[go: up one dir, main page]

JP3797165B2 - High carbon steel sheet for processing with small in-plane anisotropy and method for producing the same - Google Patents

High carbon steel sheet for processing with small in-plane anisotropy and method for producing the same Download PDF

Info

Publication number
JP3797165B2
JP3797165B2 JP2001280980A JP2001280980A JP3797165B2 JP 3797165 B2 JP3797165 B2 JP 3797165B2 JP 2001280980 A JP2001280980 A JP 2001280980A JP 2001280980 A JP2001280980 A JP 2001280980A JP 3797165 B2 JP3797165 B2 JP 3797165B2
Authority
JP
Japan
Prior art keywords
steel sheet
value
less
carbon steel
plane anisotropy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001280980A
Other languages
Japanese (ja)
Other versions
JP2003089846A (en
Inventor
毅 藤田
展之 中村
博士 中田
康英 石黒
俊明 占部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2001280980A priority Critical patent/JP3797165B2/en
Publication of JP2003089846A publication Critical patent/JP2003089846A/en
Application granted granted Critical
Publication of JP3797165B2 publication Critical patent/JP3797165B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、焼入れ性と深絞り性に優れ、引張特性の面内異方性が小さい加工用高炭素鋼板およびその製造方法に関する。
【0002】
【従来の技術】
従来から高炭素鋼板は、ワッシャー、チェーン部品をはじめとした機械構造用部品などに使用されている。このような高炭素鋼板には、高い焼入れ性が要求され、最近では焼入れ後の硬さの向上のみならず、焼入れ作業の低コスト化の観点から、低温短時間での焼入れ性が望まれている。また、近年、部品の一体成形化が進みつつあり、円筒形状の部品においては更なる深絞り性への要求が高まっている。
【0003】
一方、高炭素冷延鋼板は、低炭素鋼に比べて一般に硬質なため成形性に劣るだけでなく、熱間圧延、焼鈍および冷間圧延に起因して、機械的性質の面内異方性を生じるため、従来から鋳造、鍛造で製造されている高い寸法精度が要求されるギア部品への適用は困難であった。
【0004】
そのため、焼入れ性および深絞り性を向上させること、および成形性に対する機械的性質の面内異方性を小さくすることが大きな課題であった。そこで、これまでに、高炭素鋼板において焼入れ性や深絞り性を向上させ、あるいは機械的性質の面内異方性を小さくするため、以下の技術が提案されている。
【0005】
(1)特開平5−9588号公報(以下、従来技術1という)
この公報には、熱間圧延後の鋼帯を10℃/sec以上の冷却速度で20〜500℃の温度範囲に冷却し、微細パーライトとし、その後再加熱を行い巻取って炭化物の球状化を促進し、高炭素鋼板の焼入れ性を高める技術が記載されている。
【0006】
(2)材料とプロセス、Vol.1(1988)、p.1729(以下、従来技術2という)
一般に0.65%もの高濃度の炭素を含有し、組織がフェライト/セメンタイト組織を呈する鋼板(S65C)では、低炭素鋼板に比べて成形性が低い。この文献には、熱間圧延後、冷間圧延(冷延率50%)および650℃で24hrのバッチ焼鈍を施し、さらに二次冷間圧延(冷延率65%)および680℃で24hrのバッチ焼鈍を行うことにより、引張強度が低下し、r値と伸びが向上し、かつr値の面内異方性も低炭素鋼板と同等となる高炭素冷延鋼板の製造方法について開示されている。
【0007】
(3)特開平10−152757号公報(以下、従来技術3という)
この公報には、高炭素鋼板の機械的性質の異方性の原因は圧延方向に細長く展伸した硫化物系非金属介在物の存在であるとし、C、Si、Mn、P、Cr、Ni、Mo、V、Ti、Alを規制するとともに、S含有量を重量で0.002%以下まで低減させ、介在物の圧延方向の平均長さを6μm以下とし、圧延方向の長さが4μm以下の介在物の個数を全介在物個数の80%以上とすることにより、衝撃値と全伸びについて圧延方向に直交する方向の機械的性質に対する圧延方向の機械的性質の比で0.9〜1.0の範囲になるように面内異方性を小さくした高炭素鋼板を製造することが記載されている。
【0008】
(4)特開平6−271935号公報(以下、従来技術4という)この公報には、C、Si、Mn、Cr、Mo、Ni、B、Alを特定した高炭素鋼板を熱間圧延する際に、熱間仕上げ温度をAr3変態点以上とし、熱間圧延終了から巻取りまでを30℃/sec以上で冷却し、550〜700℃の温度域で巻取るとともに、脱スケールし、その後、600〜680℃の温度で焼鈍し、40%以上の圧下率で冷間圧延し、さらに600〜680℃の温度で焼鈍した後、調圧することにより、焼入れ、焼戻し等の熱処理時に寸法変化異方性の小さい高炭素冷延鋼板を製造することが記載されている。
【0009】
(5)特開2000−328172号公報(以下、従来技術5という)
この公報には、C、Si、Mn、sol.Al、Nを規制し、また、2≦sol.Al/N≦20とし、鋼中炭化物の平均粒径が0.5μm以上で球状化率≧90%とし、また、集合組織を規制して、平均r値≧0.80、面内異方性指数Δrが±0.20以内を満足する深絞り面内異方性の小さい高炭素冷延鋼板の製造方法が記載されている。
【0010】
【発明が解決しようとする課題】
しかしながら、上述した従来技術は以下の問題点を有している。
【0011】
従来技術1では、熱間圧延後の鋼帯をそのまま巻取って冷却するため、再加熱を行っても、炭化物の球状化のための保持時間が通常の球状化焼鈍時間に比べて極めて短く、炭化物の球状化率はまだ低いレベルにあるため、十分な焼入れ性が得られない場合がある。また、急冷後の再加熱には通電加熱設備が必要であり、製造コストが膨大となる。
【0012】
従来技術2では、フェライト/セメンタイト組織を有するS65Cについては、r値の平均値は1.3程度と高いものの、圧延方向に対し0°方向(L方向)、45°方向(S方向)、90°方向(C方向)のそれぞれの方向についてのr値であるr0、r45、r90からΔr=(r0+r90−2×r45)/4で規定されるr値の面内異方性指数Δrが−0.47であり、r値の面内の異方性は非常に大きい。また、冷間圧延−焼鈍プロセスを2回も行うため、製造コストが高くなるという問題点を有している。
【0013】
一方、黒鉛化した高炭素鋼板については、r値がさらに向上し、Δrは0.34と小さくなってはいるが、依然としてr値の面内異方性は大きい。また、黒鉛はオーステナイト中への溶解速度が遅いため、焼入れ性は著しく低下する。
【0014】
従来技術3では、衝撃値と全伸びに対する面内異方性について考慮しているだけであり、鋼板の成形性の重要な指標となるr値の面内異方性については検討されていない。
【0015】
従来技術4では、焼入れ焼戻し等の熱処理時に寸法変化が小さい高炭素鋼板の製造方法が記載されているが、成形性に対する面内異方性に関しては検討されていない。
【0016】
従来技術5では、集合組織を制御することにより平均r値を向上させるとともに、Δrを低減させているが、加工性向上のため、炭化物の平均粒径を0.5μm以上に粗大化させている。このため、高炭素鋼板として重要な焼入れ性は十分に得られない。また、伸びも33%程度であり、複雑な形状の部品の一体成形を行う場合、延性不足による割れが発生するため、加工性も十分とは言えない。
【0017】
本発明はかかる事情に鑑みてなされたものであり、例えば円盤加工や円筒成形され、高い寸法精度が要求されるとともに、その後焼入れ焼戻し等の熱処理が施される部品にも適合可能な高炭素鋼板、すなわち、焼入れ性および深絞り性に優れ、かつ成形性に大きな影響を及ぼす引張特性に対する面内異方性の小さい高炭素鋼板およびその製造方法を提供することを目的とする。
【0018】
【課題を解決するための手段】
本発明は、質量%で、C:0.2%〜1.5%、Si:0.10%〜0.35%、Mn:0.1%〜0.9%、P:0.03%以下、S:0.035%以下、Cu:0.03%以下、Ni:0.025%以下、Cr:0.3%以下,残部Feおよび不可避的不純物からなる成分系を有する高炭素鋼板であって、炭化物平均粒径が0.5μm未満、さらにr値の面内異方性指数Δrが−0.15超〜0.15未満であり、平均r値が1.0以上であることを特徴とする面内異方性の小さい加工用高炭素鋼板である。ただし、Δrと平均r値は次の式で表される。
【0019】
Δr=(r0−2r45+r90)/4 (1)
平均r値=(r0+2r45+r90)/4 (2)
ここで、r0、r45、r90は、それぞれ、圧延方向に対し、0°方向(L方向)、45°方向(S方向)、90°方向(C方向)のr値を示す。
【0020】
本発明は、JIS G4051(機械構造用炭素鋼)、JIS G 4401(炭素工具鋼鋼材)、又はJIS G 4802(ばね用冷間圧延鋼帯)で規定される成分系を基本とし、かつC量が0.2%以上の成分系を有する高炭素冷延鋼板について、焼入れ性および深絞り性、ならびに引張特性の面内異方性が良好になる条件について検討を重ねた結果なされたものである。その過程で、熱間圧延、その後の冷却および巻取、冷間圧延および焼鈍等の製造条件を適正に制御すること、かつ鋼板中における炭化物の存在状態を適切に調整することが有効であることが見出された。
【0021】
また、このようにして、Δrを−0.15超〜0.15未満、平均r値を1.0以上とすることにより、円筒形状の部品の成形および高い寸法精度が要求される部品に、高炭素鋼板を適用できることが確認された。以下、個々の限定理由について説明する。
【0022】
化学成分:上記所定範囲内のC、Si、Mn、P、S、Cu、Ni、Cr
