[go: up one dir, main page]

JP3828251B2 - 映像のダイナミックレンジ拡大装置 - Google Patents

映像のダイナミックレンジ拡大装置 Download PDF

Info

Publication number
JP3828251B2
JP3828251B2 JP26731697A JP26731697A JP3828251B2 JP 3828251 B2 JP3828251 B2 JP 3828251B2 JP 26731697 A JP26731697 A JP 26731697A JP 26731697 A JP26731697 A JP 26731697A JP 3828251 B2 JP3828251 B2 JP 3828251B2
Authority
JP
Japan
Prior art keywords
luminance
signal
output
dynamic range
video
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26731697A
Other languages
English (en)
Other versions
JPH10134179A (ja
Inventor
ジュン 鉉 黄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JPH10134179A publication Critical patent/JPH10134179A/ja
Application granted granted Critical
Publication of JP3828251B2 publication Critical patent/JP3828251B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/741Circuitry for compensating brightness variation in the scene by increasing the dynamic range of the image compared to the dynamic range of the electronic image sensors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/40Image enhancement or restoration using histogram techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/20Image enhancement or restoration using local operators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/90Dynamic range modification of images or parts thereof
    • G06T5/92Dynamic range modification of images or parts thereof based on global image properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/76Circuitry for compensating brightness variation in the scene by influencing the image signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/81Camera processing pipelines; Components thereof for suppressing or minimising disturbance in the image signal generation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/84Camera processing pipelines; Components thereof for processing colour signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/20Circuitry for controlling amplitude response
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Image Processing (AREA)
  • Picture Signal Circuits (AREA)
  • Facsimile Image Signal Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は映像(video image)のダイナミックレンジ拡大装置に係り、より詳しくは、映像の輝度頻度に対する平滑化方法(Histogram Equalization)を用いる映像のダイナミックレンジ拡大装置に関する。
【0002】
【従来の技術】
ビデオ映像入力装置などにより撮影された映像には対象物に関する各種の情報が含まれている。しかしながら、対象物あるいは撮影機器の性能、撮影条件などにより撮影された映像において輝度および色相情報が偏重したり歪曲される場合が頻繁に発生する。かかる場合、輝度頻度の平滑化方法などによる前処理を行なうと映像のコントラストが改善して映像の解釈および特徴抽出が容易になる。前記のように、映像のコントラストを増加させるための前処理を行なう装置をダイナミックレンジ拡大装置という。
【0003】
以下、添付図面を参照して従来の技術に従うダイナミックレンジ拡大装置について説明する。
従来の代表的なダイナミックレンジ拡大装置として、自動ゲイン制御(AGC:Automatic Gain Control)を用いた装置が米国特許第4、719、350号において“Radiation imaging enhancement”の名称で開示されている。前記米国特許に開示されたダイナミックレンジ拡大装置に従うと、映像信号から低周波成分あるいは直流成分を除去してダイナミックレンジを縮小させて画素当りビット数が制限された状態において信号処理が行われるようにする。
【0004】
しかしながら、前記従来の装置はダイナミックレンジを縮小する過程において詳細なコントラスト情報が損失し、信号処理がフレーム単位で行われるため、空間的に適応的な処理が不能であるという短所を有する。
【0005】
次に、高周波フィルタを用いたダイナミックレンジ拡大装置を図5を参照して説明する。
図5に示すように、高周波フィルタを用いたダイナミックレンジ拡大装置は、対す変換ブロック11、高周波通過フィルタ12および指数変換ブロック13で構成される。前記のようなダイナミックレンジ拡大装置は変換動作を用いた映像強調(Image Enhancement)に分類されることができる。そして、前記映像強調の詳細な内容はストックハム(stockham)により“Image Processing in the Context of a visual Model”(Proceedings of the IEEE. 60(7), Jul. 1972, pp.838-842)の名称に開示されており、Xieなどにより“Towards the Unification of Three Visual Laws and Two Visual Models in Brightness Perception”(IEEE Trans Systems, Man Cybernetics 19(2). Mar./Apr. 1989, pp.379-382)の名称に開示されている。
【0006】
図5を参照すると、映像信号は対数変換ブロック11において対数関数に変換されながら照度と反射率成分に分離される。前記分離された反射率成分は高周波通過フィルタ12によりフィルタリングされる。次いで、前記高周波通過フィルタ12の出力は指数変換ブロック13により指数関数に変換される。すなわち、図5の装置においては高周波通過フィルタ12により映像信号の反射率成分が選択的に増幅される。
【0007】
前記のようなダイナミックレンジ拡大装置を基盤にしたカメラが米国特許第5、144、442号に“wide dynamic range camera”の名称に開示されている。上記米国特許に開示されたカメラシステムの入力部が図6に示されている。
図6を参照すると、カメラシステムの入力部は多数のカメラ31、32、33、画素選択器34および隣接変換プロセッシングブロック35で構成される。
【0008】
前記多数のカメラ31、32、33から得られた映像信号は画素選択器34により順に選択され、前記画素選択器34の出力は外部に提供されると同時に隣接変換プロセッシングブロック35に入力される。前記隣接変換プロセッシングブロック35においては各映像に対する隣接変換プロセッシング(NTP:Neighborhood Transform Processing)が行われ、このようにして得られた信号は前記画素選択器34の出力と共に外部に提供される。
【0009】
しかしながら、図5および図6に開示された従来のダイナミックレンジ拡大装置は多数の映像に対する入力を処理しなければならないので、複雑な回路を有するかフィールドメモリを必要とする。
【0010】
より能動的で効果的に映像のコントラストを改善するため、輝度頻度の平滑化方法が広く知られており、かかる技法はAnil K. Janeの著書“Fundamental of Digital Image Processing”(Prentice-Hall International Edition, pp. 241-243)に開示されている。
【0011】
前記平滑化方法は点動作(Point operation)による映像強調(Image Enhancement)であって、映像の輝度が有効表示領域の中である特定の地域に集中されている場合、その地域の輝度帯域のコントラストを増加させることにより、結果的にダイナミックレンジを拡大する。しかしながら、前記輝度頻度の平滑化方法は多数の分布を有する輝度帯域のコントラストの極大化が深化されると、ディジタル雑音または量子化エラーも増幅されるばかりでなく、相対的に少ない頻度を有する映像に対してはコントラストが低下されるという短所を有する。
【0012】
前述した短所を改善するため、平滑化方法の影響を全体的に減少させながらコントラストを適当に改善する、改善された平滑化方法が提案されている。しかしながら、前記改善された平滑化方法は複雑な回路を通じて具現されるばかりでなく、コントラストとノイズを同時に改善させることができない。
【0013】
さらに、輝度レベルのダイナミックレンジの改善をカラー映像に導入するための方法が提案されている。これらの大部分は色信号であるR,G,B信号のダイナミックレンジを拡大/縮小する。より詳しくは、色成分を独立的に改善するか輝度信号を抽出した後、輝度のダイナミックレンジの拡大/縮小情報を用いて抽出された輝度信号を一律的に制御する。特に、多数の映像入力から得られたR,G,B信号を輝度情報を用いて一律的に制御する方式が米国特許第5,247,366号に“Color wide dynamic range camera”の名称に開示されている。しかしながら、この方式は複数の入力映像を処理しなければならないばかりでなく色信号の個別的な多段制御が求められるので、実際に具現される回路が複雑であるという問題点がある。
【0014】
次に、図7ないし図9Cを参照して従来の技術に従う輝度頻度の平滑化方法についてより詳細に説明する。
前記平滑化方法は映像の頻度分布を全体的に一定に保持する技術である。すなわち、映像の多数の頻度を有する輝度レベルのダイナミックレンジを拡大することにより、全体的な映像のコントラストを改善させるためのものである。
【0015】
量子化された映像の輝度レベルをi(i=0,1,・・・・,L−1、Lは輝度のレンジ)、輝度頻度関数をh(i)とするとき、輝度変換関数または変換関数表(LUT:Look up table)f(i)は、
【数1】
Figure 0003828251
と定義される。
【0016】
ここで、前記P(i)は、
【数2】
Figure 0003828251
で定義される、輝度レベルiのヒストグラム分布を表わす確率因子である。
【0017】
入力映像の輝度をy(x),変換出力をy’(x)とするとき、二つの間の関係式を前記変換関数f(i)を用いて表現すると、次のようになる。
【数3】
Figure 0003828251
ここで、xは2次元映像の任意の位置座標を示す2次元ベクトルである。
【0018】
図7には前記平滑化方法を用いたダイナミックレンジ拡大装置が示されている。
図7を参照すると、従来の平滑化方法を用いたダイナミックレンジ拡大装置はヒストグラム発生器21、積分器22およびメモリ23で構成される。
前記ヒストグラム発生器21は映像の輝度信号yを入力して前記輝度信号yに対する輝度頻度関数h(i)を決める。前記ヒストグラム発生器21の輝度頻度関数h(i)は積分器22に入力される。前記積分器22においては入力された輝度頻度関数に対する積分演算が行われ、その結果は輝度変換関数f(i)としてメモリ23に入力される。前記メモリ23は輝度変換関数に対する多数のルックアップテーブルを予め蓄積しており、前記積分器22の出力に応じて一つのルックアップテーブルを決定する。また、入力された映像の輝度信号yに応答して前記決定したルックアップテーブルを通じて輝度変換された出力y’を出力する。
【0019】
図8Aは入力映像が非常に暗い状態であるときの映像の輝度頻度関数h(i)を示しており、図8Bは輝度変換関数f(i)を示しており、図8Cは変換された輝度信号の分布を示している。図8Dは前記図8Cに示す分布をi軸方向に低周波数帯域フィルタリングした結果を示しており、これはヒストグラムが平滑化された結果を示す。
【0020】
しかしながら、前記した平滑化方法に従い映像を強調すると、コントラストは改善されるが、頻度数が少ない領域においてはコントラストを損失するという結果をもたらす。また、特定の輝度レベルの頻度が集中された場合、その領域の輝度変換による量子化エラーまたはディジタル雑音も同時に非常に強調される。
【0021】
かかる問題点を改善するため、平滑化方法の影響を全体的に抑制しながらコントラストを適当に改善する変形された平滑化方法が提案されている。前記変形された平滑化方法に従うと、輝度変換関数f(i)の感度が任意の変数kにより次式で表現されるように調節される。
【数4】
Figure 0003828251
【0022】
図9Aは前記変数kの値を0と1との間で決める場合の輝度変換関数f(i)を示しており、図9Bは図8Aの輝度頻度関数を有する映像信号が図9Aに示す輝度変換関数により変換された後得られる映像信号の輝度分布h’(i)を示しており、図9Cは図9Bの分布を有する映像信号に対する低周波数帯域フィルタリングの結果を示している。結果的に、前記変数k値を制御することにより映像信号のダイナミックレンジを調節することができる。かかる性質を用いると、全体的なダイナミックレンジを犠牲にして量子化エラーの範囲をある程度制限することができる。しかしながら、この方法は映像信号のダイナミックレンジと量子化エラーとの間のトレードオフをもたらす。すなわち、ダイナミックレンジの増加に重点を置くと量子化エラーが増加し、量子化エラーの減少に重点を置くとダイナミックレンジが減少する。
【0023】
【発明が解決しようとする課題】
本発明は前記従来の技術的な問題点を解決するためのものであって、その目的は、輝度変換による映像のダイナミックレンジを拡張すると同時に量子化雑音を減少させることができる映像のダイナミックレンジ拡大装置を提供することにある。
【0024】
従来の輝度頻度の平滑化方法に従うと、輝度変換関数は輝度頻度関数の積分値により決まる。このとき、映像の頻度が特定輝度レベルのレンジに集中する場合、その帯域において輝度変換関数の傾きも増加する。従って、輝度変換関数の入力と出力を比較すると、前記傾きが増加する領域においては前記入力と出力との間の変化率も増加する。このため、従来の平滑化方法においては映像信号の輝度が拡大されると同時に量子化雑音も増加した。
【0025】
本発明者はかかる技術的な事情を深く研究したところ、前記のように映像の頻度が集中している特定のレベルの帯域においては輝度変換関数の変化を検出してこれを抑制することが量子化雑音を抑制するに効果的であるという結果を導出するに至った。
【0026】
これを具体的に実現するため、本発明においては輝度頻度関数の微分(差分)結果に所定の係数を乗じ、前記輝度頻度関数の積分(累積)結果に前記掛算の結果を加算して輝度変換関数を決める。すなわち、前記微分結果により輝度変換関数の急激な変化を緩慢に抑制することができ、この抑制の程度は前記係数の大きさにより制御される。従って、輝度変換関数の急激な変化を有する帯域で顕著になる量子化雑音を選択的に抑制することができる。
【0027】
前述した本発明の原理に従う輝度変換関数を数式で表現すると次のようになる。
【数5】
Figure 0003828251
【0028】
【課題を解決するための手段】
前記のような本発明の原理を達成するための映像のダイナミックレンジ拡大装置は、
映像の輝度信号を入力して前記輝度信号に対応する輝度頻度関数を生成する輝度頻度生成手段と、
前記輝度頻度生成手段から出力される輝度頻度関数に対する積分演算を行なう積分器と、
前記輝度頻度生成手段から出力される輝度頻度関数に対する微分演算を行い、所定の係数を乗じた微分係数を生成する微分手段と、
前記積分器の出力と前記微分手段の出力とを合算する第1加算器と、
輝度変換関数を多数のルックアップテーブルとして蓄積しており、前記第1加算器の出力に応じて相応する一つのルックアップテーブルを決定し、入力映像の輝度信号に応答して前記決定されたルックアップテーブルを通じて変換された輝度信号を出力するメモリとを含むことを特徴とする。
【0029】
前述した本発明のダイナミックレンジ拡大装置によると、輝度頻度関数の積分値および微分値が前記加算器で合算され、前記加算器の出力により輝度変換関数が決まる。
【0030】
従って、映像の頻度が輝度レベルの特定帯域に集中しても前記微分結果により前記帯域の輝度変換関数の傾きが緩慢に抑制されるので、量子化雑音が減少する。また、輝度頻度関数の積分値は依然として輝度変換関数の決定に影響を与えるので、映像のダイナミックレンジを拡大させる従来の目的も同時に達成することができる。
【0031】
【発明の実施の形態】
以下、本発明の好ましい実施例を添付図面に基づいて詳細に説明する。
図1ないし図2Dを参照して、本発明の実施例1に従う映像のダイナミックレンジ拡大装置について説明する。
図1に示すように、本発明の実施例1に従う映像のダイナミックレンジ拡大装置はヒストグラム発生器41、積分器42、微分器43、ゲイン制御器44、加算器45およびメモリ46で構成される。
より詳しくは、映像の輝度信号yはヒストグラム発生器41とメモリ46に同時に入力され、ヒストグラム発生器41の出力は積分器42と微分器43に同時に入力される。微分器43の出力はゲイン制御器44に入力され、積分器42とゲイン制御器44の出力は加算器45に入力される。加算器45の出力はメモリ46に入力され、メモリ46においては変換された輝度信号y’が出力される。
【0032】
前記ヒストグラム発生器41は映像の輝度信号yを入力して前記輝度信号yに対する輝度頻度関数h(i)を決める。一つのフィールドに相応する輝度頻度関数が決定すると、前記積分器42と微分器43に出力する。図2Aにおいて点線で表示した関数は、図8Aと同様に、前記ヒストグラム発生器41から出力される1フィールドの輝度頻度関数である。積分器42においては前記輝度頻度関数h(i)が輝度レベル(i)に関して積分され、その積分された結果は図2Bの点線で表示した関数のようになる。微分器43においては前記輝度頻度関数h(i)が輝度レベル(i)の変数に関して微分され、その微分された結果は図2Aおよび図2Bの実線で表示した関数のようになる。図2Bにおいて実線で表示した二つの関数のうち、下方の方が微分結果である。ゲイン制御器44は前記微分器43から出力される微分結果値にゲインαを乗じる。前記ゲインα値の調整により図2Aおよび図2Bに示す微分結果波形の大きさの制御を可能にする。前記ゲインα値は0.7ないし1.5の間の値に決めることが好ましく、前記範囲内の値が選択される場合に本発明の効果が最適化されることができる。前記積分器42の出力とゲイン制御器44の出力は加算器45により合成され、前記合成された信号の波形は図2Bに実線で表示されている。従来の平滑化方法においては図2Bにおいて点線で表示された積分結果により輝度変換関数が決まったが、本発明においては前記図2Bにおける実線で表示した合成結果により輝度変換関数が決まる。前記二つの波形を比較すると、微分値と積分値を合成した結果により決まる輝度変換関数が輝度分布の大きい輝度レベルの帯域においてより緩慢な傾きを有することがわかる。
【0033】
メモリ46は輝度変換関数に対する多数のルックアップテーブルを蓄積しており、前記加算器45の出力に応じて一つのルックアップテーブルを決定する。また、前記メモリ46は前記輝度信号yに応答して前記決定したルックアップテーブルを参照して変換された輝度信号y’を出力する。このとき、前記輝度変換関数は毎フィールドまたはフレームごとに更新され、前記更新された輝度変換関数を蓄積するため、前記メモリ46はL個のアドレスを有するラインメモリにより具現される。
【0034】
図2Cには前記メモリ46から出力される変換された輝度信号y’の輝度分布h’(i)が示されており、図2Cから映像の全体的なダイナミックレンジは拡大した状態でありながら量子化雑音の増大を抑制していることがわかる。図2Dは図2Cに示す波形に対して低周波数帯域フィルタリングを行なった結果を示す波形である。
【0035】
特に、一般的な映像の確率的な分布はガウス形の分布を有するため、図2Cに示す輝度信号は人間の視覚特性にもよく符合する。
【0036】
一方、輝度頻度関数の微分係数を得るため、本発明の実施例1においてはヒストグラム発生器41の出力を1階微分する過程を適用したが、他の変形が可能である。例えば、積分器42の出力を2階微分することにより、輝度頻度関数の微分係数を得ることができる。このときの微分器は2階微分を処理しなければならない。
【0037】
また、前記メモリ46の蓄積空間を節約するため、前記メモリ46が所定の間隔離れている特定輝度レベルに対する輝度変換関数のみを蓄積するようにすることができる。この場合、残りの輝度レベルに対する輝度変換関数は線形補間法(linear interpolation)を用いて決める。
【0038】
次に、図3および図4を参照して本発明の実施例2に従う映像のダイナミックレンジ拡大装置について説明する。
本発明の実施例2に示すダイナミックレンジ拡大装置は輝度信号ばかりでなく色相情報のダイナミックレンジを拡大するためのものである。かかる機能は実際のカメラにおいてダイナミックレンジ拡大を具現するときに求められる。
【0039】
このとき、色相信号cを直接制御することは色相のバランスが流失する結果をもたらすので、この発明の実施例2は変換された輝度信号y’を用いて間接的に色差信号cの変換を制御する。
【0040】
より詳しくは、この発明の実施例2においては輝度信号yと色差信号cから色信号B,Rが再合成される。前記色信号B,Rは輝度信号yと変換された輝度信号y’の比率を用いて変換され、これによって変換された色差信号c’は変換された色信号R’,B’と変換された輝度信号y’の減算を通じて得られる。
【0041】
輝度信号yと色差信号(C;Cr,Cb)を数式を用いて表現すると次のようになる。なお、前記色差信号はCrとCbで構成される。
y=0.3R+0.6G+0.1B (6)
Cr=R−y (7)
Cb=B−y (8)
y’=f(y) (9)
更に、色信号R,G,Bの各成分は現在の座標において輝度変換比率β=y’/yと同一の比率に変換されなければ色相のバランスが失われる。これを補償するため、各色差信号Cr,Cbと輝度信号を合算して色信号R,Bを求め、前記色信号R,Bをそれぞれ輝度変換比率y’/yと同一の比率でR’,B’に変換する。これを数式で表現すると、次のようになる。
R’=β・(Cr+y) (10)
B’=β・(Cb+y) (11)
β=y’/y (12)
上記の処理の結果、前記変換された色信号R’,B’から変換された輝度信号y’の減算により変換された色差信号Cr’,Cb’が以下のように得られる。Cr’=R’−y’ (13)
Cb’=B’−y’ (14)
このとき、色信号のうち、G’信号はビデオエンコーダのような、次の段において変換された輝度信号y’と変換されたR’,B’の合成により得られる。
【0042】
次に、図3を参照して本発明の実施例2に従うダイナミックレンジ拡大装置について説明する。
図3に示すように、この発明の実施例2に従う映像のダイナミックレンジ拡大装置は、ヒストグラム発生器41、積分器42、微分器43、ゲイン制御器44、加算器45、メモリ46、加算器51、割算器52、ゲイン制御器53および減算器54で構成される。
【0043】
前記実施例2に従う映像のダイナミックレンジ拡大装置において前記第1実施例における装置と同一の構成要素については同一の符号を用いた。すなわち、実施例2の装置において実施例1の装置と同一の構成要素はその構造および機能も同一であるので、その説明を省略する。
前記実施例1と重複したもの以外の構成要素間の連結関係について説明すると、輝度信号yと色差信号Cは加算器51に入力される。輝度信号yと変換された輝度信号y’は割算器52に入力される。前記加算器51の出力R,Bと前記割算器52の出力y’/yはゲイン制御器53に入力され、前記ゲイン制御器53の出力R’,B’は減算器54に出力される。前記減算器54においては変換された色差信号C’が出力される。
【0044】
色差信号Cには信号CrとCbが混合されており、前記加算器51においては前記色差信号Cr,Cbそれぞれと輝度信号yが加算される。その結果、色信号R,Bが得られる。割算器52は変換された輝度信号y’を輝度信号yで除する演算を行い、演算の結果である輝度変換比率を前記ゲイン制御器53に出力する。
【0045】
ゲイン制御器53は前記加算器51から出力される色信号R,Bに前記割算器52から出力される輝度変換比率y’/yを乗じる演算を行なう。前記掛算演算によりゲイン制御器53においては変換された色信号R’,B’が得られる。減算器54は前記変換された色信号R’,B’から前記変換された輝度信号y’を減ずる演算を行い、その演算の結果から得られる信号は変換された色差信号C’になる。
【0046】
以上のように説明された本発明の実施例2に従う映像のダイナミックレンジ拡大装置を適用したカメラを図4に示す。
図4に示すように、この発明の実施例2に従うダイナミックレンジ拡大装置を用いたカメラは、固体撮像素子(CCD;Charge Coupled Device)61、アナログ/ディジタル変換器62、ビデオデコーダ63、ダイナミックレンジ拡大装置64、ビデオエンコーダ65およびディジタル/アナログ変換器66で構成される。
【0047】
前記した構成においてダイナミックレンジ拡大装置は図3に示す本発明の実施例2に従うダイナミックレンジ拡大装置と同一である。
まず、物体により反射された入射光INはレンズ(図示省略)を経た後前記固体撮像素子61に入力され、前記固体撮像素子61においては入力された光が電気的な信号に変換されてアナログ映像信号が得られる。前記固体撮像素子61から出力されるアナログ映像信号は前記アナログ/ディジタル変換器62によりディジタル映像信号に変換される。前記ビデオデコーダ63は前記ディジタル映像信号を入力してビデオ信号の規格に適合するように変換し、この過程において輝度信号yと色差信号cが得られる。前記輝度信号yと色差信号cは前記ダイナミックレンジ拡大装置64に入力され、前記ダイナミックレンジ拡大装置64においては前述した変換動作により拡大されたダイナミックレンジを有する輝度信号y’と色差信号c’が得られる。ビデオエンコーダ65は前記輝度信号y’と色差信号c’を入力して映像の蓄積または表示に適合したビデオフォーマットに変換する。前記ビデオエンコーダ65の出力はディジタル/アナログ変換器66によりアナログ映像信号に変換され、前記変換器66の出力信号OUTは適切な周辺装置に提供される。
【0048】
【発明の効果】
以上のように、本発明に従う映像のダイナミックレンジ拡大装置は輝度頻度関数の積分結果と微分結果を合成して輝度変換関数を決定することにより、量子化雑音を抑制しながらダイナミックレンジを拡大させることができる。
【0049】
また、この発明に従う映像のダイナミックレンジ拡大装置は輝度変換比率を用いて色相のバランスの損失なしに色差信号を変換することができる。
【0050】
従って、この発明に従う映像のダイナミックレンジ拡大装置は従来の平滑化方法と異なりダイナミックレンジと量子化雑音との間のトレードオフを必要とせず、広帯域のダイナミックレンジを具現することができる。
前述したように、本発明は最も実際的で好ましいと見なされる実施例を参照して説明したが、本発明は前記実施例に限定されず、むしろ本請求項の精神および範囲に含まれる多様な変形および等価物を含むものと解釈される。
【図面の簡単な説明】
【図1】本発明の実施例1に従う映像のダイナミックレンジ拡大装置を示すブロックダイアグラムである。
【図2】(A)は図1の輝度分布関数の微分結果を示すグラフであり、
(B)は図1の輝度変換関数を示すグラフであり、
(C)は図2Bの変換関数を通じて得られる変換された輝度信号の分布を示すグラフであり、
(D)は図2Cに示す分布のiに対する低周波フィルタリング結果を示すグラフである。
【図3】本発明の実施例2に従う映像のダイナミックレンジ拡大装置を示すブロックダイアグラムである。
【図4】図3のダイナミックレンジ拡大装置を備えたカメラシステムを示すブロックダイアグラムである。
【図5】従来のダイナミックレンジ拡大装置を構成する高周波フィルタを示すブロックダイアグラムである。
【図6】図5に示すダイナミックレンジ拡大装置を有する従来のカメラの入力部を示すブロックダイアグラムである。
【図7】従来の平滑化法に従うダイナミックレンジ拡大装置を示すブロックダイアグラムである。
【図8】(A)は図7の輝度分布関数h(i)を示すグラフであり、
(B)は図7の輝度変換関数f(i)を示すグラフであり、
(C)は図7の変換された輝度信号y’の分布を示すグラフであり、
(D)は図8Cに示す分布のiに対する低周波フィルタリング結果を示すグラフである。
【図9】(A)は変数kがゼロから1に変わるとき従来の輝度変換関数を示すグラフであり、
(B)は図9Aの変換関数を通じて得られる変換された輝度信号の分布を示すグラフであり、
(C)は図9Bに示す分布のiに対する低周波フィルタリング結果を示すグラフである。
【符号の説明】
41 ヒストグラム発生器
42 積分器
43 微分器
44 ゲイン制御器
45 加算器
46 メモリ
51 加算器
52 割算器
53 ゲイン制御器
54 減算器
61 固体撮像素子(CCD)
62 アナログ/ディジタル変換器
63 ビデオデコーダ
64 ダイナミックレンジ拡大装置
65 ビデオエンコーダ
66 ディジタル/アナログ変換器

Claims (12)

  1. 映像の輝度信号を入力して前記輝度信号に対応する輝度頻度関数を生成する輝度頻度生成手段と、
    前記輝度頻度生成手段から出力される輝度頻度関数に対する積分演算を行なう積分器と、
    前記輝度頻度生成手段から出力される輝度頻度関数に対する微分演算を行い、所定の係数を乗じた微分係数を生成する微分手段と、
    前記積分器の出力と前記微分手段の出力とを合算する第1加算器と、
    輝度変換関数を多数のルックアップテーブルとして蓄積しており、前記第1加算器の出力に応じて相応する一つのルックアップテーブルを決定し、入力映像の前記輝度信号に応答して前記決定されたルックアップテーブルを通じて変換された輝度信号を出力するメモリとを含む映像のダイナミックレンジ拡大装置。
  2. 前記微分手段の出力は前記積分器の出力を2階微分した結果と同一である請求項1に記載の映像のダイナミックレンジ拡大装置。
  3. 前記メモリは所定の間隔をもって離れている特定の輝度レベルに対する輝度変換関数のみを蓄積している請求項1に記載の映像のダイナミックレンジ拡大装置。
  4. 前記微分手段は、前記輝度頻度生成手段から出力される輝度頻度関数を微分するための微分器と、前記微分器の出力に所定の係数を乗じるための演算を行い微分係数を生成するゲイン制御器とから構成される請求項1に記載の映像のダイナミックレンジ拡大装置。
  5. 前記係数は0.7以上、1.5以下の範囲の値の中から選択される請求項4に記載の映像のダイナミックレンジ拡大装置。
  6. 色差信号と前記輝度信号とを合算して色信号を生成する第2加算器と、
    前記メモリから出力される前記変換された輝度信号を前記輝度信号で除する演算を行い輝度変換比率を生成する割算器と、
    前記第2加算器から出力される前記色信号に前記割算器から出力される前記輝度変換比率を乗じる演算を行い変換された色信号を生成するゲイン制御器と、
    前記ゲイン制御器から出力される前記変換された色信号から前記メモリから出力される前記変換された輝度信号を差し引く演算を行い変換された色差信号を生成する減算器とをさらに含む請求項1に記載の映像のダイナミックレンジ拡大装置。
  7. 前記微分手段の出力は前記積分器の出力を2階微分した結果と同一である請求項6に記載の映像のダイナミックレンジ拡大装置。
  8. 前記メモリは所定の間隔をもって離れている特定の輝度レベルに対する輝度変換関数のみを蓄積している請求項6に記載の映像のダイナミックレンジ拡大装置。
  9. 前記微分手段は、
    前記輝度頻度生成手段から出力される輝度頻度関数を微分するための微分器と、 前記微分器の出力に所定の係数を乗じるための演算を行い微分係数を生成するゲイン制御器とから構成される請求項6に記載の映像のダイナミックレンジ拡大装置。
  10. 前記係数は0.7以上、1.5以下の範囲の値の中から選択される請求項9に記載の映像のダイナミックレンジ拡大装置。
  11. ディジタル映像信号をビデオ信号の規格に適合するように変換し、輝度信号と色差信号を分離するビデオデコーダと、
    前記輝度信号と前記色差信号を入力しルックアップテーブルを通じて変換された輝度信号と変換された色差信号を出力するダイナミックレンジ拡大装置と、
    前記ダイナミックレンジ拡大装置から出力される前記変換された輝度信号と前記変換された色差信号を入力して映像の蓄積または表示可能な規格を有するビデオフォーマットに変換するためのビデオエンコーダとを含む広帯域ダイナミックレンジカメラであって、
    前記ダイナミックレンジ拡大装置は、
    前記輝度信号を入力して輝度頻度関数を生成する輝度頻度生成手段と、前記輝度頻度生成手段から出力される輝度頻度関数の積分演算を行う積分器と、前記輝度頻度生成手段から出力される輝度頻度関数を微分して所定の係数を有する微分係数を生成する微分手段と、前記積分器の出力と前記微分手段の出力を合算する第1加算器と、輝度変換関数をルックアップテーブルとして蓄積しており、前記第1加算器の出力に応じて相応する一つのルックアップテーブルを決定し、入力映像の前記輝度信号に応答して決定された前記ルックアップテーブルを通じて変換された前記輝度信号を出力させるメモリと、前記色差信号と前記輝度信号を合算して色信号を生成する第2加算器と、前記メモリから出力される前記変換された輝度信号を前記輝度信号で除する演算を行い輝度変換比率を生成する割算器と、前記第2加算器から出力される前記色信号に前記割算器から出力される前記輝度変換比率を乗じる演算を行い変換された色信号を生成するゲイン制御器と、前記ゲイン制御器から出力される前記変換された色信号から前記メモリから出力される前記変換された輝度信号を減ずる演算を行い前記変換された色差信号を生成する減算器とで構成されることを特徴とする広帯域ダイナミックレンジカメラ。
  12. 物体の光信号を電気的な信号に変換する固体撮像素子と前記固体撮像素子の出力信号をディジタル信号に変換してディジタル映像信号を生成するアナログ/ディジタル変換器とをさらに含む請求項11に記載の広帯域ダイナミックレンジカメラ。
JP26731697A 1996-10-10 1997-09-30 映像のダイナミックレンジ拡大装置 Expired - Fee Related JP3828251B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1019960045122A KR100200363B1 (ko) 1996-10-10 1996-10-10 영상의 다이나믹 레인지 확대 장치
KR1996-45122 1996-10-10

Publications (2)

Publication Number Publication Date
JPH10134179A JPH10134179A (ja) 1998-05-22
JP3828251B2 true JP3828251B2 (ja) 2006-10-04

Family

ID=19476987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26731697A Expired - Fee Related JP3828251B2 (ja) 1996-10-10 1997-09-30 映像のダイナミックレンジ拡大装置

Country Status (4)

Country Link
US (1) US5959696A (ja)
JP (1) JP3828251B2 (ja)
KR (1) KR100200363B1 (ja)
GB (1) GB2319685B (ja)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3284829B2 (ja) * 1995-06-15 2002-05-20 ミノルタ株式会社 画像処理装置
KR100468683B1 (ko) * 1997-08-26 2005-06-28 삼성전자주식회사 광대역히스토그램확장장치및방법
KR100243301B1 (ko) * 1997-11-24 2000-02-01 윤종용 다이나믹 레인지 확대장치 및 방법
US6845176B1 (en) * 1998-03-17 2005-01-18 Sharp Laboratories Of America, Inc. System and method for on-line computation and storage of scene histograms in an image acquisition appliance
US6392764B1 (en) * 1998-11-12 2002-05-21 Xerox Corporation Systems and methods for adaptively filtering palettized images
US6807298B1 (en) * 1999-03-12 2004-10-19 Electronics And Telecommunications Research Institute Method for generating a block-based image histogram
EP1075140A1 (en) * 1999-08-02 2001-02-07 Koninklijke Philips Electronics N.V. Video signal enhancement
KR100346840B1 (ko) * 1999-11-04 2002-08-03 삼성전자 주식회사 화면의 펄럭거림을 최소화하는 흑신장 장치 및 그 방법
GB2357649A (en) * 1999-12-22 2001-06-27 Nokia Mobile Phones Ltd Image enhancement using inverse histogram based pixel mapping
EP1134698A1 (en) * 2000-03-13 2001-09-19 Koninklijke Philips Electronics N.V. Video-apparatus with histogram modification means
KR100413341B1 (ko) * 2001-03-20 2003-12-31 주식회사 코난테크놀로지 Hsv 칼라 히스토그램 추출 방법
GB0110748D0 (en) * 2001-05-02 2001-06-27 Apical Ltd Image enhancement methods and apparatus therefor
KR20030080564A (ko) * 2002-04-09 2003-10-17 엘지전자 주식회사 영상 신호의 신장 장치 및 방법
KR20030080563A (ko) * 2002-04-09 2003-10-17 엘지전자 주식회사 영상신호 신장 방법
JP4013657B2 (ja) * 2002-06-03 2007-11-28 セイコーエプソン株式会社 画像表示装置、画像表示方法および画像表示プログラムが記録されたコンピュータ読み取り可能な記録媒体
US7120303B2 (en) * 2002-06-28 2006-10-10 International Business Machines Corporation Adaptive generation of Q-table2 for improved image quality
KR20040008565A (ko) * 2002-07-18 2004-01-31 삼성전자주식회사 양자화 에러 보상 장치 및 방법
KR100497395B1 (ko) * 2003-06-30 2005-06-23 삼성전자주식회사 화질을 자동으로 설정하는 방법
US20060050084A1 (en) * 2004-09-03 2006-03-09 Eric Jeffrey Apparatus and method for histogram stretching
DE102004061507B4 (de) * 2004-12-21 2007-04-12 Siemens Ag Verfahren zur Korrektur von Inhomogenitäten in einem Bild sowie bildgebende Vorrichtung dazu
TWI273507B (en) * 2005-03-15 2007-02-11 Sunplus Technology Co Ltd Method and apparatus for image processing
US7656462B2 (en) * 2005-06-17 2010-02-02 Martin Weston Systems and methods for modifying master film for viewing at different viewing locations
US7605872B2 (en) * 2005-06-20 2009-10-20 Mediatek Inc. Video contrast adjusting method and system
JP2007142500A (ja) * 2005-11-14 2007-06-07 Pioneer Electronic Corp 表示装置、信号処理回路、プログラム及び表示方法
US20070268481A1 (en) * 2006-05-17 2007-11-22 Ramesh Raskar System and method for measuring scene reflectance using optical sensors
MY147417A (en) * 2006-11-27 2012-12-14 Dolby Lab Licensing Corp Apparatus and methods for boosting dynamic range in digital images
GB0717031D0 (en) 2007-08-31 2007-10-10 Raymarine Uk Ltd Digital radar or sonar apparatus
DE102008032686B4 (de) * 2008-07-06 2020-07-16 Dürr Dental SE Verfahren zur Verbesserung des Kontrastes von Bildern, insbesondere Grauwertbildern und Vorrichtung zu seiner Durchführung
JP5165076B2 (ja) * 2011-01-31 2013-03-21 シャープ株式会社 映像表示装置
CN103907343B (zh) 2011-10-20 2017-05-03 杜比实验室特许公司 用于视频均衡的方法和系统
US9852531B2 (en) * 2014-07-11 2017-12-26 Samsung Electronics Co., Ltd. Electronic apparatus and method for controlling the same
EP2977958A1 (en) * 2014-07-22 2016-01-27 Thomson Licensing Method and apparatus for processing image data
EP4338123A4 (en) * 2021-07-07 2025-01-15 Samsung Electronics Co Ltd METHOD AND ELECTRONIC DEVICE FOR PRODUCING A MULTIMEDIA FILE WITH A BLUR EFFECT

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL87306A0 (en) * 1988-08-02 1989-01-31 Technion Res & Dev Foundation Wide dynamic range camera
US5496106A (en) * 1994-12-13 1996-03-05 Apple Computer, Inc. System and method for generating a contrast overlay as a focus assist for an imaging device

Also Published As

Publication number Publication date
GB2319685A (en) 1998-05-27
KR19980026615A (ko) 1998-07-15
GB2319685B (en) 2000-10-11
US5959696A (en) 1999-09-28
KR100200363B1 (ko) 1999-06-15
JPH10134179A (ja) 1998-05-22
GB9721621D0 (en) 1997-12-10

Similar Documents

Publication Publication Date Title
JP3828251B2 (ja) 映像のダイナミックレンジ拡大装置
JP4894595B2 (ja) 画像処理装置および方法、並びに、プログラム
KR101051604B1 (ko) 화상 처리 장치 및 방법
US6724943B2 (en) Device and method for image processing
US7899266B2 (en) Image processing apparatus and method, recording medium, and program
US5343254A (en) Image signal processing device capable of suppressing nonuniformity of illumination
US7755670B2 (en) Tone-conversion device for image, program, electronic camera, and tone-conversion method
CN100366052C (zh) 图像处理设备和方法
JP2001275015A (ja) 画像処理回路及び画像処理方法
JPH07143358A (ja) ダイナミックガンマコントラスト制御方法および回路
JP3208762B2 (ja) 画像処理装置及び画像処理方法
JP3184309B2 (ja) 階調補正回路及び撮像装置
JP3309941B2 (ja) ノイズ検出回路、ノイズ除去回路及び輪郭強調回路
JP4869653B2 (ja) 画像処理装置
JP4161719B2 (ja) 画像処理装置および方法、記録媒体、並びにプログラム
JP2005142832A (ja) 輪郭補正回路及び撮像装置
JP4992379B2 (ja) 画像の階調変換装置、プログラム、電子カメラ、およびその方法
JP2004172726A (ja) 画像処理装置および方法
JP3145168B2 (ja) 画像信号処理装置
JP2007180851A (ja) Raw画像の階調変換装置、プログラム、方法、および電子カメラ
JP2000149014A (ja) 画像処理装置及び画像処理方法
JP2935389B2 (ja) 映像信号処理装置及び非線形信号処理装置
JP2009081526A (ja) 撮像装置
KR101007840B1 (ko) 신호 처리 장치 및 방법, 기록 매체
JPS6346881A (ja) デジタル輪郭補正回路

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20060421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060425

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20060512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060706

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees