JP3780838B2 - Green power supply system and green power supply method - Google Patents
Green power supply system and green power supply method Download PDFInfo
- Publication number
- JP3780838B2 JP3780838B2 JP2000297054A JP2000297054A JP3780838B2 JP 3780838 B2 JP3780838 B2 JP 3780838B2 JP 2000297054 A JP2000297054 A JP 2000297054A JP 2000297054 A JP2000297054 A JP 2000297054A JP 3780838 B2 JP3780838 B2 JP 3780838B2
- Authority
- JP
- Japan
- Prior art keywords
- power
- power generation
- green
- power supply
- generation facility
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims description 29
- 238000010248 power generation Methods 0.000 claims abstract description 141
- 230000007613 environmental effect Effects 0.000 claims abstract description 51
- 230000005611 electricity Effects 0.000 claims description 11
- 230000004044 response Effects 0.000 claims description 6
- 230000001186 cumulative effect Effects 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims 1
- 239000010931 gold Substances 0.000 claims 1
- 229910052737 gold Inorganic materials 0.000 claims 1
- 230000000694 effects Effects 0.000 description 20
- 230000005540 biological transmission Effects 0.000 description 13
- 238000010586 diagram Methods 0.000 description 7
- 230000008520 organization Effects 0.000 description 7
- 238000004891 communication Methods 0.000 description 6
- 239000002803 fossil fuel Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 239000002028 Biomass Substances 0.000 description 3
- 229910052770 Uranium Inorganic materials 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000010187 selection method Methods 0.000 description 3
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 239000003034 coal gas Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 239000002918 waste heat Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000010813 municipal solid waste Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000029553 photosynthesis Effects 0.000 description 1
- 238000010672 photosynthesis Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000002901 radioactive waste Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000010902 straw Substances 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 239000002916 wood waste Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/008—Circuit arrangements for AC mains or AC distribution networks involving trading of energy or energy transmission rights
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/381—Dispersed generators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2203/00—Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
- H02J2203/20—Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/28—The renewable source being wind energy
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/40—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation wherein a plurality of decentralised, dispersed or local energy generation technologies are operated simultaneously
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/76—Power conversion electric or electronic aspects
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S40/00—Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
- Y04S40/20—Information technology specific aspects, e.g. CAD, simulation, modelling, system security
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S50/00—Market activities related to the operation of systems integrating technologies related to power network operation or related to communication or information technologies
- Y04S50/10—Energy trading, including energy flowing from end-user application to grid
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、電力供給システムに係わり、特に需要家が電力を選別できるシステムとその方法に関する。
【0002】
【従来の技術】
需要家の所望の条件に基づいて、需要家に電力を供給する技術に関する従来技術として、特開2000―78747号公報に記載されている「電力会社の選択方法および選択支援システム」がある。
【0003】
その従来技術には、電力会社毎に異なる料金体系である場合に、需要家の所望の条件に応じて電力会社別に選別し、この選別した契約条件の組合せを提示するというものである。
【0004】
【発明が解決しようとする課題】
この従来技術には、需要家にとって、単に電力の価格を考慮した選択方法しか提供されていない。産業と生活の発展にとって、電気エネルギーは必須であり、その電気を発電するのに要するエネルギーは、いくら使っても無くならならず、環境にやさしいものが特に要求される。
【0005】
例えば、太陽光、風力、ダムを使わない小規模の水力、木屑・わら・家畜の排せつ物といったバイオマス(生物資源)、地下深くのマグマから伝わる地熱、工場などでの廃熱利用や、ごみを燃やす廃棄物がある。
【0006】
一方、石油や石炭、天然ガスなどの化石燃料やウランは資源に限りがあり、使い続ければいつかなくなる。又、化石燃料を燃やせば地球温暖化の原因とされる二酸化炭素(CO2)が発生する。原子力は取り扱いに高い信頼性が要求される放射性廃棄物が残る。大規模水力発電はダム建設で周辺の生態系が破壊されかねない。
【0007】
なお、上述したバイオマスの主役は木材であり、燃やせばCO2が発生するが、生きている木は光合成のときにCO2を吸収する。燃やした分だけ植林し、森林の面積を保てば、大気中のCO2は維持できるので、環境負荷、資源枯渇の問題を生じないグリーンな発電エネルギーである。
【0008】
上述の通り、同一量の電力を発電する場合であっても、その発電に要するエネルギーの種類により、環境に及ぼす影響や地球資源の枯渇の程度が大きく異なる。
【0009】
従来、需要家に供給される電力についての地球環境負荷の影響度合い、すなわちその発電に要したエネルギー源の違いに基づくCO2の排出量やエネルギー源の枯渇の程度が需要家にとってわからなかった。すなわち需要家が行う地球環境負荷低減のための試みは、いままで単に省エネを通した電力量の低減しか方法がなく、美しい地球を保つためへの具体的な対策としての選択肢が少なかった。
【0010】
本発明では、上記の課題を解決して、電力の消費を行ない経済活動を維持しながら、需要家が環境負荷、資源枯渇を考慮することができる電力供給システムとその方法の提供を目的とする。
【0011】
【課題を解決するための手段】
上記目的を達成するために、本発明では、地球環境負荷や資源枯渇の小さい発電エネルギーを使用する発電施設からの電力供給要求を需要家から受付ける電力供給要求受付け手段と、発電施設毎の電力供給状態を記憶する電力供給内容記憶依頼手段と、発電施設の電力供給状態に応じて需要家に供給される電力のうち前記要求に対応して地球環境負荷や資源枯渇の小さい発電エネルギーを使用する発電施設からの電力の割合を決定するグリーン度算出手段と、需要家使用の電力のうち地球環境負荷や資源枯渇の小さい発電エネルギーを使用する発電施設からの電力の割合を、需要家や第3者向けに通知するグリーン度通知手段を備える構成とする。
【0012】
【発明の実施の形態】
以下、本発明によるグリーン電力供給システムとその方法の実施例について、図面を参照しながら詳細に説明する。
【0013】
本発明の一実施例を図1及び図2を用いて説明する。発電施設で使用される発電用エネルギーには、太陽光、風力、潮力、ダムを使わない小規模の水力、バイオマス(生物資源)、地熱、廃熱利用や、ごみを燃やす廃棄物、石油や石炭、天然ガスなどの化石燃料やウラン等が代表例としてあげられ、これらは、地球環境負荷に及ぼす影響や資源枯渇に対するポテンシャルは異なる。
【0014】
発電施設100で使用する発電エネルギー源の代表例として、太陽光、風力、化石燃料、ウラン燃料を使用する発電施設をそれぞれ、100a、100b、100c、100dで示している。本発明で使用するエネルギー源として、必ずしもこれらの燃料に制限されない。
【0015】
発電された電力は、各発電施設100から、発電施設送電線200を介して、送配電電力系統300を通り、需要家配電線400を介し、各需要家A〜Dすなわち、500a、500b、500c、500dに送られる。需要家の数は特に限定せず、複数の需要家であればよい。
【0016】
図中には簡単化のために、送配電電力系統300と発電施設100a、需要家500aに繋いだ送電線や配電線のみ、番号200や400で代表して図示しているが、実際は個別の送電線や配電線が設置されている。
【0017】
発電施設100a〜100dで発電した電力量や、需要家500a〜500dで消費した電力量を計測できる計測用計測装置110a〜110d、510a〜510dとそれらの情報の交信用として、発電力計測系統120、需要電力計測系統530が設けてある。この発電力計測系統120、需要電力計測系統530は有線か無線か、又専用線かインターネット回線の利用か等、交信手法は特に限定せず、情報が交信できれば良い。
【0018】
本実施例のグリーン電力供給システム1aは、図1に示すように、電力供給要求受付け手段630と電力供給内容記憶依頼手段610とグリーン度算出手段620、需要家向けグリーン度通知手段640から構成される。
【0019】
図2に示すように、電力供給内容記憶依頼手段610は、電力内容記憶手段610aと発電依頼量決定手段610bと電力供給依頼手段610cから構成されている。
【0020】
またグリーン度算出手段620は、発電力計測系統120と接続する発電量受付け手段620aと需要電力計測系統530と接続する電力消費量受付け手段620bを有している。グリーン度決定手段620cは、発電量受付け手段620a及び電力消費量受付け手段620bと接続していて、各発電施設100で発電された発電量と各需要家500で使用された電力消費量とを把握する。
【0021】
本実施例のグリーン電力供給システム1aに対して需要家500a〜500dは、地球環境負荷に及ぼす影響を考慮して、発電エネルギー源毎に発電施設100を選択した電力の供給を要求出来る。その電力供給要求は、需要家情報ルート520を介して、電力供給要求受付け手段630にて受付けられる。
【0022】
一方、発電施設情報ルート130を介して送達される、各発電施設100a〜100d毎の電力供給内容は、需要家からの電力供給要求内容とともに、電力供給内容記憶依頼手段610の中の、電力内容記憶手段610aにて常に記憶される。発電依頼量決定手段610bは、電力内容記憶手段610aに記憶されている電力供給内容と電力供給要求内容を対比し、電力の需要と供給の差が常にある一定以内になるように、発電施設送電線200に供給する電力量を決定する。その発電依頼量決定手段610bの決定に基づき、電力供給依頼手段610cは随時各発電施設100a〜100dに発電を依頼する。
【0023】
各発電施設100a〜100dとグリーン電力供給システム1a間の相互の情報交信は、発電施設情報ルート130を介して行うが、この発電施設情報ルート130は有線か無線か、又専用線かインターネット回線の利用か等交信手法は特定しない。
【0024】
各発電施設送電線200や需要家配電線400を通った電力量は、計測用計測装置110a〜110d、510a〜510dに計測され、それぞれグリーン度算出手段620中の発電量受付け手段620aと電力消費量受付け手段620bに受付けられる。
【0025】
グリーン度決定手段620cは、グリーン度算出手段620に送信されたそれぞれの電力量と、発電施設情報ルート130を介して伝えられた電力供給内容記憶依頼手段610からの出力情報と、需要家の情報とを基に、需要家に供給予定及び供給された電力に対するグリーン度を算出する。
【0026】
電力供給内容記憶依頼手段610からの出力情報の一つとして、発電施設毎の発電エネルギー源の詳細な種類、例えば、化石燃料を利用する発電施設の場合には、環境負荷の原因となる原料の組成等が、グリーン度を決定する上で有用である。
【0027】
このグリーン度は、地球環境負荷の小さい発電施設からの電力の割合をもとに、環境負荷や資源枯渇に及ぼす影響を表す尺度を示す。
【0028】
その後、需要家向けグリーン度通知手段640は、各需要家500a〜500dに需要家毎のグリーン度を通知する。この通知は、単に消費した電力のグリーン度だけではなく、需要家要求内容、予定内容及び実績内容を含めても良い。この通知は、需要家情報ルート520を介して実施される。
【0029】
本実施形態では、各需要家500a〜500dは、必要な電力量に加え、発電に要する環境負荷や資源枯渇の影響すなわち、発電施設又は発電施設毎に依存して決定されるグリーン度を考慮した電力源を選択できる。さらに需要家が消費した電力量に加え、その電力のグリーン度を各需要家500a〜500dは把握できるので、美しい地球を保つためへの需要家側からの具体的貢献が実現できる。また、本発明のグリーン電力供給システムが全世界で普及することで、地球の環境保全と資源枯渇を抑制できる効果を生む。
【0030】
本発明の他の実施形態であるグリーン電力供給システム1bを、図3を用いて説明する。グリーン度算出手段620の中のグリーン度決定手段620cにて決定されたグリーン度は、第3者向けグリーン度通知手段680にて、インターネット800を介し、第3者900の900a〜900cに公開される。
【0031】
この実施形態では、グリーン度を需要家に伝えるのに加え、この需要家の経済活動に直結する第3者例えば、需要家から生み出された商品の顧客にも需要家が消費した電力のグリーン度を公開できる。
【0032】
一般に、環境負荷が少ない自然にやさしい発電エネルギー源を用いた電力の発電コストは高いので、その普及の障害であった。本実施形態では、インターネット800を活用することで、需要家の環境悪化や資源枯渇防止に取組む姿勢を、需要家の商品の顧客に訴えることがでる。そして、各顧客が購入する商品の数量増加やグリーン割増し価格に反映でき、その結果、需要家の経済活動の継続性を維持できる効果を生む。本実施形態により、需要家に加え、第3者である顧客が、環境負荷低減、資源枯渇防止に貢献する選択方法が実現できる。
【0033】
本発明の他の実施形態であるグリーン電力供給システム1cを、図4を用いて説明する。グリーン度算出手段620の中のグリーン度決定手段620cにて決定されたグリーン度をもとに、グリーン電力認証決定手段660でグリーン電力の認証を行う。その結果は、グリーン電力認証情報通知手段670にて、インターネット800を介し、第3者900の900a〜900cと需要家情報ルート520を介して需要家500に公開される。
【0034】
この実施形態では、グリーン電力認証決定手段660をグリーン電力供給システム1c内に構成しているが、第3者、例えば公的な機関に設けられていてもよい。その場合、グリーン電力認証申請手段とグリーン電力認証受付け手段をもその公的機関に設けることも本実施形態に含まれる。
【0035】
さらに、グリーン度決定手段620cやグリーン電力認証決定手段660で得られるグリーン情報を発電施設100に送達する手段やインターネットで第3者に公開する手段を設ける実施例も本発明に含まれる。これにより、発電施設に環境負荷低減、資源枯渇防止への取組み内容を表示することやインターネットで第3者に公開することで、その地域住民へのPRができ、社会との共存が図れる。又本発明のグリーン電力供給システムでは、発電施設や需要家が、環境負荷低減、資源枯渇防止への取組み内容の認証情報から、客観評価ができ、その効果も定量化できるので、ISO14000シリーズに基づく、組織の環境方針を作成し、実施し、達成し、見直し且つ維持するための活動に具体的に貢献できる。又グリーン度の表示やグリーン電力認証情報を商品にラベリングすることで、第3者である顧客が、グリーン商品を選別して購入できることから、環境負荷低減、資源枯渇防止に貢献できる効果を生む。
【0036】
本発明の他の実施例であるグリーン電力供給システム1dを、図5を用いて説明する。グリーン度決定手段620cにより決定されたグリーン度、発電施設や需要家情報、電力消費情報を第3者機関例えば、国や地方公共団体へ送付し、グリーン電力補助金を申請する。税金が一部免税されるシステムでは、電力供給要求受付け手段630にて、需要家の所得や税金支払い内容等免税に必要な需要家毎の情報を受け付け、これらの情報を上記第3者機関へ送付する。第3者機関から送付された補助金情報と需要家電力消費情報から、需要家向け電力料金決定通知手段650にて、電力料金を決定し、需要家情報ルート530を介して、その内容を各需要家500へ通知する。この実施例では、需要家500に直接経済的支援すなわち、電力料金割引きサービスを提供できるので、普及が加速する効果を生む。なお、本発明の実現手段として、電力を周波数と電圧及び高調波発生率を考慮して安定に供給する必要があるが、その為の技術としては例えば、特開平11―308771号公報に記載されている電力供給制御装置の技術を用いればよく、ここでは割愛する。また、本発明のグリーン電力供給システムでは、発電施設を含めていないが、自家発電施設を本発明のシステムに含めても良い。さらに、本発明は、発電施設や需要家間の情報交信に、インターネットを用いることにより、時期や時間帯毎のグリーン電力の量とそのグリーン度と価格に関してベストミックスな売買のサービス提供手段も含まれる。
【0037】
本発明のグリーン電力供給方法の実施形態を、図6を用いて詳細に説明する。発電エネルギーの異なる複数の発電施設と、電力を欲する複数の需要家が存在する。これらの施設にて発電された電力は、発電施設毎に設けられている送電線を通り、送配電電力系統を通り、各需要家へは需要家配電線にて供給され、発電施設毎及び需要家施設毎の電力量が計測される。この場合、停電や電圧低下による電気製品の機能不良等を防止するための電力の品質維持による安定供給を図るには、ある一定時間(30分単位)において、供給電力(発電施設で発電する電力量―送配電電力系統による電力損失)の総計が、需要家が消費する電力量の総計に対し、一定の割合(通常±2%程度)以内に維持するように、発電量を制御している。
【0038】
本実施形態でも、需要家への安定供給を最優先としている。需要家は、発電による地球環境負荷が小さく(クリーンな)かつ、価格の安い電力の供給を希望する。しかし、クリーンな電力を発電する際のコストは一般には高く、自然界のエネルギーを活用する場合には供給が不安定である特長を有する。各需要家からは、一定の時間毎に、消費する時期、時間帯に対する消費電力量と、地球環境負荷の割合すなわち、グリーン度と電力価格を含めて電力供給の要求が受付けられる。
【0039】
この場合、電力供給の要求を頻繁に通信すること、さらにグリーン度や課金等の情報をほぼリアルタイムに相方向で通信する必要があり、及び需要家の数は膨大で、地域的にも散在することから、各発電施設とグリーン電力供給システム間の交信と同様に、インターネットを利用する方法が安価で便利である。なお、特にインターネット利用の場合には、当事者認証方法の工夫やファイヤーウオールの設置を行う公知技術で、情報の漏洩などセキュリテイの保全を実現できる。以後の説明では、インターネット利用の際行う、コンピュータの立上げや認証の方法など公知技術で実現できる方法の説明は割愛する。
【0040】
発電エネルギーの中で、風力や太陽光などの自然エネルギーを利用する発電では、エネルギーは地球規模では無尽蔵近く存在するが、年中安定した発電ができない欠点を有している。又発電コストも発電エネルギーによって異なる。発電施設や需要家には時間帯毎の電力量、価格、グリーン度を組み合せた選択メニューを公開する(1)(2)(図中の▲1▼▲2▼。以下同様。)。
【0041】
この実現方法として、インターネットで公開する方法も好適である。需要家に対して提示される画面の一例を図7に示す。図の中央の円グラフは、円グラフの左側に列挙された発電施設で発電される電力の割合を示す。電力の割合はプランを選択すると提案内容が変わる。時間帯は下部のタイムチャートから選択可能である。円グラフの右側にはその提案に基づき見積もられた料金と、その提案における予測されるグリーン度を示す。
【0042】
各発電施設からは、各時期、時間帯毎に燃料である発電エネルギーの詳細な種類、例えば単位出力当りのCO2の排出量などや供給可能な発電量と許容する価格帯、発電施設名を含む発電情報が送達される(3)。需要家から同様な要求情報が送達される(4)。
【0043】
この電力供給内容と電力供給要求内容をほぼリアルタイムで対比させながら、一定の時間(例えば30分)毎に、需要と供給の差が常にある一定以内になるように、発電施設送電線に供給する電力量を決定し、随時、発電施設毎に発電を依頼する(5)。なお、需要家への電力の安定供給を最優先するので、必ずしも需要家が希望するグリーン度の電力を供給できない場合があるので、発電施設毎の発電依頼量を決定の都度、需要家へ供給予定の電力のグリーン度と価格も、需要家からの要求内容と共に、需要家へ通知する(6)。
【0044】
需要と供給の差が常にある一定以内になるようにする手順の一例を以下に説明する。なお、簡便のために、送配電電力系統の電力損失は零として説明している。
【0045】
ここで発電施設の発電量とそのグリーン度をそれぞれWPi、BPi、需要家の消費電力量をWPj、BCjと定義する。さらに、許容可能な需要と供給の差に関し、電力差の下限と上限の率をそれぞれ(1-Wβ)と(1+Wα)で、グリーン度の下限と上限の率をそれぞれ(1-Bβ)と(1+Bα)で定義する。その結果、発電総量は各発電施設で発電した電力量を加算した量すなわち、発電総量=ΣWPiであり、同様に需要電力総量は、需要電力総量=ΣWCjで表せられる。
【0046】
さらに各発電施設で発電した電力量とグリーン度の積の総和を、発電グリーン総量として、ΣWPi*BPiで示し、同様に、需要電力グリーン総量を、ΣWCj*BCjで表すことができる。手順の一例を下記に示す。なお、需要家側及び発電施設側ともそれぞれ許容できる価格帯内になるようにする手順は割愛している。これらの全体手順は前述の通り、30分程度の間隔で逐次行う。
【0047】
(1)式(1A)と式(1B)が同時に成立する場合すなわち、電力量及びグリーン総量が許容範囲内の場合、 各発電施設へ受付け量での発電を依頼し、各需要家へは電力量とグリーン度を送信する。
【0048】
1-Wβ≦(ΣWPi)/(ΣWCj)≦1+Wα ―――(1A)
1-Bβ≦(ΣWPi*BPi)/(ΣWCj*BCj)≦1+Bα―(1B)
(2)式(1A)と式(1C)又は式(1A)と式(1D)が同時に成立する場合すなわち、電力量については許容範囲内であるが、グリーン総量が許容範囲の上限より大きい場合、価格を考慮して、式(1B)が成立するように、発電施設への発電依頼電力量を見直して、その結果を発電施設へ発電依頼する。
【0049】
(ΣWPi*BPi)/(ΣWCj*BCj)≦1-Bβ―――(1C)
1+Bα≦ (ΣWPi*BPI)/(ΣWCj*BCj)―――(1D)
(3)式(2A)が成立する場合、電力の安定供給を最優先し、式(1A)を満たすように、各発電家へ発電量の増大依頼を行う。この場合、式(1B)が極力成立するように選択し、その結果である電力量とグリーン度を、要求内容と共に各需要家へ送信する。
【0050】
(ΣWPi)/(ΣWCj)≦1-Wβ ――(2A)
(4)式(3A)が成立した場合、式(1A)を満たすように、各発電家へ発電量の減量を依頼する。この場合、式(1B)が極力成立するように選択し、その結果である電力量とグリーン度を要求内容と共に各需要家へ送信する。
【0051】
1+Wα≦(ΣWPi)/(ΣWCj) ――――(3A)
他方、発電施設毎に、送配電電力系統への供給電力量の実績(7)と需要家毎での消費電力量の実績(8)と、発電施設毎の発電エネルギーの詳細な種類と需要家情報を基に、需要家毎に、供給予定及び供給された電力に対し、随時グリーン度を算出しながら、各需要家には要求内容を併せて通知する(9)。さらに、発電施設や需要家からの依頼(10)(11)をもとに、このグリーン度の累積値と、グリーン電力の発電活動や電力消費活動及びそのグリーン電力により生み出す商品化やそのリサイクルの個々の段階での活動に対して、環境負荷低減の観点で顕著な効果を生み出した特定の発電施設や需要家を抽出し、グリーン認証を行う。この認証を認証機関に代行依頼する方法も好適である。このグリーン度や、認証機関よりグリーン認証を受けて(15)、得られるグリーン認証情報は、発電施設や需要家の要求を受けて(13)(14)、インターネットを介し、発電施設や需要家を含む第3者にも公開する(16)。又グリーン度の表示やグリーン電力認証情報を商品にラベリングする。
【0052】
その結果、需要家から生み出されたグリーン商品をその顧客に公開する(16)ので、需要家の環境悪化や資源枯渇防止に取組む姿勢を商品の顧客に訴えることで、各顧客が購入する(17)商品の販売数量の増加や価格をグリーン度に応じて高くでき、その結果は、需要家の経済活動の継続性を維持しながら、環境保全の効果を生む。さらに、顧客が、グリーン商品を選別して購入できることから、環境負荷低減、資源枯渇防止に顧客自身が貢献できる選択肢を得る。グリーン電力の発電や購入を促進させるため、政府や公共団体から、補助金の提供や税金の減額が行われる。減額補助金と税金の減額の代行サービスは略同じ手法であるので、補助金の例で実施例を説明すると、発電施設や需要家の依頼(18)(19)により、グリーン度やグリーン認証情報をもとに、補助金提供機関へ申請の代行(20)を行ない、その結果補助金の支払われ(21)、この補助金を考慮して、料金を発電施設へ支払い(22)と需要家への料金請求(23)と需要家からの料金支払い(24)が行われ、発電施設、需要家、商品消費者のすべての階層において、経済的メリットを享受しながら、環境負荷の低減や資源枯渇の防止に貢献できる効果を生む。なお、認証を認証機関に依頼する場合には、料金の請求や支払いの行為が発生するが、図6には記載していない。
【0053】
本発明グリーン供給システムやその方法の範囲内で、インターネットを情報の交信手段として全面的に使うことで、需要家として不特定多数の小口電力の消費者や世界規模での発電施設を対象にした、グリーン電力売買市場の形成が実現でき、地球規模での環境保全、資源枯渇に貢献できる。
【0054】
【発明の効果】
需要家の、環境負荷低減への取組みと経済活動の継続性を両立できるシステムと方法を提供できる。
【図面の簡単な説明】
【図1】グリーン電力供給システムの説明図である。
【図2】グリーン電力供給システムの詳細説明図である。
【図3】本発明の他の実施例を示すシステムの説明図である。
【図4】本発明の他の実施例を示すシステムの説明図である。
【図5】本発明の他の実施例を示すシステムの説明図である。
【図6】情報の流れと方法を示す説明図。
【図7】需要家が選択する電力供給内容を提示する画面の一例を示す図である。
【符号の説明】
1、1a〜d…グリーン電力供給システム、
100、100a〜100d…発電施設、
300…送配電電力系統、
500、500a〜d…需要家、
610…電力内容記憶依頼手段、
610a…電力内容記憶依頼手段、
610b…発電依頼量決定手段、
610c…電力供給依頼手段、
620…グリーン度算出手段、
620a…発電量受付け手段、
620b…電力消費量受付け手段、
620c…グリーン度決定手段、
630…電力供給要求受付け手段、
640…需要家向けグリーン度通知手段、
650…需要家向け電力料金決定通知手段、
660…グリーン電力認証決定手段、
670…グリーン電力認証情報通知手段、
680…第3者向けグリーン度通知手段、
800…インターネット、
900…第3者。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power supply system, and more particularly, to a system and a method by which a customer can select power.
[0002]
[Prior art]
As a conventional technique related to a technique for supplying electric power to a consumer based on a desired condition of the consumer, there is “a selection method and a selection support system of an electric power company” described in Japanese Patent Application Laid-Open No. 2000-78747.
[0003]
In the prior art, when the charge system is different for each electric power company, the electric power companies select according to the desired conditions and present a combination of the selected contract conditions.
[0004]
[Problems to be solved by the invention]
In this conventional technique, only a selection method in consideration of the price of electric power is provided for consumers. Electric energy is indispensable for the development of industry and life, and the energy required to generate the electricity will not be lost no matter how much it is used, and environmentally friendly ones are particularly required.
[0005]
For example, solar power, wind power, small-scale hydropower that does not use dams, biomass (biological resources) such as wood waste, straw, and livestock waste, geothermal heat transmitted from magma deep underground, waste heat utilization in factories, etc., and burning garbage There is waste.
[0006]
On the other hand, fossil fuels such as oil, coal, and natural gas, and uranium are limited in resources and will disappear sometime if they continue to be used. In addition, if fossil fuel is burned, carbon dioxide (CO 2 ), which causes global warming, is generated. Nuclear power remains radioactive waste that requires high reliability in handling. Large-scale hydropower generation can destroy surrounding ecosystems due to dam construction.
[0007]
The main component of the biomass described above is wood, and CO 2 is generated when it is burned, but living trees absorb CO 2 during photosynthesis. By planting only the amount of fire and keeping the area of the forest, CO 2 in the atmosphere can be maintained, so it is a green power generation energy that does not cause problems of environmental load and resource depletion.
[0008]
As described above, even when the same amount of power is generated, the impact on the environment and the degree of global resource depletion vary greatly depending on the type of energy required for the power generation.
[0009]
Conventionally, the influence degree of the environmental impact of the power supplied to the customer, i.e. the degree of exhaustion of emissions and the energy source of CO 2 based on the difference in the energy source required for the power generation did not know for consumers. In other words, until now, there has been only a method for reducing the amount of electric power through energy saving, and there have been few options as concrete measures for maintaining a beautiful earth.
[0010]
An object of the present invention is to provide a power supply system and method for solving the above-described problems and allowing consumers to consider environmental load and resource depletion while consuming power and maintaining economic activities. .
[0011]
[Means for Solving the Problems]
In order to achieve the above object, in the present invention, a power supply request accepting unit that accepts a power supply request from a power generation facility that uses power generation energy with a low global environmental load and resource depletion, and a power supply for each power generation facility Power supply content storage requesting means for storing the state, and power generation using power generation energy with a small global environmental load and resource depletion in response to the request among the power supplied to consumers according to the power supply state of the power generation facility The green degree calculation means for determining the proportion of power from the facility, and the proportion of power from the power generation facility that uses power generation energy with low global environmental load and resource depletion among the power used by the customer. The green degree notifying means for notifying the user is provided.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a green power supply system and method according to the present invention will be described below in detail with reference to the drawings.
[0013]
An embodiment of the present invention will be described with reference to FIGS. Power generation energy used in power generation facilities includes sunlight, wind power, tidal power, small-scale hydropower that does not use dams, biomass (biological resources), geothermal heat, waste heat utilization, waste-burning waste, oil, Typical examples include fossil fuels such as coal and natural gas, and uranium, which have different effects on the global environmental load and potential for resource depletion.
[0014]
As representative examples of power generation energy sources used in the
[0015]
The generated electric power passes from the
[0016]
In the figure, for the sake of simplicity, only the transmission lines and distribution lines connected to the transmission /
[0017]
As a communication between the measurement measuring devices 110a to 110d and 510a to 510d that can measure the amount of power generated by the power generation facilities 100a to 100d and the amount of power consumed by the consumers 500a to 500d, the power generation measuring system 120 A power demand measuring system 530 is provided. There is no particular limitation on the communication method, such as whether the power generation measurement system 120 and the demand power measurement system 530 are wired or wireless, or the use of a dedicated line or the Internet line, as long as information can be communicated.
[0018]
As shown in FIG. 1, the green power supply system 1a according to the present embodiment includes a power supply
[0019]
As shown in FIG. 2, the power supply content
[0020]
The green degree calculating means 620 includes a power generation amount receiving means 620 a connected to the power generation measuring system 120 and a power consumption receiving means 620 b connected to the demand power measuring system 530. The green
[0021]
The consumers 500a to 500d can request the supply of electric power by selecting the
[0022]
On the other hand, the power supply content for each power generation facility 100a to 100d delivered via the power generation
[0023]
Mutual information communication between the power generation facilities 100a to 100d and the green power supply system 1a is performed via the power generation
[0024]
The amount of power passing through each power generation
[0025]
The green degree determination means 620c includes the amount of power transmitted to the green degree calculation means 620, output information from the power supply content storage request means 610 transmitted via the power generation
[0026]
As one of the output information from the power supply content
[0027]
This degree of green indicates a scale that represents the impact on the environmental load and resource depletion based on the proportion of power from power generation facilities with a low global environmental load.
[0028]
Thereafter, the green
[0029]
In the present embodiment, each customer 500a to 500d considers the environmental load required for power generation and the effect of resource depletion, that is, the degree of green determined depending on the power generation facility or each power generation facility, in addition to the necessary power amount. The power source can be selected. Furthermore, since each consumer 500a-500d can grasp | ascertain the green degree of the electric power in addition to the electric energy consumed by the consumer, the concrete contribution from the consumer side for maintaining a beautiful earth is realizable. In addition, since the green power supply system of the present invention is spread all over the world, it is possible to produce an effect that the earth's environmental conservation and resource depletion can be suppressed.
[0030]
A green power supply system 1b according to another embodiment of the present invention will be described with reference to FIG. The green degree determined by the green degree determining means 620c in the green degree calculating means 620 is disclosed to 900a to 900c of the
[0031]
In this embodiment, in addition to communicating the green level to the consumer, a third party directly connected to the consumer's economic activity, for example, the green level of the power consumed by the customer to the customer of the product produced from the consumer. Can be published.
[0032]
In general, the cost of power generation using a naturally-friendly power generation energy source with a low environmental load is high, which has been an obstacle to its spread. In the present embodiment, by utilizing the
[0033]
A green power supply system 1c according to another embodiment of the present invention will be described with reference to FIG. Based on the green degree determined by the green degree determining means 620c in the green degree calculating means 620, the green power authentication determining means 660 authenticates the green power. The result is disclosed by the green power authentication information notifying means 670 to the
[0034]
In this embodiment, the green power authentication determining means 660 is configured in the green power supply system 1c, but may be provided in a third party, for example, a public organization. In this case, providing the green power authentication application means and the green power authentication acceptance means in the public organization is also included in the present embodiment.
[0035]
Furthermore, an embodiment in which a means for delivering green information obtained by the green degree determination means 620c and the green power authentication determination means 660 to the
[0036]
A green power supply system 1d according to another embodiment of the present invention will be described with reference to FIG. The green degree determined by the green
[0037]
An embodiment of the green power supply method of the present invention will be described in detail with reference to FIG. There are a plurality of power generation facilities with different power generation energy and a plurality of consumers who want power. The power generated at these facilities passes through the transmission lines provided for each power generation facility, passes through the transmission / distribution power system, and is supplied to each customer through customer distribution lines. The amount of power for each home facility is measured. In this case, in order to achieve a stable supply by maintaining the quality of electric power to prevent malfunctions of electrical products due to power outages or voltage drops, supply power (electric power generated at the power generation facility) in a certain period (30 minutes) The amount of power generation is controlled so that the total of power loss due to power transmission and distribution is maintained within a certain percentage (usually about ± 2%) of the total amount of power consumed by consumers. .
[0038]
Even in this embodiment, stable supply to consumers is given top priority. Consumers want to supply electricity with low environmental impact caused by power generation (clean) and low price. However, the cost of generating clean power is generally high, and it has a feature that supply is unstable when using natural energy. From each consumer, a request for power supply is received at regular intervals, including the time of consumption, the amount of power consumed for the time period, and the ratio of the global environmental load, that is, the green level and the power price.
[0039]
In this case, it is necessary to frequently communicate power supply requests, and to communicate information such as green degree and billing in real time almost in real time, and the number of consumers is enormous and scattered in regions. Therefore, as in the communication between each power generation facility and the green power supply system, a method using the Internet is inexpensive and convenient. In particular, in the case of using the Internet, it is possible to realize security maintenance such as information leakage by a publicly known technique for devising a party authentication method and installing a firewall. In the following description, descriptions of methods that can be realized by known techniques such as computer startup and authentication methods when using the Internet are omitted.
[0040]
Among the power generation energy, the power generation using natural energy such as wind power and solar power has an inexhaustible energy on a global scale, but has a drawback that stable power generation is impossible throughout the year. The power generation cost also varies depending on the generated energy. For power generation facilities and consumers, a selection menu that combines the amount of electricity, price, and greenness for each time zone is made public (1) (2) ((1) (2) in the figure, and so on).
[0041]
As a method for realizing this, a method of publishing on the Internet is also suitable. An example of the screen presented to the consumer is shown in FIG. The pie chart in the center of the figure shows the percentage of power generated at the power generation facilities listed on the left side of the pie chart. The content of the proposal will change when the plan is selected for the power ratio. The time zone can be selected from the bottom time chart. On the right side of the pie chart, the price estimated based on the proposal and the expected green level of the proposal are shown.
[0042]
From each power generation facility, specify the detailed type of power generation energy that is fuel at each time period and time zone, such as CO 2 emissions per unit output, the amount of power generation that can be supplied, the allowable price range, and the name of the power generation facility. Power generation information is delivered (3). Similar request information is delivered from the customer (4).
[0043]
Supplying power generation facility transmission lines so that the difference between the demand and the supply is always within a certain range at regular time intervals (for example, 30 minutes) while comparing the power supply content and the power supply request content in almost real time. Determine the amount of power and request power generation for each power generation facility as needed (5). Since the highest priority is given to the stable supply of power to consumers, it may not always be possible to supply the green power desired by the consumer, so supply the power generation request amount for each power generation facility to the consumer every time it is determined. The green level and price of the planned power are also notified to the customer along with the request from the customer (6).
[0044]
An example of a procedure for ensuring that the difference between supply and demand is always within a certain range will be described below. For convenience, the power loss of the transmission / distribution power system is described as zero.
[0045]
Here, the power generation amount of the power generation facility and the green level thereof are defined as WPi and BPi, respectively, and the power consumption amount of the consumer is defined as WPj and BCj. In addition, regarding the difference between acceptable demand and supply, the lower and upper rates of the power difference are (1−W β ) and (1 + W α ), respectively, and the lower and upper rates of the green degree are (1−W B β ) and (1 + B α ). As a result, the total amount of power generation is an amount obtained by adding the amount of power generated at each power generation facility, that is, the total amount of power generation = ΣWPi. Similarly, the total amount of power demand is represented by the total amount of power demand = ΣWCj.
[0046]
Further, the sum of products of the amount of power generated at each power generation facility and the green degree can be expressed as ΣWPi * BPi as the total amount of generated green, and similarly, the total amount of demand power green can be expressed as ΣWCj * BCj. An example of the procedure is shown below. It should be noted that the procedure for ensuring that both the customer side and the power generation facility side are within acceptable price ranges is omitted. As described above, these entire procedures are sequentially performed at intervals of about 30 minutes.
[0047]
(1) When Formula (1A) and Formula (1B) are satisfied at the same time, that is, when the amount of power and the total amount of green are within the allowable range, each power generation facility is requested to generate power at the received amount, and each customer is Send amount and green degree.
[0048]
1−W β ≦ (ΣWPi) / (ΣWCj) ≦ 1 + W α ――― (1A)
1B β ≦ (ΣWPi * BPi) / (ΣWCj * BCj) ≦ 1 + B α - (1B)
(2) When Formula (1A) and Formula (1C) or Formula (1A) and Formula (1D) are satisfied at the same time, that is, when the electric energy is within the allowable range, but when the total amount of green is larger than the upper limit of the allowable range Considering the price, the power generation request power amount to the power generation facility is reviewed so that the formula (1B) is satisfied, and the result is requested to the power generation facility.
[0049]
(ΣWPi * BPi) / (ΣWCj * BCj) ≦ 1-B β ――― (1C)
1 + B α ≦ (ΣWPi * BPI) / (ΣWCj * BCj) --- (1D)
(3) When Expression (2A) is established, the highest priority is given to stable power supply, and a request to increase the amount of power generation is made to each power generator so as to satisfy Expression (1A). In this case, it selects so that Formula (1B) may be established as much as possible, and transmits the electric energy and green degree which are the result with each request | requirement to each consumer.
[0050]
(ΣWPi) / (ΣWCj) ≦ 1-W β -(2A)
(4) When the formula (3A) is established, the power generator is requested to reduce the power generation amount so as to satisfy the formula (1A). In this case, it selects so that Formula (1B) may be satisfied as much as possible, and transmits the electric energy and green degree which are the result with each request | requirement to each consumer.
[0051]
1 + W α ≦ (ΣWPi) / (ΣWCj) ―――― (3A)
On the other hand, for each power generation facility, the actual amount of power supplied to the transmission / distribution power system (7), the actual amount of power consumed by each customer (8), and the detailed types of energy generated by each power generation facility and the customer Based on the information, each customer is notified of the request contents while calculating the green degree as needed for the supply schedule and the supplied power (9). In addition, based on requests from power generation facilities and customers (10) (11), the cumulative value of this green degree, green power generation activities and power consumption activities, and commercialization and recycling of green power generated by those green power Green power certification is conducted by extracting specific power generation facilities and customers that have produced remarkable effects in terms of reducing environmental impacts for activities at individual stages. A method of requesting this certification to a certification authority on its behalf is also suitable. This green degree and the green certification information obtained from the certification body (15) and the obtained green certification information are received from the power generation facility and customer's request (13) (14), and the power generation facility and customer via the Internet. (16). In addition, the green degree display and green power certification information are labeled on the product.
[0052]
As a result, green products generated by customers are disclosed to their customers (16), and each customer purchases by appealing to the customer of the product's attitude to prevent environmental degradation and resource depletion (17). ) Increasing the sales volume and price of the product can be increased according to the degree of green, and the result will have the effect of environmental conservation while maintaining the continuity of consumers' economic activities. Furthermore, since the customer can select and purchase green products, the customer can have an option that can contribute to reducing environmental burden and preventing resource depletion. Subsidies and tax reductions will be provided by governments and public organizations to promote the generation and purchase of green electricity. Since the subsidy service for reducing subsidies and tax reduction services are almost the same method, examples of subsidies will be described in accordance with the request for power generation facilities and customers (18) (19). Based on the above, the agency (20) of the application to the subsidy provider is made, and as a result, the subsidy is paid (21), and the fee is paid to the power generation facility (22) in consideration of this subsidy. Billing (23) and payment (24) from consumers, and reducing environmental impacts and resources while enjoying economic benefits at all levels of power generation facilities, consumers, and commodity consumers. Produces an effect that can contribute to the prevention of depletion. In the case of requesting certification from a certification body, charges and payments may occur, which are not shown in FIG.
[0053]
Within the scope of the green supply system and method of the present invention, the Internet is fully used as a means of communicating information, targeting consumers of unspecified large numbers of small power and global power generation facilities as consumers. It is possible to form a green power trading market and contribute to environmental conservation and resource depletion on a global scale.
[0054]
【The invention's effect】
It is possible to provide a system and method capable of satisfying both the environmental load reduction and the continuity of economic activities of consumers.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a green power supply system.
FIG. 2 is a detailed explanatory diagram of a green power supply system.
FIG. 3 is an explanatory diagram of a system showing another embodiment of the present invention.
FIG. 4 is an explanatory diagram of a system showing another embodiment of the present invention.
FIG. 5 is an explanatory diagram of a system showing another embodiment of the present invention.
FIG. 6 is an explanatory diagram showing a flow and method of information.
FIG. 7 is a diagram illustrating an example of a screen presenting power supply contents selected by a consumer.
[Explanation of symbols]
1, 1a-d ... Green power supply system,
100, 100a to 100d ... power generation facility,
300 ... transmission and distribution power system,
500, 500a-d ... consumers,
610 ... Power content storage requesting means,
610a: Power content storage requesting means,
610b ... power generation request amount determination means,
610c ... Power supply request means,
620 ... Green degree calculation means,
620a ... means for receiving power generation amount,
620b ... power consumption acceptance means,
620c ... Green degree determination means,
630 ... Power supply request accepting means,
640 ... Green degree notification means for consumers,
650 ... Electricity rate determination notification means for consumers,
660 ... Green power certification determination means,
670 ... Green power authentication information notification means,
680 ... Green degree notification means for third parties,
800 ... Internet,
900 ... Third person.
Claims (6)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000297054A JP3780838B2 (en) | 2000-09-26 | 2000-09-26 | Green power supply system and green power supply method |
US10/361,641 US6885914B2 (en) | 2000-09-26 | 2003-02-11 | Green power supply system and green power supply method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000297054A JP3780838B2 (en) | 2000-09-26 | 2000-09-26 | Green power supply system and green power supply method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002112458A JP2002112458A (en) | 2002-04-12 |
JP3780838B2 true JP3780838B2 (en) | 2006-05-31 |
Family
ID=18779225
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000297054A Expired - Fee Related JP3780838B2 (en) | 2000-09-26 | 2000-09-26 | Green power supply system and green power supply method |
Country Status (2)
Country | Link |
---|---|
US (1) | US6885914B2 (en) |
JP (1) | JP3780838B2 (en) |
Families Citing this family (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1639943A (en) * | 2002-03-06 | 2005-07-13 | 松下电器产业株式会社 | Setting device of distributed energy supply system |
JP2004310421A (en) * | 2003-04-07 | 2004-11-04 | Ntt Power & Building Facilities Inc | Electric power transaction system and method, energy management system, and information terminal |
JP4053965B2 (en) * | 2003-11-18 | 2008-02-27 | 株式会社日立製作所 | Combined heat and power system control method and combined heat and power system controller |
WO2005107033A1 (en) * | 2004-04-28 | 2005-11-10 | Sharp Kabushiki Kaisha | Generation facility management system |
JP2006234643A (en) * | 2005-02-25 | 2006-09-07 | Toshiba Corp | Watthour meter |
US20080203075A1 (en) * | 2007-02-27 | 2008-08-28 | Feldhausen Joseph E | Portable structural welding system having integrated resources |
JP2008243110A (en) | 2007-03-29 | 2008-10-09 | Hitachi Ltd | System for evaluating emission amount of fuel environmental impact substance |
JP4937003B2 (en) * | 2007-06-07 | 2012-05-23 | 中国電力株式会社 | Green power purchasing system |
US9117248B2 (en) * | 2007-08-13 | 2015-08-25 | Emeter Corporation | System and method for providing utility consumption as shown on periodic utility bills and associated carbon emissions |
JP2009070083A (en) * | 2007-09-12 | 2009-04-02 | Nec Corp | Carbon-dioxide emission reduction system and method for reducing carbon-dioxide emission |
JP2009086790A (en) | 2007-09-28 | 2009-04-23 | Hitachi Ltd | Environmentally affecting matter emission amount evaluation system |
CA2718907A1 (en) * | 2008-03-17 | 2009-09-24 | Green Energy Group As | Geothermal power plant |
JP2010049659A (en) * | 2008-08-25 | 2010-03-04 | Hitachi Chem Co Ltd | Low carbon power authentication device and authentication method for nuclear power generation power |
JP2010049660A (en) * | 2008-08-25 | 2010-03-04 | Hitachi Chem Co Ltd | Low carbon power authentication device and authentication method by low carbon power generation |
US7953519B2 (en) * | 2008-10-15 | 2011-05-31 | International Business Machines Corporation | Energy usage monitoring and balancing method and system |
US20100274404A1 (en) * | 2009-04-28 | 2010-10-28 | Grid Mobility Llc | Process and methodology to collect, analyze, and signal real-time electron sources of an electrical grid |
US8600574B2 (en) * | 2009-05-19 | 2013-12-03 | International Business Machines Corporation | Dynamic specification of power supply sources |
US20110015798A1 (en) * | 2009-07-20 | 2011-01-20 | Sustainable Spaces, Inc. | Building Energy Usage Auditing, Reporting, and Visualization |
US8108081B2 (en) * | 2009-08-12 | 2012-01-31 | Sunpower Corporation | System and method for associating a load demand with a variable power generation |
DE102009048784A1 (en) * | 2009-10-08 | 2011-04-14 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Method of powering a power consumer |
US20110119166A1 (en) * | 2009-11-16 | 2011-05-19 | Leon Steinberg | System and method for renewable energy generation |
US9256214B2 (en) * | 2009-11-24 | 2016-02-09 | Lg Electronics Inc. | Network system and method of controlling network system |
EP2336835A1 (en) * | 2009-12-15 | 2011-06-22 | Siemens Aktiengesellschaft | Method and assembly for predictive controlling room temperatures in a building using cost information of different energy sources |
JP5457857B2 (en) * | 2010-01-27 | 2014-04-02 | 株式会社Verifirm | Power system, power transmission method, and power receiving apparatus |
WO2011095856A2 (en) * | 2010-02-03 | 2011-08-11 | パナソニック電工株式会社 | Electric power monitoring system |
GB2477949B (en) * | 2010-02-19 | 2016-01-06 | Building Res Establishment Ltd | Powering of devices |
US9063715B2 (en) * | 2010-06-10 | 2015-06-23 | Hewlett-Packard Development Company, L. P. | Management of a virtual power infrastructure |
JP2012019601A (en) | 2010-07-07 | 2012-01-26 | Sony Corp | Electric power system, electric power reception device, and electric power transmission control method |
WO2012032947A1 (en) * | 2010-09-08 | 2012-03-15 | 三洋電機株式会社 | Method for power visualization and device for power visualization |
US8812164B2 (en) * | 2010-10-12 | 2014-08-19 | Engineered Electric Company | Portable cogeneration system incorporating renewable energy sources |
JP5606967B2 (en) * | 2011-03-10 | 2014-10-15 | Jx日鉱日石エネルギー株式会社 | Evaluation apparatus and evaluation method |
JP5025807B1 (en) * | 2011-03-25 | 2012-09-12 | 株式会社東芝 | Reserve power calculation device and method, and computer program |
EP2722960B1 (en) * | 2011-06-17 | 2016-08-17 | Hitachi, Ltd. | Microgrid control system |
GB2494658A (en) * | 2011-09-14 | 2013-03-20 | Bae Systems Plc | Power distribution algorithm |
JP6097476B2 (en) * | 2011-09-16 | 2017-03-15 | 三菱重工業株式会社 | Power information management system, power information management device, program, electric vehicle, charging infrastructure, housing and system module for electric vehicle |
JP6109471B2 (en) * | 2011-09-26 | 2017-04-05 | 三菱重工業株式会社 | Charging infrastructure information providing system, charging infrastructure information providing apparatus, control method and program |
JP6578121B2 (en) * | 2015-04-09 | 2019-09-18 | トランスパシフィックPowers株式会社 | Information providing system, information providing method, and program |
US10234885B2 (en) * | 2016-06-13 | 2019-03-19 | Sun Electric Digital Stream Ltd. | Method and system for facilitating auditing of power generation and allocation thereof to consumption loads |
JP7166143B2 (en) * | 2018-11-01 | 2022-11-07 | 東京瓦斯株式会社 | power trading device, program |
JP7209279B2 (en) * | 2018-11-13 | 2023-01-20 | 東京瓦斯株式会社 | Energy trading device, program |
CN109713723A (en) * | 2019-02-13 | 2019-05-03 | 广东工业大学 | A kind of regional complex energy system operation optimization method |
JP6766209B2 (en) * | 2019-03-25 | 2020-10-07 | 京セラ株式会社 | Management device, power system and power supply method |
JP7221376B2 (en) | 2019-03-29 | 2023-02-13 | 旭化成株式会社 | Apparatus, method and program |
US11469595B2 (en) * | 2019-09-19 | 2022-10-11 | Dynamhex Technologies, LLC | System, method, and interface for goal-allocation of resources and dynamic monitoring of progress |
CN110739726B (en) * | 2019-10-29 | 2021-03-30 | 国网福建省电力有限公司 | A long-term planning method for multi-type power supply capacity considering offshore wind power access |
US11720526B2 (en) | 2019-11-12 | 2023-08-08 | ClearTrace Technologies, Inc. | Sustainable energy tracking system utilizing blockchain technology and Merkle tree hashing structure |
US11210751B2 (en) | 2020-01-14 | 2021-12-28 | International Business Machines Corporation | Targeting energy units in a blockchain |
JP7498042B2 (en) | 2020-07-01 | 2024-06-11 | 株式会社東光高岳 | Origin-specific power management method, origin-specific power management device, origin-specific power management system, and origin-specific power management program |
WO2022165506A1 (en) * | 2021-01-29 | 2022-08-04 | ClearTrace Technologies, Inc. | Sustainable energy physical delivery tracking and verification of actual environmental impact |
CA3206764C (en) | 2021-01-29 | 2024-02-27 | Troy Martin | Sustainable energy physical delivery tracking and verification of actual environmental impact |
JP2022162745A (en) * | 2021-04-13 | 2022-10-25 | 株式会社日立製作所 | Power transaction system and power transaction method |
WO2024231872A1 (en) * | 2023-05-11 | 2024-11-14 | Balaji C | System and method to authenticate production, storage and distribution of hydrogen |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69520097T2 (en) * | 1994-03-17 | 2001-07-19 | Dow Benelux N.V., Hoek | SYSTEM FOR REAL-TIME OPTIMIZATION AND PRESENTATION OF THE PROFIT |
WO1996008683A1 (en) * | 1994-09-15 | 1996-03-21 | Colin Francis Johnson | Solar concentrator for heat and electricity |
US6510687B1 (en) * | 1996-06-14 | 2003-01-28 | Sharav Sluices Ltd. | Renewable resource hydro/aero-power generation plant and method of generating hydro/aero-power |
JP3373792B2 (en) * | 1998-08-27 | 2003-02-04 | 株式会社日立製作所 | Power company selection method and selection support system |
JP2000297054A (en) | 1999-04-12 | 2000-10-24 | Kanegafuchi Chem Ind Co Ltd | Recovery of chlorinated aromatic compound |
JP2001184406A (en) * | 1999-12-24 | 2001-07-06 | Sumitomo Corp | Power supply system and system relating to same, power supply operation method and method relating to same, computer-readable recording medium with program implementing same method recorded thereon |
US20020084655A1 (en) * | 2000-12-29 | 2002-07-04 | Abb Research Ltd. | System, method and computer program product for enhancing commercial value of electrical power produced from a renewable energy power production facility |
-
2000
- 2000-09-26 JP JP2000297054A patent/JP3780838B2/en not_active Expired - Fee Related
-
2003
- 2003-02-11 US US10/361,641 patent/US6885914B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US6885914B2 (en) | 2005-04-26 |
JP2002112458A (en) | 2002-04-12 |
US20030220720A1 (en) | 2003-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3780838B2 (en) | Green power supply system and green power supply method | |
US20240411335A1 (en) | Energy Control and Generation Method and System | |
Carson et al. | The private and social economics of bulk electricity storage | |
Gordijn et al. | Business models for distributed generation in a liberalized market environment | |
Dusonchet et al. | Comparative economic analysis of support policies for solar PV in the most representative EU countries | |
Berry et al. | The renewable portfolio standard:: design considerations and an implementation survey | |
Sovacool et al. | Going completely renewable: is it possible (let alone desirable)? | |
JP2020054085A (en) | Power supply system and method of controlling the same | |
JP2010128525A (en) | Distribution system for green power | |
Abhyankar et al. | Least-cost pathway for India’s power system investments through 2030 | |
JP2005198423A (en) | Energy management system, energy management method, and energy management program | |
William E et al. | An economic evaluation of the potential for distributed energy in Australia | |
Azaroual et al. | Optimum energy flow management of a grid‐tied photovoltaic‐wind‐battery system considering cost, reliability, and CO2 emission | |
Jiang et al. | Strategic active and reactive power scheduling of integrated community energy systems in day-ahead distribution electricity market | |
Heng et al. | Developing peer-to-peer (P2P) energy trading model for Malaysia: A review and proposed implementation | |
McJunkin et al. | Net-zero carbon microgrids | |
Chen et al. | Energy expenditure incidence in the presence of prosumers: Can a fixed charge lead us to the promised land? | |
Smith et al. | Net Metering in the States A primer on reforms to avoid regressive effects and encourage competition | |
Moreno et al. | Distribution network rate making in Latin America: an evolving landscape | |
JP2023004490A (en) | Power transaction system | |
Zhang et al. | Business model status of distributed power supply and its concerns in future development | |
Oyekola | Decentralized solar photovoltaic distributed generation integrated with blockchain technology: a case study in lagos | |
Bompard et al. | Improving energy efficiency in electricity networks | |
Schwartz et al. | Electricity end uses, energy efficiency, and distributed energy resources baseline: Distributed Energy Resources Chapter | |
Bialek | Transmission charging and growth of renewables in the UK |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040311 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050727 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050809 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050916 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060214 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060227 |
|
LAPS | Cancellation because of no payment of annual fees |