, these connection methods can be effectively used for an oxide superconducting conductor using silver as a base material.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
As an oxide superconducting conductor to which the method for connecting oxide superconducting conductors of the present invention is applied, for example, a structure as shown in FIG. 1 is suitable.
The oxide superconducting conductor 25 is obtained by forming an oxide superconducting layer 23 on a tape-like base material 21.
As the base material 21 of the oxide superconducting conductor 25 having such a structure, various metal materials such as silver, platinum, stainless steel, copper, nickel alloy such as Hastelloy are used. Among them, silver (hereinafter, Ag and Are preferably used.
[0011]
The oxide superconductor constituting the oxide superconducting layer 23 is represented by a composition of Y 1 Ba 2 Cu 3 O 7-x , Y 2 Ba 4 Cu 8 O y , and Y 3 Ba 3 Cu 6 O y. YBCO type, or (Bi, Pb) 2 Ca 2 Sr 2 Cu 3 O y , (Bi, Pb) 2 Ca 2 Sr 3 Cu 4 O y , or Tl 2 Ba 2 Ca 2 Cu 3 O An oxide superconductor with a high critical temperature typified by a composition such as y , Tl 1 Ba 2 Ca 2 Cu 3 O y , Tl 1 Ba 2 Ca 3 Cu 4 O y, etc. is used. In such a case, a YBCO-based oxide superconducting conductor is preferably used.
[0012]
The oxide superconducting conductor 25 having such a structure has the following characteristics. Ag is a nonmagnetic, low-resistance metal material and has a role of stabilizing the oxide superconductor. Therefore, in the oxide superconducting conductor 25 using Ag as the base material 21, since the base material 21 plays a role as a stabilizing material, a stabilizing layer such as a stabilizing silver layer or the like is not provided on the surface. Also good.
Ag has a lattice constant close to that of an oxide superconductor, particularly a YBCO crystal, and has a low reactivity with YBCO. Therefore, if Ag is used for the base material 21, the oxide superconducting layer 23 (in particular, the YBCO layer) having in-plane orientation can be formed without forming an intermediate layer thereon.
In such an oxide superconducting conductor 25, compared to an oxide superconducting conductor in which an intermediate layer is formed on another metal substrate, the connection of the substrate 21 portion is relatively easy, and at the same time, the substrate 21 itself is Since it serves as a stabilizer, it is not necessary to form a stabilized silver layer.
[0013]
As a method for connecting such oxide superconducting conductors 25, first, as shown in FIG. 2, a part of the oxide superconducting layers 23, 23 at the connecting end portions of the plurality of oxide superconducting conductors 25, 25 to be connected is formed. The substrate 21 is exposed by removing.
As a method for removing the oxide superconducting layer 23, phosphoric acid etching, laser etching, or the like is used.
The connection portion etched in this way is about 1 to 10 mm.
[0014]
Next, as shown in FIG. 3, the exposed end portions of the base materials 21 and 21 of the oxide superconducting conductors 25 and 25 are brought into contact with each other, and are heated and pressed to join the base materials 21 and 21 together. To do. The heating temperature at this time is preferably a temperature near the melting point at which the base material 21 is in a semi-molten state. For example, when silver is used for the base material 21, the heating temperature is 961 to 963 ° C. In this case, if the temperature is less than 961 ° C., the base material 21 is not sufficiently bonded, and if it exceeds 963 ° C., the base material 21 portion becomes completely liquid and becomes inconvenient.
Next, the surface of the bonded portion is polished and flattened.
[0015]
Next, as shown in FIG. 4, a connecting oxide superconducting layer 26 made of an oxide superconductor made of the same material as that of the oxide superconducting layer 23 is formed at this junction.
As a method for forming the connecting oxide superconducting layer 26 at this time, an RF sputtering method or a CVD method is used.
In the CVD method at this time, the oxygen partial pressure condition is set to be slightly higher than usual so that the already formed oxide superconducting layer 23 is not damaged, that is, is not melted.
At this time, the thickness of the connecting oxide superconducting layer 26 is preferably up to about twice the thickness of the oxide superconducting layer 23.
[0016]
In addition, the length A of the contact portion between one oxide superconducting conductor 25 and the other oxide superconducting conductor 25 in the connecting oxide superconducting layer 26 varies depending on the strength of the intended connecting portion. A range of ˜30 mm is preferred. If the wrap length is less than 10 mm, the connection between the oxide superconducting conductors 25 becomes insufficient, and if it exceeds 30 mm, it is uneconomical because it requires formation costs and labor.
[0017]
Next, as shown in FIG. 5, a surface protective layer 24 is formed on the connecting oxide superconducting layer 26 and the oxide superconducting layer 23.
The surface protective layer 24 is made of a noble metal, and examples of the noble metal include gold, platinum, and silver. Among these, silver is highly effective as a stabilizing material and is preferably used.
According to such a connection method of the oxide superconducting conductor 25, the oxide superconducting conductor can be easily connected and the strength of the connecting portion is high because the base materials 21 are joined to each other.
[0018]
Next, a second embodiment of the method for connecting oxide superconducting conductors of the present invention will be described. An oxide superconducting conductor suitable for carrying out this connection method includes the structure shown in FIG. Hereinafter, this connection method will be described with reference to FIGS.
First, as shown in FIG. 6, in the same manner as in the first embodiment, a part of the oxide superconducting layers 23, 23 at the connection end of the oxide superconducting conductor 25 is removed to expose the base materials 21, 21. Let
Next, as shown in FIG. 7, in the same manner as in the first embodiment, these oxide superconducting conductors 25 and 25 are brought into contact with each other with the ends where the base materials 21 and 21 are exposed, and these are heated. The base materials 21 and 21 are joined by pressure welding.
Next, the surface of the bonded portion is polished and flattened.
[0019]
Next, as shown in FIG. 8, a connection layer 31 made of a noble metal is formed at this joined portion. The connection layer 31 is provided to fill a step between the base material 21 and the oxide superconducting layer 23. By providing this connection layer 31, the stability at the connection portion is further improved, and the discontinuity at the step can be eliminated.
The thickness of the connection layer 31 is set to 1 × 10 −6 to 2 × 10 −6 m, and any thickness that can eliminate the step is used.
The connection layer 31 can be formed by a film forming method such as an RF sputtering method or a CVD method, and is made of an oxide superconductor made of the same material as the oxide superconducting layer 23. As conditions for sputtering at this time, for example, RF power 300 W, pressure 6.5 × 10 −1 Pa, and room temperature can be used.
Examples of the noble metal include gold, platinum, silver, and the like. Among them, silver is highly effective as a stabilizer and is preferably used.
[0020]
Next, in order to connect the oxide superconducting layer 23, a connecting oxide superconducting layer 32 made of an oxide superconductor made of the same material as the oxide superconducting layer 23 is formed.
As a method for forming the connecting oxide superconducting layer 32, a film forming method such as a CVD method is used.
[0021]
Further, the length B of the contact portion of the connecting oxide superconducting layer 32 between the one oxide superconducting conductor 25 and the other oxide superconducting conductor 25 differs depending on the strength of the intended connecting portion. A range of ˜30 mm is preferable, and if the length of the wrap length is less than 10 mm, the connection between the oxide superconducting conductors 25 becomes insufficient.
[0022]
Next, a surface protective layer 34 is formed on the connecting oxide superconducting layer 32 and the oxide superconducting layer 23. The thickness of the surface protective layer 34 is preferably 1 × 10 −6 to 3 × 10 −6 m.
The surface protective layer 34 is made of a noble metal, and examples of the noble metal include gold, platinum, silver, etc. Among them, silver is highly effective as a stabilizer and is preferably used.
[0023]
According to such a connection method, the oxide superconducting conductors 25 can be easily connected to each other, the base material 21 is joined, and the connection layer 31 and the connecting oxide superconducting layer 32 are formed. The strength of the part is also high.
According to such a connection method, since the connection layer 31 is provided, the connection portions of the oxide superconducting conductors 25 and 25 have high stability and high strength. In addition, the decrease in critical current density can be minimized, and the oxide superconducting conductor 25 is useful as a connection method.
[0024]
【Example】
(1) Production of oxide superconducting conductor A composition of YBa 2 Cu 3 O 7-x is formed by CVD on a tape-like substrate 21 made of Ag and having a width of 10 mm, a length of 100 mm, and a thickness of 0.2 mm. The oxide superconducting layer 23 was formed with a thickness of 0.5 μm to obtain an oxide superconducting conductor.
[0025]
(2) Connection (Example 1)
Two oxide superconducting conductors 25 were used, and the oxide superconducting conductors were connected by the connection method shown in FIGS.
First, the oxide superconducting layer at one end of each oxide superconducting conductor was removed by phosphoric acid etching over a length of 5 mm from the end to expose the base material.
Next, the end portions where the base materials were exposed were butted against each other, and were pressed against each other while being heated to 962 ° C.
Next, the surface of the joint portion was polished and flattened.
Subsequently, a YBa 2 Cu 3 O 7-x connecting oxide superconducting layer having the same composition as that of the oxide superconducting layer was formed at a thickness of 0.5 × 10 −6 m on this connecting portion by CVD. The wrap length A at this time was 20 mm.
Next, a surface protective layer was formed on the oxide superconducting layer and the connecting oxide superconducting layer in each oxide superconducting conductor.
[0026]
(Example 2)
Two oxide superconducting conductors 25 were used, and the oxide superconducting conductors were connected by the connection method shown in FIGS.
First, the oxide superconducting layer at one end of each oxide superconducting conductor was removed by phosphoric acid etching over a length of 5 mm from the end to expose the base material.
Next, the end portions where the base materials were exposed were butted against each other, and were pressed against each other while being heated to 962 ° C.
Next, the surface of the joint portion was polished and flattened.
Subsequently, a connection layer made of Ag was formed on the bonding portion and the exposed portion of the base material by RF sputtering.
Subsequently, a YBa 2 Cu 3 O 7-x connecting oxide superconducting layer having the same composition as that of the oxide superconducting layer was formed at a thickness of 0.5 × 10 −6 m on this connecting portion by CVD.
The wrap length at this time was 20 mm.
[0027]
(Comparative Example 1)
The oxide superconducting conductor 25 was connected in the same manner as in Example 1 except that the length of the wrap length A was 5 mm.
[0028]
In Examples 1 and 2 and Comparative Example 1, the connection ratio was determined. For the connection ratio, the critical current density (Jc1) of the oxide superconductor 25 before connection is measured by the four-terminal method (terminals are indicated by dotted lines in FIG. 1), and the critical current density (Jc2) in the oxide superconductor after connection is measured. ) Is measured by a four-terminal method (terminals are indicated by dotted lines in FIG. 10), and these ratios Jc2 / Jc1 × 100 (%) are shown. If this value is low, it indicates that the critical current density (Jc) of the oxide superconductor after connection has decreased.
Example 1 82%
Example 2 100%
Comparative Example 1 32%
[0029]
From this result, it can be seen that a good critical current density is maintained even after connection in the example.
[0030]
【The invention's effect】
As described above, the connection method of the first oxide superconducting conductor of the present invention can easily connect the oxide superconducting conductor as described above. Moreover, since the base materials are joined together and the oxide superconducting layer is connected by the connecting oxide superconducting conductor, the strength of the connecting portion is high and the stability of the connecting portion is high. In addition, there is little decrease in critical current density in the oxide superconductor after connection.
[0031]
Further, in the second connection method of the present invention, the oxide superconducting conductor can be easily connected as in the first connection method. In addition, since the base materials are joined and a connection layer made of stabilized silver is provided, and a connection oxide superconducting layer is formed thereon, the oxide superconducting layers are connected to each other. The stability at the part is higher, and the strength of the connecting part is higher. Further, the decrease in critical current density in the oxide superconductor after connection is reduced.
[0032]
Furthermore, if the above connection method is applied to an oxide superconducting conductor whose base material is silver, the structure is simple, so that the connection can be easily made. Little decrease in current density.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of an oxide superconducting conductor suitable for implementing the method for connecting oxide superconducting conductors of the present invention.
FIG. 2 is a cross-sectional view for explaining one step of an example of a method of connecting oxide superconducting conductors of the present invention.
FIG. 3 is a cross-sectional view for explaining one step of an example of a method of connecting oxide superconducting conductors of the present invention.
FIG. 4 is a cross-sectional view for explaining one process of an example of a method for connecting oxide superconducting conductors of the present invention.
FIG. 5 is a cross-sectional view for explaining one process of an example of a method for connecting oxide superconducting conductors of the present invention.
FIG. 6 is a cross-sectional view for explaining one step of an example of the method for connecting oxide superconducting conductors of the present invention.
FIG. 7 is a cross-sectional view for explaining one step of an example of a method of connecting oxide superconducting conductors according to the present invention.
FIG. 8 is a cross-sectional view for explaining one step of an example of a method for connecting oxide superconducting conductors of the present invention.
FIG. 9 is a cross-sectional view for explaining one step of an example of the method for connecting oxide superconducting conductors of the present invention.
FIG. 10 is a cross-sectional view for explaining one step of an example of the method for connecting oxide superconducting conductors of the present invention.
FIG. 11 is a cross-sectional view showing an example of a connection structure of a conventional oxide superconducting conductor.
FIG. 12 is a cross-sectional view showing an example of a connection structure of a conventional oxide superconducting conductor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 21 ... Base material 23 ... Oxide superconducting layer 25 ... Oxide superconducting conductors 24, 34 ... Surface protection layer 26 ... Connecting oxide superconducting layer 32 ... Connecting oxide superconducting Layer 31 ... Connection layer

Claims (5)

テープ状の基材上に酸化物超電導層が形成された酸化物超電導導体同士の接続方法であって、
各酸化物超電導導体の端部で、その端部の酸化物超電導層を除去して基材の一部を露出させ、ついで、各酸化物超電導導体のこの露出した基材同士を突き合わせて接合し、ついで、この基材の接合部分上と露出部分上と各酸化物超電導層上に、これらにまたがるようにして各酸化物超電導層を接続するための接続用酸化物超電導層を形成し、ついで、酸化物超電導層上と接続用酸化物超電導層上に、これらにまたがるようにして表面保護層を形成することを特徴とする酸化物超電導導体の接続方法。
A method for connecting oxide superconducting conductors in which an oxide superconducting layer is formed on a tape-shaped substrate,
At the end of each oxide superconducting conductor, the oxide superconducting layer at that end is removed to expose a portion of the substrate, and then the exposed substrates of each oxide superconducting conductor are butted together and joined. Then, a connecting oxide superconducting layer for connecting each oxide superconducting layer is formed on the joining portion and the exposed portion of the base material and on each oxide superconducting layer so as to straddle them. A method for connecting an oxide superconducting conductor, comprising forming a surface protective layer on the oxide superconducting layer and the connecting oxide superconducting layer so as to straddle them .
前記接続用酸化物超電導層の、一方の酸化物超電導導体と他方の酸化物超電導導体との接触部のうち接合方向の長さが、10〜30mmであることを特徴とする請求項1に記載の酸化物超電導導体の接続方法。The length in the joining direction of the contact portion between one oxide superconducting conductor and the other oxide superconducting conductor of the connecting oxide superconducting layer is 10 to 30 mm. Connection method of oxide superconducting conductors. テープ状の基材上に酸化物超電導層が形成された酸化物超電導導体同士の接続方法であって、A method for connecting oxide superconducting conductors in which an oxide superconducting layer is formed on a tape-shaped substrate,
各酸化物超電導導体の端部で、その端部の酸化物超電導層を除去して基材の一部を露出させ、ついで、各酸化物超電導導体のこの露出した基材同士を突き合わせて接合し、ついで、この基材の接合部分上と露出部分上に、接続用貴金属層を形成し、ついで、この接続用貴金属層上と酸化物超電導層上に、各酸化物超電導導体の酸化物超電導層を接続するための接続用酸化物超電導層をこれらにまたがるように形成し、ついで、酸化物超電導層上と接続用酸化物超電導層上に、これらにまたがるようにして表面保護層を形成することを特徴とする酸化物超電導導体の接続方法。  At the end of each oxide superconductor, the oxide superconducting layer at that end is removed to expose a portion of the substrate, and then the exposed substrates of each oxide superconductor are butted together and joined. Then, a noble metal layer for connection is formed on the joint portion and the exposed portion of the base material, and then the oxide superconductor layer of each oxide superconductor conductor is formed on the noble metal layer for connection and the oxide superconductor layer. Forming a connecting oxide superconducting layer for connecting them, and then forming a surface protective layer on the oxide superconducting layer and the connecting oxide superconducting layer. A method for connecting an oxide superconducting conductor.
前記接続用酸化物超電導層の、一方の酸化物超電導導体と他方の酸化物超電導導体との接触部の長さが、10〜30mmであることを特徴とする請求項3に記載の酸化物超電導導体の接続方法。4. The oxide superconductivity according to claim 3, wherein a length of a contact portion between one oxide superconductor and the other oxide superconductor of the connecting oxide superconductor layer is 10 to 30 mm. 5. Conductor connection method. 上記基材として銀を用いることを特徴とする請求項1〜4のいずれか一項に記載の酸化物超電導導体の接続方法。The method for connecting oxide superconducting conductors according to any one of claims 1 to 4, wherein silver is used as the base material.
JP2000133857A 2000-05-02 2000-05-02 Connecting method of oxide superconductor Expired - Fee Related JP3836299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000133857A JP3836299B2 (en) 2000-05-02 2000-05-02 Connecting method of oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000133857A JP3836299B2 (en) 2000-05-02 2000-05-02 Connecting method of oxide superconductor

Publications (2)

Publication Number Publication Date
JP2001319750A JP2001319750A (en) 2001-11-16
JP3836299B2 true JP3836299B2 (en) 2006-10-25

Family

ID=18642261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000133857A Expired - Fee Related JP3836299B2 (en) 2000-05-02 2000-05-02 Connecting method of oxide superconductor

Country Status (1)

Country Link
JP (1) JP3836299B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013164918A1 (en) 2012-05-02 2013-11-07 古河電気工業株式会社 Superconducting wire connection structure, superconducting wire connection method, and superconducting wire for connecting
EP3550619A1 (en) 2014-05-01 2019-10-09 Furukawa Electric Co. Ltd. Superconducting wire rod connection structure and connection method, and superconducting wire rod

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7071148B1 (en) 2005-04-08 2006-07-04 Superpower, Inc. Joined superconductive articles
JP4845040B2 (en) * 2007-03-20 2011-12-28 古河電気工業株式会社 Thin film superconducting wire connection method and connection structure thereof
JP5037193B2 (en) * 2007-03-29 2012-09-26 新日本製鐵株式会社 Oxide superconducting conductor conducting element
JP5416924B2 (en) * 2008-06-18 2014-02-12 株式会社東芝 Superconducting wire and method for manufacturing the same
JP5214744B2 (en) * 2008-08-04 2013-06-19 ケイ.ジョインス カンパニー リミテッド Superconducting joining method of 2 generation high temperature superconducting wire using heat treatment under reduced oxygen partial pressure
JP5568361B2 (en) * 2010-04-16 2014-08-06 株式会社フジクラ Superconducting wire electrode joint structure, superconducting wire, and superconducting coil
JP2013122981A (en) * 2011-12-12 2013-06-20 Hitachi Ltd Superconducting magnet and method for connecting superconducting wire rod
JP6155258B2 (en) * 2012-05-02 2017-06-28 古河電気工業株式会社 Superconducting wire, superconducting wire connection structure, superconducting wire connecting method, and superconducting wire terminal treatment method
JP6101490B2 (en) * 2012-11-30 2017-03-22 株式会社フジクラ Oxide superconducting wire connection structure and superconducting equipment
DE102013212042A1 (en) * 2013-06-25 2015-01-08 Siemens Aktiengesellschaft Superconducting conductor composite and manufacturing process
JP6210537B2 (en) 2013-08-06 2017-10-11 古河電気工業株式会社 Superconducting cable connection structure, superconducting cable, current terminal structure at the end of superconducting cable
EP2835838B1 (en) * 2013-08-08 2017-02-15 Theva Dünnschichttechnik GmbH High temperature tape superconductor system
TWI488994B (en) * 2014-04-17 2015-06-21 Ind Tech Res Inst Method of repairing defect in superconducting film, method of coating superconducting film, and superconducting film formed by the method
JP6356046B2 (en) * 2014-11-07 2018-07-11 古河電気工業株式会社 Superconducting wire connection structure, superconducting wire and connection method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013164918A1 (en) 2012-05-02 2013-11-07 古河電気工業株式会社 Superconducting wire connection structure, superconducting wire connection method, and superconducting wire for connecting
US9502159B2 (en) 2012-05-02 2016-11-22 Furukawa Electric Co., Ltd. Superconducting wire connection structure, superconducting wire connection method, and connection superconducting wire
EP3550619A1 (en) 2014-05-01 2019-10-09 Furukawa Electric Co. Ltd. Superconducting wire rod connection structure and connection method, and superconducting wire rod

Also Published As

Publication number Publication date
JP2001319750A (en) 2001-11-16

Similar Documents

Publication Publication Date Title
JP3836299B2 (en) Connecting method of oxide superconductor
US7816303B2 (en) Architecture for high temperature superconductor wire
RU2738320C1 (en) Superconducting joint using detached rebco
US5051397A (en) Joined body of high-temperature oxide superconductor and method of joining oxide superconductors
JP2000133067A (en) Oxide superconducting conductor connection structure and connection method
US6194226B1 (en) Junction between wires employing oxide superconductors and joining method therefor
US20050016759A1 (en) High temperature superconducting devices and related methods
JP5548441B2 (en) Superconducting connection structure, superconducting wire connecting method, superconducting coil device
JP4182832B2 (en) Superconducting plate connection method and connection part thereof
JP2003298129A (en) Superconducting member
KR101337432B1 (en) Joining methods of rebco coated conductor tapes with silver protecting layers by diffusion junction process
JPH05283138A (en) Superconductive joint for superconductive oxide tape
JP3018534B2 (en) High temperature superconducting coil
JP2550188B2 (en) Oxide-based high temperature superconductor, joining method and brazing material
WO2015166936A1 (en) Superconducting wire rod connection structure and connection method, and superconducting wire rod
JPS63284767A (en) Connecting structure for superconducting wire
JP3143932B2 (en) Superconducting wire manufacturing method
JP2949611B2 (en) Superconducting connection method and SQUID magnetometer
JPH05279140A (en) Method for joining oxide superconductor
JP4013409B2 (en) Superconducting connection method of oxide superconducting material and superconducting connection structure
JPH04292877A (en) How to join superconducting wires
JPH04292879A (en) How to join superconducting wires
JPH04160771A (en) Method of joining superconducting wire
JPH04292874A (en) Junction method for superconductive wire
JPH07118360B2 (en) Superconducting wire connection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060726

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees