[go: up one dir, main page]

JP3818100B2 - Fuel injection control device for in-cylinder direct injection internal combustion engine - Google Patents

Fuel injection control device for in-cylinder direct injection internal combustion engine Download PDF

Info

Publication number
JP3818100B2
JP3818100B2 JP2001258299A JP2001258299A JP3818100B2 JP 3818100 B2 JP3818100 B2 JP 3818100B2 JP 2001258299 A JP2001258299 A JP 2001258299A JP 2001258299 A JP2001258299 A JP 2001258299A JP 3818100 B2 JP3818100 B2 JP 3818100B2
Authority
JP
Japan
Prior art keywords
fuel injection
stroke
fuel
injections
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001258299A
Other languages
Japanese (ja)
Other versions
JP2003065132A (en
Inventor
秀明 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001258299A priority Critical patent/JP3818100B2/en
Publication of JP2003065132A publication Critical patent/JP2003065132A/en
Application granted granted Critical
Publication of JP3818100B2 publication Critical patent/JP3818100B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、筒内直接噴射式内燃機関の燃料噴射制御装置に関し、詳しくは、触媒の昇温を図るための燃料噴射技術に関する。
【0002】
【従来の技術】
従来から、筒内直接噴射式内燃機関において、触媒のイオウなどによる被毒を解除するために、膨張行程から排気行程の間で燃料噴射を行わせ、該噴射燃料を触媒で燃焼させることで触媒の昇温を図る装置が知られている(特開2000−130236号公報,特開2000−054900号公報参照)。
【0003】
【発明が解決しようとする課題】
ところで、上記のように、膨張行程から排気行程の間で燃料噴射を行わせる場合、触媒内部での燃焼が急激に行われ、触媒内で温度差が発生し、特にセル厚が薄いセミック担体を用いる触媒では、前記セラミック担体の割れが発生する可能性があった。
【0004】
そこで、触媒内部での急激な燃焼を避ける方法として、膨張行程から排気行程の間での燃料噴射量を、開始直後は少なく設定し、その後徐々に増やして、要求温度まで徐々に昇温させる方法を検討した。
しかし、一般的に膨張行程から排気行程の間での噴射量は少ないため、急激な燃焼を避けるためには、燃料噴射弁において噴射可能な最小燃料量を下回る燃料噴射量の設定が要求されることになってしまい、噴射量の変化で昇温を制御することは実質的に不可能であった。
【0005】
本発明は上記問題点に鑑みなされたものであり、膨張行程から排気行程の間での燃料噴射によって、触媒を徐々に昇温させることができる筒内直接噴射式内燃機関の燃料噴射制御装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
そのため、請求項1記載の発明は、筒内に燃料を直接噴射する燃料噴射弁を備えた内燃機関において、膨張行程から排気行程の間での燃料噴射によって排気通路に介装される触媒を昇温させる燃料噴射制御装置であって、前記膨張行程から排気行程の間での燃料噴射を間引いて行わせると共に、間引く噴射回数を徐々に少なくする構成とした。
【0007】
かかる構成によると、膨張行程から排気行程の間で噴射させた燃料を触媒で燃焼させることで、触媒を昇温させるが、各気筒の膨張行程から排気行程の間で毎回燃料を噴射させるのではなく、一部の噴射を実行せずに間引くことで、触媒に供給される燃料量を減量制御する構成とし、かつ、間引く噴射回数を徐々に少なくし、触媒に供給される燃料量を徐々に増大させる。
【0008】
請求項2記載の発明では、機関回転速度が高いときほど、前記間引く噴射回数を大きくする構成とした。かかる構成によると、機関回転速度が高いほど一般的には触媒温度が高いので、機関回転速度が高いほど、間引く噴射回数を多くする。
【0009】
請求項3記載の発明では、機関負荷が大きいときほど、前記間引く噴射回数を大きくする構成とした。かかる構成によると、機関負荷が大きいほど一般的には触媒温度が高く、また、吸気量に見合う噴射量の一定割合を、膨張行程から排気行程の間で噴射させる場合には、機関負荷が高いほど膨張行程での噴射量の絶対量が大きくなるので、機関負荷が大きいほど、間引く噴射回数を多くする。
【0010】
請求項4記載の発明では、機関回転速度及び機関負荷に応じて、前記間引く噴射回数の初期値,最終値及び減少率を設定する構成とした。かかる構成によると、機関回転速度及び機関負荷に応じた間引く噴射回数の初期値から、回転・負荷に応じた減少率で間引く噴射回数を徐々に減少させ、最終的には回転・負荷に応じた最終値にまで減少させる。
【0011】
請求項5記載の発明では、前記膨張行程から排気行程の間での燃料噴射量を、前記間引く噴射回数に応じて変化させる構成とした。かかる構成によると、膨張行程から排気行程の間での燃料噴射において間引かれた噴射の回数に応じて、膨張行程から排気行程の間での燃料噴射量を変更し、間引きを行わない場合を基準としたトータル噴射量の制御を行う。
【0012】
請求項6記載の発明では、吸気行程又は圧縮行程での燃料噴射量を、前記間引く噴射回数に応じて変化させ、燃料の残部を前記膨張行程から排気行程の間で噴射させる構成とした。かかる構成によると、燃料を、吸気行程又は圧縮行程での噴射と、膨張行程から排気行程の間での噴射とに分けて噴射する構成であって、吸気行程又は圧縮行程で噴射させる燃料量が、間引く噴射回数、換言すれば、必要温度上昇代に応じて変更され、吸気行程又は圧縮行程での噴射による燃焼排気中の酸素量を制御する。
【0013】
【発明の効果】
請求項1記載の発明によると、膨張行程から排気行程の間での噴射を間引くことで、触媒における急激な燃焼が回避され、かつ、間引く噴射回数を徐々に減少させることで必要な温度上昇代を確保することができるという効果がある。請求項2記載の発明によると、機関回転速度が高いときほど間引く噴射回数を大きくすることで、回転速度が異なっても一定の温度上昇率に制御でき、また、機関回転速度が高く必要温度上昇代が小さいときに、過剰に温度上昇することが回避されるという効果がある。
【0014】
請求項3記載の発明によると、機関負荷が大きく必要温度上昇代が小さいときに間引く噴射回数が大きく設定され、かつ、機関負荷の増大に伴って膨張行程から排気行程の間で噴射量が増大するときに、間引く噴射回数が大きく設定されることになるので、過剰に温度上昇することが回避されるという効果がある。請求項4記載の発明によると、必要温度上昇代に応じて間引き回数の変化幅を設定でき、かつ、一定の温度上昇率に制御することができ、触媒における急激な燃焼を回避しつつ、一定の上昇率で必要な温度にまで上昇させることができるという効果がある。
【0015】
請求項5記載の発明によると、膨張行程から排気行程の間での噴射量を間引く噴射回数に応じて変化させることで、例えば被毒解除に必要な空燃比状態に制御することが可能になるという効果がある。請求項6記載の発明によると、必要温度上昇代が大きく、吸気行程又は圧縮行程での噴射による燃焼排気中の酸素量を増大させる必要があるときに、係る要求に応じて酸素量を制御でき、触媒における燃料燃焼に必要な酸素量を確保して、膨張行程から排気行程の間での噴射に見合う温度上昇が確実に得られるという効果がある。
【0016】
【発明の実施の形態】
以下に本発明の実施の形態を図に基づいて説明する。
図1は、本発明に係る燃料噴射制御装置が適用される筒内直接噴射式内燃機関を示すシステム構成図である。
図1に示す内燃機関1のシリンダヘッド2には、筒内に直接燃料を噴射する燃料噴射弁3が設けられると共に、混合気を火花点火する点火栓4が設けられる。
【0017】
前記シリンダヘッド2には各気筒毎に吸気ポート5が形成され、スロットル弁6で流量調整された空気が、吸気マニホールド7によって各気筒の吸気ポート5に分配され、該吸気ポート5を介して筒内に導入される空気と、前記燃料噴射弁3から噴射される燃料とによって燃焼混合気が形成される。
また、前記シリンダヘッド2には各気筒毎に排気ポート8が形成され、該排気ポート8に接続される排気マニホールド9によって各気筒からの排気が集められ、フロント触媒10及びリア触媒11によって浄化された後、大気中に放出される。
【0018】
前記排気マニホールド9と吸気コレクタ部12とを連通する排気還流通路13が設けられ、圧力差によって排気の一部が前記排気還流通路13を介して吸気側に還流されるよう構成され、排気還流量は前記排気還流通路13に介装される排気還流制御弁14によって制御される。
前記燃料噴射弁3には、燃料ポンプ15から高圧の燃料が供給され、コントロールユニット16からの噴射パルス信号によって燃料噴射弁3が開弁すると、開弁時間に比例する量の高圧燃料が筒内に噴射される。
【0019】
前記コントロールユニット16には、機関1の吸入空気量を検出するエアフローメータ17,スロットル弁6の開度を検出するスロットルセンサ18,機関1の冷却水温度を検出する水温センサ19,フロント触媒10上流側で排気中の酸素濃度に基づいて空燃比を検出する空燃比センサ20,リア触媒11の温度を検出する触媒温度センサ21,クランク軸(図示省略)から機関1の回転信号を取り出す回転センサ22が設けられている。
【0020】
前記コントロールユニット16はマイクロコンピュータを含んで構成され、前記各種センサからの検出信号に基づき、前記燃料噴射弁3に噴射パルス信号を出力して燃料噴射を制御する他、前記点火栓4による点火時期を制御し、また、排気還流制御弁14の開度を制御することで排気還流量を制御する。
図2のフローチャートは、燃料噴射量(噴射パルス信号のパルス幅)の計算ルーチンを示し、ステップS201では、燃料噴射パルス幅TIを、
TI=TP×COEF×ALPHA
として演算する。
【0021】
上記TPは、吸入空気量と機関回転速度とから演算される理論空燃比相当の基本噴射パルス幅、前記COEFは空燃比補正係数、前記ALPHAは、空燃比センサ20で検出される実空燃比を目標空燃比に一致させるための空燃比フィードバック補正係数である。
通常、前記燃料噴射パルス幅TIによる燃料噴射を、各気筒の吸気行程又は圧縮行程で行わせ、筒内に混合気を形成させるが、前記触媒10のイオウなどによる被毒を解除する目的で、膨張行程でも燃料噴射を行わせる。
【0022】
尚、本実施形態では、膨張行程で噴射させるが、膨張行程から排気行程の間で、噴射燃料がそのまま排気側に流出する噴射タイミングであれば良い。
前記膨張行程で噴射された燃料は、触媒10内で燃焼し、これによって触媒の温度が上昇する。
触媒10が、排気空燃比が理論空燃比よりもリーンであるときに排気中のNOxを吸収し、排気中の酸素濃度が低下すると吸収したNOxを放出するNOx吸収剤を含んで構成される場合、前記NOx吸収剤にイオウがNOxと共に吸収され、このイオウは空燃比をリッチ化しても放出されないが、還元雰囲気下(排気空燃比のリッチ状態)でNOx吸収剤を加熱することで、分解してNOx吸収剤から放出される。
【0023】
係る被毒解除のための膨張行程での燃料噴射制御を、図3のフローチャートに従って説明する。
尚、図3のフローチャートに示されるルーチンは1噴射毎に実行される。
ステップS301では、被毒解除制御中であるか否かを判別する。
尚、被毒解除制御は、例えば被毒量の推定値が所定以上になったときや、一定の運転時間・走行距離毎に行われる。
【0024】
ステップS301で被毒解除制御中ではないと判別されたときには、ステップS311へ進み、前記燃料噴射パルス幅TIに基づき吸気行程又は圧縮行程で燃料噴射を行わせる通常の燃料噴射を行わせる。
一方、ステップS301で被毒解除制御中であると判別されるとステップS302へ進み、前記空燃比補正係数COEFが所定値lambdaSOx以上であるか否かを判別することで、被毒解除可能なリッチ空燃比制御状態であるか否かを判別する。
【0025】
COEF≧lambdaSOxであれば、現状の燃料噴射パルス幅TIで被毒解除可能な還元雰囲気とすることが可能であるので、ステップS303を迂回してステップS304へ進む。
一方、COEF<lambdaSOxのときには、被毒解除に必要な還元雰囲気とすることができないので、ステップS303へ進んで、空燃比補正係数COEFに前記所定値lambdaSOxをセットする。
【0026】
ステップS304では、膨張行程噴射の間引き回数count1が規定回数countinjに達しているか否かを判別する。
即ち、各気筒の膨張行程毎に燃料を噴射させるのではなく、膨張行程での燃料噴射を1回行うと、前記規定回数countinjだけ噴射を停止させ、規定回数countinjだけ噴射を間引いた後、膨張行程での噴射を行わせることを繰り返すようになっている(図6参照)。
【0027】
ステップS304で、間引き回数count1が規定回数countinjに達していない(count1<countinj)と判別されたときには、今回の膨張行程での噴射を停止させることになり、ステップS308へ進んで、吸気行程又は圧縮行程での噴射パルス幅TI1stをTI1st=TI×partとして設定し、次のステップS309では、膨張行程での噴射パルス幅TI2ndを0とし、更に、次のステップS310では、前記間引き回数count1をカウントアップする。
【0028】
一方、ステップS304で、間引き回数count1が規定回数countinjに達している(count1≧countinj)と判別されたときには、今回の膨張行程では噴射を行わせるので、ステップS305へ進んで、吸気行程又は圧縮行程での噴射パルス幅TI1stをTI1st=TI×partとして設定し、次のステップS306では、膨張行程での噴射パルス幅TI2ndを、TI2nd=(TI−TI×part)×(mincount+1)として設定し、更に、次のステップS307では、前記間引き回数count1をクリアする。
【0029】
前記間引きの規定回数countinjは、後述するように初期値から徐々に減少設定されて最終値mincountにまで変化し、これにより間引く噴射回数が徐々に減少されるようになっている(図6参照)。前記噴射パルス幅TI1stの演算に用いる係数partは、1.0よりも僅かに小さい値であり、これにより吸気行程又は圧縮行程で噴射される燃料の燃焼時にリーンとして、膨張行程での噴射を触媒10内で燃焼させるための酸素を確保する。
【0030】
また、必要温度上昇代が大きく膨張行程で多くの燃料を噴射させ、触媒10内で多くの燃料を燃焼させる必要がある場合ほど、吸気行程又は圧縮行程で噴射される燃料の燃焼時においてよりリーンとする必要がある。
前記必要温度上昇代は、前記間引きの規定回数countinjの最終値mincountから判断でき、最終値mincountが小さいほど必要温度上昇代が大きいと判断されるので、最終値mincountが小さいほど前記係数partをより小さな値に設定するようにしてある。
【0031】
但し、最終値mincountが固定値として与えられる構成であれば、前記係数partも固定値となる。
また、膨張行程での噴射パルス幅TI2ndは、通常の噴射パルス幅TIから吸気行程又は圧縮行程での噴射パルス幅TI1st=TI×partを減算した残部を基本として、該基本値に、前記間引き回数の最終値mincountに1を加算した値を乗算して設定される。
【0032】
TI2nd=(TI−TI×part)×(mincount+1)
例えば、間引きの最終値mincountが1だとすると、基本値の2倍が噴射されることになり、トータルとして間引きを行わなかった場合と同じ量の燃料が噴射され、間引きの最終値mincountに達して被毒の解除に必要な温度にまで達したときには、トータルとして被毒解除に必要なリッチ排気空燃比とすることができる。
【0033】
尚、簡素化した制御として、被毒解除制御時に、空燃比補正係数COEFを1として、吸気又は圧縮行程での噴射パルス幅TI1stをTI1st=TIとし、膨張行程での噴射パルス幅TI2ndを、TI2nd=TI×afterinj(afterinjは定数)とすることも可能である。上記のように、膨張行程の噴射を、間引く噴射回数を徐々に減少させつつ間引いて行わせる構成であれば、図7に示すように、間引きを行わない場合に比べて、触媒中央部の温度が徐々に上昇するので、ヒートショックによる担体の割れなどを回避できる。
【0034】
図4のフローチャートは、前記間引き規定回数countinjの設定制御の第1実施形態を示すものであり、一定時間毎に実行される。
ステップS401では、被毒解除制御中であるか否かを判別し、被毒解除制御中でない場合には、そのまま終了させる。
一方、ステップS401で被毒解除制御中であると判別されると、ステップS402へ進み、被毒解除制御の開始直後であるか否かを判別する。
【0035】
被毒解除制御の開始直後であれば、規定回数countinjに予め記憶された初期値countstartをセットする。
また、ステップS402で被毒解除制御の開始直後ではないと判別されると、ステップS404へ進み、規定回数countinjが予め記憶された最終値mincount以下であるか否かを判別する。
【0036】
ここで、countinj>mincountであるときには、ステップS406へ進み、規定回数countinjを予め記憶された減少補正値(減少率)decountだけ減少させる設定を行う。
上記ステップS406での減少制御の結果、ステップS404でcountinj≦mincountであると判別されるようになると、ステップS404からステップS405へ進み、規定回数countinjに最終値mincountがセットされる。
【0037】
上記の処理によって、規定回数countinjは、初期値countstartから一定の速度で最終値mincountにまで減少されることになる。
上記図4のフローチャートでは、機関1の運転条件とは無関係に、一定の間引き回数に基づいて膨張行程での噴射が間引かれることになるが、間引き回数を運転条件に応じて変化させることがより好ましく、運転条件に応じて間引き規定回数countinjの設定制御を行う第2実施形態を、図5のフローチャートに従って説明する。
【0038】
ステップS501では、機関負荷,機関回転速度を読み込む。
尚、機関負荷は、基本噴射パルス幅TPで代表させることができる。
次のステップS502では、被毒解除制御中であるか否かを判別し、被毒解除制御中でない場合には、そのまま終了させる。
一方、被毒解除制御中であるときには、ステップS503へ進み、間引き回数の最終値の基本値mincountrevを機関回転速度に応じて設定する。
【0039】
前記基本値mincountrevは、図8に示すように、機関回転速度が高いほど大きな値に設定される。機関回転速度が高いときには、図9に示すように、一般的に触媒温度が高く、機関回転速度が高いほど、膨張行程での噴射の必要性が低くなるから、機関回転速度が高いほど前記基本値mincountrevは大きな値に設定される。
【0040】
次のステップS504では、間引き回数の最終値の負荷補正値minloadhoseiを、そのときの機関負荷に応じて設定する。前記負荷補正値minloadhoseiは、図10に示すように、機関負荷が高いほど大きな値に設定される。機関負荷が高いときには、図11に示すように、一般的に触媒温度が高く、また、機関負荷が高い場合には、膨張行程での噴射量絶対値が大きくなって、膨張行程での噴射1回当たりの温度上昇が大きくなるから、機関負荷が高いほど前記負荷補正値minloadhoseiは大きな値に設定される。
【0041】
ステップS505では、間引き回数の最終値mincountを、
mincount=mincountrev×minloadhosei
として算出する。
ステップS506では、被毒解除制御の開始直後であるか否かを判別する。
開始直後であればステップS507へ進み、間引き回数の初期値の基本値stcountrevを機関回転速度に応じて設定する。
【0042】
前記初期値の基本値stcountrevは、値は前記最終値の基本値mincountrevより大きいが、前記最終値の基本値mincountrevと同様にして、機関回転速度が高いほど大きな値に設定される(図8参照)。次のステップS508では、間引き回数の初期値の負荷補正値stloadhoseiを、そのときの機関負荷に応じて設定する。
【0043】
前記初期値の負荷補正値stloadhoseiは、前記最終値の負荷補正値minloadhoseiよりも大きいが、前記最終値の負荷補正値minloadhoseiと同様にして、機関負荷が高いほど大きな値に設定される(図10参照)。ステップS509では、間引きの規定回数countinjにstcountrev×stloadhoseiをセットすることで、初期設定を行う。
【0044】
ステップS506で開始直後ではないと判別されると、ステップS510へ進み、間引きの規定回数countinjが最終値mincount以下になっているか否かを判別する。
countinj≦mincountであるときには、ステップS511へ進んで、間引きの規定回数countinjに最終値mincountをセットする。
【0045】
一方、countinj>mincountであれば、ステップS512へ進み、間引く噴射回数の減少率基本値decountrevを機関回転速度に応じて設定する。前記減少率基本値decountrevは、図12に示すように、機関回転速度が高いほど小さい値に設定される。機関回転速度が高いときには、触媒の必要温度上昇代が小さいから、間引きの回数を大きいまま少しずつ減少変化させることで、必要充分な温度上昇が得られる。
【0046】
一方、機関回転速度が低い場合には、初期の急激な温度上昇を大きな間引き回数で抑制しつつ、触媒における大きな必要温度上昇代を確保すべく、速やかに間引く噴射回数を減少させる必要があるため、減少率基本値decountrevとして大きな値が要求される。次のステップS513では、間引く噴射回数の減少率負荷補正値deloadhoseiを機関負荷に応じて設定する。
【0047】
前記減少率負荷補正値deloadhoseiは、図13に示すように、機関負荷が高いほど小さい値に設定される。機関負荷が高いときには、触媒の必要温度上昇代が小さいから、間引く噴射回数を大きいまま少しずつ減少変化させることで、必要充分な温度上昇が得られる。一方、機関負荷が低い場合には、初期の急激な温度上昇を大きな間引き回数で抑制しつつ、触媒における大きな必要温度上昇代を確保すべく、速やかに間引く噴射回数を減少させる必要があるため、減少率負荷補正値deloadhoseiとして大きな値が要求される。
【0048】
ステップS514では、間引き減少率decountを、
decount=decountrev×deloadhosei
として算出する。
ステップS515では、間引きの規定回数countinjを間引き減少率decountだけ減少させる。
【0049】
上記のように、間引きの規定回数countinj (間引く噴射回数)の初期値,最終値、減少率を、機関回転速度・機関負荷に応じて設定する構成とすれば、急激な燃焼によるヒートショックの発生を回避しつつ、必要な温度上昇代を得ることができ、更に、過剰な温度上昇を回避することができる。尚、上記実施形態では、1回膨張行程での噴射を行わせると規定回数countinjだけ噴射を間引き、該間引きの後に膨張行程噴射を1回だけ行わせる構成とし、前記間引きの規定回数countinjを徐々に減少させる構成としたが、所定の噴射回数当たりの間引き回数を変化させるよう構成し、例えば開始時には2回の連続噴射後に8回連続して噴射を停止し、その後連続噴射回数を徐々に増大させると共に、これに対応して間引きの回数を徐々に減らして、最終的には、8回の連続噴射後に2回だけ噴射を間引くというように、連続噴射回数と間引き回数とを相対的に増減させる構成とすることができる。
【0050】
また、上記実施形態では、膨張行程(排気行程)での燃料噴射のみによって触媒を昇温させる構成としたが、点火時期の遅角制御や排気還流の停止制御などと組み合わせるようにすることができる。
【図面の簡単な説明】
【図1】実施の形態における内燃機関のシステム構成図。
【図2】実施の形態における燃料噴射量の演算を示すフローチャート。
【図3】実施の形態における被毒解除のための噴射制御を示すフローチャート。
【図4】間引き回数設定の第1の実施形態を示すフローチャート。
【図5】間引き回数設定の第2の実施形態を示すフローチャート。
【図6】実施の形態における吸気行程噴射と膨張行程噴射との相関を示すタイムチャート。
【図7】実施の形態における効果を説明するためのタイムチャート。
【図8】実施の形態における機関回転速度と間引き回数の初期値・最終値との相関を示す線図。
【図9】機関回転速度と触媒温度との相関を示す線図。
【図10】実施の形態における機関負荷と間引き回数の初期値・最終値との相関を示す線図。
【図11】機関負荷と触媒温度との相関を示す線図。
【図12】実施の形態における機関回転速度と間引き回数の減少率との相関を示す線図。
【図13】実施の形態における機関負荷と間引き回数の減少率との相関を示す線図。
【符号の説明】
1…内燃機関
2…シリンダヘッド
3…燃料噴射弁
4…点火栓
5…吸気ポート
6…スロットル弁
7…吸気マニホールド
8…排気ポート
9…排気マニホールド
10…フロント触媒
11…リア触媒
16…コントロールユニット
17…エアフローメータ
18…スロットルセンサ
19…水温センサ
20…空燃比センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel injection control device for a direct injection type internal combustion engine, and more particularly, to a fuel injection technique for increasing the temperature of a catalyst.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in a direct injection type internal combustion engine, in order to release poisoning of the catalyst due to sulfur or the like, the fuel is injected between the expansion stroke and the exhaust stroke, and the injected fuel is burned by the catalyst. Are known (see Japanese Patent Laid-Open Nos. 2000-130236 and 2000-054900).
[0003]
[Problems to be solved by the invention]
By the way, as described above, when fuel injection is performed between the expansion stroke and the exhaust stroke, combustion inside the catalyst is abruptly performed, a temperature difference is generated in the catalyst, and a semi-cell carrier having a particularly thin cell thickness is used. With the catalyst used, there was a possibility of cracking of the ceramic support.
[0004]
Therefore, as a method of avoiding sudden combustion inside the catalyst, the fuel injection amount between the expansion stroke and the exhaust stroke is set to a small value immediately after the start, and then gradually increased to gradually increase the temperature to the required temperature. It was investigated.
However, in general, since the injection amount between the expansion stroke and the exhaust stroke is small, in order to avoid rapid combustion, it is required to set the fuel injection amount below the minimum fuel amount that can be injected in the fuel injection valve. As a result, it was practically impossible to control the temperature rise by changing the injection amount.
[0005]
The present invention has been made in view of the above problems, and provides a fuel injection control device for a direct injection type internal combustion engine that can gradually raise the temperature of a catalyst by fuel injection between an expansion stroke and an exhaust stroke. The purpose is to provide.
[0006]
[Means for Solving the Problems]
Therefore, according to the first aspect of the present invention, in the internal combustion engine having a fuel injection valve that directly injects fuel into the cylinder, the catalyst interposed in the exhaust passage is raised by fuel injection between the expansion stroke and the exhaust stroke. The fuel injection control device for heating is configured to thin out the fuel injection between the expansion stroke and the exhaust stroke, and gradually reduce the number of thinning injections .
[0007]
According to such a configuration, the temperature of the catalyst is increased by burning the fuel injected between the expansion stroke and the exhaust stroke with the catalyst, but the fuel is not injected every time between the expansion stroke and the exhaust stroke of each cylinder. The amount of fuel supplied to the catalyst is controlled to be reduced by thinning out without performing some injections, and the number of injections to be thinned out is gradually reduced to gradually reduce the amount of fuel supplied to the catalyst. Increase.
[0008]
The invention according to claim 2 is configured such that the number of thinned injections increases as the engine speed increases. According to such a configuration, generally the higher the engine speed in the catalyst temperature is high Ino, the higher the engine speed, to increase the number of injections of thinning.
[0009]
The invention according to claim 3 is configured to increase the number of thinned injections as the engine load increases. According to such a configuration, the catalyst temperature is generally higher as the engine load is larger, and the engine load is higher when a certain proportion of the injection amount corresponding to the intake air amount is injected between the expansion stroke and the exhaust stroke. As the absolute amount of the injection amount in the expansion stroke increases, the number of injections to be thinned out increases as the engine load increases .
[0010]
In the invention according to claim 4, the initial value, the final value, and the decrease rate of the number of injections to be thinned out are set according to the engine speed and the engine load. According to such a configuration, the initial value of the injection frequency thinning in accordance with the engine speed and the engine load, gradually reduce the number of injections to thin out at a reduced rate corresponding to the rotation and the load, and finally according to the rotation-load Decrease to final value.
[0011]
The invention according to claim 5 is configured such that the fuel injection amount between the expansion stroke and the exhaust stroke is changed according to the number of injections to be thinned out . According to such a configuration, there is a case where the fuel injection amount between the expansion stroke and the exhaust stroke is changed according to the number of injections thinned out in the fuel injection between the expansion stroke and the exhaust stroke, and the thinning is not performed. Control the total injection amount as a reference.
[0012]
In the present invention, the fuel injection amount in the intake stroke or the compression stroke is changed according to the number of injections to be thinned out , and the remaining fuel is injected between the expansion stroke and the exhaust stroke. According to this configuration, the fuel is injected separately into the injection in the intake stroke or the compression stroke and the injection between the expansion stroke and the exhaust stroke, and the amount of fuel injected in the intake stroke or the compression stroke is The number of injections to be thinned out , in other words, the amount of oxygen in the combustion exhaust gas by the injection in the intake stroke or the compression stroke is controlled in accordance with the required temperature rise.
[0013]
【The invention's effect】
According to the first aspect of the present invention, it is possible to avoid rapid combustion in the catalyst by thinning out the injection from the expansion stroke to the exhaust stroke, and to gradually reduce the number of injections to be thinned out, thereby increasing the necessary temperature increase allowance. There is an effect that can be secured. According to the invention of claim 2, by increasing the number of injections to be thinned out as the engine rotational speed is higher, it is possible to control to a constant temperature increase rate even if the rotational speed is different, and the engine rotational speed is high and the required temperature rise is increased. When the allowance is small, there is an effect that an excessive temperature rise is avoided.
[0014]
According to the invention described in claim 3, when the engine load is large and the required temperature rise is small, the number of injections to be thinned out is set large , and the injection amount increases between the expansion stroke and the exhaust stroke as the engine load increases. In this case, since the number of injections to be thinned out is set to be large, it is possible to avoid an excessive temperature rise. According to the fourth aspect of the present invention, it is possible to set the change width of the number of thinnings according to the required temperature increase allowance, and to control to a constant temperature increase rate, while avoiding rapid combustion in the catalyst, and constant There is an effect that the temperature can be increased to a necessary temperature at an increase rate of.
[0015]
According to the fifth aspect of the present invention, for example, it is possible to control to an air-fuel ratio state necessary for releasing poisoning by changing the injection amount between the expansion stroke and the exhaust stroke according to the number of injections to be thinned out. There is an effect. According to the sixth aspect of the present invention, when the required temperature rise is large and it is necessary to increase the amount of oxygen in the combustion exhaust by injection in the intake stroke or compression stroke, the amount of oxygen can be controlled according to such a request. There is an effect that the amount of oxygen necessary for fuel combustion in the catalyst is secured, and a temperature increase commensurate with the injection between the expansion stroke and the exhaust stroke can be reliably obtained.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a system configuration diagram showing a direct injection type internal combustion engine to which a fuel injection control device according to the present invention is applied.
A cylinder head 2 of the internal combustion engine 1 shown in FIG. 1 is provided with a fuel injection valve 3 for directly injecting fuel into a cylinder, and an ignition plug 4 for spark-igniting an air-fuel mixture.
[0017]
The cylinder head 2 is provided with an intake port 5 for each cylinder, and the air whose flow rate is adjusted by the throttle valve 6 is distributed to the intake ports 5 of the respective cylinders by the intake manifold 7. A combustion mixture is formed by the air introduced into the fuel and the fuel injected from the fuel injection valve 3.
The cylinder head 2 has an exhaust port 8 for each cylinder. The exhaust manifold 9 connected to the exhaust port 8 collects exhaust from each cylinder and purifies it by the front catalyst 10 and the rear catalyst 11. And then released into the atmosphere.
[0018]
An exhaust gas recirculation passage 13 that connects the exhaust manifold 9 and the intake air collector portion 12 is provided, and a part of the exhaust gas is recirculated to the intake side through the exhaust gas recirculation passage 13 due to a pressure difference. Is controlled by an exhaust gas recirculation control valve 14 interposed in the exhaust gas recirculation passage 13.
When high pressure fuel is supplied from the fuel pump 15 to the fuel injection valve 3 and the fuel injection valve 3 is opened by an injection pulse signal from the control unit 16, an amount of high pressure fuel proportional to the valve opening time is in-cylinder. Is injected into.
[0019]
The control unit 16 includes an air flow meter 17 for detecting the intake air amount of the engine 1, a throttle sensor 18 for detecting the opening degree of the throttle valve 6, a water temperature sensor 19 for detecting the cooling water temperature of the engine 1, and an upstream of the front catalyst 10. An air-fuel ratio sensor 20 for detecting the air-fuel ratio based on the oxygen concentration in the exhaust gas, a catalyst temperature sensor 21 for detecting the temperature of the rear catalyst 11, and a rotation sensor 22 for extracting a rotation signal of the engine 1 from a crankshaft (not shown). Is provided.
[0020]
The control unit 16 includes a microcomputer, and controls the fuel injection by outputting an injection pulse signal to the fuel injection valve 3 based on detection signals from the various sensors. The exhaust gas recirculation amount is controlled by controlling the opening degree of the exhaust gas recirculation control valve 14.
The flowchart in FIG. 2 shows a routine for calculating the fuel injection amount (pulse width of the injection pulse signal). In step S201, the fuel injection pulse width TI is
TI = TP × COEF × ALPHA
Calculate as
[0021]
The TP is a basic injection pulse width corresponding to the theoretical air-fuel ratio calculated from the intake air amount and the engine speed, the COEF is an air-fuel ratio correction coefficient, and the ALPHA is an actual air-fuel ratio detected by the air-fuel ratio sensor 20. This is an air-fuel ratio feedback correction coefficient for matching with the target air-fuel ratio.
Usually, fuel injection with the fuel injection pulse width TI is performed in the intake stroke or compression stroke of each cylinder to form an air-fuel mixture in the cylinder, but for the purpose of releasing poisoning of the catalyst 10 due to sulfur or the like, Fuel injection is also performed during the expansion stroke.
[0022]
In the present embodiment, the fuel is injected in the expansion stroke, but any injection timing may be used as long as the injected fuel flows out to the exhaust side as it is between the expansion stroke and the exhaust stroke.
The fuel injected in the expansion stroke burns in the catalyst 10, thereby increasing the temperature of the catalyst.
When the catalyst 10 includes a NOx absorbent that absorbs NOx in the exhaust when the exhaust air-fuel ratio is leaner than the stoichiometric air-fuel ratio and releases the absorbed NOx when the oxygen concentration in the exhaust decreases. In addition, sulfur is absorbed together with NOx in the NOx absorbent, and this sulfur is not released even when the air-fuel ratio is enriched, but it decomposes by heating the NOx absorbent in a reducing atmosphere (exhaust air-fuel ratio rich state). Released from the NOx absorbent.
[0023]
The fuel injection control in the expansion stroke for releasing the poisoning will be described with reference to the flowchart of FIG.
The routine shown in the flowchart of FIG. 3 is executed for each injection.
In step S301, it is determined whether or not poisoning release control is being performed.
Note that the poisoning release control is performed, for example, when the estimated value of the poisoning amount becomes a predetermined value or more, or for every fixed operation time / travel distance.
[0024]
If it is determined in step S301 that the poisoning release control is not in progress, the process proceeds to step S311 to perform normal fuel injection for performing fuel injection in the intake stroke or compression stroke based on the fuel injection pulse width TI.
On the other hand, if it is determined in step S301 that the poisoning release control is being performed, the process proceeds to step S302, where it is determined whether the air-fuel ratio correction coefficient COEF is equal to or greater than a predetermined value lambdaSOx, thereby enabling the richer possible poisoning release. It is determined whether or not the air-fuel ratio control state is set.
[0025]
If COEF ≧ lambdaSOx, it is possible to obtain a reducing atmosphere in which poisoning can be released with the current fuel injection pulse width TI, so the process bypasses step S303 and proceeds to step S304.
On the other hand, when COEF <lambdaSOx, the reducing atmosphere necessary for releasing the poisoning cannot be obtained, so the process proceeds to step S303, and the predetermined value lambdaSOx is set to the air-fuel ratio correction coefficient COEF.
[0026]
In step S304, it is determined whether or not the number of thinning-out count1 of expansion stroke injection has reached the specified number of countinj.
That is, instead of injecting fuel for each expansion stroke of each cylinder, if fuel injection is performed once in the expansion stroke, the injection is stopped for the specified number of countinj, and after the injection is thinned for the specified number of countinj, the expansion is performed. The injection in the stroke is repeated (see FIG. 6).
[0027]
If it is determined in step S304 that the number of thinnings count1 has not reached the specified number of countinj (count1 <countinj), the injection in the current expansion stroke is stopped, and the process proceeds to step S308, where the intake stroke or compression is performed. The injection pulse width TI1st in the stroke is set as TI1st = TI × part. In the next step S309, the injection pulse width TI2nd in the expansion stroke is set to 0, and in the next step S310, the thinning-out count count1 is counted up. To do.
[0028]
On the other hand, when it is determined in step S304 that the number of thinnings count1 has reached the specified number of countinj (count1 ≧ countinj), injection is performed in the current expansion stroke, so the process proceeds to step S305, and the intake stroke or compression stroke is performed. In step S306, the injection pulse width TI2nd in the expansion stroke is set as TI2nd = (TI−TI × part) × (mincount + 1), and further, in step S306, the injection pulse width TI1st is set as TI1st = TI × part. In the next step S307, the thinning count count1 is cleared.
[0029]
The predetermined number of thinnings countinj is set to be gradually decreased from the initial value and changed to the final value mincount as described later, whereby the number of thinning injections is gradually decreased (see FIG. 6). . The coefficient part used for the calculation of the injection pulse width TI1st is a value slightly smaller than 1.0, so that the fuel injected during the intake stroke or the compression stroke is lean when combustion is performed, and the injection in the expansion stroke is performed in the catalyst 10. Ensuring oxygen for burning in.
[0030]
Further, when the required temperature rise is large and more fuel is injected during the expansion stroke and more fuel needs to be burned in the catalyst 10, the leaner the fuel injected during the intake stroke or the compression stroke, the leaner the combustion is. It is necessary to.
The required temperature increase allowance can be determined from the final value mincount of the specified number of thinnings countinj, and the smaller the final value mincount, the greater the required temperature increase allowance, so the smaller the final value mincount, the more the coefficient part It is set to a small value.
[0031]
However, if the final value mincount is a fixed value, the coefficient part is also a fixed value.
Further, the injection pulse width TI2nd in the expansion stroke is based on the remainder obtained by subtracting the injection pulse width TI1st = TI × part in the intake stroke or compression stroke from the normal injection pulse width TI, and is set to the basic value. It is set by multiplying the final value mincount of 1 by the value obtained by adding 1.
[0032]
TI2nd = (TI−TI × part) × (mincount + 1)
For example, if the final decimation value mincount is 1, twice the basic value will be injected, and the same amount of fuel will be injected as if the decimation was not performed as a total, reaching the final decimation value mincount. When the temperature necessary for releasing the poison is reached, the rich exhaust air-fuel ratio required for releasing the poison can be made as a total.
[0033]
As a simplified control, during the poisoning release control, the air-fuel ratio correction coefficient COEF is set to 1, the injection pulse width TI1st in the intake or compression stroke is set to TI1st = TI, and the injection pulse width TI2nd in the expansion stroke is set to TI2nd. = TI × afterinj (afterinj is a constant). As described above, if the configuration is such that the injection in the expansion stroke is performed by thinning while gradually reducing the number of thinning injections , as shown in FIG. 7, the temperature at the center of the catalyst is lower than when no thinning is performed. Since it gradually rises, it is possible to avoid cracking of the carrier due to heat shock.
[0034]
The flowchart of FIG. 4 shows the first embodiment of the setting control of the predetermined number of thinning-out countinj, and is executed at regular intervals.
In step S401, it is determined whether or not the poisoning release control is being performed. If the poisoning release control is not being performed, the processing is ended as it is.
On the other hand, if it is determined in step S401 that the poisoning release control is being performed, the process proceeds to step S402, where it is determined whether or not it is immediately after the start of the poisoning release control.
[0035]
If it is immediately after the start of the poisoning release control, the initial value countstart stored in advance is set in the specified number of countinj.
If it is determined in step S402 that it is not immediately after the start of the poisoning release control, the process proceeds to step S404, and it is determined whether or not the specified number of countinj is equal to or less than the final value mincount stored in advance.
[0036]
If countinj> mincount, the process proceeds to step S406, and the setting is made to decrease the specified number of countinj by a previously stored decrease correction value (decrease rate) decount.
If it is determined in step S404 that countinj ≦ mincount as a result of the decrease control in step S406, the process proceeds from step S404 to step S405, and the final value mincount is set to the specified number of countinj.
[0037]
By the above processing, the specified number of countinj is reduced from the initial value countstart to the final value mincount at a constant speed.
In the flowchart of FIG. 4, the injection in the expansion stroke is thinned out based on a fixed number of thinnings regardless of the operating conditions of the engine 1, but the number of thinnings can be changed according to the operating conditions. More preferably, a second embodiment in which setting control of the predetermined number of thinning-out countinj according to the operating conditions will be described with reference to the flowchart of FIG.
[0038]
In step S501, the engine load and the engine speed are read.
The engine load can be represented by the basic injection pulse width TP.
In the next step S502, it is determined whether or not the poisoning release control is being performed. If the poisoning release control is not being performed, the processing is ended as it is.
On the other hand, when the poisoning release control is being performed, the process proceeds to step S503, where the basic value mincountrev of the final value of the number of thinnings is set according to the engine speed.
[0039]
As shown in FIG. 8, the basic value mincountrev is set to a larger value as the engine speed is higher. When the engine rotational speed is high, as shown in FIG. 9, the catalyst temperature is generally high, and the higher the engine rotational speed , the lower the necessity for injection in the expansion stroke. The value mincountrev is set to a large value .
[0040]
In the next step S504, the load correction value minloadhosei as the final value of the number of thinnings is set according to the engine load at that time. As shown in FIG. 10, the load correction value minloadhosei is set to a larger value as the engine load is higher. When the engine load is high, as shown in FIG. 11, the catalyst temperature is generally high, and when the engine load is high, the injection amount absolute value in the expansion stroke becomes large, and the injection 1 in the expansion stroke Since the temperature rise per turn increases, the load correction value minloadhosei is set to a larger value as the engine load is higher.
[0041]
In step S505, the final value mincount of the number of thinnings is
mincount = mincountrev × minloadhosei
Calculate as
In step S506, it is determined whether or not it is immediately after the start of the poisoning release control.
If it is immediately after the start, the process proceeds to step S507, and the basic value stcountrev of the initial value of the number of thinnings is set according to the engine speed.
[0042]
The basic value stcountrev of the initial value is larger than the basic value mincountrev of the final value, but is set to a larger value as the engine speed increases in the same manner as the basic value mincountrev of the final value (see FIG. 8). ). In the next step S508, the load correction value stloadhosei, which is the initial value of the number of thinnings, is set according to the engine load at that time.
[0043]
Load correction value stloadhosei of the initial value is greater than the load correction value minloadhosei of the final value, in the same manner as the load correction value minloadhosei of the final value, the engine load is set to a higher value greater (FIG. 10 reference). In step S509, the initial setting is performed by setting stcountrev × stloadhosei to the predetermined number of thinning-out countinj.
[0044]
If it is determined in step S506 that it is not immediately after the start, the process proceeds to step S510, and it is determined whether or not the predetermined number of thinning countinj is equal to or less than the final value mincount.
When countinj ≦ mincount, the process proceeds to step S511, and the final value mincount is set as the predetermined number of thinning-out countinj.
[0045]
On the other hand, if countinj> mincount, the process proceeds to step S512, and the reduction rate basic value decountrev of the number of injections to be thinned out is set according to the engine speed. As shown in FIG. 12, the reduction rate basic value decountrev is set to a smaller value as the engine speed increases. When the engine speed is high, the required temperature rise of the catalyst is small. Therefore, a necessary and sufficient temperature rise can be obtained by gradually decreasing the number of thinnings while keeping the number of thinnings large.
[0046]
On the other hand, when the engine rotational speed is low, it is necessary to quickly reduce the number of injections to be thinned out in order to secure a large necessary temperature rise allowance while keeping the initial rapid temperature rise with a large number of thinning outs. Therefore, a large value is required as the decrease rate basic value decreterev. In the next step S513, the reduction rate load correction value deloadhosei of the number of injections to be thinned out is set according to the engine load.
[0047]
The decrease rate load correction value deloadhosei is set to a smaller value as the engine load is higher, as shown in FIG. When the engine load is high, the required temperature rise of the catalyst is small, so that a necessary and sufficient temperature rise can be obtained by gradually changing the number of injections to be thinned out while keeping it small. On the other hand, when the engine load is low, it is necessary to quickly reduce the number of injections to be thinned out in order to secure a large required temperature increase allowance in the catalyst while suppressing the initial rapid temperature rise with a large number of thinning outs. A large value is required as the reduction rate load correction value deloadhosei.
[0048]
In step S514, the decimation rate decount is set to
decount = decountrev × deloadhosei
Calculate as
In step S515, the prescribed number of thinning-out countinj is reduced by the thinning-out reduction rate decount.
[0049]
As described above, if the initial value , final value, and decrease rate of the specified number of thinnings countinj (thinning number of injections) are set according to the engine speed and engine load, heat shock will occur due to sudden combustion Thus, a necessary temperature rise allowance can be obtained, and an excessive temperature rise can be avoided. In the above-described embodiment, when the injection is performed once in the expansion stroke, the injection is thinned out by the prescribed number of countinj, and after the thinning out, the expansion stroke injection is performed only once, and the prescribed number of thinning-out countinj is gradually performed. However, it is configured to change the number of thinnings per predetermined number of injections. For example, at the start, the injection is continuously stopped 8 times after 2 continuous injections, and then the number of continuous injections is gradually increased. Correspondingly, the number of thinning is gradually reduced, and finally the number of continuous injections and the number of thinnings are relatively increased or decreased, such that the injection is thinned out only twice after eight continuous injections. It can be set as the structure made to do.
[0050]
In the above embodiment, the temperature of the catalyst is raised only by fuel injection in the expansion stroke (exhaust stroke). However, it can be combined with the retard control of the ignition timing or the exhaust recirculation stop control. .
[Brief description of the drawings]
FIG. 1 is a system configuration diagram of an internal combustion engine in an embodiment.
FIG. 2 is a flowchart showing calculation of a fuel injection amount in the embodiment.
FIG. 3 is a flowchart showing injection control for releasing poisoning in the embodiment.
FIG. 4 is a flowchart showing a first embodiment of setting the number of times of thinning.
FIG. 5 is a flowchart showing a second embodiment for setting the number of times of thinning.
FIG. 6 is a time chart showing the correlation between the intake stroke injection and the expansion stroke injection in the embodiment.
FIG. 7 is a time chart for explaining effects in the embodiment.
FIG. 8 is a diagram showing the correlation between the engine speed and the initial and final values of the number of thinnings in the embodiment.
FIG. 9 is a diagram showing the correlation between the engine speed and the catalyst temperature.
FIG. 10 is a diagram showing a correlation between the engine load and the initial value and the final value of the number of thinnings in the embodiment.
FIG. 11 is a diagram showing the correlation between engine load and catalyst temperature.
FIG. 12 is a diagram showing the correlation between the engine speed and the reduction rate of the number of thinnings in the embodiment.
FIG. 13 is a diagram showing a correlation between an engine load and a reduction rate of the number of thinnings in the embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine 2 ... Cylinder head 3 ... Fuel injection valve 4 ... Spark plug 5 ... Intake port 6 ... Throttle valve 7 ... Intake manifold 8 ... Exhaust manifold 10 ... Front catalyst 11 ... Rear catalyst 16 ... Control unit 17 ... Air flow meter 18 ... Throttle sensor 19 ... Water temperature sensor 20 ... Air-fuel ratio sensor

Claims (6)

筒内に燃料を直接噴射する燃料噴射弁を備えた内燃機関において、膨張行程から排気行程の間での燃料噴射によって排気通路に介装される触媒を昇温させる燃料噴射制御装置であって、
前記膨張行程から排気行程の間での燃料噴射を間引いて行わせると共に、間引く噴射回数を徐々に少なくすることを特徴とする筒内直接噴射式内燃機関の燃料噴射制御装置。
In an internal combustion engine having a fuel injection valve that directly injects fuel into a cylinder, a fuel injection control device that raises the temperature of a catalyst interposed in an exhaust passage by fuel injection between an expansion stroke and an exhaust stroke,
A fuel injection control device for a direct injection type internal combustion engine, wherein the fuel injection between the expansion stroke and the exhaust stroke is thinned out and the number of thinning injections is gradually reduced .
機関回転速度が高いときほど、前記間引く噴射回数を大きくすることを特徴とする請求項1記載の筒内直接噴射式内燃機関の燃料噴射制御装置。2. The fuel injection control device for a direct injection type internal combustion engine according to claim 1, wherein the number of thinned injections is increased as the engine rotational speed is higher. 機関負荷が大きいときほど、前記間引く噴射回数を大きくすることを特徴とする請求項1又は2記載の筒内直接噴射式内燃機関の燃料噴射制御装置。The fuel injection control device for a direct injection type internal combustion engine according to claim 1 or 2, wherein the number of injections to be thinned out increases as the engine load increases. 機関回転速度及び機関負荷に応じて、前記間引く噴射回数の初期値,最終値及び減少率を設定することを特徴とする請求項1記載の筒内直接噴射式内燃機関の燃料噴射制御装置。2. The fuel injection control device for a direct injection type internal combustion engine according to claim 1, wherein an initial value, a final value, and a reduction rate of the number of injections to be thinned out are set according to an engine speed and an engine load. 前記膨張行程から排気行程の間での燃料噴射量を、前記間引く噴射回数に応じて変化させることを特徴とする請求項1〜4のいずれか1つに記載の筒内直接噴射式内燃機関の燃料噴射制御装置。5. The direct injection type internal combustion engine according to claim 1, wherein a fuel injection amount between the expansion stroke and the exhaust stroke is changed in accordance with the number of injections to be thinned out . Fuel injection control device. 吸気行程又は圧縮行程での燃料噴射量を、前記間引く噴射回数に応じて変化させ、燃料の残部を前記膨張行程から排気行程の間で噴射させることを特徴とする請求項1〜5のいずれか1つに記載の筒内直接噴射式内燃機関の燃料噴射制御装置。6. The fuel injection amount in the intake stroke or the compression stroke is changed according to the number of injections to be thinned out , and the remaining fuel is injected between the expansion stroke and the exhaust stroke. A fuel injection control device for an in-cylinder direct injection internal combustion engine according to one.
JP2001258299A 2001-08-28 2001-08-28 Fuel injection control device for in-cylinder direct injection internal combustion engine Expired - Lifetime JP3818100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001258299A JP3818100B2 (en) 2001-08-28 2001-08-28 Fuel injection control device for in-cylinder direct injection internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001258299A JP3818100B2 (en) 2001-08-28 2001-08-28 Fuel injection control device for in-cylinder direct injection internal combustion engine

Publications (2)

Publication Number Publication Date
JP2003065132A JP2003065132A (en) 2003-03-05
JP3818100B2 true JP3818100B2 (en) 2006-09-06

Family

ID=19085847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001258299A Expired - Lifetime JP3818100B2 (en) 2001-08-28 2001-08-28 Fuel injection control device for in-cylinder direct injection internal combustion engine

Country Status (1)

Country Link
JP (1) JP3818100B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100528A (en) * 2005-09-30 2007-04-19 Honda Motor Co Ltd Control device of internal combustion engine
US8607549B2 (en) * 2009-07-31 2013-12-17 Ford Global Technologies, Llc Controlling regeneration of an emission control device
JP7163779B2 (en) 2019-01-10 2022-11-01 トヨタ自動車株式会社 Hybrid vehicle control device

Also Published As

Publication number Publication date
JP2003065132A (en) 2003-03-05

Similar Documents

Publication Publication Date Title
US7958720B2 (en) Combustion control apparatus for direct-injection spark-ignition internal combustion engine
US20060201137A1 (en) Engine control equipment
JP2003120348A (en) Valve timing control device for internal combustion engine
US6907862B2 (en) Combustion control apparatus for internal combustion engine
JP2979956B2 (en) Combustion control device for internal combustion engine
JP2005048746A (en) Fuel control device for internal combustion engine
JP3552609B2 (en) Control device for spark ignition type direct injection engine
JP3818100B2 (en) Fuel injection control device for in-cylinder direct injection internal combustion engine
JP4254021B2 (en) Catalyst early warm-up control device for in-cylinder internal combustion engine
JP2005042662A (en) Combustion control device for internal combustion engine
JP4631725B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4943873B2 (en) In-cylinder injection spark ignition internal combustion engine control device
JP3582415B2 (en) Control device for direct-injection spark-ignition internal combustion engine
EP1496223B1 (en) Combustion control apparatus for internal combustion engine
JP3509482B2 (en) Exhaust gas purification device for internal combustion engine
JP5326502B2 (en) Exhaust gas purification device for internal combustion engine
JP2004257258A (en) Air fuel ratio control device of internal combustion engine
JP4058815B2 (en) Exhaust gas purification device for internal combustion engine
JP3633283B2 (en) Evaporative fuel processing device for internal combustion engine
JP4631724B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4240083B2 (en) In-cylinder injection spark ignition internal combustion engine control device
JP2003020978A (en) Device and method for controlling exhaust emission of engine
JP2002122018A (en) Catalyst temperature estimation device
JP4263286B2 (en) In-cylinder injection engine combustion control device
JP3508301B2 (en) Engine air-fuel ratio control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060605

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4