[go: up one dir, main page]

JP3780832B2 - Manufacturing method of semiconductor crystal - Google Patents

Manufacturing method of semiconductor crystal Download PDF

Info

Publication number
JP3780832B2
JP3780832B2 JP2000240385A JP2000240385A JP3780832B2 JP 3780832 B2 JP3780832 B2 JP 3780832B2 JP 2000240385 A JP2000240385 A JP 2000240385A JP 2000240385 A JP2000240385 A JP 2000240385A JP 3780832 B2 JP3780832 B2 JP 3780832B2
Authority
JP
Japan
Prior art keywords
substrate
layer
gan
semiconductor crystal
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000240385A
Other languages
Japanese (ja)
Other versions
JP2002050586A (en
Inventor
真佐知 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2000240385A priority Critical patent/JP3780832B2/en
Publication of JP2002050586A publication Critical patent/JP2002050586A/en
Application granted granted Critical
Publication of JP3780832B2 publication Critical patent/JP3780832B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体結晶の製造方法に関する。
【0002】
【従来の技術】
窒化ガリウム(GaN)、窒化インジウムガリウム(InGaN)、窒化ガリウムアルミニウム(GaAlN)等のIII 族窒化物半導体は、青色発光ダイオード(LED)やレーザダイオード(LD)用材料として脚光を浴びている。また、III 族窒化物半導体は、光素子以外にも耐熱性や耐環境性がよいという特徴を活かした電子デバイス用素子の開発も行われている。
【0003】
III 族窒化物半導体は、バルク結晶成長が難しいので実用に耐えるIII 族窒化物の単結晶基板は未だ得られていない。現在実用化されているGaN成長用の基板はサファイアであり、単結晶サファイア基板の上に有機金属気相成長法(MOVPE法)でGaNをエピタキシャル成長させる方法が一般に用いられている。
【0004】
サファイア基板は、GaNと格子定数が異なるため、サファイア基板上に直接GaNを成長させたのでは単結晶膜を成長させることができない。このため、サファイア基板上に一旦低温でAlNやGaNのバッファ層(低温成長バッファ層)を成長させ、このバッファ層で格子の歪を緩和させてからそのバッファ層の上にGaNを成長させる方法が開示されている(特開昭63−188983号公報参照)。
【0005】
【発明が解決しようとする課題】
ところで、上述した従来の低温成長バッファ層は、最適な成長条件の設定幅が非常に狭く、成長温度のわずかなゆらぎや膜厚のずれにより、そのバッファ層の上に成長するGaN膜の結晶性や表面状態が大きく変化してしまい、GaN成長の成長再現性が悪いという問題がある。また、低温成長バッファ層を用いたGaNの成長においても基板と結晶の格子とのずれが発生するので、GaNは無数の欠陥を有している。この欠陥は、GaN系LDを製造する上で障害となることが予想される。また、サファイア基板とGaNとの線膨張係数差からエピタキシャル成長後の基板に反りが発生し、最悪の場合には割れに至るという問題がある。このため、GaNエピタキシャルウェハは大口径化が難しく、現状では直径50mm以上のものは実用化されていない。
【0006】
これらの問題を解決するために、サファイア以外の基板、例えば砒化ガリウム(GaAs)、シリコン(Si)、NGO(NdGaO3 )等を用いた成長が検討されている。これらの基板を用いる場合もこれまではサファイア基板の使用時と同様に、まず基板の上に低温でバッファ層を成長し、そのバッファ層の上にGaNを成長させる方法が用いられているが、依然として格子定数差の問題や成長するGaNの結晶形制御の問題が解決しておらず、実用化されるには至っていないという問題があった。
【0007】
そこで、本発明の目的は、上記課題を解決し、種々の基板の上に高品質なGaN系結晶を成長させることができる半導体結晶の製造方法を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するために本発明の半導体結晶の製造方法は、III 族窒化物以外の基板の表面に多孔質層を形成し、その多孔質層の上にIII 族窒化物単結晶層を成長させて半導体結晶を作製した後、 III 族窒化物以外の基板と III 族窒化物単結晶層との線膨張係数差により、上記半導体結晶から III 族窒化物単結晶層を多孔質層で剥離するものである。
【0009】
上記構成に加え本発明の半導体結晶の製造方法は、III 族窒化物単結晶層はGaNからなり、上記多孔質層上にGaNエピタキシャル層を成長させた後、GaNを成長させたサファイア基板をHVPE炉に収納し、塩化ガリウムとアンモニアを原料としてGaNエピタキシャル層上にGaN層の厚膜を積層して形成されてもよい。
【0010】
上記構成に加え本発明の半導体結晶の製造方法は、基板としてSi、Ge又はGaAsを用いると共に、その(111)面を用いてもよい。
【0011】
上記構成に加え本発明の半導体結晶の製造方法は、基板としてサファイア又はSiCを用いると共に、その(0001)面を用いてもよい。
【0012】
上記構成に加え本発明の半導体結晶の製造方法は、基板の表面に陽極酸化法によって多孔質層を形成してもよい。
【0013】
また、本発明の半導体結晶の製造方法は、基板の表面に金属膜を形成し、該金属膜を陽極酸化法で多孔質膜とした後、上記多孔質膜をマスクとして、上記基板にエッチングを施し、上記多孔質膜だけを除去して表面に多孔質層を有する基板を形成し、この基板上に III 族窒化物単結晶を成長させるものである。
【0014】
上記構成に加え本発明の半導体結晶の製造方法は、金属膜としてアルミニウムを用いてもよい。
【0015】
上記構成に加え本発明の半導体結晶の製造方法は、多孔質層上にストライプ状又は点状の窓を有するマスクを設け、そのマスクの上に III 族窒化物単結晶層を成長させてもよい。
【0016】
本発明の半導体結晶の製造方法は、基板表面を一旦多孔質状に加工した後、その多孔質層の上に窒化物結晶を成長させるものである。基板表面を多孔質とし、その表面でGaNを成長させることにより、低温成長バッファ層が無くても高品質なGaN層を成長させることができる。
【0017】
ここで、Si等、GaNとは格子定数や線膨張係数が大きく異なる基板上にGaNをエピタキシャル成長させると、通常は成長結晶が多結晶化したり、熱歪による基板の反りや割れが生じてしまう。しかし、本発明によれば、GaNが多孔質層上に成長することにより、多孔質が基板とGaNとの格子歪や熱歪を緩和するように機能するため、高品質なGaNエピタキシャル層が得られ、また基板に反りや割れが発生することもない。従って、従来不可能であった100mm以上の大口径GaNエピタキシャル成長も可能となる。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態を添付図面に基づいて詳述する。
【0019】
図1は本発明の半導体結晶の製造方法を適用したGaNエピタキシャル基板の一実施の形態を示す断面図である。
【0020】
このGaNエピタキシャル基板は、III 族窒化物以外の基板の上に、多孔質層及びIII 族窒化物単結晶層を順次形成したものである。このように基板表面を多孔質とし、その表面でGaNを成長させることにより、低温成長バッファ層が無くても高品質なGaN層を成長させることができる。
【0021】
【実施例】
次に具体的な数値を挙げて説明するが、本発明はこれに限定されるものではない。
【0022】
(実施例1)
直径100mm、厚さ300μmのSi(111)基板に、フッ酸とエタノールとの混合液中、20〜2.5Vの電界電圧で30分間の陽極酸化処理を行った。その結果、Si基板表面に、数十〜数百nm程度の孔を無数に有する多孔質Si層が形成された。次に、多孔質層を形成した基板をMOCVD炉に収納し、アンモニアガスとトリメチルガリウムとを原料として基板上に常圧、1100℃でGaN層を2μm成長させた。得られたGaNは平坦な鏡面を呈していた。得られたGaNエピタキシャル基板は図1に示すような断面構造を有していた。このGaNエピタキシャル基板の表面を原子間力顕微鏡(AFM)で観察し、表面に現れるピットの密度を計数したところ、8×106 個/cm3 であった。
【0023】
従来法でサファイア基板上に成長したGaN層の表面には109 〜1010個/cm3 のピットが観察されることから、非常に少ない欠陥密度のGaNエピタキシャル層が得られていると言える。成長したGaN層のX線回折法によるロッキングカーブの半値幅は240secであった。
【0024】
従来法で得られたエピタキシャル基板では通常300sec程度の値が得られているので、この数値と比較して十分に結晶性の高いエピタキシャル層が得られているものと言える。また、基板の中央と周縁部との高さの差を測り、反りの評価を行ったところ、2μmであった。従来法で得られたエピタキシャル基板では、通常50μmもの反りが観察されるので、本発明に係るエピタキシャル基板の反りは格段に少ないと言える。
【0025】
(実施例2)
直径100mm、厚さ350μmのGaAs(111)基板上に、金属アルミニウムを1μmスパッタで積層し、その表面を3%の蓚酸水溶液中で電界電圧12Vの陽極酸化処理を行った。その結果、金属アルミニウムが酸化され、多孔質アルミナ層が形成された。この基板の表面を形成した多孔質アルミナ層をマスクとして、さらに硫酸と過酸化水素水と水との混合液中でエッチングし、GaAs基板の表面にGaAsの多孔質層を形成した。この基板からアルミナ層だけをフッ酸エッチングで除去し、多孔質層を表面に有するGaAs基板を作製した。
【0026】
このようにして得られたGaAs基板上に、MBE法を用い、成長温度750℃でGaNを1μm成長させた。この基板の表面を原子間力顕微鏡で観察し、表面に現れたピットの密度を計数したところ4×106 個/cm3 であった。
【0027】
(実施例3)
直径50mm、厚さ330μmのサファイア(0001)基板上に、SiO2 マスクをかけ、フォトリソグラフィにより、マスク全面に直径1μmの窓を約1μmの間隔を隔てて形成した。この基板をRIEを用いてエッチングし、サファイア基板表面に多孔質層を設け、その後マスクを除去した。このサファイア基板上に、実施例1の方法を用いてGaNエピタキシャル層を2μm成長させた。
【0028】
このようにして得られたGaNエピタキシャル層の表面を原子間力顕微鏡で観察し、表面に現れるピットの密度を計数したところ、1×106 個/cm3 であった。
【0029】
(実施例4)
実施例1に示した方法により得られた多孔質層を有するSi基板上にSiO2 膜をプラズマCVD法で400nm積層し、さらにフォトリソグラフィにより、SiO2 膜に直径1μm、ピッチ5μmの窓を形成した。マスクをかけた基板をMOCVD炉に収納し、常圧、1050℃でGaN層を2μm成長させた。得られたGaN層は平坦な鏡面を呈していた。このGaN層の表面を原子間力顕微鏡で観察し、表面に現れるピットの密度を計数したところ、2×105 個/cm3 であった。
【0030】
(実施例5)
実施例3で得られたGaNの成長したサファイア基板をHVPE炉に収納し、塩化ガリウムとアンモニアとを原料として、減圧、1100℃でさらに200μmのGaN層を積層した。次に厚膜GaN層の形成されたサファイア基板に、室温〜600℃の急熱、急冷サイクルを10回施したところ、基板とGaNとの線膨張係数差により、サファイアの多孔質部分が破壊され、GaN層だけを剥離することができた。GaN層には、多孔質サファイアが付着していたので、この多孔質サファイアを研磨により除去した。このようにしてGaNの自立基板を得ることができた。
【0031】
ここで、多孔質層の多効率や孔の大きさ、深さ、形状、ピッチは、基板の材質や基板上に成長する窒化物結晶の成長条件に依存して最適値が存在するため、一義的に規定できる性格のものではない。
【0032】
【発明の効果】
以上要するに本発明によれば、次のような優れた効果を発揮する。
【0033】
種々の基板の上に高品質なGaN系結晶を成長させることができる半導体結晶の製造方法の提供を実現することができる。
【図面の簡単な説明】
【図1】本発明の半導体結晶の製造方法を適用したGaNエピタキシャル基板の一実施の形態を示す断面図である。
【符号の説明】
1 基板
2 多孔質層
3 III 族窒化物単結晶層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a semiconductor crystal.
[0002]
[Prior art]
Group III nitride semiconductors such as gallium nitride (GaN), indium gallium nitride (InGaN), and gallium aluminum nitride (GaAlN) are in the spotlight as materials for blue light emitting diodes (LEDs) and laser diodes (LDs). In addition to optical elements, Group III nitride semiconductors are also being developed for electronic device elements that take advantage of their good heat resistance and environmental resistance.
[0003]
Since group III nitride semiconductors are difficult to grow bulk crystals, a group III nitride single crystal substrate that can withstand practical use has not yet been obtained. A substrate for GaN growth that is currently in practical use is sapphire, and a method of epitaxially growing GaN on a single crystal sapphire substrate by metal organic vapor phase epitaxy (MOVPE method) is generally used.
[0004]
Since a sapphire substrate has a lattice constant different from that of GaN, a single crystal film cannot be grown by directly growing GaN on the sapphire substrate. For this reason, there is a method in which an AlN or GaN buffer layer (low temperature growth buffer layer) is once grown on a sapphire substrate at a low temperature, and the GaN is grown on the buffer layer after relaxing the strain of the lattice with this buffer layer. (Refer to Japanese Patent Laid-Open No. 63-188983).
[0005]
[Problems to be solved by the invention]
By the way, the conventional low temperature growth buffer layer described above has a very narrow range of optimum growth conditions, and the crystallinity of the GaN film grown on the buffer layer due to slight fluctuations in the growth temperature and deviations in film thickness. There is a problem that the surface state changes greatly and the growth reproducibility of GaN growth is poor. In addition, GaN has innumerable defects because a shift between the substrate and the crystal lattice occurs in the growth of GaN using the low temperature growth buffer layer. This defect is expected to be an obstacle to manufacturing a GaN-based LD. Further, there is a problem that warpage occurs in the substrate after epitaxial growth due to a difference in linear expansion coefficient between the sapphire substrate and GaN, and in the worst case, cracks occur. For this reason, it is difficult to increase the diameter of GaN epitaxial wafers, and those having a diameter of 50 mm or more have not been put into practical use at present.
[0006]
In order to solve these problems, growth using a substrate other than sapphire, for example, gallium arsenide (GaAs), silicon (Si), NGO (NdGaO 3 ), or the like has been studied. In the case of using these substrates, as in the case of using a sapphire substrate, a method of first growing a buffer layer on the substrate at a low temperature and growing GaN on the buffer layer has been used. The problem of the difference in lattice constant and the problem of controlling the crystal shape of the growing GaN have not been solved, and there has been a problem that it has not been put into practical use.
[0007]
Accordingly, an object of the present invention is to solve the above-described problems and provide a method for manufacturing a semiconductor crystal that can grow a high-quality GaN-based crystal on various substrates.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the semiconductor crystal manufacturing method of the present invention forms a porous layer on the surface of a substrate other than the group III nitride, and grows a group III nitride single crystal layer on the porous layer. after producing the semiconductor crystal by, the linear expansion coefficient difference between the group III substrate and the group III except nitride nitride single crystal layer is peeled off porous layer group III nitride single crystal layer from the semiconductor crystal Is.
[0009]
In addition to the above-described configuration, the semiconductor crystal manufacturing method of the present invention includes a group III nitride single crystal layer made of GaN. After a GaN epitaxial layer is grown on the porous layer, a sapphire substrate on which GaN is grown is converted into HVPE. It may be formed by stacking a thick film of a GaN layer on a GaN epitaxial layer using gallium chloride and ammonia as raw materials .
[0010]
In addition to the above configuration, the semiconductor crystal manufacturing method of the present invention may use Si, Ge, or GaAs as the substrate, and may use the (111) plane .
[0011]
In addition to the above-described configuration, the semiconductor crystal manufacturing method of the present invention may use sapphire or SiC as the substrate and its (0001) plane .
[0012]
In addition to the above structure, the method for producing a semiconductor crystal of the present invention may form a porous layer on the surface of the substrate by an anodic oxidation method.
[0013]
In the method for producing a semiconductor crystal of the present invention, a metal film is formed on the surface of the substrate, the metal film is made into a porous film by an anodic oxidation method, and then the substrate is etched using the porous film as a mask. Then, only the porous film is removed to form a substrate having a porous layer on the surface, and a group III nitride single crystal is grown on the substrate .
[0014]
In addition to the above structure, the semiconductor crystal manufacturing method of the present invention may use aluminum as the metal film .
[0015]
In addition to the above structure, the semiconductor crystal manufacturing method of the present invention may be provided with a mask having a stripe-like or dot-like window on the porous layer, and the group III nitride single crystal layer may be grown on the mask. .
[0016]
In the method for producing a semiconductor crystal of the present invention, a substrate surface is once processed into a porous shape, and then a nitride crystal is grown on the porous layer. By making the substrate surface porous and growing GaN on the surface, a high-quality GaN layer can be grown without a low-temperature growth buffer layer.
[0017]
Here, when GaN is epitaxially grown on a substrate having a lattice constant or a linear expansion coefficient that is greatly different from that of GaN such as Si, usually, the grown crystal is polycrystallized or the substrate is warped or cracked due to thermal strain. However, according to the present invention, since GaN grows on the porous layer, the porous functions to relieve the lattice strain and thermal strain between the substrate and GaN, so that a high-quality GaN epitaxial layer is obtained. In addition, the substrate is not warped or cracked. Accordingly, large-diameter GaN epitaxial growth of 100 mm or more, which has been impossible in the past, is also possible.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
[0019]
FIG. 1 is a cross-sectional view showing an embodiment of a GaN epitaxial substrate to which the method for producing a semiconductor crystal of the present invention is applied.
[0020]
This GaN epitaxial substrate is obtained by sequentially forming a porous layer and a group III nitride single crystal layer on a substrate other than the group III nitride. Thus, by making the substrate surface porous and growing GaN on the surface, a high-quality GaN layer can be grown without a low-temperature growth buffer layer.
[0021]
【Example】
Next, specific numerical values will be described. However, the present invention is not limited to this.
[0022]
Example 1
An anodizing treatment was performed on a Si (111) substrate having a diameter of 100 mm and a thickness of 300 μm in a mixed solution of hydrofluoric acid and ethanol at an electric field voltage of 20 to 2.5 V for 30 minutes. As a result, a porous Si layer having innumerable holes of about several tens to several hundreds of nanometers was formed on the surface of the Si substrate. Next, the substrate on which the porous layer was formed was housed in a MOCVD furnace, and a GaN layer was grown to 2 μm on the substrate at 1100 ° C. under normal pressure using ammonia gas and trimethyl gallium as raw materials. The obtained GaN had a flat mirror surface. The obtained GaN epitaxial substrate had a cross-sectional structure as shown in FIG. When the surface of this GaN epitaxial substrate was observed with an atomic force microscope (AFM) and the density of pits appearing on the surface was counted, it was 8 × 10 6 / cm 3 .
[0023]
Since pits of 10 9 to 10 10 pieces / cm 3 are observed on the surface of the GaN layer grown on the sapphire substrate by the conventional method, it can be said that a GaN epitaxial layer having a very low defect density is obtained. The full width at half maximum of the rocking curve according to the X-ray diffraction method of the grown GaN layer was 240 sec.
[0024]
Since an epitaxial substrate obtained by a conventional method usually has a value of about 300 sec, it can be said that an epitaxial layer having sufficiently high crystallinity is obtained compared to this value. Moreover, when the difference in height between the center and the peripheral edge of the substrate was measured and the warpage was evaluated, it was 2 μm. In an epitaxial substrate obtained by a conventional method, warpage of 50 μm is usually observed, so it can be said that the warpage of the epitaxial substrate according to the present invention is remarkably small.
[0025]
(Example 2)
Metal aluminum was laminated on a GaAs (111) substrate having a diameter of 100 mm and a thickness of 350 μm by sputtering of 1 μm, and the surface was anodized in a 3% oxalic acid aqueous solution with an electric field voltage of 12 V. As a result, the metallic aluminum was oxidized and a porous alumina layer was formed. Using the porous alumina layer formed on the surface of the substrate as a mask, etching was further performed in a mixed solution of sulfuric acid, hydrogen peroxide solution, and water to form a GaAs porous layer on the surface of the GaAs substrate. Only the alumina layer was removed from the substrate by hydrofluoric acid etching to produce a GaAs substrate having a porous layer on the surface.
[0026]
On the GaAs substrate thus obtained, 1 μm of GaN was grown at a growth temperature of 750 ° C. using the MBE method. When the surface of this substrate was observed with an atomic force microscope and the density of pits appearing on the surface was counted, it was 4 × 10 6 pieces / cm 3 .
[0027]
Example 3
A SiO 2 mask was put on a sapphire (0001) substrate having a diameter of 50 mm and a thickness of 330 μm, and windows having a diameter of 1 μm were formed on the entire surface of the mask at an interval of about 1 μm by photolithography. This substrate was etched using RIE to provide a porous layer on the surface of the sapphire substrate, and then the mask was removed. On this sapphire substrate, the method of Example 1 was used to grow a GaN epitaxial layer by 2 μm.
[0028]
The surface of the GaN epitaxial layer thus obtained was observed with an atomic force microscope, and the density of pits appearing on the surface was counted. As a result, it was 1 × 10 6 pieces / cm 3 .
[0029]
(Example 4)
The SiO 2 film was 400nm laminated by plasma CVD on a Si substrate having a porous layer obtained by the method described in Example 1, by further photolithography form, diameter 1μm to SiO 2 film, the window pitch 5μm did. The substrate with the mask was placed in a MOCVD furnace, and a GaN layer was grown to 2 μm at 1050 ° C. under normal pressure. The obtained GaN layer had a flat mirror surface. When the surface of this GaN layer was observed with an atomic force microscope and the density of pits appearing on the surface was counted, it was 2 × 10 5 pieces / cm 3 .
[0030]
(Example 5)
The GaN-grown sapphire substrate obtained in Example 3 was placed in an HVPE furnace, and gallium chloride and ammonia were used as raw materials, and a GaN layer of 200 μm was further laminated at 1100 ° C. under reduced pressure. Next, the sapphire substrate on which the thick GaN layer was formed was subjected to rapid heating and quenching cycles of room temperature to 600 ° C. 10 times. As a result, the porous portion of sapphire was destroyed due to the difference in linear expansion coefficient between the substrate and GaN. Only the GaN layer could be peeled off. Since porous sapphire was adhered to the GaN layer, this porous sapphire was removed by polishing. In this way, a GaN free-standing substrate could be obtained.
[0031]
Here, since the multi-efficiency of the porous layer and the size, depth, shape, and pitch of the pores have optimum values depending on the material of the substrate and the growth conditions of the nitride crystal that grows on the substrate, It is not of a personality that can be specified in a specific manner.
[0032]
【The invention's effect】
In short, according to the present invention, the following excellent effects are exhibited.
[0033]
It is possible to provide a semiconductor crystal manufacturing method capable of growing a high-quality GaN-based crystal on various substrates.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of a GaN epitaxial substrate to which a method for producing a semiconductor crystal of the present invention is applied.
[Explanation of symbols]
1 Substrate 2 Porous layer 3 Group III nitride single crystal layer

Claims (8)

III 族窒化物以外の基板の表面に多孔質層を形成し、その多孔質層の上にIII 族窒化物単結晶層を成長させて半導体結晶を作製した後、 III 族窒化物以外の基板と III 族窒化物単結晶層との線膨張係数差により、上記半導体結晶から III 族窒化物単結晶層を多孔質層で剥離することを特徴とする半導体結晶の製造方法。A porous layer formed on the group III surface of the substrate other than the nitride, after producing a semiconductor crystal is grown III nitride single crystal layer on the porous layer, and the substrate other than Group III nitride A method for producing a semiconductor crystal, comprising separating a group III nitride single crystal layer from the semiconductor crystal with a porous layer based on a difference in linear expansion coefficient from the group III nitride single crystal layer . 上記 III 族窒化物単結晶層はGaNからなり、上記多孔質層上にGaNエピタキシャル層を成長させた後、GaNを成長させたサファイア基板をHVPE炉に収納し、塩化ガリウムとアンモニアを原料としてGaNエピタキシャル層上にGaN層の厚膜を積層して形成される請求項1に記載の半導体結晶の製造方法。 The group III nitride single crystal layer is made of GaN, and after a GaN epitaxial layer is grown on the porous layer, the sapphire substrate on which the GaN is grown is housed in an HVPE furnace, and GaN using gallium chloride and ammonia as raw materials. The method for producing a semiconductor crystal according to claim 1, wherein the semiconductor crystal is formed by laminating a thick film of a GaN layer on the epitaxial layer . 上記基板としてSi、Ge又はGaAsを用いると共に、その(111)面を用いる請求項1または2に記載の半導体結晶の製造方法。Si as the substrate, the use of Ge or GaAs, the (111) A method of manufacturing a semiconductor crystal according to claim 1 or 2 using surface. 上記基板としてサファイア又はSiCを用いると共に、その(0001)面を用いる請求項1または2に記載の半導体結晶の製造方法。With use of sapphire or SiC as the substrate, the (0001) method for producing a semiconductor crystal according to claim 1 or 2 using surface. 上記基板の表面に陽極酸化法によって多孔質層を形成する請求項1または2に記載の半導体結晶の製造方法。The method of manufacturing a semiconductor crystal according to claim 1 or 2 to form a porous layer by anodic oxidation on the surface of the substrate. 基板の表面に金属膜を形成し、該金属膜を陽極酸化法で多孔質膜とした後、上記多孔質膜をマスクとして、上記基板にエッチングを施し、上記多孔質膜だけを除去して表面に多孔質層を有する基板を形成し、この基板上にIII 族窒化物単結晶を成長させる請求項1または2に記載の半導体結晶の製造方法。A metal film is formed on the surface of the substrate, and the metal film is made into a porous film by an anodic oxidation method. Then, the substrate is etched using the porous film as a mask, and only the porous film is removed to remove the surface. method for producing a porous layer to form a substrate having a semiconductor crystal according to claim 1 or 2 for growing the group III nitride single crystal on the substrate to. 上記金属膜としてアルミニウムを用いる請求項に記載の半導体結晶の製造方法。The method for producing a semiconductor crystal according to claim 6 , wherein aluminum is used as the metal film. 多孔質層上にストライプ状又は点状の窓を有するマスクを設け、そのマスクの上にIII 族窒化物単結晶層を成長させる請求項1または2に記載の半導体結晶の製造方法。A mask having a stripe-shaped or dot-shaped window on a porous layer is provided, a method of manufacturing a semiconductor crystal according to claim 1 or 2 for growing the Group III nitride single crystal layer over the mask.
JP2000240385A 2000-08-03 2000-08-03 Manufacturing method of semiconductor crystal Expired - Fee Related JP3780832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000240385A JP3780832B2 (en) 2000-08-03 2000-08-03 Manufacturing method of semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000240385A JP3780832B2 (en) 2000-08-03 2000-08-03 Manufacturing method of semiconductor crystal

Publications (2)

Publication Number Publication Date
JP2002050586A JP2002050586A (en) 2002-02-15
JP3780832B2 true JP3780832B2 (en) 2006-05-31

Family

ID=18731755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000240385A Expired - Fee Related JP3780832B2 (en) 2000-08-03 2000-08-03 Manufacturing method of semiconductor crystal

Country Status (1)

Country Link
JP (1) JP3780832B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3631724B2 (en) * 2001-03-27 2005-03-23 日本電気株式会社 Group III nitride semiconductor substrate and manufacturing method thereof
JP3886341B2 (en) 2001-05-21 2007-02-28 日本電気株式会社 Method for manufacturing gallium nitride crystal substrate and gallium nitride crystal substrate
JP4117156B2 (en) 2002-07-02 2008-07-16 日本電気株式会社 Method for manufacturing group III nitride semiconductor substrate
JP2005104742A (en) * 2003-09-26 2005-04-21 Kyocera Corp Single crystal growth substrate and semiconductor device
JP5259914B2 (en) * 2003-12-22 2013-08-07 アイメック Apparatus for growing group III nitride material on silicon substrate and method for producing the same
JP2005005723A (en) * 2004-06-25 2005-01-06 Hitachi Cable Ltd Nitride semiconductor epitaxial wafer manufacturing method and nitride semiconductor epitaxial wafer
WO2007111432A1 (en) * 2006-03-28 2007-10-04 Seoul Opto Device Co., Ltd. Light emitting device having zener diode therein and method of fabricating the same
KR100946213B1 (en) * 2007-09-18 2010-03-08 충북대학교 산학협력단 Semiconductor structure and device having porous structure, and method for manufacturing same
WO2009038324A2 (en) * 2007-09-18 2009-03-26 Chungbuk National University Industry-Academic Cooperation Foundation Porous pattern semiconductor structure and semiconductor device and manufacturing method thereof
KR101082788B1 (en) 2009-10-16 2011-11-14 한국산업기술대학교산학협력단 High Quality Non-polar/Semi-polar Semiconductor Device on Porous Nitride Semiconductor and Manufacturing Method thereof
CN110670135B (en) * 2018-07-03 2021-03-05 中国科学院福建物质结构研究所 A kind of gallium nitride single crystal material and preparation method thereof

Also Published As

Publication number Publication date
JP2002050586A (en) 2002-02-15

Similar Documents

Publication Publication Date Title
JP3886341B2 (en) Method for manufacturing gallium nitride crystal substrate and gallium nitride crystal substrate
JP4783288B2 (en) Realization of III-nitride free-standing substrate by heteroepitaxy on sacrificial layer
JP4741572B2 (en) Nitride semiconductor substrate and manufacturing method thereof
US6608327B1 (en) Gallium nitride semiconductor structure including laterally offset patterned layers
JP3821232B2 (en) Porous substrate for epitaxial growth, method for producing the same, and method for producing group III nitride semiconductor substrate
JP4088111B2 (en) Porous substrate and manufacturing method thereof, GaN-based semiconductor multilayer substrate and manufacturing method thereof
JP5371430B2 (en) Semiconductor substrate, method for manufacturing a self-supporting semiconductor substrate by hydride vapor phase epitaxy, and mask layer used therefor
JP4471726B2 (en) Method for producing single crystal sapphire substrate
JP2003249453A (en) Manufacturing method for gallium nitride substrate
KR100531178B1 (en) Growth method of nitride epitaxial layer using conversion of nitride interlayer into metallic phase
KR101178505B1 (en) Substrate for semiconductor device and method for manufacturing the same
JP3780832B2 (en) Manufacturing method of semiconductor crystal
JP4333466B2 (en) Manufacturing method of semiconductor substrate and manufacturing method of free-standing substrate
JP4396010B2 (en) Semiconductor crystal growth method
JP2007246289A (en) Method for manufacturing gallium nitride semiconductor substrate
JP2009067658A (en) Nitride semiconductor base substrate, nitride semiconductor multilayer substrate, nitride semiconductor free-standing substrate, and method for manufacturing nitride semiconductor base substrate
JP5014217B2 (en) Group III nitride semiconductor and method of manufacturing the same
JP2009023853A (en) III-V nitride semiconductor substrate, method of manufacturing the same, and III-V nitride semiconductor device
CN100550302C (en) A kind of III hi-nitride semiconductor material and growing method thereof
JP3757339B2 (en) Method for manufacturing compound semiconductor device
JP2001200366A (en) Method for producing crack-free gallium nitride thick film by hydride vapor phase epitaxial growth method
JP2012131705A (en) Group iii nitride semiconductor and substrate for growing group iii nitride semiconductor
JP5430467B2 (en) Group III nitride semiconductor growth substrate, group III nitride semiconductor free-standing substrate, group III nitride semiconductor device, and methods of manufacturing the same
JP3698061B2 (en) Nitride semiconductor substrate and growth method thereof
JP2008273792A (en) Method for manufacturing metal nitride layer, group III nitride semiconductor and method for manufacturing the same, substrate for manufacturing group III nitride semiconductor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060227

R150 Certificate of patent or registration of utility model

Ref document number: 3780832

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees