[go: up one dir, main page]

JP4254021B2 - Catalyst early warm-up control device for in-cylinder internal combustion engine - Google Patents

Catalyst early warm-up control device for in-cylinder internal combustion engine Download PDF

Info

Publication number
JP4254021B2
JP4254021B2 JP2000201427A JP2000201427A JP4254021B2 JP 4254021 B2 JP4254021 B2 JP 4254021B2 JP 2000201427 A JP2000201427 A JP 2000201427A JP 2000201427 A JP2000201427 A JP 2000201427A JP 4254021 B2 JP4254021 B2 JP 4254021B2
Authority
JP
Japan
Prior art keywords
injection
post
catalyst
cylinder
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000201427A
Other languages
Japanese (ja)
Other versions
JP2002013431A (en
Inventor
修 深沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2000201427A priority Critical patent/JP4254021B2/en
Publication of JP2002013431A publication Critical patent/JP2002013431A/en
Application granted granted Critical
Publication of JP4254021B2 publication Critical patent/JP4254021B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、筒内噴射式内燃機関において、排出ガス浄化用の触媒を早期に暖機する機能を備えた筒内噴射式内燃機関の触媒早期暖機制御装置に関するものである。
【0002】
【従来の技術】
筒内噴射式内燃機関(直噴エンジン)においても、排出ガスの浄化は、吸気管噴射エンジンと同様に、触媒によって行うようにしているが、触媒は、活性温度まで昇温しないと、排出ガスを効率良く浄化できないため、始動後に排気温度を上昇させて触媒を早期に活性温度まで昇温させる触媒早期暖機制御を行うことが望ましい。吸気管噴射エンジンでは、触媒早期暖機制御を点火遅角制御等によって行われているが、直噴エンジンでは、特開平4−183922号公報に示すように、排気管の触媒の上流側に点火装置を設け、触媒の温度が所定温度より低い時に、膨張行程又は排気行程で追加の燃料を噴射して排出ガス中に燃料を混入させ、これを排気管内で点火装置によって着火して燃焼させることで、排気温度を上昇させて触媒を暖機するようにしたものがある。
【0003】
しかし、この構成では、排気管に点火装置を設ける必要があり、その分、コスト高になる欠点がある。
【0004】
この欠点を解消するため、特開平8−291729号公報に示すように、圧縮行程でエンジン出力を発生させるための主噴射を行った後に膨張行程で後噴射を行って、主噴射燃料の燃焼熱によって後噴射燃料を燃焼させることで、排気温度を上昇させて触媒の暖機を促進するようにしたものがある。
【0005】
【発明が解決しようとする課題】
直噴エンジンでも、始動時は燃圧が低く、更に要求噴射量が多いため、吸気行程で燃料を噴射して均質燃焼させるようにしている。従って、始動時は、触媒が未活性でも、均質燃焼モードで運転し、始動後、成層燃焼が可能な運転状態になった時に、圧縮行程で燃料を噴射して成層燃焼させる成層燃焼モードに切り換えて、上記公報のように、膨張行程で後噴射を行って触媒を暖機するようにしたものがある。
【0006】
しかし、均質燃焼モードから成層燃焼モードへ切り換える際に、スロットルバルブ等の空気系を大きく切り換えるため、その空気系の切り換えに、かなりの遅れが生じる。つまり、均質燃焼モードから成層燃焼モードに切り換えてから、筒内に充填される空気量が目標値まで増加するのに、かなりの遅れが生じる。このため、成層燃焼モードに切り換わった直後から、後噴射を通常の成層燃焼時の後噴射量で開始すると、筒内の空気量(酸素量)が不足して後噴射の燃料を十分に燃焼させることができず、排気エミッションが悪化する結果となる。
【0007】
そこで、後噴射の開始時期を空気系の遅れ分だけ遅らせることが考えられるが、成層燃焼モードでは、多量の空気を筒内に吸入して排出するため、後噴射の開始時期(排気温度の昇温開始時期)を遅らせると、成層燃焼モードへの切換直後に急増する空気によって排気温度が低下して触媒が冷やされてしまい、触媒の暖機が益々遅れて、排気エミッションが悪化する結果となる。
【0008】
また、始動直後は、筒内温度が低いため、主噴射燃料の燃焼熱で後噴射燃料を着火可能な期間が短くなる。このため、成層燃焼モードへの切換直後から、後噴射を通常の成層燃焼時の後噴射時期で開始すると、後噴射の燃料を主噴射燃料の燃焼熱で着火できない可能性がある。
【0009】
本発明はこのような事情を考慮してなされたものであり、従ってその目的は、成層燃焼モードへの切換直後から後噴射を開始しても、後噴射の燃料を十分に燃焼させることができて、触媒早期暖機性能向上、排気エミッション低減を実現することができる筒内噴射式内燃機関の触媒早期暖機制御装置を提供することにある。
【0010】
【課題を解決するための手段】
【0012】
また、始動直後は、筒内温度が低いため、主噴射燃料の燃焼熱で後噴射燃料を着火可能な期間が短くなることを考慮して、請求項のように、触媒の早期暖機が要求される時に、成層燃焼モードに切り換えてから筒内温度が所定温度に昇温するまでの所定の期間は後噴射時期を進角補正す。ここで、“所定の期間”は、筒内温度が通常の成層燃焼時の筒内温度に昇温するまでの期間を見込んで設定すれば良い。この期間に後噴射時期を進角補正して、後噴射時期を主噴射燃料の燃焼時期に近付ければ、成層燃焼モードへの切換直後の筒内温度が低いときでも、主噴射燃料の燃焼熱で後噴射燃料を着火可能な時期に後噴射を行うことができる。これにより、成層燃焼モードへの切換直後から後噴射の燃料を確実に燃焼させて触媒の暖機を促進できる。また、請求項に係る発明では、成層燃焼モードに切り換えてから筒内温度が所定温度に昇温するまでの所定の期間は後噴射された燃料が筒内で着火、燃焼するように後噴射時期を進角補正するものである。
【0013】
この場合、後噴射時期の進角補正量は固定値でも良いが、請求項のように、後噴射時期の進角補正量を空気系の制御目標値と実測値との偏差に応じて設定するようにしても良い。このようにすれば、成層燃焼モードへの切換直後の筒内温度の上昇(筒内充填空気量の増加)に追従させて後噴射時期の進角補正量を適正化することができ、触媒早期暖機性能向上、排気エミッション低減の効果を大きくすることができる。
【0014】
【発明の実施の形態】
[実施形態(1)]
以下、本発明の実施形態(1)を図1乃至図5に基づいて説明する。
まず、図1に基づいてエンジン制御系システム全体の概略構成を説明する。筒内噴射式内燃機関である直噴エンジン11の吸気管12の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側に、ステップモータ14によって開度調節されるスロットルバルブ15が設けられている。ステップモータ14がエンジン電子制御回路(以下「ECU」と表記する)16からの出力信号に基づいて駆動されることで、スロットルバルブ15の開度(スロットル開度)が制御され、そのスロットル開度に応じて各気筒ヘの吸入空気量が調節される。スロットルバルブ15の近傍には、スロットル開度を検出するスロットルセンサ17が設けられている。
【0015】
このスロットルバルブ15の下流側には、サージタンク19が設けられ、このサージタンク19に、エンジン11の各気筒に空気を導入する吸気マニホールド20が接続されている。各気筒の吸気マニホールド20内には、それぞれ第1吸気路21と第2吸気路22が仕切り形成され、これら第1吸気路21と第2吸気路22が、エンジン11の各気筒に形成された2つの吸気ポート23にそれぞれ連結されている。各気筒の第2吸気路22内には、スワールコントロール弁24が配置されている。各気筒のスワールコントロール弁24は、共通のシャフト25を介してステップモータ26に連結されている。このステップモータ26がECU16からの出力信号に基づいて駆動されることで、スワールコントロール弁24の開度が制御され、その開度に応じて各気筒内のスワール流強度が調整される。ステップモータ26には、スワールコントロール弁24の開度を検出するスワールコントロール弁センサ27が取り付けられている。
【0016】
また、エンジン11の各気筒の上部には、燃料を筒内に直接噴射する燃料噴射弁28が取り付けられている。燃料タンク(図示せず)から燃料配管45を通して燃料デリバリパイプ29に送られてくる燃料は、各気筒の燃料噴射弁28から燃焼室内に噴射され、吸気ポート23から導入される吸入空気と混合して混合気が形成される。燃料デリバリパイプ29には、燃料の圧力を検出する燃圧センサ30が取り付けられている。
【0017】
更に、エンジン11のシリンダヘッドには、各気筒毎に点火プラグ(図示せず)が取り付けられ、各点火プラグの点火によって燃焼室内の混合気が着火される。また、気筒判別センサ32は、特定気筒が吸気上死点に達した時にパルス状の気筒判別信号を出力し、クランク角センサ33は、エンジン11のクランクシャフトが所定クランク角(例えば30℃A)回転する毎にパルス状のクランク角信号を出力し、このクランク角信号の出力周波数によってエンジン回転速度が検出される。更に、このクランク角信号と気筒判別信号によって、クランク角の検出や気筒判別が行われる。
【0018】
一方、エンジン11の排気ポート35には、排気マニホールド36を介して排気管37が接続されている。この排気管37には、理論空燃比付近で排気を効率良く浄化する三元触媒38とNOx吸蔵型のリーンNOx触媒39とが直列に配置されている。このリーンNOx触媒39は、排気中の酸素濃度が高いリーン運転中に、排気中のNOxを吸着し、空燃比がリッチに切り換えられて排気中の酸素濃度が低下した時に、吸着したNOxを還元浄化して放出する。このリーンNOx触媒39の下流側には、リーンNOx触媒39から流出する排気中のNOx濃度を検出するNOx濃度センサ(図示せず)が設置され、排気中のNOx濃度から推定したリーンNOx触媒39のNOx吸着量が所定値より多くなった時に一時的に空燃比がリーンからリッチに切り換えられる。
【0019】
また、排気管37のうちの三元触媒38の上流側とサージタンク19との間には、排気の一部を還流させるEGR配管40が接続され、このEGR配管40の途中に、EGR量(排気還流量)を制御するEGR弁41が設けられている。また、アクセルペダル18には、アクセル開度を検出するアクセルセンサ42が設けられている。
【0020】
上述した各種センサの出力信号は、ECU16に入力される。このECU16は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された制御プログラムに従い、各種センサ出力に基づき、前述したステップモータ14,26、EGR弁41、燃料噴射弁28、点火プラグの動作を制御する。例えば、低・中負荷運転時は、空燃比がリーンとなるように少量の燃料を圧縮行程で噴射し、点火プラグの周辺に部分的に濃いめの混合気を形成して成層燃焼させ、筒内全体としての空燃比をリーンとする(成層燃焼モード)。また、高負荷運転時や始動時は、理論空燃比付近又はそれよりも若干リッチとなるように燃料噴射量を増量し、燃料を吸気行程で噴射して均質燃焼させる(均質燃焼モード)。このように燃焼モードを切り換えるECU16の機能が特許請求の範囲でいう燃焼モード切換手段に相当する役割を果たす。
【0021】
また、ECU16は、図2に示す触媒早期暖機制御プログラムを実行することで、三元触媒38の早期暖機が要求される時に成層燃焼モードに切り換えて圧縮行程でエンジン出力を発生させるための主噴射を行った後に膨張行程で後噴射を行い(図5参照)、主噴射燃料の燃焼熱で後噴射燃料を燃焼させて排気温度を上昇させる。更に、触媒早期暖機制御時には、成層燃焼モードに切り換えてから所定の期間は後噴射量を減量補正し、且つ、後噴射時期を進角補正する(図4参照)。以下、この触媒早期暖機制御プログラムの処理内容について説明する。
【0022】
本プログラムは、イグニッションスイッチ(図示せず)のオン後に所定クランク角毎に起動され、特許請求の範囲でいう触媒早期暖機制御手段としての役割を果たす。本プログラムが起動されると、まずステップ101で、三元触媒38が活性状態になっているか否かを、触媒温度が活性下限温度(例えば200℃)以上であるか否かで判定する。尚、触媒温度の検出は、三元触媒38に設置した触媒温度センサ(図示せず)を用いたり、或は、冷却水温と始動後経過時間等から触媒温度を推定しても良い。
【0023】
ステップ101で、三元触媒38が活性状態になっていると判定されれば、触媒早期暖機制御を行う必要がないので、ステップ102に進み、成層燃焼モード切換後経過時間カウンタCCNGのカウント値を0にリセットして本プログラムを終了する。尚、成層燃焼モード切換後経過時間カウンタCCNGは、成層燃焼モード切換後の経過時間をカウントするカウンタである。
【0024】
一方、三元触媒38がまだ活性状態になっていなければ、ステップ103に進み、後噴射実行条件(触媒早期暖機制御実行条件)が成立しているか否かを判定する。ここで、後噴射実行条件は、成層燃焼モードに切り換えて後噴射を行っても、安定燃焼可能な運転状態であることであり、例えば、図3に示すように、エンジン回転速度と要求トルクに基づいてエンジン負荷が小さい領域を後噴射実行領域と判定したり、或は、軽負荷領域で且つ始動後所定時間以上が経過していること等を後噴射実行条件としても良い。
【0025】
始動後でも、後噴射実行条件が成立していなければ、後噴射(触媒早期暖機制御)を行わずに、成層燃焼モード切換後経過時間カウンタCCNGのカウント値を0にリセットして(ステップ102)、本プログラムを終了する。
【0026】
これに対し、後噴射実行条件が成立していれば、ステップ104に進み、現在の燃焼モードが成層燃焼モードであるか否かを判定し、均質燃焼モードであれば、ステップ105に進み、燃焼モードを均質燃焼モードから成層燃焼モードに切り換え、成層燃焼モード切換後経過時間カウンタCCNGのカウント値を0にリセットして(ステップ106)、本プログラムを終了する。
【0027】
一方、後噴射実行条件が成立し、且つ成層燃焼モードへ切り換えられた後は、ステップ107に進み、現在のエンジン運転状態に応じてマップ等から後噴射量Q2NDと後噴射時期A2NDを算出する(後噴射時期A2NDは例えば圧縮上死点を基準にして設定される)。この後、ステップ108に進み、成層燃焼モード切換後経過時間カウンタCCNGのカウント値が所定値B以上か否か、つまり、成層燃焼モード切換後の経過時間が所定時間以上経過したか否かを判定する。ここで、所定値Bは、成層燃焼モードへの切換後の空気系の遅れ(酸素供給量の遅れ)が生じる期間に相当する値に設定されている。
【0028】
従って、成層燃焼モード切換後経過時間カウンタCCNGのカウント値が所定値B未満であれば、成層燃焼モードへの切換後の空気系の遅れが生じている期間であるので、ステップ109に進み、成層燃焼モード切換後経過時間カウンタCCNGをインクリメントした後、ステップ110に進み、成層燃焼モードへの切換後の空気系の遅れを考慮して、後噴射量Q2NDを減量補正すると共に、後噴射時期A2NDを進角補正する。
【0029】
この際、後噴射量Q2NDの減量補正は、ステップ107で求めた後噴射量Q2NDに補正係数K1(K1<1.0)を乗算して行い、後噴射時期A2NDの進角補正は、ステップ107で求めた後噴射時期A2NDから進角補正量T1を減算して行う。ここで、補正係数K1と進角補正量T1は固定値でも良いが、成層燃焼モード切換後経過時間カウンタCCNGのカウント値に応じて変化させても良い。例えば、成層燃焼モード切換後経過時間カウンタCCNGのカウント値が増加するほど、補正係数K1を大きくして後噴射量Q2NDの減量補正量を小さくすると共に、進角補正量T1を小さくする(図4参照)。
【0030】
後噴射量Q2NDの減量補正と後噴射時期A2NDの進角補正は、成層燃焼モード切換後経過時間カウンタCCNGのカウント値が所定値Bに達するまで行われる。これにより、成層燃焼モードへの切換後の空気系の遅れが生じる期間に、後噴射量Q2NDの減量補正と後噴射時期A2NDの進角補正が実施される。
【0031】
その後、成層燃焼モード切換後経過時間カウンタCCNGのカウント値が所定値Bに達すると、該カウンタCCNGのカウント値を所定値Bに固定し(ステップ110)、後噴射量Q2NDの減量補正と後噴射時期A2NDの進角補正を終了する。これにより、空気系の遅れが無視できるようになった後は、ステップ107で求めた後噴射量Q2NDと後噴射時期A2NDで後噴射が実施される。後噴射された燃料は、主噴射燃料の燃焼熱で着火して燃焼し、排気温度を上昇させて三元触媒38の暖機を促進する。
【0032】
以上説明した本実施形態(1)の触媒早期暖機制御の実行例を図4のタイムチャートを用いて説明する。エンジン始動時は、後噴射実行条件(触媒早期暖機制御実行条件)が不成立となり、均質燃焼モードでエンジン11が始動される。始動後に、後噴射実行条件が成立すると、要求燃焼モードが成層燃焼モードに切り換えられ、直ちに、空気系(スロットルバルブ15、スワールコントロール弁24等)が成層燃焼時の制御目標値に切り換えられる。この際、要求燃焼モードが成層燃焼モードに切り換えられると同時に、吸入空気量の目標値がステップ状に増加するが、空気系の遅れが生じるため、実際の吸入空気量は目標値に対して遅れて増加する。
【0033】
空気系の切り換え(吸入空気量の目標値の切換)から少し遅れて、主噴射時期が圧縮行程に切り換えられ、成層燃焼に切り換えられると同時に、後噴射が開始される。成層燃焼への切換直後は、まだ吸入空気量が目標値まで増加していないため、成層燃焼への切換直後に後噴射を通常の成層燃焼時の後噴射量で開始すると、筒内の空気量(酸素量)が不足して、後噴射の燃料を十分に燃焼させることができず、排気エミッションが悪化する結果となる。
【0034】
そこで、本実施形態(1)では、成層燃焼(圧縮行程噴射)に切り換わってから所定時間Bが経過するまでの期間、つまり、吸入空気量が目標値付近まで増加するまでの期間は、後噴射量を減量補正する。これにより、後噴射量を空気系の遅れを考慮した適正な噴射量に減量できるため、成層燃焼への切換直後から後噴射を開始しても、実際の筒内充填空気量に対して後噴射量が過剰にならず、後噴射の燃料を確実に燃焼させることができ、成層燃焼への切換直後から後噴射により排気温度を上昇させて三元触媒38の暖機を促進でき、始動後の排気エミッションを低減することができる。
【0035】
更に、後噴射開始直後(成層燃焼への切換直後)は、筒内温度が低いため、主噴射燃料の燃焼熱で後噴射燃料を着火可能な期間が短くなることを考慮して、本実施形態(1)では、成層燃焼に切り換わってから所定時間Bが経過するまでの期間は、後噴射時期を進角補正するようにしている。これにより、噴射時期を主噴射燃料の燃焼時期に近付けることができるため、成層燃焼への切換直後の筒内温度が低いときでも、主噴射燃料の燃焼熱で後噴射燃料を着火可能な時期に後噴射を行うことができ、成層燃焼モードへの切換直後から後噴射の燃料を確実に燃焼させて三元触媒38の暖機を促進できる。
【0036】
尚、本実施形態(1)では、成層燃焼(圧縮行程噴射)に切り換わってから所定時間Bが経過するまでの期間に、後噴射量の減量補正と後噴射時期の進角補正の両方を実施するようにしたが、いずれか一方のみを実施するようにしても良い。また、後噴射量の減量補正と後噴射時期の進角補正の両方を実施する場合、後噴射量の減量補正を実施する時間と後噴射時期の進角補正を実施する時間を異ならせても良く、例えば、後者を前者よりも短くしても良い。
【0037】
[実施形態(2)]
上記実施形態(1)では、後噴射量の減量補正量と後噴射時期の進角補正量を成層燃焼への切換後の経過時間で設定したが、図6乃至図8に示す本発明の実施形態(2)では、後噴射量の減量補正量と後噴射時期の進角補正量を、吸入空気量の目標値と実測値との偏差に応じて設定する。
【0038】
本実施形態(2)では、図6のプログラムによって触媒早期暖機制御が次のように行われる。まず、ステップ201で、三元触媒38が活性状態になっているか否かを判定し、既に、三元触媒38が活性状態になっていれば、以降の処理を行うことなく、本プログラムを終了する。
【0039】
一方、三元触媒38がまだ活性状態になっていなければ、ステップ202に進み、前記実施形態(1)と同じ方法で、後噴射実行条件(触媒早期暖機制御実行条件)が成立しているか否かを判定する。もし、後噴射実行条件が成立していなければ、以降の処理を行うことなく、本プログラムを終了する。
【0040】
これに対し、後噴射実行条件が成立していれば、ステップ203に進み、現在の燃焼モードが成層燃焼モードであるか否かを判定し、均質燃焼モードであれば、ステップ204に進み、燃焼モードを均質燃焼モードから成層燃焼モードに切り換えて本プログラムを終了する。
【0041】
一方、後噴射実行条件が成立し、且つ成層燃焼モードへ切り換えられた後は、ステップ205に進み、現在のエンジン運転状態に応じてマップ等から後噴射量Q2NDと後噴射時期A2NDを算出する。この後、ステップ206に進み、吸入空気量センサ(図示せず)で測定した実吸入空気量が目標吸入空気量付近まで増加したか否かを次式により判定する。
実吸入空気量≧目標吸入空気量−α
ここで、αは、吸入空気量センサの検出誤差を見込むための補正係数である。また、目標吸入空気量は、ECU16(制御目標値設定手段)によって設定される。
【0042】
もし、実吸入空気量<目標吸入空気量−αであれば、まだ実吸入空気量が目標吸入空気量付近まで増加していない(空気系の遅れを無視できない)ため、ステップ207に進み、後噴射量の減量補正量Qsと後噴射時期の進角補正量Tsを目標吸入空気量と実吸入空気量との偏差に応じて図7及び図8のマップにより算出する。これにより、目標吸入空気量と実吸入空気量との偏差が大きくなるほど、後噴射量の減量補正量Qsと後噴射時期の進角補正量Tsが大きい値に設定される。
【0043】
この後、ステップ209に進み、ステップ205で求めた後噴射量Q2NDを減量補正量Qsで減量補正し(Q2ND←Q2ND−Qs)、更に、ステップ205で求めた後噴射時期A2NDを進角補正量Tsで進角補正する(A2ND←A2ND−Ts)。
【0044】
その後、実吸入空気量が目標吸入空気量付近まで増加した時点で、ステップ206からステップ208に進み、減量補正量Qsと進角補正量Tsを共に0にセットする。これにより、後噴射量Q2NDの減量補正と後噴射時期A2NDの進角補正を終了し、ステップ205で求めた後噴射量Q2NDと後噴射時期A2NDで後噴射を実施する。
【0045】
以上説明した本実施形態(2)では、後噴射量の減量補正量Qsと後噴射時期の進角補正量Tsを、目標吸入空気量と実吸入空気量との偏差に応じて設定するので、成層燃焼モードへの切換直後の実際の筒内充填空気量の増加や筒内温度の上昇に追従させて後噴射量の減量補正量Qsと後噴射時期の進角補正量Tsを適正化することができ、触媒早期暖機性能向上、排気エミッション低減の効果を大きくすることができる。
【0046】
尚、本実施形態(2)では、成層燃焼モード切換後の空気系の遅れを評価するパラメータとして、目標吸入空気量と実吸入空気量との偏差を用いたが、例えば目標吸気管圧力と実吸気管圧力との偏差、又は、目標スロットル開度と実スロットル開度との偏差を用いても良い。
【0047】
また、本実施形態(2)では、後噴射量の減量補正と後噴射時期の進角補正の両方を実施するようにしたが、いずれか一方のみを実施するようにしても良い。
【図面の簡単な説明】
【図1】本発明の実施形態(1)におけるエンジン制御系システム全体の概略構成を示す図
【図2】実施形態(1)の触媒早期暖機制御プログラムの処理の流れを示すフローチャート
【図3】後噴射実行領域を決定するマップを概念的に示す図
【図4】実施形態(1)の触媒早期暖機制御の実行例を示すタイムチャート
【図5】主噴射と後噴射と筒内温度との関係を示すタイムチャート
【図6】実施形態(2)の触媒早期暖機制御プログラムの処理の流れを示すフローチャート
【図7】目標吸入空気量と実吸入空気量との偏差から後噴射量の減量補正量Qsを求めるマップを概念的に示す図
【図8】目標吸入空気量と実吸入空気量との偏差から後噴射時期の進角補正量Tsを求めるマップを概念的に示す図
【符号の説明】
11…直噴エンジン(筒内噴射式内燃機関)、12…吸気管、15…スロットルバルブ、16…ECU(燃焼モード切換手段,触媒早期暖機制御手段,制御目標値設定手段)、24…スワールコントロール弁、28…燃料噴射弁、37…排気管、38…三元触媒、39…リーンNOx触媒、41…EGR弁。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a catalyst early warm-up control device for a direct injection internal combustion engine having a function of warming up an exhaust gas purifying catalyst early in a direct injection internal combustion engine.
[0002]
[Prior art]
In a cylinder injection internal combustion engine (direct injection engine), purification of exhaust gas is performed by a catalyst as in the case of an intake pipe injection engine. However, if the catalyst does not rise to the activation temperature, the exhaust gas is exhausted. Therefore, it is desirable to perform early catalyst warm-up control that raises the exhaust gas temperature after startup and raises the catalyst temperature to the activation temperature early after starting. In an intake pipe injection engine, early catalyst warm-up control is performed by ignition delay angle control or the like, but in a direct injection engine, as shown in JP-A-4-183922, the upstream side of the catalyst in the exhaust pipe is ignited. When a catalyst is provided and the temperature of the catalyst is lower than a predetermined temperature, additional fuel is injected in the expansion stroke or exhaust stroke to mix the fuel into the exhaust gas, and this is ignited by the ignition device in the exhaust pipe and burned. There is one in which the exhaust temperature is raised to warm up the catalyst.
[0003]
However, in this configuration, it is necessary to provide an ignition device in the exhaust pipe, and there is a disadvantage that the cost increases accordingly.
[0004]
In order to eliminate this drawback, as shown in Japanese Patent Application Laid-Open No. 8-291729, after the main injection for generating the engine output in the compression stroke, the post-injection is performed in the expansion stroke, and the combustion heat of the main injection fuel The post-injected fuel is burned to increase the exhaust temperature and promote the warm-up of the catalyst.
[0005]
[Problems to be solved by the invention]
Even in a direct injection engine, since the fuel pressure is low at the time of start-up and the required injection amount is large, fuel is injected during the intake stroke to perform homogeneous combustion. Therefore, when starting, even if the catalyst is inactive, operate in homogeneous combustion mode, and after starting, switch to stratified combustion mode where fuel is injected in the compression stroke and stratified combustion is performed in the compression stroke As described in the above publication, there is a type in which the catalyst is warmed up by performing post-injection in the expansion stroke.
[0006]
However, when switching from the homogeneous combustion mode to the stratified combustion mode, the air system such as the throttle valve is largely switched, so that there is a considerable delay in switching the air system. That is, after switching from the homogeneous combustion mode to the stratified combustion mode, there is a considerable delay in increasing the amount of air charged in the cylinder to the target value. Therefore, immediately after switching to the stratified combustion mode, if the post-injection is started with the post-injection amount at the time of normal stratified combustion, the amount of air (oxygen amount) in the cylinder is insufficient and the fuel of the post-injection is burned sufficiently This results in worse exhaust emissions.
[0007]
Therefore, it is conceivable to delay the start timing of the post-injection by the delay of the air system. However, in the stratified combustion mode, since a large amount of air is sucked into the cylinder and discharged, the start timing of the post-injection (the exhaust temperature rise) If the temperature start time) is delayed, the exhaust temperature decreases immediately after switching to the stratified combustion mode, the exhaust temperature is lowered, the catalyst is cooled, the catalyst warm-up is increasingly delayed, and the exhaust emission is deteriorated. .
[0008]
Moreover, since the in-cylinder temperature is low immediately after starting, the period during which the post-injected fuel can be ignited by the combustion heat of the main injected fuel is shortened. For this reason, if the post-injection is started at the post-injection timing at the time of normal stratified combustion immediately after switching to the stratified combustion mode, there is a possibility that the fuel of the post-injection cannot be ignited by the combustion heat of the main injection fuel.
[0009]
The present invention has been made in view of such circumstances. Therefore, even if the post-injection is started immediately after switching to the stratified combustion mode, the post-injection fuel can be sufficiently burned. Thus, an object of the present invention is to provide a catalyst early warm-up control device for a direct injection internal combustion engine that can improve early catalyst warm-up performance and reduce exhaust emission.
[0010]
[Means for Solving the Problems]
[0012]
In addition, since the in-cylinder temperature is low immediately after start-up, considering that the period in which the post-injected fuel can be ignited by the combustion heat of the main injected fuel is shortened, the early warm-up of the catalyst is performed as in claim 1. when required, a predetermined time period from switching to the stratified combustion mode to the in-cylinder temperature is raised to a predetermined temperature you correct advancing the post injection timing. Here, the “predetermined period” may be set in consideration of the period until the in-cylinder temperature rises to the in-cylinder temperature during normal stratified combustion. If the post-injection timing is corrected to advance during this period and the post-injection timing is brought close to the combustion timing of the main injection fuel, the combustion heat of the main injection fuel can be obtained even when the in-cylinder temperature is low immediately after switching to the stratified combustion mode. Thus, the post-injection can be performed at a time when the post-injected fuel can be ignited. This makes it possible to reliably burn the post-injected fuel immediately after switching to the stratified combustion mode and to promote warm-up of the catalyst. Further, in the invention according to claim 1 , the post-injection is performed so that the fuel injected later is ignited and burned in the cylinder for a predetermined period from when the stratified combustion mode is switched to when the in-cylinder temperature rises to the predetermined temperature. The timing is corrected to advance.
[0013]
In this case, the advance angle correction amount of the post injection timing may be a fixed value, but as in claim 2 , the advance angle correction amount of the post injection timing is set according to the deviation between the control target value of the air system and the actual measurement value. You may make it do. In this way, the advance angle correction amount of the post injection timing can be optimized by following the rise in the in-cylinder temperature (increase in the in-cylinder charged air amount) immediately after switching to the stratified combustion mode, and the catalyst early The effect of improving warm-up performance and reducing exhaust emissions can be increased.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
[Embodiment (1)]
Hereinafter, an embodiment (1) of the present invention will be described with reference to FIGS.
First, a schematic configuration of the entire engine control system will be described with reference to FIG. An air cleaner 13 is provided at the most upstream portion of the intake pipe 12 of the direct injection engine 11 that is a direct injection internal combustion engine. A throttle valve 15 whose opening degree is adjusted by a step motor 14 is provided downstream of the air cleaner 13. Is provided. The step motor 14 is driven based on an output signal from an engine electronic control circuit (hereinafter referred to as “ECU”) 16, whereby the opening (throttle opening) of the throttle valve 15 is controlled. Accordingly, the intake air amount to each cylinder is adjusted. A throttle sensor 17 for detecting the throttle opening is provided in the vicinity of the throttle valve 15.
[0015]
A surge tank 19 is provided downstream of the throttle valve 15, and an intake manifold 20 that introduces air into each cylinder of the engine 11 is connected to the surge tank 19. A first intake passage 21 and a second intake passage 22 are respectively formed in the intake manifold 20 of each cylinder, and the first intake passage 21 and the second intake passage 22 are formed in each cylinder of the engine 11. The two intake ports 23 are connected to each other. A swirl control valve 24 is disposed in the second intake passage 22 of each cylinder. The swirl control valve 24 of each cylinder is connected to a step motor 26 via a common shaft 25. The step motor 26 is driven based on an output signal from the ECU 16 to control the opening degree of the swirl control valve 24, and the swirl flow intensity in each cylinder is adjusted according to the opening degree. A swirl control valve sensor 27 that detects the opening degree of the swirl control valve 24 is attached to the step motor 26.
[0016]
A fuel injection valve 28 for directly injecting fuel into the cylinder is attached to the upper part of each cylinder of the engine 11. The fuel sent from the fuel tank (not shown) to the fuel delivery pipe 29 through the fuel pipe 45 is injected into the combustion chamber from the fuel injection valve 28 of each cylinder and mixed with the intake air introduced from the intake port 23. As a result, an air-fuel mixture is formed. A fuel pressure sensor 30 for detecting the fuel pressure is attached to the fuel delivery pipe 29.
[0017]
Further, an ignition plug (not shown) is attached to the cylinder head of the engine 11 for each cylinder, and the air-fuel mixture in the combustion chamber is ignited by ignition of each ignition plug. The cylinder discrimination sensor 32 outputs a pulsed cylinder discrimination signal when the specific cylinder reaches the intake top dead center, and the crank angle sensor 33 sets the crankshaft of the engine 11 to a predetermined crank angle (for example, 30 ° C.). Each time the engine rotates, a pulsed crank angle signal is output, and the engine speed is detected based on the output frequency of the crank angle signal. Further, crank angle detection and cylinder discrimination are performed based on the crank angle signal and the cylinder discrimination signal.
[0018]
On the other hand, an exhaust pipe 37 is connected to the exhaust port 35 of the engine 11 via an exhaust manifold 36. In the exhaust pipe 37, a three-way catalyst 38 for efficiently purifying exhaust gas in the vicinity of the stoichiometric air-fuel ratio and a NOx occlusion type lean NOx catalyst 39 are arranged in series. The lean NOx catalyst 39 adsorbs NOx in the exhaust during lean operation where the oxygen concentration in the exhaust is high, and reduces the adsorbed NOx when the air-fuel ratio is switched to rich and the oxygen concentration in the exhaust decreases. Purify and release. A NOx concentration sensor (not shown) for detecting the NOx concentration in the exhaust gas flowing out from the lean NOx catalyst 39 is installed on the downstream side of the lean NOx catalyst 39, and the lean NOx catalyst 39 estimated from the NOx concentration in the exhaust gas. When the amount of NOx adsorbed exceeds a predetermined value, the air-fuel ratio is temporarily switched from lean to rich.
[0019]
Further, an EGR pipe 40 that recirculates a part of the exhaust gas is connected between the upstream side of the three-way catalyst 38 in the exhaust pipe 37 and the surge tank 19, and an EGR amount ( An EGR valve 41 for controlling the exhaust gas recirculation amount is provided. The accelerator pedal 18 is provided with an accelerator sensor 42 that detects the accelerator opening.
[0020]
Output signals from the various sensors described above are input to the ECU 16. The ECU 16 is mainly composed of a microcomputer, and in accordance with a control program stored in a built-in ROM (storage medium), based on various sensor outputs, the step motors 14 and 26, the EGR valve 41, and the fuel injection valve 28 described above. Control the operation of the spark plug. For example, during low / medium load operation, a small amount of fuel is injected in the compression stroke so that the air-fuel ratio becomes lean, and a thicker air-fuel mixture is formed around the spark plug to cause stratified combustion. Let the air-fuel ratio as a whole be lean (stratified combustion mode). Further, at the time of high load operation or at the time of start-up, the fuel injection amount is increased so as to be near or slightly richer than the theoretical air-fuel ratio, and fuel is injected in the intake stroke to perform homogeneous combustion (homogeneous combustion mode). Thus, the function of the ECU 16 for switching the combustion mode plays a role corresponding to the combustion mode switching means in the claims.
[0021]
Further, the ECU 16 executes the catalyst early warm-up control program shown in FIG. 2 to switch to the stratified combustion mode to generate engine output in the compression stroke when the early warm-up of the three-way catalyst 38 is required. After performing the main injection, post-injection is performed in the expansion stroke (see FIG. 5), and the post-injection fuel is combusted by the combustion heat of the main injection fuel to raise the exhaust gas temperature. Further, during the early catalyst warm-up control, the post-injection amount is corrected to decrease and the post-injection timing is advanced by a predetermined period after switching to the stratified combustion mode (see FIG. 4). Hereinafter, processing contents of the catalyst early warm-up control program will be described.
[0022]
This program is started at every predetermined crank angle after an ignition switch (not shown) is turned on, and serves as a catalyst early warm-up control means in the claims. When this program is started, first, in step 101, it is determined whether or not the three-way catalyst 38 is in an activated state based on whether or not the catalyst temperature is equal to or higher than the activation lower limit temperature (for example, 200 ° C.). The catalyst temperature may be detected using a catalyst temperature sensor (not shown) installed on the three-way catalyst 38, or the catalyst temperature may be estimated from the cooling water temperature and the elapsed time after starting.
[0023]
If it is determined in step 101 that the three-way catalyst 38 is in an active state, it is not necessary to perform early catalyst warm-up control, so the routine proceeds to step 102 and the count value of the elapsed time counter CCNG after stratified combustion mode switching is reached. Is reset to 0 and the program is terminated. The elapsed time counter CCNG after switching the stratified combustion mode is a counter that counts the elapsed time after switching the stratified combustion mode.
[0024]
On the other hand, if the three-way catalyst 38 is not yet activated, the routine proceeds to step 103, where it is determined whether or not a post-injection execution condition (catalyst early warm-up control execution condition) is satisfied. Here, the post-injection execution condition is an operation state in which stable combustion is possible even when the post-injection is performed after switching to the stratified combustion mode. For example, as shown in FIG. A region where the engine load is small may be determined as the post-injection execution region, or the post-injection execution condition may be a light load region and a predetermined time or more after the start.
[0025]
Even after the start, if the post-injection execution condition is not satisfied, the post-injection (catalyst early warm-up control) is not performed, and the count value of the elapsed time counter CCNG after stratified combustion mode switching is reset to 0 (step 102). ), This program ends.
[0026]
On the other hand, if the post-injection execution condition is satisfied, the process proceeds to step 104, where it is determined whether or not the current combustion mode is the stratified combustion mode. The mode is switched from the homogeneous combustion mode to the stratified combustion mode, the count value of the elapsed time counter CCNG after switching to the stratified combustion mode is reset to 0 (step 106), and this program is terminated.
[0027]
On the other hand, after the post-injection execution condition is established and the stratified combustion mode is switched, the routine proceeds to step 107, where the post-injection amount Q2ND and the post-injection timing A2ND are calculated from a map or the like according to the current engine operating state ( The post-injection timing A2ND is set based on, for example, the compression top dead center). Thereafter, the routine proceeds to step 108, where it is determined whether or not the count value of the elapsed time counter CCNG after switching to the stratified combustion mode is greater than or equal to a predetermined value B, that is, whether or not the elapsed time after switching to the stratified combustion mode has exceeded a predetermined time. To do. Here, the predetermined value B is set to a value corresponding to a period during which an air system delay (oxygen supply amount delay) occurs after switching to the stratified combustion mode.
[0028]
Therefore, if the count value of the elapsed time counter CCNG after switching to the stratified combustion mode is less than the predetermined value B, the air system has been delayed after switching to the stratified combustion mode. After the combustion mode switching elapsed time counter CCNG is incremented, the routine proceeds to step 110 where the post-injection amount Q2ND is corrected to decrease in consideration of the delay of the air system after switching to the stratified combustion mode, and the post-injection timing A2ND is set. Correct the advance angle.
[0029]
At this time, the reduction correction of the post-injection amount Q2ND is performed by multiplying the post-injection amount Q2ND obtained in step 107 by the correction coefficient K1 (K1 <1.0), and the advance angle correction of the post-injection timing A2ND is performed in step 107. This is performed by subtracting the advance angle correction amount T1 from the post-injection timing A2ND obtained in the above. Here, although the correction coefficient K1 and the advance correction amount T1 may be fixed values, they may be changed according to the count value of the elapsed time counter CCNG after stratified combustion mode switching. For example, as the count value of the elapsed time counter CCNG after switching to the stratified combustion mode increases, the correction coefficient K1 is increased to reduce the decrease correction amount of the post-injection amount Q2ND and the advance angle correction amount T1 (FIG. 4). reference).
[0030]
Reduction correction of the post-injection amount Q2ND and advance angle correction of the post-injection timing A2ND are performed until the count value of the elapsed time counter CCNG after stratified combustion mode switching reaches the predetermined value B. As a result, the reduction correction of the post-injection amount Q2ND and the advance angle correction of the post-injection timing A2ND are performed during a period in which the air system delay occurs after switching to the stratified combustion mode.
[0031]
Thereafter, when the count value of the elapsed time counter CCNG after switching to the stratified combustion mode reaches the predetermined value B, the count value of the counter CCNG is fixed to the predetermined value B (step 110), the post-injection amount Q2ND is decreased and corrected. The advance angle correction at time A2ND is terminated. Thus, after the delay of the air system can be ignored, the post-injection is performed at the post-injection amount Q2ND and the post-injection timing A2ND obtained in step 107. The post-injected fuel is ignited and burned by the combustion heat of the main injection fuel, and the exhaust temperature is raised to promote the warm-up of the three-way catalyst 38.
[0032]
An execution example of the catalyst early warm-up control of the present embodiment (1) described above will be described with reference to the time chart of FIG. When the engine is started, the post-injection execution condition (catalyst early warm-up control execution condition) is not satisfied, and the engine 11 is started in the homogeneous combustion mode. When the post-injection execution condition is satisfied after the start, the required combustion mode is switched to the stratified combustion mode, and the air system (throttle valve 15, swirl control valve 24, etc.) is immediately switched to the control target value for stratified combustion. At this time, at the same time as the required combustion mode is switched to the stratified combustion mode, the target value of the intake air amount increases in a stepped manner. However, since the air system is delayed, the actual intake air amount is delayed with respect to the target value. Increase.
[0033]
Slightly after the switching of the air system (switching of the target value of the intake air amount), the main injection timing is switched to the compression stroke and switched to stratified combustion, and at the same time, the post-injection is started. Immediately after switching to stratified combustion, the intake air amount has not yet increased to the target value, so if the post-injection is started at the post-injection amount during normal stratified combustion immediately after switching to stratified combustion, the amount of air in the cylinder The (oxygen amount) is insufficient, and the post-injected fuel cannot be combusted sufficiently, resulting in a deterioration in exhaust emission.
[0034]
Therefore, in the present embodiment (1), the period until the predetermined time B elapses after switching to stratified combustion (compression stroke injection), that is, the period until the intake air amount increases to near the target value is Correct the injection amount to decrease. As a result, the post-injection amount can be reduced to an appropriate injection amount that takes into account the delay of the air system, so even if the post-injection is started immediately after switching to stratified combustion, the post-injection is performed with respect to the actual cylinder air charge The amount of fuel does not become excessive, the post-injection fuel can be burned reliably, the warming-up of the three-way catalyst 38 can be promoted by increasing the exhaust temperature by post-injection immediately after switching to stratified combustion, Exhaust emissions can be reduced.
[0035]
Further, in consideration of the fact that the in-cylinder temperature is low immediately after the start of post-injection (immediately after switching to stratified combustion), the period in which the post-injected fuel can be ignited by the combustion heat of the main injected fuel is shortened. In (1), the post-injection timing is corrected to advance during a period from when switching to stratified combustion until a predetermined time B has elapsed. As a result, the injection timing can be brought close to the combustion timing of the main injection fuel, so that even when the in-cylinder temperature immediately after switching to stratified combustion is low, the timing is such that the post-injection fuel can be ignited by the combustion heat of the main injection fuel. The post-injection can be performed, and the fuel of the post-injection can be surely burned immediately after switching to the stratified combustion mode, and the warm-up of the three-way catalyst 38 can be promoted.
[0036]
In the present embodiment (1), both the post-injection amount reduction correction and the post-injection timing advance correction are performed during a period from when switching to stratified combustion (compression stroke injection) until a predetermined time B has elapsed. Although implemented, only one of them may be implemented. Further, when both the post-injection amount reduction correction and the post-injection timing advance correction are performed, the time for performing the post-injection amount reduction correction and the time for performing the post-injection timing advance correction may be different. For example, the latter may be shorter than the former.
[0037]
[Embodiment (2)]
In the above embodiment (1), the post-injection amount reduction correction amount and the post-injection timing advance correction amount are set by the elapsed time after switching to stratified combustion. However, the embodiment of the present invention shown in FIGS. In the form (2), the reduction correction amount of the post injection amount and the advance correction amount of the post injection timing are set according to the deviation between the target value of the intake air amount and the actual measurement value.
[0038]
In the present embodiment (2), the catalyst early warm-up control is performed as follows by the program of FIG. First, in step 201, it is determined whether or not the three-way catalyst 38 is in an activated state. If the three-way catalyst 38 is already in an activated state, the program is terminated without performing the subsequent processing. To do.
[0039]
On the other hand, if the three-way catalyst 38 is not yet activated, the routine proceeds to step 202, where the post injection execution condition (catalyst early warm-up control execution condition) is established by the same method as in the embodiment (1). Determine whether or not. If the post-injection execution condition is not satisfied, the program is terminated without performing the subsequent processing.
[0040]
On the other hand, if the post-injection execution condition is satisfied, the process proceeds to step 203, where it is determined whether or not the current combustion mode is the stratified combustion mode. The mode is changed from the homogeneous combustion mode to the stratified combustion mode, and this program is terminated.
[0041]
On the other hand, after the post-injection execution condition is satisfied and the stratified combustion mode is switched to, the routine proceeds to step 205 where the post-injection amount Q2ND and the post-injection timing A2ND are calculated from a map or the like according to the current engine operating state. Thereafter, the routine proceeds to step 206, where it is determined whether or not the actual intake air amount measured by the intake air amount sensor (not shown) has increased to the vicinity of the target intake air amount.
Actual intake air amount ≥ Target intake air amount-α
Here, α is a correction coefficient for allowing detection error of the intake air amount sensor. The target intake air amount is set by the ECU 16 (control target value setting means).
[0042]
If the actual intake air amount <target intake air amount−α, the actual intake air amount has not yet increased to the vicinity of the target intake air amount (the delay in the air system cannot be ignored). The injection amount reduction correction amount Qs and the post-injection timing advance correction amount Ts are calculated according to the deviation between the target intake air amount and the actual intake air amount using the maps shown in FIGS. As a result, the larger the deviation between the target intake air amount and the actual intake air amount, the larger the post-injection amount decrease correction amount Qs and the post-injection timing advance correction amount Ts.
[0043]
Thereafter, the process proceeds to step 209, where the post-injection amount Q2ND obtained in step 205 is reduced by a reduction correction amount Qs (Q2ND ← Q2ND−Qs), and the post-injection timing A2ND obtained in step 205 is further advanced. The advance angle is corrected by Ts (A2ND ← A2ND−Ts).
[0044]
Thereafter, when the actual intake air amount increases to near the target intake air amount, the process proceeds from step 206 to step 208, where both the reduction correction amount Qs and the advance correction amount Ts are set to zero. Thus, the reduction correction of the post injection amount Q2ND and the advance angle correction of the post injection timing A2ND are finished, and the post injection is performed at the post injection amount Q2ND and the post injection timing A2ND obtained in step 205.
[0045]
In the present embodiment (2) described above, the post-injection amount reduction correction amount Qs and the post-injection timing advance correction amount Ts are set according to the deviation between the target intake air amount and the actual intake air amount. Improving the post-injection amount decrease correction amount Qs and the post-injection timing advance correction amount Ts by following the actual increase in the in-cylinder charged air amount and the increase in the in-cylinder temperature immediately after switching to the stratified combustion mode. The effect of improving the catalyst early warm-up performance and reducing exhaust emissions can be increased.
[0046]
In this embodiment (2), the deviation between the target intake air amount and the actual intake air amount is used as a parameter for evaluating the delay of the air system after switching the stratified combustion mode. A deviation from the intake pipe pressure or a deviation between the target throttle opening and the actual throttle opening may be used.
[0047]
Further, in the present embodiment (2), both the post-injection amount decrease correction and the post-injection timing advance correction are performed, but only one of them may be performed.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic configuration of an entire engine control system in an embodiment (1) of the present invention. FIG. 2 is a flowchart showing a process flow of a catalyst early warm-up control program in an embodiment (1). FIG. 4 is a diagram conceptually showing a map for determining a post-injection execution region. FIG. 4 is a time chart showing an execution example of catalyst early warm-up control in the embodiment (1). FIG. 5 is a main injection, post-injection, and in-cylinder temperature. FIG. 6 is a flowchart showing the flow of processing of the catalyst early warm-up control program of the embodiment (2). FIG. 7 is a post-injection amount based on a deviation between the target intake air amount and the actual intake air amount. FIG. 8 is a diagram conceptually showing a map for obtaining a reduction correction amount Qs of the engine. FIG. 8 is a diagram conceptually showing a map for obtaining the advance correction amount Ts of the post injection timing from the deviation between the target intake air amount and the actual intake air amount. Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... Direct injection engine (cylinder injection internal combustion engine), 12 ... Intake pipe, 15 ... Throttle valve, 16 ... ECU (combustion mode switching means, catalyst early warm-up control means, control target value setting means), 24 ... Swirl Control valve, 28 ... Fuel injection valve, 37 ... Exhaust pipe, 38 ... Three-way catalyst, 39 ... Lean NOx catalyst, 41 ... EGR valve.

Claims (2)

燃料噴射弁から筒内に燃料を直接噴射して燃焼させ、その排出ガスを触媒で浄化するようにした筒内噴射式内燃機関において、
吸気行程で燃料を噴射して均質燃焼させる均質燃焼モードと圧縮行程で燃料を噴射して成層燃焼させる成層燃焼モードとを運転状態に応じて切り換える燃焼モード切換手段と、
前記触媒の早期暖機が要求される時に成層燃焼モードに切り換えて圧縮行程で機関出力を発生させるための主噴射を行った後に膨張行程で後噴射を行って排気温度を上昇させる触媒早期暖機制御手段とを備え、
前記触媒早期暖機制御手段は、前記触媒の早期暖機が要求される時に成層燃焼モードに切り換えてから筒内温度が所定温度に昇温するまでの所定の期間は後噴射された燃料が筒内で着火、燃焼するように後噴射時期を進角補正することを特徴とする筒内噴射式内燃機関の触媒早期暖機制御装置。
In a cylinder injection internal combustion engine in which fuel is directly injected from a fuel injection valve into a cylinder and burned, and the exhaust gas is purified by a catalyst.
Combustion mode switching means for switching between a homogeneous combustion mode for injecting fuel in the intake stroke and performing homogeneous combustion and a stratified combustion mode for injecting fuel in the compression stroke and for performing stratified combustion in accordance with the operating state;
When the catalyst is required to be warmed up early, the catalyst is warmed up by switching to the stratified combustion mode and performing the main injection for generating the engine output in the compression stroke and then performing the post-injection in the expansion stroke to increase the exhaust temperature. Control means,
The catalyst early warm-up control means is configured such that when the catalyst is required to be warmed up early, the post-injected fuel is injected into the cylinder for a predetermined period after switching to the stratified combustion mode until the in-cylinder temperature rises to a predetermined temperature. A catalyst early warm-up control device for a cylinder injection internal combustion engine, wherein the post-injection timing is corrected so as to ignite and burn in the cylinder.
運転状態に応じて空気系の制御目標値を設定する制御目標値設定手段を備え、
前記触媒早期暖機制御手段は、前記後噴射時期の進角補正量を前記空気系の制御目標値と実測値との偏差に応じて設定することを特徴とする請求項に記載の筒内噴射式内燃機関の触媒早期暖機制御装置。
Control target value setting means for setting a control target value of the air system according to the operating state,
2. The in-cylinder according to claim 1 , wherein the catalyst early warm-up control unit sets an advance correction amount of the post-injection timing according to a deviation between a control target value of the air system and an actual measurement value. A catalyst early warm-up control device for an injection internal combustion engine.
JP2000201427A 2000-06-29 2000-06-29 Catalyst early warm-up control device for in-cylinder internal combustion engine Expired - Lifetime JP4254021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000201427A JP4254021B2 (en) 2000-06-29 2000-06-29 Catalyst early warm-up control device for in-cylinder internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000201427A JP4254021B2 (en) 2000-06-29 2000-06-29 Catalyst early warm-up control device for in-cylinder internal combustion engine

Publications (2)

Publication Number Publication Date
JP2002013431A JP2002013431A (en) 2002-01-18
JP4254021B2 true JP4254021B2 (en) 2009-04-15

Family

ID=18699122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000201427A Expired - Lifetime JP4254021B2 (en) 2000-06-29 2000-06-29 Catalyst early warm-up control device for in-cylinder internal combustion engine

Country Status (1)

Country Link
JP (1) JP4254021B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100460904B1 (en) * 2002-09-10 2004-12-09 현대자동차주식회사 Warm-up controlling device of vehicle and method thereof
JP3968330B2 (en) * 2003-08-08 2007-08-29 株式会社日立製作所 In-cylinder engine combustion control apparatus and method
JP4356595B2 (en) 2004-11-25 2009-11-04 トヨタ自動車株式会社 Control device for internal combustion engine
JP4572827B2 (en) * 2005-12-07 2010-11-04 トヨタ自動車株式会社 Combustion control device for internal combustion engine
JP4776566B2 (en) * 2007-02-28 2011-09-21 本田技研工業株式会社 Fuel control device for internal combustion engine
JP5115869B2 (en) * 2010-07-06 2013-01-09 トヨタ自動車株式会社 Control device for internal combustion engine
JP5937468B2 (en) * 2012-09-12 2016-06-22 株式会社日本自動車部品総合研究所 Control device for internal combustion engine
JP6131847B2 (en) * 2013-12-19 2017-05-24 マツダ株式会社 Control unit for direct injection engine
JP2021161974A (en) * 2020-03-31 2021-10-11 本田技研工業株式会社 Fuel injection control device

Also Published As

Publication number Publication date
JP2002013431A (en) 2002-01-18

Similar Documents

Publication Publication Date Title
US6340014B1 (en) Control for direct fuel injection spark ignition internal combustion engine
JP3613023B2 (en) In-cylinder injection engine control device
JP2009019538A (en) Control device for cylinder injection type internal combustion engine
EP1859140A1 (en) Control apparatus for internal combustion engine
JP2004353552A (en) Catalyst early warm-up control device for internal combustion engine
JP4254021B2 (en) Catalyst early warm-up control device for in-cylinder internal combustion engine
JP3931820B2 (en) Internal combustion engine and control method for internal combustion engine
US20120222407A1 (en) Catalyst warming-up controller for internal combustion engine
JP4378829B2 (en) Control device for internal combustion engine
JP3552609B2 (en) Control device for spark ignition type direct injection engine
JP4198011B2 (en) Compressive self-ignition prevention device for internal combustion engine when starting
JP4075679B2 (en) Start control device for internal combustion engine
JP2002013430A (en) Catalyst early warming controller of cylinder injection internal combustion engine
JP4253984B2 (en) Diesel engine control device
JP3743277B2 (en) Control device for direct-injection spark-ignition internal combustion engine
JP2006002683A (en) Control device for internal combustion engine
JP2004060504A (en) Control device of direct injection type spark ignition engine
JP3648864B2 (en) Lean combustion internal combustion engine
JP2004028031A (en) Control device and method of direct injection spark ignition-type engine
JP3962920B2 (en) Fuel injection control device for in-cylinder internal combustion engine
JP3812301B2 (en) Control device for direct-injection spark-ignition internal combustion engine
JPH11270387A (en) Starting control device of internal combustion engine
JPH10212986A (en) In-cylinder injection type engine
JP4415803B2 (en) Control device for internal combustion engine
JP4666542B2 (en) Exhaust gas purification control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080331

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080903

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4254021

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term