この発明の鋼の化学成分は、JIS G4051(機械構造用炭素鋼)、JIS G 4401(炭素工具鋼鋼材)、JIS G 4802(ばね用冷間圧延鋼帯)で規定される成分系を基本とするもので、発明範囲外では、これらのJIS規定を満足することができない。従って、各元素の含有量を上記の範囲内、即ち、質量%で、C:0.2%〜1.5%、Si:0.10%〜0.35%、Mn:0.1%〜0.9%、P:0.03%以下、S:0.035%以下、Cu:0.03%以下、Ni:0.025%以下、Cr:0.3%以下、残部Feおよび不可避的不純物とする。
【0023】
炭化物平均粒径:0.5μm未満
炭化物の形態は焼入れ性に大きく影響し、球状化した炭化物においては平均粒径で決定される。炭化物平均粒径が0.5μm以上に粗大化すると、高周波焼入れ等の短時間焼入れにおいて十分な焼入れ性が得られない。従って、炭化物平均粒径は0.5μm未満とする。
【0024】
面内異方性指数Δr:−0.15超〜0.15未満
r値の面内異方性指数Δrの絶対値|Δr|を小さくすることにより、円筒形状の部品を均一に成形することができる。この|Δr|が0.15以上となると、ギア部品等の高い寸法精度が要求される部品への適用は困難となる。従って、|Δr|を0.15未満、即ちΔrを−0.15超〜0.15未満の範囲内とする。
【0025】
平均r値:1.0以上
平均r値を高くすることにより、円筒形状の部品の成形において、成形高さを大きくとることができ、プレス成形の回数を削減することができる。平均r値が1.0未満では、十分な成形高さが得られず、円筒形状の部品への適用は困難となる。従って、平均r値を1.0以上とする。
【0026】
上記の面内異方性の小さい加工用高炭素鋼板を得ることが可能な製造方法の発明は次のようになる。その発明は、上記の発明の成分系を有する高炭素鋼を、熱間圧延により体積率20%以上のベイナイト相を有する組織に組織制御し、この熱延鋼板を冷間圧延し、球状化焼鈍により、上記発明の範囲の炭化物平均粒径、Δr、および平均r値とすること、即ち、炭化物平均粒径を0.5μm未満、さらにr値の面内異方性指数Δrを−0.15超〜0.15未満、平均r値を1.0以上とすることを特徴とする面内異方性の小さい加工用高炭素鋼板の製造方法である。
【0027】
この発明において、体積率20%以上のベイナイト相を有する組織とする代りに、体積率70%以上のベイナイト相を有する組織とすることを特徴とする面内異方性の小さい加工用高炭素鋼板の製造方法とすることもできる。
【0028】
これらの発明は、球状化焼鈍前の熱延鋼板の段階でベイナイト相を有する組織とすることにより、球状化焼鈍後に好ましい特性が得られるという知見に基づきなされた。
【0029】
熱延鋼板の組織におけるベイナイト相の体積率が20%を超えると、球状化焼鈍時に炭化物が微細に球状化され、焼入性が高くなる。一方、ベイナイト相の体積率が20%以下では、この効果が顕著ではない。従って、ベイナイト相の体積率を20%を超える値に制御する。また、[111]結晶方位の集積を促進し、低い冷圧率でΔr値が低減するとともに平均r値が向上する。
【0030】
さらに、ベイナイト相の体積率を70%以上とすることにより、球状化焼鈍後の炭化物が、一層微細化するのみならず、フェライト粒が均一に成長するので、極めて高い焼入性と延性を有する鋼板が得られ、同時に平均r値もさらに向上する。従って、ベイナイト相の体積率を好ましくは70%を超える値に制御する。
【0031】
この製造方法の発明において、さらに、仕上温度(Ar3変態点−20℃)以上で熱間圧延を行った後、120℃/秒を超える冷却速度で冷却終了温度620℃以下まで急冷し、次いで巻取温度550℃未満で巻取り、得られた熱延鋼板を酸洗後、圧下率30%以上の冷間圧延を行い、焼鈍温度640℃以上720℃以下で焼鈍することを特徴とする面内異方性の小さい加工用高炭素鋼板の製造方法とすることもできる。
【0032】
これらの発明において、冷却終了温度を550℃以下、巻取温度を500℃以下とすることを特徴とする面内異方性の小さい加工用高炭素鋼板の製造方法とすることもできる。
【0033】
さらに、これらの発明において、酸洗後の熱延鋼板を、焼鈍温度580℃以上680℃以下で焼鈍することを特徴とする面内異方性の小さい加工用高炭素鋼板の製造方法とすることもできる。
【0034】
これらの発明は、前述の熱延鋼板および冷延鋼板の組織を得ることが可能な製造条件について検討した結果なされたものであり、以下、その詳細を説明する。
【0035】
仕上温度: (Ar3変態点-20℃)以上
熱間圧延の仕上温度が(Ar3変態点-20℃)未満では、一部でフェライト変態が進行するためベイナイト相が十分に得られず、フェライト+パーライト+ベイナイトの混合組織となる。そのため、球状化焼鈍の際、フェライト粒が粒成長しにくくなり、高い延性が得られないとともに、[111]結晶方位の集積も十分に得られず、平均r値も向上しない。また、体積率20%を超えるベイナイト相が得られなくなり、球状化焼鈍後も炭化物が均一分散せず、焼入性が低下する。従って、仕上温度を(Ar3変態点-20℃)以上とする。
【0036】
圧延後の冷却条件: 冷却速度>120℃/秒
本発明では、変態後のフェライト相体積率の低減を図るため、圧延後の急冷(冷却)が必要である。冷却方法が徐冷であると、オーステナイトの過冷度が小さく初析フェライトが生成する。冷却速度が120℃/秒以下の場合、初析フェライトの生成が顕著となるため、体積率20%を超えるベイナイト相が得られなくなり、焼入性が低下するとともに、上記と同様、高い延性が得られず、r値も向上しない。従って、圧延後の冷却速度を120℃/秒を超える速度とする。なお、仕上圧延後、0.1秒を超え1.0秒未満の時間内で急冷を開始することもできる。
【0037】
冷却終了温度: 620℃以下
圧延後の急冷を終了する冷却終了温度が620℃より高い場合、巻取りまでの冷却(徐冷)中あるいは巻取り後にフェライトが生成するとともに、パーライトのラメラ間隔が粗大化し、ベイナイト相の体積率が20%以下に低下する。そのため、球状化焼鈍後に均一分散した微細炭化物が得られなくなり焼入性が低下するとともに、上記と同様、高い延性が得られず、r値も向上しない。従って、圧延後の急冷(冷却)の冷却終了温度を620℃以下とする。
【0038】
さらに、冷却終了温度を550℃以下にすることで、ベイナイト相の体積率を70%以上となる。その結果、球状化焼鈍の際、炭化物が一層微細に球状化して、焼入性が向上するとともに、フェライト粒が均一に成長して延性が向上する。また、それに伴い[111]結晶方位の集積を促進し、低い冷圧率でΔr値が低減するとともに平均r値が向上する。
【0039】
巻取温度: 550℃未満
急冷後の巻取においては、巻取温度が550℃を超えると初析フェライトが生じるとともに、パーライトのラメラ間隔が大きくなり、体積率20%を超えるベイナイト相が得られなくなる。そのため、焼鈍後の炭化物が粗大化して焼入性が劣化するとともに、十分な延性が得られず加工性が低下し、Δr値が大きくなり、平均r値が低下する。従って、巻取温度を550℃未満とする。
【0040】
さらに、巻取温度を500℃以下とすることにより、ベイナイト相の体積率が70%以上となり、パーライトのラメラ間隔が小さくなる。その結果、冷間圧延+焼鈍後の炭化物の分散状態が一層均一微細化し、極めて優れた焼入性および加工性が得られ、同時に、低い冷圧率でΔr値が低減するとともに平均r値が向上する。なお、巻取温度の下限は特に規定しないが、低温になるほど鋼板の形状が劣化するため、200℃以上とすることが好ましい。
【0041】
中間焼鈍温度: 580℃以上680℃以下
極めて延性が高く優れた加工性の鋼板を得るために、冷間圧延前に熱延鋼板の焼鈍(中間焼鈍)を行うことが好ましい。これは、炭化物の極微細球状化を行うことにより、冷間圧延後の焼鈍(最終焼鈍)における炭化物の均一微細化と同時にフェライト粒を均一かつ十分に粒成長させることができる。その結果、高い焼入性と延性を確保し、[111]結晶方位の集積を促進し、低い冷圧率でΔr値が低減するとともに平均r値が向上する。
【0042】
中間焼鈍温度については、580℃未満の場合、焼入性、Δrおよび平均r値については上記の効果が多少得られるものの、炭化物の極微細球状化は不十分となり、最終焼鈍後に極めて高い延性は得られない。一方、中間焼鈍温度が680℃を超える場合、最終焼鈍後には炭化物平均粒径が0.5μm以上に粗大化するため焼入れ性が低下し、さらに平均r値が上昇せず、Δrは大きくなる。従って、冷間圧延前に熱延鋼板の焼鈍(中間焼鈍)を行う場合は、焼鈍温度を580℃以上680℃以下の範囲内とする。
【0043】
冷間圧延: 圧下率30%以上
冷間圧延時の圧下率は、30%未満であると未再結晶部が残るとともに炭化物の球状化が不十分となり、延性と平均r値が低下し、Δr値が増加する。従って、冷間圧延時の圧下率は30%以上とする。上限は特に規定しないが、圧延機への負荷を考慮して80%以下とすることが好ましい。
【0044】
最終焼鈍温度: 640℃以上720℃以下
冷間圧延後の最終焼鈍の焼鈍温度は、焼入れ性、延性、平均r値、およびΔr値の観点から適性に制御すべき重要な条件である。最終焼鈍温度が640℃未満の場合、炭化物の球状化およびフェライト粒の粒成長が共に不十分となるため延性が低い。また、中間焼鈍を行った場合でも、フェライト粒が十分に粒成長しないため十分な延性が得られない。さらに、[111]結晶方位の集積も不十分となり、高い平均r値が得られず、Δr値が増大する。
【0045】
一方、焼鈍温度が720℃を超える場合、炭化物平均粒径が0.5μm以上に粗大化するため焼入れ性が低下し、さらにAc1変態点を超えた場合平均r値が低下し、Δr値は大きくなる。従って、最終焼鈍温度は、640℃以上720℃以下の範囲内とする。
【0046】
【発明の実施の形態】
本発明の実施に当っては、素材鋼は、例えば転炉、電気炉等により溶製される。鋼の成分系としては、前述のJIS規格に基づき選定すればよいが、それ以外の成分系でも、本発明の効果を損なわない限り必要に応じて添加してもよい。例えばBの添加により、本発明の面内異方性を損なうことなく、焼入れ性をさらに向上させることができる。鋼片の製造は造塊-分塊圧延法、連続鋳造法、薄スラブ鋳造法、ストリップ鋳造法等のいずれの方法でもよい。
【0047】
熱間圧延プロセスは、スラブを加熱後に圧延する方法、連続鋳造後短時間の加熱処理を施す方法、またはこの加熱工程を省略して直ちに圧延する方法のいずれでもよい。なお、優れた表面品質を付与するためには、一次スケールのみならず熱間圧延中に生成する二次スケールについても十分に除去することが好ましい。また、熱間圧延中においては、バーヒーター等により加熱を行ってもよい。
【0048】
また、熱間圧延後あるいは冷間圧延前後に行われる焼鈍については、連続焼鈍、箱焼鈍のいずれでもよく、その後必要に応じて調質圧延を行う。
【0049】
【実施例】
[S35C相当]
JIS G4051のS35C相当の成分系(質量%で、C:0.35%、Si:0.21%、Mn:0.74%、P:0.015%、S:0.005%、Al:0.031%)のスラブを連続鋳造により製造し、このスラブを1100℃に加熱した後、表1に示す条件で熱間圧延および冷間圧延、焼鈍を行い、板厚1.0mmの鋼板を作製した。
【0050】
【表1】

Figure 0003797165
【0051】
これらの試料について、以下のようにして熱延板段階でのベイナイト相の体積率測定、炭化物粒径測定および粒度分布測定、引張試験、焼入れ試験を行った。
【0052】
(1) ベイナイト相の体積率の測定
サンプルの板厚断面を研磨・腐食後、走査型電子顕微鏡にてベイナイト相の体積率の測定を行った。
【0053】
(2) 炭化物粒径測定
サンプルの板厚断面を研磨・腐食後、走査型電子顕微鏡にてミクロ組織を撮影し、2500μm2の範囲から炭化物の粒径および粒度分布の測定を行った。
【0054】
(3) 引張強度
圧延方向に対し0°方向(L方向)、45°方向(S方向)、90°方向(C方向)に沿ってJIS5号試験片を採取し、引張速度10mm/minで引張試験を行い、各方向の引張特性を測定し、面内異方性を前述の式(1)および(2)を用いて算出した。
【0055】
(4) 焼入れ試験
上記鋼板を50×100mmの大きさに切断後、加熱炉で820℃に昇温し、10秒保持後に約20℃の油中へ焼入れした。焼入れ後の試験片の表面における硬さをロックウェルCスケール(HRC)で10点測定し、焼入れ性を評価した。評価は平均硬さで行った。焼入れ性の評価については、硬さ(HRC)50以上を合格とした。以上の試験の結果を表2に示す。
【0056】
【表2】
Figure 0003797165
【0057】
この表2より、発明例の鋼板No.1〜5ではElが34%以上、平均r値は1.20以上、Δr値は±0.15以内、焼入れ後の硬さ(HRC)は50以上であり優れた特性を示している。比較例では、鋼板No.6〜9は熱延鋼板の組織のベイナイト相が体積率20%以下であり、鋼板No.10は中間焼鈍温度が高すぎたため、いずれも炭化物平均粒径が0.5μm以上となっており、焼入れ後の硬さ(HRC)が50に到達していない。鋼板No.8〜12は、製造条件の一部が本発明範囲外であり、Δr値が±0.15を超えており、平均r値も発明例に比べて低目である。
【0058】
[S65C相当]
JIS G4802のS65C−CSP相当の成分系(質量%で、C:0.65%、Si:0.20%、Mn:0.76%、P:0.013%、S:0.003%、Al:0.022%)のスラブを連続鋳造により製造し、このスラブを1100℃に加熱した後、表3に示す条件で熱間圧延、冷間圧延、焼鈍を行い、板厚1.0mmの鋼板を作製した。
【0059】
【表3】
Figure 0003797165
【0060】
これらの試料について、実施例1と同様にして、熱延板段階でのベイナイト相の体積率測定、炭化物粒径測定、粒度分布測定、引張試験、焼入れ試験を行った。焼入れ性の評価については、硬さ(HRC)60以上を合格とした。以上の結果を表4に示す。
【0061】
【表4】
Figure 0003797165
【0062】
表4において、鋼板No.13〜17は、製造条件が本発明の範囲内であり、熱延板段階でのベイナイト相の体積率が20%超、炭化物の粒径が0.5μm未満の本発明例である。本発明例では、Elが32%以上、平均r値は1.20以上、Δr値は±0.15以内、焼入れ後の硬さ(HRC)は60以上であり優れた特性を示している。
【0063】
鋼板No.18〜24は比較例であり、鋼板No.18〜21は熱延板段階でのベイナイト相の体積率が20%超、炭化物の粒径が0.5μm以上で本発明の範囲外である。そのため、焼入れ後の硬さ(HRC)が目標の60に到達していない。鋼板No.18,20〜24は、製造条件の一部が本発明範囲外であり、Δr値が±0.15を超えており、平均r値も発明例に比べて低目である。
【0064】
【発明の効果】
以上述べたように、本発明によれば、焼入れ性、延性、および深絞り性に優れ、かつ成形性に大きな影響を及ぼす深絞り性の面内異方性が小さい高炭素鋼板を得ることができる。したがって、本発明によって得られた高炭素鋼板は、高い寸法精度が要求されるギア部品等に供することができる。また、本発明を適用することにより、ギア部品等を製造するに際して、鋼板の一体成形および焼入れ焼戻し処理により製造することができ、従来の鋳造鍛造プロセスに比べて、安価に製造することが可能となる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-carbon steel sheet for processing that is excellent in hardenability and deep drawability and has small in-plane anisotropy of tensile properties, and a method for producing the same.
[0002]
[Prior art]
Conventionally, high carbon steel sheets have been used for machine structural parts such as washers and chain parts. Such a high carbon steel sheet is required to have high hardenability, and recently, not only improvement of hardness after quenching but also quenching in a short time at low temperature is desired from the viewpoint of cost reduction of quenching work. Yes. In recent years, the integration of parts has been progressing, and the demand for further deep drawability is increasing for cylindrical parts.
[0003]
On the other hand, high-carbon cold-rolled steel sheets are generally harder than low-carbon steels, so they are not only inferior in formability but also in-plane anisotropy of mechanical properties due to hot rolling, annealing, and cold rolling. Therefore, it has been difficult to apply to gear parts that are conventionally manufactured by casting and forging and requiring high dimensional accuracy.
[0004]
Therefore, it was a big subject to improve hardenability and deep drawability, and to reduce in-plane anisotropy of mechanical properties with respect to moldability. Thus, the following techniques have been proposed so far in order to improve the hardenability and deep drawability of the high carbon steel sheet or to reduce the in-plane anisotropy of the mechanical properties.
[0005]
(1) Japanese Patent Application Laid-Open No. 5-9588 (hereinafter referred to as Prior Art 1)
In this publication, the steel strip after hot rolling is cooled to a temperature range of 20 to 500 ° C. at a cooling rate of 10 ° C./sec or more to form fine pearlite, and then reheated and wound up to spheroidize the carbide. Techniques that promote and enhance the hardenability of high carbon steel sheets are described.
[0006]
(2) Materials and Processes, Vol. 1 (1988), p. 1729 (hereinafter referred to as Conventional Technology 2)
In general, a steel sheet (S65C) containing a high concentration of 0.65% carbon and having a ferrite / cementite structure has a lower formability than a low-carbon steel sheet. In this document, after hot rolling, cold rolling (cold rolling rate 50%) and batch annealing at 650 ° C. for 24 hours are performed, and further, secondary cold rolling (cold rolling rate 65%) and 680 ° C. for 24 hours. Disclosed is a method for producing a high-carbon cold-rolled steel sheet, in which the tensile strength is reduced, the r-value and the elongation are improved, and the in-plane anisotropy of the r-value is equivalent to that of the low-carbon steel sheet by performing batch annealing. Yes.
[0007]
(3) JP-A-10-152757 (hereinafter referred to as Prior Art 3)
In this publication, the cause of the anisotropy of the mechanical properties of the high carbon steel sheet is the presence of sulfide-based non-metallic inclusions elongated in the rolling direction, and C, Si, Mn, P, Cr, Ni , Mo, V, Ti, Al are regulated, S content is reduced to 0.002% or less by weight, the average length of inclusions in the rolling direction is 6 μm or less, and the length in the rolling direction is 4 μm or less. By setting the number of inclusions to 80% or more of the total number of inclusions, the ratio of the mechanical properties in the rolling direction to the mechanical properties in the direction perpendicular to the rolling direction with respect to the impact value and total elongation is 0.9 to 1. It describes that a high carbon steel sheet having a small in-plane anisotropy so as to be in a range of 0.0 is manufactured.
[0008]
(4) Japanese Patent Application Laid-Open No. 6-271935 (hereinafter referred to as Prior Art 4) In this publication, when hot rolling a high carbon steel sheet specifying C, Si, Mn, Cr, Mo, Ni, B, and Al In addition, the hot finishing temperature is set to the Ar3 transformation point or higher, and the cooling from the end of hot rolling to the winding is performed at 30 ° C./sec or more, the winding is performed in the temperature range of 550 to 700 ° C., the descaling is performed, and then 600 Dimensional change anisotropy during heat treatment such as quenching and tempering by annealing at a temperature of ˜680 ° C., cold rolling at a rolling reduction of 40% or more, and further annealing at a temperature of 600˜680 ° C. Manufacturing a high-carbon cold-rolled steel sheet having a small size.
[0009]
(5) Japanese Patent Laid-Open No. 2000-328172 (hereinafter referred to as Prior Art 5)
In this publication, C, Si, Mn, sol. Al and N are regulated, and 2 ≦ sol. Al / N ≦ 20, the average particle size of carbide in steel is 0.5 μm or more and the spheroidization ratio is ≧ 90%, and the texture is restricted, the average r value ≧ 0.80, in-plane anisotropy A method for producing a high carbon cold-rolled steel sheet having a small deep drawing in-plane anisotropy satisfying an index Δr within ± 0.20 is described.
[0010]
[Problems to be solved by the invention]
However, the above-described prior art has the following problems.
[0011]
In prior art 1, since the steel strip after hot rolling is wound and cooled as it is, even if reheating is performed, the holding time for spheroidizing carbide is extremely short compared to the normal spheroidizing annealing time, Since the spheroidization rate of the carbide is still at a low level, sufficient hardenability may not be obtained. Moreover, the reheating after the rapid cooling requires an electric heating equipment, and the manufacturing cost becomes enormous.
[0012]
In prior art 2, for S65C having a ferrite / cementite structure, the average r value is as high as about 1.3, but the 0 ° direction (L direction), 45 ° direction (S direction), 90 ° with respect to the rolling direction. An in-plane difference in r value defined by Δr = (r 0 + r 90 −2 × r 45 ) / 4 from r 0 , r 45 , r 90 which are r values in each direction of the ° direction (C direction). The isotropic index Δr is −0.47, and the in-plane anisotropy of the r value is very large. Moreover, since the cold rolling-annealing process is performed twice, there is a problem that the manufacturing cost increases.
[0013]
On the other hand, for the graphitized high carbon steel sheet, the r value is further improved and Δr is as small as 0.34, but the in-plane anisotropy of the r value is still large. Moreover, since graphite has a slow dissolution rate in austenite, the hardenability is significantly reduced.
[0014]
In the prior art 3, only the in-plane anisotropy with respect to the impact value and the total elongation is considered, and the in-plane anisotropy of the r value, which is an important index of the formability of the steel sheet, has not been studied.
[0015]
Prior art 4 describes a method for producing a high-carbon steel sheet having a small dimensional change during heat treatment such as quenching and tempering, but no in-plane anisotropy with respect to formability has been studied.
[0016]
In the prior art 5, the average r value is improved and Δr is reduced by controlling the texture, but the average particle size of the carbide is coarsened to 0.5 μm or more in order to improve the workability. . For this reason, the hardenability important as a high carbon steel plate is not fully obtained. Further, the elongation is about 33%, and when integrally molding parts having complicated shapes, cracks due to insufficient ductility occur, so the workability cannot be said to be sufficient.
[0017]
The present invention has been made in view of such circumstances. For example, a high-carbon steel sheet that is disc-processed or cylindrically molded and requires high dimensional accuracy, and can also be applied to parts that are subjected to heat treatment such as quenching and tempering thereafter. That is, an object of the present invention is to provide a high-carbon steel sheet having a low in-plane anisotropy with respect to tensile properties that are excellent in hardenability and deep drawability and have a great influence on formability, and a method for producing the same.
[0018]
[Means for Solving the Problems]
The present invention is, in mass%, C: 0.2% to 1.5%, Si: 0.10% to 0.35%, Mn: 0.1% to 0.9%, P: 0.03% or less, S: 0.035% or less, Cu: 0.03% or less, Ni: 0.025% or less, Cr: 0.3% or less, high-carbon steel sheet having a component system composed of the balance Fe and inevitable impurities, with an average carbide grain size of less than 0.5 μm, and an in-plane anisotropy of r value The high-carbon steel sheet for processing with small in-plane anisotropy, characterized in that the index Δr is greater than −0.15 and less than 0.15 and the average r value is 1.0 or more. However, Δr and average r value are expressed by the following equations.
[0019]
Δr = (r 0 -2r 45 + r 90 ) / 4 (1)
Average r value = (r 0 + 2r 45 + r 90 ) / 4 (2)
Here, r 0 , r 45 , and r 90 indicate r values in the 0 ° direction (L direction), 45 ° direction (S direction), and 90 ° direction (C direction), respectively, with respect to the rolling direction.
[0020]
The present invention is based on the component system defined by JIS G4051 (carbon steel for machine structural use), JIS G 4401 (carbon tool steel), or JIS G 4802 (cold rolled steel strip for spring), and has a C content. Is a result of repeated investigations on the conditions for improving the hardenability, deep drawability, and in-plane anisotropy of tensile properties for high carbon cold-rolled steel sheets having a component system of 0.2% or more. . In that process, it is effective to properly control the production conditions such as hot rolling, subsequent cooling and winding, cold rolling and annealing, and to properly adjust the existence state of carbides in the steel sheet. Was found.
[0021]
In this way, by setting Δr to be greater than −0.15 to less than 0.15 and an average r value of 1.0 or more, a part having a cylindrical shape and a high dimensional accuracy are required. It was confirmed that a high carbon steel plate can be applied. Hereinafter, each reason for limitation will be described.
[0022]
Chemical composition: C, Si, Mn, P, S, Cu, Ni, Cr within the above specified range
The chemical composition of the steel of this invention is based on the component system defined by JIS G4051 (carbon steel for machine structure), JIS G 4401 (carbon tool steel), and JIS G 4802 (cold rolled steel strip for spring). Therefore, outside the scope of the invention, these JIS regulations cannot be satisfied. Therefore, the content of each element is within the above-mentioned range, that is, by mass%, C: 0.2% to 1.5%, Si: 0.10% to 0.35%, Mn: 0.1% to 0.9%, P: 0.03% or less, S : 0.035% or less, Cu: 0.03% or less, Ni: 0.025% or less, Cr: 0.3% or less, remaining Fe and inevitable impurities .
[0023]
Carbide average particle size: Less than 0.5 μm The form of carbide greatly affects the hardenability, and in the case of a spheroidized carbide, the average particle size is determined. When the carbide average particle size is coarsened to 0.5 μm or more, sufficient hardenability cannot be obtained in short-time hardening such as induction hardening. Therefore, the carbide average particle size is less than 0.5 μm.
[0024]
In-plane anisotropy index Δr: Cylindrical parts are uniformly formed by reducing the absolute value | Δr | of the in-plane anisotropy index Δr with an r value greater than −0.15 and less than 0.15. Can do. When this | Δr | is 0.15 or more, it becomes difficult to apply to parts such as gear parts that require high dimensional accuracy. Therefore, | Δr | is set to be less than 0.15, that is, Δr is in a range of more than −0.15 to less than 0.15.
[0025]
Average r value: 1.0 or more By increasing the average r value, the molding height can be increased and the number of press moldings can be reduced in the molding of cylindrical parts. When the average r value is less than 1.0, a sufficient molding height cannot be obtained, and application to a cylindrical part becomes difficult. Therefore, the average r value is set to 1.0 or more.
[0026]
The invention of the manufacturing method capable of obtaining the above-described high-carbon steel sheet for processing with small in-plane anisotropy is as follows. The invention controls the structure of the high carbon steel having the component system of the above invention into a structure having a bainite phase with a volume ratio of 20% or more by hot rolling, cold rolling the hot rolled steel sheet, and spheroidizing annealing. Thus, the carbide average particle diameter, Δr, and average r value within the range of the above invention are set, that is, the carbide average particle diameter is less than 0.5 μm, and the in-plane anisotropy index Δr of r value is −0.15. A method for producing a high-carbon steel sheet for processing with small in-plane anisotropy, characterized by having an ultra-less than 0.15 and an average r value of 1.0 or more.
[0027]
In this invention, instead of a structure having a bainite phase having a volume ratio of 20% or more, a high carbon steel sheet for processing having a small in-plane anisotropy is characterized by having a structure having a bainite phase having a volume ratio of 70% or more. It can also be set as this manufacturing method.
[0028]
These inventions were made based on the knowledge that preferable characteristics can be obtained after spheroidizing annealing by forming a structure having a bainite phase at the stage of the hot rolled steel sheet before spheroidizing annealing.
[0029]
If the volume fraction of the bainite phase in the structure of the hot-rolled steel sheet exceeds 20%, the carbide is finely spheroidized during spheroidizing annealing, and the hardenability is increased. On the other hand, this effect is not remarkable when the volume fraction of the bainite phase is 20% or less. Therefore, the volume fraction of the bainite phase is controlled to a value exceeding 20%. Further, the accumulation of [111] crystal orientation is promoted, the Δr value is reduced and the average r value is improved at a low cold pressure ratio.
[0030]
Furthermore, by setting the volume fraction of the bainite phase to 70% or more, the carbide after spheroidizing annealing not only further refines, but also ferrite grains grow uniformly, so it has extremely high hardenability and ductility. A steel plate is obtained, and at the same time, the average r value is further improved. Therefore, the volume fraction of the bainite phase is preferably controlled to a value exceeding 70%.
[0031]
In the invention of this production method, further, after hot rolling at a finishing temperature (Ar 3 transformation point −20 ° C.) or higher, the steel is rapidly cooled to a cooling end temperature of 620 ° C. or lower at a cooling rate exceeding 120 ° C./second, Winding at a coiling temperature of less than 550 ° C, pickling the obtained hot-rolled steel sheet, performing cold rolling at a reduction rate of 30% or more, and annealing at an annealing temperature of 640 ° C or more and 720 ° C or less It can also be set as the manufacturing method of the processing high carbon steel plate with small internal anisotropy.
[0032]
In these inventions, the cooling end temperature is 550 ° C. or lower and the coiling temperature is 500 ° C. or lower, and the method for producing a high-carbon steel sheet for processing with small in-plane anisotropy can be provided.
[0033]
Furthermore, in these inventions, the hot-rolled steel sheet after pickling is annealed at an annealing temperature of 580 ° C. or higher and 680 ° C. or lower. You can also.
[0034]
These inventions have been made as a result of studying production conditions capable of obtaining the structure of the above-described hot-rolled steel sheet and cold-rolled steel sheet, and the details thereof will be described below.
[0035]
Finishing temperature: The finishing temperature of (Ar 3 transformation point -20 ° C.) or higher hot rolling is less than (Ar 3 transformation point -20 ° C.), ferrite transformation bainite phase is not sufficiently obtained for the progress of a part, It becomes a mixed structure of ferrite + pearlite + bainite. Therefore, during spheroidizing annealing, the ferrite grains are difficult to grow and high ductility cannot be obtained, and [111] crystal orientation cannot be sufficiently accumulated, and the average r value is not improved. Further, a bainite phase exceeding 20% by volume cannot be obtained, and carbides are not uniformly dispersed even after spheroidizing annealing, and the hardenability is lowered. Accordingly, the finishing temperature is set to (Ar 3 transformation point −20 ° C.) or higher.
[0036]
Cooling conditions after rolling: Cooling rate> 120 ° C./second In the present invention, rapid cooling (cooling) after rolling is necessary in order to reduce the volume fraction of ferrite phase after transformation. When the cooling method is slow cooling, the degree of supercooling of austenite is small and proeutectoid ferrite is generated. When the cooling rate is 120 ° C./second or less, proeutectoid ferrite is prominently produced, so that a bainite phase exceeding 20% in volume can not be obtained, hardenability is reduced, and high ductility is also the same as described above. It is not obtained and the r value is not improved. Therefore, the cooling rate after rolling is set to a rate exceeding 120 ° C./second. In addition, after finish rolling, rapid cooling can also be started within the time exceeding 0.1 second and less than 1.0 second.
[0037]
Cooling end temperature: 620 ° C or less When the cooling end temperature to finish rapid cooling after rolling is higher than 620 ° C, ferrite is generated during or after cooling (slow cooling) or after winding, and the pearlite lamella spacing is coarse And the volume fraction of the bainite phase is reduced to 20% or less. For this reason, fine carbides uniformly dispersed after spheroidizing annealing cannot be obtained and hardenability is lowered. Similarly to the above, high ductility is not obtained and the r value is not improved. Therefore, the cooling end temperature of rapid cooling (cooling) after rolling is set to 620 ° C. or less.
[0038]
Furthermore, by setting the cooling end temperature to 550 ° C. or lower, the volume fraction of the bainite phase becomes 70% or higher. As a result, during the spheroidizing annealing, the carbides are further spheroidized to improve the hardenability, and the ferrite grains grow uniformly to improve the ductility. Accordingly, the accumulation of [111] crystal orientation is promoted, the Δr value is reduced and the average r value is improved at a low cold pressure ratio.
[0039]
Winding temperature: In coiling after rapid cooling below 550 ° C, when the coiling temperature exceeds 550 ° C, proeutectoid ferrite is generated, and the pearlite lamellar spacing increases, resulting in a bainite phase exceeding 20% in volume ratio. Disappear. Therefore, the carbide after annealing becomes coarse and hardenability deteriorates, and sufficient ductility cannot be obtained, workability decreases, Δr value increases, and average r value decreases. Accordingly, the winding temperature is set to less than 550 ° C.
[0040]
Furthermore, by setting the coiling temperature to 500 ° C. or less, the volume fraction of the bainite phase becomes 70% or more, and the pearlite lamella spacing is reduced. As a result, the dispersion state of the carbide after cold rolling + annealing is further refined and extremely excellent hardenability and workability are obtained. At the same time, the Δr value is reduced and the average r value is reduced at a low cold pressure ratio. improves. Although the lower limit of the coiling temperature is not particularly defined, the shape of the steel sheet is deteriorated as the temperature is lowered, and is preferably set to 200 ° C. or higher.
[0041]
Intermediate annealing temperature: 580 ° C. or more and 680 ° C. or less In order to obtain a steel sheet having extremely high ductility and excellent workability, it is preferable to perform annealing (intermediate annealing) of the hot-rolled steel sheet before cold rolling. This makes it possible to uniformly and sufficiently grow ferrite grains simultaneously with uniform refinement of carbides in annealing after cold rolling (final annealing) by performing ultrafine spheroidization of carbides. As a result, high hardenability and ductility are secured, accumulation of [111] crystal orientation is promoted, Δr value is reduced and average r value is improved at a low cold pressure ratio.
[0042]
As for the intermediate annealing temperature, when the temperature is less than 580 ° C., the above effects can be obtained somewhat for the hardenability, Δr, and average r value, but the carbide is not sufficiently microsphericalized, and the extremely high ductility after the final annealing is I can't get it. On the other hand, when the intermediate annealing temperature exceeds 680 ° C., the carbide average particle size is coarsened to 0.5 μm or more after the final annealing, so that the hardenability is lowered, the average r value is not increased, and Δr is increased. Therefore, when performing annealing (intermediate annealing) of a hot-rolled steel sheet before cold rolling, the annealing temperature is set within a range of 580 ° C to 680 ° C.
[0043]
Cold rolling: rolling reduction of 30% or more When the rolling reduction is less than 30%, unrecrystallized parts remain and carbide spheroidization becomes insufficient, ductility and average r value decrease, and Δr The value increases. Therefore, the rolling reduction during cold rolling is 30% or more. The upper limit is not particularly specified, but is preferably 80% or less in consideration of the load on the rolling mill.
[0044]
Final annealing temperature: 640 ° C. or higher and 720 ° C. or lower The final annealing temperature after cold rolling is an important condition that should be appropriately controlled in terms of hardenability, ductility, average r value, and Δr value. When the final annealing temperature is less than 640 ° C., the ductility is low because both the spheroidization of carbide and the grain growth of ferrite grains become insufficient. Further, even when intermediate annealing is performed, ferrite grains do not grow sufficiently, so that sufficient ductility cannot be obtained. Furthermore, the [111] crystal orientation is not sufficiently accumulated, so that a high average r value cannot be obtained, and the Δr value increases.
[0045]
On the other hand, when the annealing temperature exceeds 720 ° C., the carbide average particle size becomes coarser to 0.5 μm or more, so that the hardenability decreases, and when the Ac 1 transformation point is exceeded, the average r value decreases and Δr value is growing. Accordingly, the final annealing temperature is set in the range of 640 ° C. or more and 720 ° C. or less.
[0046]
DETAILED DESCRIPTION OF THE INVENTION
In carrying out the present invention, the material steel is melted by, for example, a converter, an electric furnace or the like. The steel component system may be selected based on the above-mentioned JIS standards, but other component systems may be added as necessary as long as the effects of the present invention are not impaired. For example, the addition of B can further improve the hardenability without impairing the in-plane anisotropy of the present invention. The steel slab may be produced by any method such as ingot-bundling, continuous casting, thin slab casting, strip casting, and the like.
[0047]
The hot rolling process may be any of a method of rolling the slab after heating, a method of performing a heat treatment for a short time after continuous casting, or a method of rolling immediately after omitting this heating step. In order to impart excellent surface quality, it is preferable to sufficiently remove not only the primary scale but also the secondary scale generated during hot rolling. Further, during hot rolling, heating may be performed by a bar heater or the like.
[0048]
In addition, the annealing performed after hot rolling or before and after cold rolling may be either continuous annealing or box annealing, and then temper rolling as necessary.
[0049]
【Example】
[Equivalent to S35C]
Component system equivalent to S35C of JIS G4051 (mass%, C: 0.35%, Si: 0.21%, Mn: 0.74%, P: 0.015%, S: 0.005%, Al: 0.031%) slab was manufactured by continuous casting, and this slab was heated to 1100 ° C., and then subjected to hot rolling, cold rolling and annealing under the conditions shown in Table 1 to obtain a steel plate having a thickness of 1.0 mm. Produced.
[0050]
[Table 1]
Figure 0003797165
[0051]
These samples were subjected to bainite phase volume fraction measurement, carbide particle size measurement and particle size distribution measurement, tensile test, and quenching test as follows.
[0052]
(1) Measurement of volume fraction of bainite phase The plate thickness section of the sample was polished and corroded, and then the volume fraction of the bainite phase was measured with a scanning electron microscope.
[0053]
(2) Carbide particle size measurement After polishing and corrosion of the plate thickness section of the sample, the microstructure was photographed with a scanning electron microscope, and the particle size and particle size distribution of the carbide were measured from a range of 2500 μm 2 .
[0054]
(3) Tensile strength JIS No. 5 test specimens were sampled along the 0 ° direction (L direction), 45 ° direction (S direction), and 90 ° direction (C direction) with respect to the rolling direction and pulled at a tensile speed of 10 mm / min. Tests were conducted, tensile properties in each direction were measured, and in-plane anisotropy was calculated using the above-described equations (1) and (2).
[0055]
(4) Quenching test The steel sheet was cut into a size of 50 × 100 mm, heated to 820 ° C. in a heating furnace, and kept in oil at about 20 ° C. after holding for 10 seconds. The hardness on the surface of the test piece after quenching was measured at 10 points on the Rockwell C scale (HRC) to evaluate the hardenability. Evaluation was performed by average hardness. About hardenability evaluation, hardness (HRC) 50 or more was set as the pass. The results of the above test are shown in Table 2.
[0056]
[Table 2]
Figure 0003797165
[0057]
From Table 2, the steel plates Nos. 1 to 5 of the invention examples have an El of 34% or more, an average r value of 1.20 or more, a Δr value of within ± 0.15, and a hardness after quenching (HRC) of 50 or more. It shows excellent properties. In the comparative examples, the steel sheets No. 6 to 9 had a bainite phase of the structure of the hot-rolled steel sheet with a volume ratio of 20% or less, and the steel sheet No. 10 had an intermediate annealing temperature that was too high. It is 5 μm or more, and hardness after quenching (HRC) does not reach 50. Steel plates No. 8 to 12 have some of the production conditions outside the scope of the present invention, the Δr value exceeds ± 0.15, and the average r value is lower than that of the inventive examples.
[0058]
[Equivalent to S65C]
Component system equivalent to S65C-CSP of JIS G4802 (mass%, C: 0.65%, Si: 0.20%, Mn: 0.76%, P: 0.013%, S: 0.003%, A slab of (Al: 0.022%) was manufactured by continuous casting, and this slab was heated to 1100 ° C., and then hot-rolled, cold-rolled, and annealed under the conditions shown in Table 3 to obtain a plate thickness of 1.0 mm. A steel plate was produced.
[0059]
[Table 3]
Figure 0003797165
[0060]
About these samples, it carried out similarly to Example 1, and performed the volume fraction measurement of the bainite phase in the hot-rolled sheet stage, the carbide particle size measurement, the particle size distribution measurement, the tensile test, and the quenching test. About the evaluation of hardenability, hardness (HRC) 60 or more was set as the pass. The results are shown in Table 4.
[0061]
[Table 4]
Figure 0003797165
[0062]
In Table 4, steel plates Nos. 13 to 17 have the manufacturing conditions within the scope of the present invention, the volume ratio of the bainite phase in the hot-rolled sheet stage is more than 20%, and the carbide grain size is less than 0.5 μm. It is an invention example. In the examples of the present invention, El is 32% or more, the average r value is 1.20 or more, the Δr value is within ± 0.15, and the hardness after quenching (HRC) is 60 or more, showing excellent characteristics.
[0063]
Steel plates Nos. 18 to 24 are comparative examples, and steel plates Nos. 18 to 21 are outside the scope of the present invention because the volume fraction of the bainite phase in the hot-rolled sheet stage exceeds 20% and the grain size of the carbide is 0.5 μm or more. It is. Therefore, the hardness after quenching (HRC) does not reach the target of 60. Steel plates Nos. 18 and 20 to 24 have some of the production conditions outside the scope of the present invention, the Δr value exceeds ± 0.15, and the average r value is lower than that of the inventive examples.
[0064]
【The invention's effect】
As described above, according to the present invention, it is possible to obtain a high carbon steel sheet that is excellent in hardenability, ductility, and deep drawability, and that has a small in-plane anisotropy of deep drawability that greatly affects formability. it can. Therefore, the high carbon steel plate obtained by the present invention can be used for gear parts and the like that require high dimensional accuracy. In addition, by applying the present invention, when manufacturing gear parts and the like, it can be manufactured by integral forming and quenching and tempering of steel plates, and can be manufactured at a lower cost than conventional casting and forging processes. Become.

Claims (6)

質量%で、C:0.2%〜1.5%、Si:0.10%〜0.35%、Mn:0.1%〜0.9%、P:0.03%以下、S:0.035%以下、Cu:0.03%以下、Ni:0.025%以下、Cr:0.3%以下,残部Feおよび不可避的不純物からなる成分系を有する高炭素鋼板であって、炭化物平均粒径が0.5μm未満、さらにr値の面内異方性指数Δrが−0.15超〜0.15未満であり、平均r値が1.0以上であることを特徴とする面内異方性の小さい加工用高炭素鋼板。ただし、Δrと平均r値は次の式で表される。
Δr=(r0−2r45+r90)/4
平均r値=(r0+2r45+r90)/4
ここで、r0、r45、r90は、それぞれ、圧延方向に対し、0°方向(L方向)、45°方向(S方向)、90°方向(C方向)のr値を示す。
In mass%, C: 0.2% to 1.5%, Si: 0.10% to 0.35%, Mn: 0.1% to 0.9%, P: 0.03% or less, S: 0.035% or less, Cu: 0.03% or less, Ni: 0.025% Hereinafter, a high carbon steel sheet having a component system consisting of Cr: 0.3% or less, the balance Fe and inevitable impurities , the carbide average particle size is less than 0.5 μm, and the r value in-plane anisotropy index Δr is − A high-carbon steel sheet for processing having a small in-plane anisotropy, wherein the average r value is greater than 0.15 and less than 0.15 and an average r value is 1.0 or more. However, Δr and average r value are expressed by the following equations.
Δr = (r 0 -2r 45 + r 90 ) / 4
Average r value = (r 0 + 2r 45 + r 90 ) / 4
Here, r 0 , r 45 , and r 90 indicate r values in the 0 ° direction (L direction), 45 ° direction (S direction), and 90 ° direction (C direction), respectively, with respect to the rolling direction.
請求項1記載の成分系を有する高炭素鋼を、熱間圧延により体積率20%以上のベイナイト相を有する組織に組織制御し、この熱延鋼板を冷間圧延し、球状化焼鈍により、請求項1記載の範囲内の炭化物平均粒径、r値の面内異方性指数Δr、および平均r値とすることを特徴とする面内異方性の小さい加工用高炭素鋼板の製造方法。The structure of the high-carbon steel having the component system according to claim 1 is controlled by hot rolling to a structure having a bainite phase with a volume ratio of 20% or more, and the hot-rolled steel sheet is cold-rolled and subjected to spheroidizing annealing. A method for producing a high-carbon steel sheet for processing with a small in-plane anisotropy, characterized in that the carbide average particle size in the range described in Item 1, an in-plane anisotropy index Δr of r value, and an average r value. 仕上温度(Ar3変態点−20℃)以上で熱間圧延を行った後、120℃/秒を超える冷却速度で冷却終了温度620℃以下まで急冷し、次いで巻取温度550℃未満で巻取り、得られた熱延鋼板を酸洗後、圧下率30%以上の冷間圧延を行い、焼鈍温度640℃以上720℃以下で焼鈍することを特徴とする請求項2記載の面内異方性の小さい加工用高炭素鋼板の製造方法。After hot rolling at a finishing temperature (Ar 3 transformation point −20 ° C.) or higher, the steel is rapidly cooled to a cooling end temperature of 620 ° C. or lower at a cooling rate exceeding 120 ° C./second, and then wound at a winding temperature of less than 550 ° C. 3. The in-plane anisotropy according to claim 2, wherein the obtained hot-rolled steel sheet is pickled, cold-rolled at a rolling reduction of 30% or more, and annealed at an annealing temperature of 640 ° C. or more and 720 ° C. or less. Manufacturing method for high-carbon steel sheet for machining with small size. 請求項2記載の面内異方性の小さい加工用高炭素鋼板の製造方法において、体積率20%以上のベイナイト相を有する組織に代えて、体積率70%以上のベイナイト相を有する組織とすることを特徴とする面内異方性の小さい加工用高炭素鋼板の製造方法。In the manufacturing method of the processing high carbon steel plate with small in-plane anisotropy of Claim 2, it replaces with the structure | tissue which has a bainite phase with a volume ratio of 20% or more, and sets it as the structure | tissue which has a bainite phase with a volume ratio of 70% or more. A method for producing a high-carbon steel sheet for processing having a small in-plane anisotropy. 仕上温度(Ar3変態点−20℃)以上で熱間圧延を行った後、120℃/秒を超える冷却速度で冷却終了温度550℃以下まで急冷し、次いで巻取温度500℃以下で巻取り、酸洗後、圧下率30%以上の冷間圧延を行い、焼鈍温度640℃以上720℃以下で焼鈍することを特徴とする請求項4記載の面内異方性の小さい加工用高炭素鋼板の製造方法。After hot rolling at a finishing temperature (Ar 3 transformation point −20 ° C.) or higher, the steel is rapidly cooled to a cooling end temperature of 550 ° C. or lower at a cooling rate exceeding 120 ° C./second, and then wound at a winding temperature of 500 ° C. or lower. 5. A high carbon steel sheet for processing with low in-plane anisotropy according to claim 4, wherein the steel sheet is cold-rolled at a reduction rate of 30% or more after pickling and annealed at an annealing temperature of 640 ° C. or more and 720 ° C. or less. Manufacturing method. 酸洗後の熱延鋼板を焼鈍温度580℃以上680℃以下で焼鈍することを特徴とする請求項2ないし請求項5記載の面内異方性の小さい加工用高炭素鋼板の製造方法。6. The method for producing a high-carbon steel sheet for processing with low in-plane anisotropy according to claim 2, wherein the hot-rolled steel sheet after pickling is annealed at an annealing temperature of 580 ° C. or higher and 680 ° C. or lower.
JP2001280980A 2001-09-17 2001-09-17 High carbon steel sheet for processing with small in-plane anisotropy and method for producing the same Expired - Fee Related JP3797165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001280980A JP3797165B2 (en) 2001-09-17 2001-09-17 High carbon steel sheet for processing with small in-plane anisotropy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001280980A JP3797165B2 (en) 2001-09-17 2001-09-17 High carbon steel sheet for processing with small in-plane anisotropy and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003089846A JP2003089846A (en) 2003-03-28
JP3797165B2 true JP3797165B2 (en) 2006-07-12

Family

ID=19104887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001280980A Expired - Fee Related JP3797165B2 (en) 2001-09-17 2001-09-17 High carbon steel sheet for processing with small in-plane anisotropy and method for producing the same

Country Status (1)

Country Link
JP (1) JP3797165B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101208442B (en) 2005-06-29 2011-07-20 杰富意钢铁株式会社 High-carbon hot-rolled steel sheet and process for producing the same
US8052812B2 (en) 2005-06-29 2011-11-08 Jfe Steel Corporation Method of manufacturing high carbon cold-rolled steel sheet
JP5087865B2 (en) * 2005-06-29 2012-12-05 Jfeスチール株式会社 High carbon cold-rolled steel sheet and method for producing the same
JP4696853B2 (en) * 2005-10-31 2011-06-08 Jfeスチール株式会社 Method for producing high-carbon cold-rolled steel sheet with excellent workability and high-carbon cold-rolled steel sheet
JPWO2007097043A1 (en) * 2006-02-27 2009-07-09 アイシン精機株式会社 Clutch member and manufacturing method thereof
WO2013035848A1 (en) 2011-09-09 2013-03-14 新日鐵住金株式会社 Medium carbon steel sheet, quenched member, and method for manufacturing medium carbon steel sheet and quenched member
CN108588553A (en) * 2018-03-28 2018-09-28 徐州东鑫铸造有限公司 A kind of gear casting production process
JP7355994B2 (en) * 2019-03-29 2023-10-04 日本製鉄株式会社 High carbon steel plate and its manufacturing method

Also Published As

Publication number Publication date
JP2003089846A (en) 2003-03-28

Similar Documents

Publication Publication Date Title
JP5292698B2 (en) Extremely soft high carbon hot-rolled steel sheet and method for producing the same
JP6160783B2 (en) Steel sheet and manufacturing method thereof
JP6597938B1 (en) High-strength cold-rolled steel sheet, high-strength plated steel sheet, and methods for producing them
US11401569B2 (en) High-strength cold-rolled steel sheet and method for manufacturing same
KR20200039611A (en) Carburizing steel sheet, and manufacturing method of carburizing steel sheet
KR100673422B1 (en) High carbon hot rolled steel sheet, cold rolled steel sheet and manufacturing method
JP4650006B2 (en) High carbon hot-rolled steel sheet excellent in ductility and stretch flangeability and method for producing the same
JP3879446B2 (en) Method for producing high carbon hot-rolled steel sheet with excellent stretch flangeability
WO2021193310A1 (en) High-strength hot-rolled steel sheet and method for producing same
JP2003073742A (en) Method for manufacturing high-carbon hot rolled steel sheet with high hardenability
JP3797165B2 (en) High carbon steel sheet for processing with small in-plane anisotropy and method for producing the same
JP4600196B2 (en) High carbon cold-rolled steel sheet with excellent workability and manufacturing method thereof
JP6519012B2 (en) Low carbon steel sheet excellent in cold formability and toughness after heat treatment and manufacturing method
JP3879447B2 (en) Method for producing high carbon cold-rolled steel sheet with excellent stretch flangeability
JP4696853B2 (en) Method for producing high-carbon cold-rolled steel sheet with excellent workability and high-carbon cold-rolled steel sheet
JP2001081528A (en) High carbon steel strip excellent in cold workability and hardenability and method for producing the same
JP4048675B2 (en) High carbon steel sheet for machining with low in-plane anisotropy with excellent hardenability and toughness and method for producing the same
JP4412094B2 (en) High carbon cold-rolled steel sheet and method for producing the same
JP4023225B2 (en) Hot-rolled steel sheet for rotating ironing process, method for producing the same, and automotive part
JP4622609B2 (en) Method for producing soft high workability high carbon hot rolled steel sheet with excellent stretch flangeability
JP7444096B2 (en) Hot rolled steel sheet and its manufacturing method
JP7444097B2 (en) Hot rolled steel sheet and its manufacturing method
JPH10265845A (en) Production of hot rolled alloy steel sheet excellent in cold workability
JP2024532749A (en) High strength and high toughness steel plate and its manufacturing method
JP3843478B2 (en) Manufacturing method of thin steel sheet with excellent deep drawability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060210

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060410

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3797165

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees