[go: up one dir, main page]

JP3780767B2 - Polishing liquid for metal and method for polishing substrate - Google Patents

Polishing liquid for metal and method for polishing substrate Download PDF

Info

Publication number
JP3780767B2
JP3780767B2 JP25558599A JP25558599A JP3780767B2 JP 3780767 B2 JP3780767 B2 JP 3780767B2 JP 25558599 A JP25558599 A JP 25558599A JP 25558599 A JP25558599 A JP 25558599A JP 3780767 B2 JP3780767 B2 JP 3780767B2
Authority
JP
Japan
Prior art keywords
polishing
tantalum
metal
acid
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25558599A
Other languages
Japanese (ja)
Other versions
JP2001085372A (en
Inventor
靖 倉田
康雄 上方
剛 内田
裕樹 寺崎
明子 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Priority to JP25558599A priority Critical patent/JP3780767B2/en
Publication of JP2001085372A publication Critical patent/JP2001085372A/en
Application granted granted Critical
Publication of JP3780767B2 publication Critical patent/JP3780767B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、特に半導体デバイスの配線形成工程の研磨に使用される金属用研磨液及びそれを用いた研磨方法に関する。
【0002】
【従来の技術】
近年、半導体集積回路(以下LSIと記す)の高集積化、高性能化に伴って新たな微細加工技術が開発されている。化学機械研磨(以下CMPと記す)法もその一つであり、LSI製造工程、特に多層配線形成工程における層間絶縁膜の平坦化、金属プラグ形成、埋め込み配線形成において頻繁に利用される技術である。この技術は、例えば米国特許第4944836号公報に開示されている。
【0003】
また、最近はLSIを高性能化するために、配線材料として銅または銅合金の利用が試みられている。しかし、銅または銅合金は従来のアルミニウム合金配線の形成で頻繁に用いられたドライエッチング法による微細加工が困難である。そこで、あらかじめ溝を形成してある絶縁膜上に銅または銅合金薄膜を堆積して埋め込み、溝部以外の銅または銅合金薄膜をCMPにより除去して埋め込み配線を形成する、いわゆるダマシン法が主に採用されている。この技術は、例えば特開平2−278822号公報に開示されている。
【0004】
銅または銅合金等の金属CMPの一般的な方法は、円形の研磨定盤(プラテン)上に研磨パッドを貼り付け、研磨パッド表面を金属用研磨液で浸し、基板の金属膜を形成した面を押し付けて、その裏面から所定の圧力(以下研磨圧力と記す)を加えた状態で研磨定盤を回し、研磨液と金属膜の凸部との機械的摩擦によって凸部の金属膜を除去するものである。
CMPに用いられる金属用研磨液は、一般には酸化剤及び固体砥粒からなっており必要に応じてさらに酸化金属溶解剤、保護膜形成剤が添加される。まず酸化剤によって金属膜表面を酸化し、その酸化層を固体砥粒によって削り取るのが基本的なメカニズムと考えられている。凹部の金属表面の酸化層は研磨パッドにあまり触れず、固体砥粒による削り取りの効果が及ばないので、CMPの進行とともに凸部の金属層が除去されて基板表面は平坦化される。この詳細についてはジャ−ナル・オブ・エレクトロケミカルソサエティ誌の第138巻11号(1991年発行)の3460〜3464頁に開示されている。
【0005】
CMPによる研磨速度を高める方法として酸化金属溶解剤を添加することが有効とされている。固体砥粒によって削り取られた金属酸化物の粒を研磨液に溶解(以下エッチングと記す)させてしまうと固体砥粒による削り取りの効果が増すためであるためと解釈できる。酸化金属溶解剤の添加によりCMPによる研磨速度は向上するが、一方、凹部の金属膜表面の酸化層もエッチング(溶解)されて金属膜表面が露出すると、酸化剤によって金属膜表面がさらに酸化され、これが繰り返されると凹部の金属膜のエッチングが進行してしまう。このため研磨後に埋め込まれた金属配線の表面中央部分が皿のように窪む現象(以下ディシングと記す)が発生し、平坦化効果が損なわれる。
【0006】
これを防ぐためにさらに保護膜形成剤が添加される。保護膜形成剤は金属膜表面の酸化層上に保護膜を形成し、酸化層の研磨液中への溶解を防止するものである。この保護膜は固体砥粒により容易に削り取ることが可能で、CMPによる研磨速度を低下させないことが望まれる。
銅または銅合金のディッシングや研磨中の腐食を抑制し、信頼性の高いLSI配線を形成するために、グリシン等のアミノ酢酸又はアミド硫酸からなる酸化金属溶解剤及び保護膜形成剤としてBTAを含有する金属用研磨液を用いる方法が提唱されている。この技術は、例えば特開平8−83780号公報に記載されている。
【0007】
銅または銅合金のダマシン配線形成やタングステン等のプラグ配線形成等の金属埋め込み形成においては、埋め込み部分以外に形成される層間絶縁膜である二酸化シリコン膜の研磨速度も大きい場合には、層間絶縁膜ごと配線の厚みが薄くなるシニングが発生する。その結果、配線抵抗の増加やパターン密度等により抵抗のばらつきが生じるために、研磨される金属膜に対して二酸化シリコン膜の研磨速度が十分小さい特性が要求される。そこで、酸の解離により生ずる陰イオンにより二酸化シリコンの研磨速度を抑制することにより、研磨液のpHをpKa−0.5よりも大きくする方法が提唱されている。この技術は、例えば特許第2819196号に記載されている。
【0008】
一方、配線の銅或いは銅合金等の下層には、層間絶縁膜中への銅拡散防止のためにバリア層として、タンタルやタンタル合金及び窒化タンタルやその他のタンタル化合物等が形成される。したがって、銅或いは銅合金を埋め込む配線部分以外では、露出したバリア層をCMPにより取り除く必要がある。しかし、これらのバリア層導体は、銅或いは銅合金に比べ硬度が高いために、銅または銅合金用の研磨材料の組み合わせでは十分な研磨速度が得られない場合が多い。そこで、銅或いは銅合金を研磨する第1工程と、バリア層導体を研磨する第2工程からなる2段研磨方法が検討されている。
【0009】
第1工程の銅或いは銅合金の研磨において、埋め込み配線部分以外の絶縁層部分ではウエハ面内で均一にバリア膜上部の銅或いは銅合金が完全に研磨されバリア層が露出した理想的な状態であれば、第2工程のバリア層のCMPでは、銅または銅合金に対しバリア層を選択的に研磨することができる研磨液が有効である。一方、多層配線の上層プロセスでは、下層プロセスでの微小な残段差や不均一性の蓄積によりウエハ面内の均一性及び平坦性にばらつきが発生し、第1工程後でも部分的に絶縁層部分のバリア層に銅或いは銅合金が残存してしまう。このような上層プロセスでは、第2工程のバリア層の研磨において残存した銅または銅合金を研磨で除去した後、バリア層を研磨する必要がある。このように、プロセス適用箇所に応じて、第2工程の研磨液に要求される銅または銅合金とバリア層導体の研磨速度比の特性が異なる。銅または銅合金の研磨が要求されるバリア層の研磨において、銅または銅合金用の研磨液を適用すると、配線のディシングが増加する或いはバリア層の充分な研磨速度が得られない等の問題がある。
【0010】
【発明が解決しようとする課題】
バリア層として用いられるタンタルやタンタル合金及び窒化タンタルやその他のタンタル化合物は、化学的に安定でエッチングが難しく、硬度が高いために機械的な研磨も銅または銅合金ほど容易ではない。また、バリア層の研磨では、プロセス適用箇所によって、要求される銅または銅合金との研磨速度比が異なるために、別の組成の研磨液を適用しなければならないという問題があった。
本発明は、銅または銅合金とバリア層導体として用いられるタンタルやタンタル合金及び窒化タンタルやその他のタンタル化合物の研磨が、研磨液の一成分を調整することにより異なる材質の現れる研磨表面に適用可能で、効率的に金属膜の埋め込みパタ−ン形成を可能とする金属用研磨液及びそれを用いた基板の研磨方法を提供するものである。
【0011】
【課題を解決するための手段】
本発明の金属用研磨液は、導体の酸化剤、金属表面に対する保護膜形成剤、酸及び水を含有する研磨液であり、pHが3以下であり、酸化剤の濃度により銅または銅合金とタンタル、窒化タンタル、タンタル合金またはその他のタンタル化合物との研磨速度比を調整することが可能な金属用研磨液である。酸化剤の濃度は、0.01〜10重量%であることが好ましく、0.01〜3重量%がより好ましい。金属用研磨液にはさらに水溶性高分子を含むことができる。水溶性高分子は、ポリアクリル酸もしくはその塩、ポリメタクリル酸もしくはその塩、ポリアクリルアミド、ポリビニルアルコール、ポリビニルピロリドン、ポリアミド酸およびその塩からなる群から選ばれた少なくとも1種が好ましい。酸は、有機酸であることが好ましく、マロン酸、リンゴ酸、酒石酸、グリコール酸及びクエン酸から選ばれた少なくとも1種であることがより好ましい。金属表面に対する保護膜形成剤は、従来から広く用いられてきたベンゾトリアゾール(BTA)およびその誘導体から選ばれた少なくとも1種(BTA類)を用いる。導体の酸化剤は、過酸化水素、硝酸、過ヨウ素酸カリウム、次亜塩素酸、オゾン水より選ばれた少なくとも1種であることが好ましい。金属用研磨液は、砥粒を含有してもよい。砥粒は、シリカ、アルミナ、セリア、チタニア、ジルコニア、ゲルマニアより選ばれた少なくとも1種であることが好ましく、平均粒径100nm以下のコロイダルシリカまたはコロイダルアルミナであることがより好ましい。導体は、銅または銅合金のバリア層であり、バリア層は、タンタル、窒化タンタル、タンタル合金、その他のタンタル化合物である。本発明の金属用研磨液は、タンタル、窒化タンタルと二酸化シリコン膜の研磨速度比(Ta/SiO2、TaN/SiO2)が10より大きいことが好ましい。本発明の研磨方法は、上記の金属用研磨液を用いて、タンタル、窒化タンタル、タンタル合金及びその他のタンタル化合物からなるバリア層を研磨する研磨方法である。本発明の研磨方法は、上記の金属用研磨液を用いて、銅または銅合金とそのバリア層を含む面を研磨する研磨方法である。具体的には、銅又は銅合金を有する面を、導体の酸化剤、金属表面に対する保護膜形成剤、酸及び水を含有するpH3以下の研磨液で研磨する工程、並びに、銅又は銅合金を有する面の下層にあるタンタル、窒化タンタル、タンタル合金またはその他のタンタル化合物を含む面を、導体の酸化剤、金属表面に対する保護膜形成剤、酸及び水を含有するpH3以下の研磨液で研磨する工程を有し、銅又は銅合金とタンタル、窒化タンタル、タンタル合金またはその他のタンタル化合物との研磨速度比を前記酸化剤の濃度を変化させることにより調整することを特徴とする研磨方法である。
【0012】
本発明では、金属用研磨液を低pH領域かつ低酸化剤濃度領域にすることにより、銅または銅合金配線のディシング、シニング及び研磨キズ発生を抑制し、低砥粒濃度においてバリア層の高い研磨速度を実現する金属用研磨液とそれを用いた基板の研磨方法を提供する。
バリア層を研磨する方法として、プロセス適用箇所によって、要求される銅または銅合金の研磨速度比が異なるために、特性の異なる別の組成の研磨液を適用しなければならないという問題があった。 本発明者らは、バリア層導体として用いられるタンタルやタンタル合金及び窒化タンタルやその他のタンタル化合物の研磨が、低pH領域かつ低酸化剤濃度領域で容易に進行すること、及び酸化剤濃度によって銅または銅合金との研磨速度比を調整できることを見出した。
【0013】
【発明の実施の形態】
本発明においては、表面に二酸化シリコンの凹部を有する基板上にバリア層及び銅或いは銅合金を含む金属膜を形成・充填する。この基板をまず銅或いは銅合金/バリア層の研磨速度比が十分大きい銅または銅合金用の研磨液を用いてCMPすると、基板の凸部のバリア層が表面に露出し、凹部に銅或いは銅合金膜が残された所望の導体パタ−ンが得られる。
本発明の金属用研磨液は、導体の酸化剤、金属表面に対する保護膜形成剤、酸及び水を含有する研磨液であり、pHが3以下であり、適用するプロセスの絶縁層部分、バリア層上の銅或いは銅合金残存程度に応じて酸化剤の濃度を調整する。必要に応じて、水溶性高分子を添加してもよい。
本発明における金属用研磨液のpHは、3を超えて大きいと酸化剤の濃度によらずタンタルやタンタル合金及び窒化タンタルやその他のタンタル化合物の研磨速度が小さい。pHは、酸の添加量により調整することができる。またアンモニア、水酸化ナトリウム、テトラメチルアンモニウムハイドライド等のアルカリ成分の添加によっても調整可能である。
【0014】
本発明における金属用研磨液の酸化剤濃度は、0.01〜10重量%が好ましく、0.01〜3重量%がより好ましい。バリア層であるタンタルやタンタル合金及び窒化タンタルやその他のタンタル化合物の研磨速度は、0.15重量%付近で極大になる。これは、酸化剤によりタンタルやタンタル合金及び窒化タンタルやその他のタンタル化合物等の導体膜表面に、機械的に研磨されやすい一次酸化層が形成され、高い研磨速度が得られる。一方、銅または銅合金の研磨速度は、酸化剤の濃度が高くなるにつれて大きくなる。酸化剤の濃度を0.01〜10重量%の範囲で、銅または銅合金に対するバリア層導体の研磨速度比を調整することができる。酸化剤の濃度が10重量%を超えて大きいと、銅または銅合金のエッチング速度が大きくなりディシング等が発生し易くなる。また、酸化剤濃度がより大きくなるにつれ、タンタルやタンタル合金及び窒化タンタルやその他のタンタル化合物等の導体膜表面に、一次酸化層よりも研磨されにくい二次酸化層が形成されるために研磨速度が低下するようになる。酸化剤の濃度が0.01重量%未満であると、酸化層が充分形成されないためにタンタルやタンタル合金及び窒化タンタルやその他のタンタル化合物の研磨速度が小さく、銅または銅合金の研磨速度も小さいために実用的でなくなる。
【0015】
本発明における金属用研磨液は、水溶性高分子を含有してもよい。水溶性高分子は、タンタルやタンタル合金及び窒化タンタルやその他のタンタル化合物、或いはその酸化膜表面に吸着するために、これらのバリア層導体膜の高い研磨速度が得られる酸化剤濃度範囲が小さくなる。また、水溶性高分子は、特に窒化タンタル膜や窒化チタン等の窒化化合物膜の表面に吸着し易いために、窒化タンタル膜や窒化チタン等の窒化化合物膜の研磨速度が小さくなる。しかし、水溶性高分子は、金属の表面に保護膜を形成する効果を有するので、ディシングやシニング等の平坦化特性を向上させる。
【0016】
本発明における導体の酸化剤としては、過酸化水素(H22)、硝酸、過ヨウ素酸カリウム、次亜塩素酸、オゾン水等が挙げられ、その中でも過酸化水素が特に好ましい。基板が集積回路用素子を含むシリコン基板である場合、アルカリ金属、アルカリ土類金属、ハロゲン化物などによる汚染は望ましくないので、不揮発成分を含まない酸化剤が望ましい。但し、オゾン水は組成の時間変化が激しいので過酸化水素が最も適している。しかし、適用対象の基板が半導体素子を含まないガラス基板などである場合は不揮発成分を含む酸化剤であっても差し支えない。
【0017】
本発明における酸としては、ギ酸、酢酸、プロピオン酸、吉草酸、2−メチル酪酸、n−ヘキサン酸、3,3−ジメチル酪酸、2−エチル酪酸、4−メチルペンタン酸、n−ヘプタン酸、2−メチルヘキサン酸、n−オクタン酸、2−エチルヘキサン酸、安息香酸、グリコール酸、サリチル酸、グリセリン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、マレイン酸、フタル酸、リンゴ酸、酒石酸、クエン酸等及びこれらの有機酸のアンモニウム塩等の塩、硫酸、硝酸、アンモニア、アンモニウム塩類、例えば過硫酸アンモニウム、硝酸アンモニウム、塩化アンモニウム、クロム酸等又はそれらの混合物等が挙げられる。これらの中では、実用的なCMP研磨速度が得られるという点でマロン酸、リンゴ酸、酒石酸、グリコール酸及びクエン酸が好ましい。
【0018】
本発明における保護膜形成剤は、ベンゾトリアゾール(BTA)、BTA誘導体、例えばBTAのベンゼン環の一つの水素原子をメチル基で置換したもの(トリルトリアゾール)もしくはカルボキシル基等で置換したもの(ベンゾトリアゾール−4−カルボン酸、のメチル、エチル、プロピル、ブチル及びオクチルエステル)、又はナフトトリアゾ−ル、ナフトトリアゾ−ル誘導体及びこれらを含む混合物の中から選ばれる。
【0019】
本発明における水溶性高分子としては、以下の群から選ばれたものが好適で、ポリアクリル酸、ポリアクリル酸アンモニウム塩、ポリアクリル酸ナトリウム塩、ポリメタクリル酸、ポリメタクリル酸アンモニウム塩、ポリメタクリル酸ナトリウム塩、ポリアクリルアミド等のカルボキシル基を持つモノマーを基本構成単位とするポリマーおよびその塩、ポリビニルアルコール、ポリビニルピロリドン等のビニル基を持つモノマーを基本構成単位とするポリマーが挙げられる。但し、適用する基板が半導体集積回路用シリコン基板などの場合はアルカリ金属、アルカリ土類金属、ハロゲン化物等による汚染は望ましくないため、酸もしくはそのアンモニウム塩が望ましい。基板がガラス基板等である場合はその限りではない。これらの水溶性高分子を添加することにより、保護膜形成剤との相乗効果及び水溶性高分子の保護膜形成効果によりエッチングが抑制されディシング特性を大幅に向上させることができる。
【0020】
本発明の金属用研磨液には、砥粒を添加しても良い。砥粒としては、シリカ、アルミナ、ジルコニア、セリア、チタニア、ゲルマニア、炭化珪素等の無機物砥粒、ポリスチレン、ポリアクリル、ポリ塩化ビニル等の有機物砥粒のいずれでもよいが、研磨液中での分散安定性が良く、CMPにより発生する研磨傷(スクラッチ)の発生数の少ない、平均粒径が100nm以下のコロイダルシリカ、コロイダルアルミナが好ましい。平均粒径は、バリア層の研磨速度がより大きくなり、二酸化シリコンの研磨速度がより小さくなる20nm以下がより好ましい。コロイダルシリカはシリコンアルコキシドの加水分解または珪酸ナトリウムのイオン交換による製造方法が知られており、コロイダルアルミナは硝酸アルミニウムの加水分解による製造方法が知られている。
【0021】
本発明を適用する導体膜としては、銅または銅合金のバリア層であり、タンタルやタンタル合金及び窒化タンタルやその他のタンタル化合物からなる。
【0022】
本発明における酸の配合量は、導体の酸化剤、酸、保護膜形成剤、水溶性高分子及び水の総量100gに対して、0.0001〜0.05molとすることが好ましく、0.001〜0.01molとすることがより好ましい。この配合量が0.05molを超えると、銅または銅合金のエッチングが増加する傾向がある。
【0023】
本発明における保護膜形成剤の配合量は、酸化剤、酸、保護膜形成剤、水溶性高分子及び水の総量100gに対して、0.0001〜0.01molとすることが好ましく、0.0005〜0.005molとすることがより好ましい。この配合量が0.0001mol未満では、銅または銅合金のエッチングが増加する傾向があり、0.01molを超えても効果に変わりがない。
【0024】
本発明では水溶性高分子を添加することもできる。水溶性高分子の配合量は、酸化剤、酸、保護膜形成剤、水溶性高分子及び水の総量100gに対して、0.001〜0.5重量%とすることが好ましく、0.01〜0.2重量%とすることがより好ましい。この配合量が0.001重量%未満では、エッチング抑制において保護膜形成剤との併用効果が現れない傾向があり、0.5重量%を超えると、CMPによる研磨速度が低下する傾向がある。
【0025】
本発明では砥粒を含有することもできる。砥粒の添加量は全重量に対して0.01重量%から10重量%であることが好ましく、0.05重量%から5重量%の範囲であることがより好ましい。この配合量が0.01重量%未満では砥粒を含有する効果がなく、10重量%を超えるとCMPによる研磨速度は飽和し、それ以上加えても増加は見られない。
【0026】
【実施例】
以下、実施例により本発明を具体的に説明する。本発明はこれらの実施例により制限されるものではない。
【0027】
(実施例1〜10)
(研磨液の作製方法)
酸 0.4重量部、水溶性高分子 0.05重量部、保護膜形成剤としてBTA 0.2重量部に水98.85重量部〜89.35重量部(過酸化水素濃度により調整、水溶性高分子を加えない場合は98.9重量部〜89.40重量部)を加えて溶解し、過酸化水素(試薬特級、30%水溶液)を0.5重量部〜10重量部を加えて得られたものを金属用研磨液とした。砥粒を添加する場合には、テトラエトキシシランのアンモニア水溶液中での加水分解により作製した平均粒径20nmのコロイダルシリカを1重量部添加し、水を97.85重量部〜88.35重量部(過酸化水素濃度により調整、水溶性高分子を加えない場合は97.9重量部〜88.40重量部)とした。使用した酸のpKaは、リンゴ酸が3.4及びグリコール酸が3.7である。
実施例1〜10では表1に記した酸、水溶性高分子を用いた上記金属用研磨液で下記の研磨条件でCMPした。
(研磨条件)

Figure 0003780767
研磨パッド:独立気泡を持つ発泡ポリウレタン樹脂
研磨圧力:250gf/cm2
基板と研磨定盤との相対速度:18m/min
(研磨品評価項目)
CMPによる研磨速度:膜のCMP前後での膜厚差を電気抵抗値から換算して求めた。
エッチング速度:攪拌した研磨液(室温、25℃、攪拌100rpm)への浸漬前後の銅膜厚差を電気抵抗値から換算して求めた。
ディシング量:二酸化シリコン中に深さ0.5μmの溝を形成して、公知のスパッタ法によってバリア層として厚さ50nmの窒化タンタル膜を形成し、同様にスパッタ法により銅膜を形成して公知の熱処理によって埋め込んだシリコン基板を用いて2段研磨を行い、触針式段差計で配線金属部幅100μm、絶縁膜部幅100μmが交互に並んだストライプ状パターン部の表面形状から、絶縁膜部に対する配線金属部の膜減り量を求めた。銅用の1段目研磨液としては、窒化タンタルに対する銅の研磨速度比が十分大きい銅または銅合金用の研磨液を使用して研磨した。1段研磨後に、絶縁膜部上にバリア層が露出した状態で測定したディシング量が、50nmになるように基板サンプルを作製し、絶縁膜部でバリア層がなくなるまで2段研磨した。
シニング量:上記ディシング量評価用基板に形成された配線金属部幅45μm、絶縁膜部幅5μmが交互に並んだ総幅2.5mmのストライプ状パターン部の表面形状を触針式段差計により測定し、ストライプ状パターン周辺の絶縁膜フィールド部に対するパターン中央付近の絶縁膜部の膜減り量を求めた。1段研磨後に、絶縁膜部上にバリア層が露出した状態で測定したシニング量が、20nmになるように基板サンプルを作製し、絶縁膜部でバリア層がなくなるまで2段研磨した。
実施例1〜10のCMPによる研磨速度、研磨速度比を表1に示した。また、ディシング量とシニング量を表2に示した。
【0028】
【表1】
Figure 0003780767
【0029】
【表2】
Figure 0003780767
【0030】
実施例1、2は、砥粒と水溶性高分子を配合しない例で、過酸化水素濃度を実施例1では、0.15重量%、実施例2では3.0重量%配合した例である。実施例2の過酸化水濃度が高いと銅の研磨速度が75.0nm/minであり、第1の工程での研磨残りである銅層の研磨に適している。二酸化シリコンの絶縁層に溝を形成し、銅の拡散を防止するバリア層としてタンタルや窒化タンタルを用いて、その表面に銅層を設けた場合、酸化剤である過酸化水素の濃度を高めた金属用研磨液では、銅層の研磨速度が速く、第1工程で残存してしまった銅層を短時間に研磨することができる。第1工程での銅層研磨残りが無い場合には、金属用研磨液として、酸化剤である過酸化水素濃度を低下させた実施例1で研磨すると、銅の研磨速度が低下し、タンタルや窒化タンタルの研磨速度が速くなり、バリア層と銅層をほぼ同じ程度に研磨できるようになる。金属用研磨液は、第1工程でバリア層上に銅の研磨残りがある場合、過酸化水素の濃度を高めたものとし、その研磨液をポンプ等で供給し、第1工程で銅の研磨残りがない場合、過酸化水素の濃度の低い研磨液をポンプ等で供給し研磨すると良い。実施例3〜5は、砥粒を用いた例であり、酸化剤である過酸化水素の濃度が高いと砥粒を配合しない実施例1、2と同様、銅の研磨速度が高く、バリア層の研磨速度が比較的低くなり、バリア層研磨後の均一性も向上する。過酸化水素の濃度が低くなるとバリア層の研磨速度が速く、銅層の研磨速度が低くなり、バリア層と銅層の研磨速度が等しくなる濃度があり、ディシングのないバリア層研磨が可能である。実施例6〜8は、水溶性高分子を配合した例であり、同様な傾向が見られる。表2に示したディシング量は、過酸化水素濃度3.0重量%の実施例2、5、8で比較すると水溶性高分子を配合した実施例8が最も値が小さく良好である。何れの実施例においても絶縁層である二酸化シリコンの研磨速度は金属層に比べ低く、研磨はこの層の上面付近で確実に停止できる。
【0031】
【発明の効果】
本発明の金属用研磨液は、pHが3以下であり、酸化剤濃度だけで、バリア層導体として用いられるタンタルやタンタル合金及び窒化タンタルやその他のタンタル化合物と銅または銅合金との研磨速度比を調整できることにより、バリア層研磨が必要な全てのプロセス箇所において配合成分が同じの研磨液を適用することが可能になり、効率的に金属膜の埋め込みパタ−ン形成をすることができる。[0001]
BACKGROUND OF THE INVENTION
In particular, the present invention relates to a metal polishing liquid used for polishing a wiring formation process of a semiconductor device and a polishing method using the same.
[0002]
[Prior art]
In recent years, new microfabrication techniques have been developed along with higher integration and higher performance of semiconductor integrated circuits (hereinafter referred to as LSIs). The chemical mechanical polishing (hereinafter referred to as CMP) method is one of them, and is a technique frequently used in the LSI manufacturing process, particularly in the multilayer wiring formation process, planarization of the interlayer insulating film, metal plug formation, and buried wiring formation. . This technique is disclosed in, for example, US Pat. No. 4,944,836.
[0003]
Recently, in order to improve the performance of LSIs, the use of copper or copper alloys as wiring materials has been attempted. However, it is difficult to finely process copper or a copper alloy by a dry etching method frequently used in the formation of a conventional aluminum alloy wiring. Therefore, a so-called damascene method is mainly used, in which a copper or copper alloy thin film is deposited and embedded on an insulating film in which a groove is formed in advance, and a copper or copper alloy thin film other than the groove is removed by CMP to form a buried wiring. It has been adopted. This technique is disclosed, for example, in JP-A-2-278822.
[0004]
A general method of metal CMP such as copper or copper alloy is a surface on which a polishing pad is pasted on a circular polishing platen (platen), the surface of the polishing pad is immersed in a metal polishing liquid, and a metal film of a substrate is formed. Is pressed and a polishing surface plate is rotated with a predetermined pressure (hereinafter referred to as polishing pressure) applied from the back surface, and the metal film on the convex portion is removed by mechanical friction between the polishing liquid and the convex portion of the metal film. Is.
The metal polishing liquid used in CMP is generally composed of an oxidizing agent and solid abrasive grains, and a metal oxide dissolving agent and a protective film forming agent are further added as necessary. First, it is considered that the basic mechanism is to oxidize the surface of a metal film with an oxidizing agent and scrape the oxidized layer with solid abrasive grains. Since the oxide layer on the metal surface of the concave portion does not touch the polishing pad so much and the effect of scraping off by the solid abrasive grains is not exerted, the metal layer of the convex portion is removed and the substrate surface is flattened with the progress of CMP. The details are disclosed in Journal of Electrochemical Society, Vol. 138, No. 11 (published in 1991), pages 3460-3464.
[0005]
As a method for increasing the polishing rate by CMP, it is effective to add a metal oxide dissolving agent. It can be interpreted that the metal oxide particles scraped off by the solid abrasive grains are dissolved in the polishing liquid (hereinafter referred to as etching) because the effect of scraping off by the solid abrasive grains is increased. Although the polishing rate by CMP is improved by adding a metal oxide solubilizer, on the other hand, when the oxide layer on the metal film surface in the recess is also etched (dissolved) and the metal film surface is exposed, the metal film surface is further oxidized by the oxidant. If this is repeated, etching of the metal film in the recesses proceeds. For this reason, a phenomenon occurs in which the central portion of the surface of the metal wiring embedded after polishing is depressed like a dish (hereinafter referred to as “dicing”), and the planarization effect is impaired.
[0006]
In order to prevent this, a protective film forming agent is further added. The protective film forming agent forms a protective film on the oxide layer on the surface of the metal film and prevents dissolution of the oxide layer in the polishing liquid. This protective film can be easily scraped off by solid abrasive grains, and it is desirable not to decrease the polishing rate by CMP.
In order to suppress corrosion during dishing or polishing of copper or copper alloy, and to form a highly reliable LSI wiring, it contains BTA as a protective film forming agent and a metal oxide solubilizer composed of aminoacetic acid or amide sulfuric acid such as glycine A method using a metal polishing liquid is proposed. This technique is described in, for example, JP-A-8-83780.
[0007]
In metal embedding formation such as damascene wiring formation of copper or copper alloy or plug wiring formation of tungsten, etc., when the polishing rate of the silicon dioxide film that is an interlayer insulating film formed other than the embedded portion is high, the interlayer insulating film Thinning in which the thickness of each wiring is reduced occurs. As a result, resistance variation occurs due to an increase in wiring resistance, pattern density, and the like, so that a characteristic in which the polishing rate of the silicon dioxide film is sufficiently small with respect to the metal film to be polished is required. Accordingly, a method has been proposed in which the polishing rate of silicon dioxide is suppressed by anions generated by acid dissociation so that the polishing solution has a pH higher than pKa-0.5. This technique is described in, for example, Japanese Patent No. 2819196.
[0008]
On the other hand, tantalum, a tantalum alloy, tantalum nitride, other tantalum compounds, and the like are formed as barrier layers to prevent copper diffusion into the interlayer insulating film under the copper or copper alloy layer of the wiring. Therefore, it is necessary to remove the exposed barrier layer by CMP except for the wiring portion in which copper or copper alloy is embedded. However, since these barrier layer conductors have higher hardness than copper or copper alloys, a combination of polishing materials for copper or copper alloys cannot often provide a sufficient polishing rate. Therefore, a two-step polishing method is being studied which includes a first step of polishing copper or a copper alloy and a second step of polishing the barrier layer conductor.
[0009]
In the polishing of copper or copper alloy in the first step, in the insulating layer portion other than the buried wiring portion, the copper or copper alloy on the upper portion of the barrier film is uniformly polished in the wafer surface and the barrier layer is exposed. If so, a polishing liquid capable of selectively polishing the barrier layer with respect to copper or a copper alloy is effective in the CMP of the barrier layer in the second step. On the other hand, in the upper layer process of the multilayer wiring, variations in uniformity and flatness in the wafer surface occur due to the accumulation of minute residual steps and non-uniformity in the lower layer process, and even after the first step, the insulating layer part is partially Copper or copper alloy remains in the barrier layer. In such an upper layer process, it is necessary to polish the barrier layer after removing the remaining copper or copper alloy by polishing in the polishing of the barrier layer in the second step. Thus, the characteristics of the polishing rate ratio between the copper or copper alloy and the barrier layer conductor required for the polishing liquid in the second step differ depending on the process application location. In the polishing of a barrier layer that requires polishing of copper or copper alloy, if a polishing liquid for copper or copper alloy is applied, there are problems such as increased wiring dicing or insufficient barrier layer polishing rate. is there.
[0010]
[Problems to be solved by the invention]
Tantalum, tantalum alloys, tantalum nitride, and other tantalum compounds used as barrier layers are chemically stable and difficult to etch, and have high hardness, so mechanical polishing is not as easy as copper or copper alloys. Further, in the polishing of the barrier layer, there is a problem that a polishing liquid having a different composition has to be applied because the required polishing rate ratio with copper or a copper alloy differs depending on the process application location.
The present invention can be applied to polishing surfaces where different materials appear by adjusting one component of the polishing liquid for polishing tantalum, tantalum alloy, tantalum nitride and other tantalum compounds used as barrier layer conductors with copper or copper alloys. Thus, the present invention provides a metal polishing liquid and a method of polishing a substrate using the same, which can efficiently form a buried pattern of a metal film.
[0011]
[Means for Solving the Problems]
The metal polishing liquid of the present invention is a polishing liquid containing a conductor oxidizing agent, a protective film forming agent for the metal surface, an acid and water, having a pH of 3 or less, and depending on the concentration of the oxidizing agent, copper or copper alloy. This is a metal polishing liquid capable of adjusting the polishing rate ratio with tantalum, tantalum nitride, tantalum alloy or other tantalum compounds. The concentration of the oxidizing agent is preferably 0.01 to 10% by weight, and more preferably 0.01 to 3% by weight. The metal polishing liquid can further contain a water-soluble polymer. The water-soluble polymer is preferably at least one selected from the group consisting of polyacrylic acid or a salt thereof, polymethacrylic acid or a salt thereof, polyacrylamide, polyvinyl alcohol, polyvinyl pyrrolidone, polyamic acid and a salt thereof. The acid is preferably an organic acid, and more preferably at least one selected from malonic acid, malic acid, tartaric acid, glycolic acid and citric acid. As the protective film forming agent for the metal surface, at least one (BTAs) selected from benzotriazole (BTA) and its derivatives, which have been widely used conventionally, is used. The conductor oxidizing agent is preferably at least one selected from hydrogen peroxide, nitric acid, potassium periodate, hypochlorous acid, and ozone water. The metal polishing liquid may contain abrasive grains. The abrasive is preferably at least one selected from silica, alumina, ceria, titania, zirconia, and germania, and more preferably colloidal silica or colloidal alumina having an average particle size of 100 nm or less. The conductor is a barrier layer of copper or copper alloy, and the barrier layer is tantalum, tantalum nitride, tantalum alloy, or other tantalum compounds. In the metal polishing slurry of the present invention, the polishing rate ratio (Ta / SiO2, TaN / SiO2) of tantalum, tantalum nitride and silicon dioxide film is preferably greater than 10. The polishing method of the present invention is a polishing method for polishing a barrier layer made of tantalum, tantalum nitride, a tantalum alloy and other tantalum compounds using the above-described metal polishing liquid. The polishing method of the present invention is a polishing method for polishing a surface containing copper or a copper alloy and its barrier layer using the above-described metal polishing liquid. Specifically, a step of polishing a surface having copper or a copper alloy with a polishing solution having a pH of 3 or less containing an oxidizing agent for a conductor, a protective film forming agent for the metal surface, an acid and water, and a copper or copper alloy The surface containing tantalum, tantalum nitride, tantalum alloy or other tantalum compound in the lower layer of the surface having the surface is polished with a polishing solution having a pH of 3 or less containing an oxidizing agent for the conductor, a protective film forming agent for the metal surface, acid and water. And a polishing rate ratio of copper or copper alloy and tantalum, tantalum nitride, tantalum alloy or other tantalum compound is adjusted by changing the concentration of the oxidizing agent.
[0012]
In the present invention, the metal polishing liquid is set to a low pH region and a low oxidant concentration region, thereby suppressing the occurrence of dishing, thinning and polishing flaws in copper or copper alloy wiring, and high polishing of the barrier layer at a low abrasive concentration. Provided are a metal-polishing liquid that realizes a speed and a method for polishing a substrate using the same.
As a method for polishing the barrier layer, a required polishing rate ratio of copper or copper alloy differs depending on a process application point, and therefore, there is a problem that a polishing liquid having a different composition must be applied. The present inventors have found that polishing of tantalum, tantalum alloys, tantalum nitride, and other tantalum compounds used as barrier layer conductors easily proceeds in a low pH region and a low oxidant concentration region, and the copper concentration depends on the oxidant concentration. Or it discovered that polishing rate ratio with a copper alloy could be adjusted.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, a metal film containing a barrier layer and copper or copper alloy is formed and filled on a substrate having a silicon dioxide recess on the surface. When this substrate is first CMPed using a polishing solution for copper or copper alloy having a sufficiently high polishing rate ratio of copper or copper alloy / barrier layer, the barrier layer on the convex portion of the substrate is exposed on the surface, and copper or copper in the concave portion is exposed. A desired conductor pattern in which the alloy film remains is obtained.
The metal polishing liquid of the present invention is a polishing liquid containing a conductor oxidizing agent, a protective film-forming agent for the metal surface, an acid and water, and has a pH of 3 or less. The concentration of the oxidizing agent is adjusted in accordance with the degree of remaining copper or copper alloy. A water-soluble polymer may be added as necessary.
If the pH of the metal polishing liquid in the present invention is greater than 3, the polishing rate of tantalum, tantalum alloy, tantalum nitride, and other tantalum compounds is low regardless of the concentration of the oxidizing agent. The pH can be adjusted by the amount of acid added. It can also be adjusted by adding alkali components such as ammonia, sodium hydroxide, tetramethylammonium hydride.
[0014]
The oxidizing agent concentration of the metal polishing slurry in the present invention is preferably 0.01 to 10% by weight, more preferably 0.01 to 3% by weight. The polishing rate of tantalum, tantalum alloy, tantalum nitride, and other tantalum compounds, which are barrier layers, reaches a maximum around 0.15% by weight. This is because a primary oxide layer that is easily mechanically polished is formed on the surface of the conductor film such as tantalum, tantalum alloy, tantalum nitride, and other tantalum compounds by an oxidizing agent, and a high polishing rate can be obtained. On the other hand, the polishing rate of copper or copper alloy increases as the concentration of the oxidizing agent increases. The polishing rate ratio of the barrier layer conductor to copper or copper alloy can be adjusted within a range of 0.01 to 10% by weight of the oxidizing agent. If the concentration of the oxidant exceeds 10% by weight, the etching rate of copper or copper alloy increases, and dishing or the like is likely to occur. Also, as the oxidant concentration becomes higher, a secondary oxide layer that is harder to polish than the primary oxide layer is formed on the surface of the conductor film such as tantalum, tantalum alloy, tantalum nitride, and other tantalum compounds. Will fall. When the concentration of the oxidizing agent is less than 0.01% by weight, the oxide layer is not sufficiently formed, so that the polishing rate of tantalum, tantalum alloy, tantalum nitride, and other tantalum compounds is low, and the polishing rate of copper or copper alloy is also low. Therefore, it becomes impractical.
[0015]
The metal polishing slurry in the present invention may contain a water-soluble polymer. The water-soluble polymer is adsorbed on the surface of tantalum, tantalum alloy, tantalum nitride, other tantalum compounds, or their oxide films, so that the oxidant concentration range in which a high polishing rate of these barrier layer conductor films can be obtained becomes small. . In addition, since the water-soluble polymer is easily adsorbed on the surface of a nitride compound film such as a tantalum nitride film or titanium nitride, the polishing rate of the nitride compound film such as a tantalum nitride film or titanium nitride is reduced. However, since the water-soluble polymer has an effect of forming a protective film on the metal surface, it improves the planarization characteristics such as dishing and thinning.
[0016]
Examples of the oxidant for the conductor in the present invention include hydrogen peroxide (H 2 O 2 ), nitric acid, potassium periodate, hypochlorous acid, ozone water, etc. Among them, hydrogen peroxide is particularly preferable. When the substrate is a silicon substrate including an integrated circuit element, contamination with alkali metal, alkaline earth metal, halide, or the like is not desirable, and thus an oxidizing agent that does not contain a nonvolatile component is desirable. However, hydrogen peroxide is most suitable because ozone water has a severe compositional change over time. However, when the substrate to be applied is a glass substrate that does not include a semiconductor element, an oxidant that includes a non-volatile component may be used.
[0017]
Examples of the acid in the present invention include formic acid, acetic acid, propionic acid, valeric acid, 2-methylbutyric acid, n-hexanoic acid, 3,3-dimethylbutyric acid, 2-ethylbutyric acid, 4-methylpentanoic acid, n-heptanoic acid, 2-methylhexanoic acid, n-octanoic acid, 2-ethylhexanoic acid, benzoic acid, glycolic acid, salicylic acid, glyceric acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, maleic acid, phthalate Acids, malic acid, tartaric acid, citric acid, etc. and salts such as ammonium salts of these organic acids, sulfuric acid, nitric acid, ammonia, ammonium salts, such as ammonium persulfate, ammonium nitrate, ammonium chloride, chromic acid, or mixtures thereof It is done. Among these, malonic acid, malic acid, tartaric acid, glycolic acid, and citric acid are preferable in that a practical CMP polishing rate can be obtained.
[0018]
The protective film forming agent in the present invention is benzotriazole (BTA), a BTA derivative, for example, one in which one hydrogen atom of the benzene ring of BTA is substituted with a methyl group (tolyltriazole) or one substituted with a carboxyl group (benzotriazole) -4-carboxylic acid methyl, ethyl, propyl, butyl and octyl esters), or naphthotriazole, naphthotriazole derivatives and mixtures containing these.
[0019]
The water-soluble polymer in the present invention is preferably selected from the following groups: polyacrylic acid, polyacrylic acid ammonium salt, polyacrylic acid sodium salt, polymethacrylic acid, polymethacrylic acid ammonium salt, polymethacrylic acid. Examples thereof include a polymer having a monomer having a carboxyl group such as sodium acid salt and polyacrylamide as a basic constituent unit and a polymer thereof having a monomer having a vinyl group such as a salt thereof, polyvinyl alcohol and polyvinylpyrrolidone as a basic constituent unit. However, when the substrate to be applied is a silicon substrate for a semiconductor integrated circuit or the like, contamination with an alkali metal, an alkaline earth metal, a halide, or the like is not desirable, so an acid or an ammonium salt thereof is desirable. This is not the case when the substrate is a glass substrate or the like. By adding these water-soluble polymers, etching is suppressed by the synergistic effect with the protective film forming agent and the protective film forming effect of the water-soluble polymer, and the dishing characteristics can be greatly improved.
[0020]
Abrasive grains may be added to the metal polishing slurry of the present invention. The abrasive grains may be any of inorganic abrasive grains such as silica, alumina, zirconia, ceria, titania, germania, silicon carbide, and organic abrasive grains such as polystyrene, polyacryl, polyvinyl chloride, etc., but dispersed in the polishing liquid. Colloidal silica and colloidal alumina having good stability and a small number of polishing scratches (scratches) generated by CMP and having an average particle size of 100 nm or less are preferable. The average particle size is more preferably 20 nm or less, in which the polishing rate of the barrier layer becomes larger and the polishing rate of silicon dioxide becomes smaller. Colloidal silica is known for its production by hydrolysis of silicon alkoxide or ion exchange of sodium silicate, and colloidal alumina is known for its production by hydrolysis of aluminum nitrate.
[0021]
The conductor film to which the present invention is applied is a barrier layer of copper or copper alloy, and is made of tantalum, tantalum alloy, tantalum nitride, or other tantalum compounds.
[0022]
The amount of the acid in the present invention is preferably 0.0001 to 0.05 mol with respect to 100 g of the total amount of the conductor oxidizing agent, acid, protective film forming agent, water-soluble polymer and water, 0.001 It is more preferable to set it to -0.01 mol. When this compounding quantity exceeds 0.05 mol, there exists a tendency for the etching of copper or a copper alloy to increase.
[0023]
The blending amount of the protective film forming agent in the present invention is preferably 0.0001 to 0.01 mol with respect to 100 g of the total amount of the oxidizing agent, the acid, the protective film forming agent, the water-soluble polymer and water. More preferably, the amount is 0005 to 0.005 mol. If the amount is less than 0.0001 mol, the etching of copper or copper alloy tends to increase, and the effect remains unchanged even if the amount exceeds 0.01 mol.
[0024]
In the present invention, a water-soluble polymer can also be added. The blending amount of the water-soluble polymer is preferably 0.001 to 0.5% by weight with respect to 100 g of the total amount of the oxidizing agent, acid, protective film forming agent, water-soluble polymer and water, 0.01 It is more preferable to set it to -0.2 weight%. If the blending amount is less than 0.001% by weight, the combined effect with the protective film forming agent tends not to appear in etching suppression, and if it exceeds 0.5% by weight, the polishing rate by CMP tends to decrease.
[0025]
In this invention, an abrasive grain can also be contained. The amount of abrasive grains added is preferably 0.01% to 10% by weight and more preferably 0.05% to 5% by weight relative to the total weight. If the blending amount is less than 0.01% by weight, there is no effect of containing abrasive grains. If the blending amount exceeds 10% by weight, the polishing rate by CMP is saturated, and no increase is observed even if it is added more than that.
[0026]
【Example】
Hereinafter, the present invention will be described specifically by way of examples. The present invention is not limited by these examples.
[0027]
(Examples 1 to 10)
(Polishing liquid preparation method)
0.4 part by weight of acid, 0.05 part by weight of water-soluble polymer, 0.2 part by weight of BTA as a protective film forming agent, 98.85 parts by weight to 89.35 parts by weight of water (adjusted according to hydrogen peroxide concentration, water In the case where no functional polymer is added, 98.9 parts by weight to 89.40 parts by weight) is added and dissolved, and 0.5 part by weight to 10 parts by weight of hydrogen peroxide (special grade reagent, 30% aqueous solution) is added. The resulting product was used as a metal polishing slurry. In the case of adding abrasive grains, 1 part by weight of colloidal silica having an average particle diameter of 20 nm prepared by hydrolysis of tetraethoxysilane in an aqueous ammonia solution is added, and water is added in an amount of 97.85 parts by weight to 88.35 parts by weight. (Adjusted by the hydrogen peroxide concentration, 97.9 parts by weight to 88.40 parts by weight when no water-soluble polymer was added). The pKa of the acids used is 3.4 for malic acid and 3.7 for glycolic acid.
In Examples 1 to 10, CMP was performed under the following polishing conditions with the above metal polishing liquid using the acid and water-soluble polymer shown in Table 1.
(Polishing conditions)
Figure 0003780767
Polishing pad: Polyurethane resin with closed cells Polishing pressure: 250 gf / cm 2
Relative speed between substrate and polishing surface plate: 18 m / min
(Abrasive product evaluation items)
Polishing rate by CMP: The film thickness difference before and after CMP of the film was calculated from the electric resistance value.
Etching rate: The difference in copper film thickness before and after immersion in a stirred polishing liquid (room temperature, 25 ° C., stirring 100 rpm) was calculated from the electrical resistance value.
Dishing amount: A groove having a depth of 0.5 μm is formed in silicon dioxide, a tantalum nitride film having a thickness of 50 nm is formed as a barrier layer by a known sputtering method, and a copper film is similarly formed by sputtering. From the surface shape of the stripe pattern portion in which the wiring metal portion width of 100 μm and the insulating film portion width of 100 μm are alternately arranged by a stylus type step meter using the silicon substrate embedded by the heat treatment of The amount of film reduction of the wiring metal part was calculated. As the first-stage polishing liquid for copper, polishing was performed using a polishing liquid for copper or copper alloy having a sufficiently high polishing rate ratio of copper to tantalum nitride. After the one-step polishing, a substrate sample was prepared so that the amount of dishing measured with the barrier layer exposed on the insulating film portion was 50 nm, and the substrate sample was polished in two steps until the barrier layer disappeared in the insulating film portion.
Thinning amount: Measure the surface shape of the striped pattern part with a total width of 2.5 mm in which the wiring metal part width of 45 μm and the insulating film part width of 5 μm are alternately formed on the above-mentioned substrate for evaluating the dishing amount with a stylus type step gauge Then, the amount of film reduction of the insulating film portion near the center of the pattern with respect to the insulating film field portion around the stripe pattern was obtained. After the one-step polishing, a substrate sample was prepared so that the thinning amount measured with the barrier layer exposed on the insulating film portion was 20 nm, and the substrate was polished in two steps until the barrier layer disappeared in the insulating film portion.
Table 1 shows the polishing rate by CMP and the polishing rate ratio in Examples 1 to 10. Table 2 shows the amount of dishing and the amount of thinning.
[0028]
[Table 1]
Figure 0003780767
[0029]
[Table 2]
Figure 0003780767
[0030]
Examples 1 and 2 are examples in which abrasive grains and a water-soluble polymer are not blended. The hydrogen peroxide concentration is 0.15% by weight in Example 1 and 3.0% by weight in Example 2. . When the peroxide water concentration in Example 2 is high, the polishing rate of copper is 75.0 nm / min, which is suitable for polishing the copper layer that is the polishing residue in the first step. Grooves were formed in the insulating layer of silicon dioxide, and when tantalum or tantalum nitride was used as a barrier layer to prevent copper diffusion and a copper layer was provided on the surface, the concentration of hydrogen peroxide as an oxidizing agent was increased. In the metal polishing liquid, the polishing rate of the copper layer is high, and the copper layer remaining in the first step can be polished in a short time. In the case where there is no copper layer polishing residue in the first step, polishing as Example 1 in which the concentration of hydrogen peroxide as an oxidizing agent is reduced as a metal polishing liquid decreases the copper polishing rate, and tantalum or The polishing rate of tantalum nitride is increased, and the barrier layer and the copper layer can be polished to substantially the same degree. When there is copper polishing residue on the barrier layer in the first step, the metal polishing solution is assumed to have an increased concentration of hydrogen peroxide, and the polishing solution is supplied by a pump or the like, and the copper polishing is performed in the first step. When there is no residue, polishing is preferably performed by supplying a polishing solution having a low concentration of hydrogen peroxide with a pump or the like. Examples 3 to 5 are examples in which abrasive grains are used. As in Examples 1 and 2 in which abrasive grains are not blended when the concentration of hydrogen peroxide as an oxidizing agent is high, the copper polishing rate is high, and the barrier layer The polishing rate is relatively low, and the uniformity after polishing the barrier layer is also improved. When the concentration of hydrogen peroxide is low, the polishing rate of the barrier layer is high, the polishing rate of the copper layer is low, and there is a concentration at which the polishing rate of the barrier layer and the copper layer is equal, and the barrier layer polishing without dishing is possible . Examples 6 to 8 are examples in which a water-soluble polymer was blended, and the same tendency is observed. As compared with Examples 2, 5 and 8 having a hydrogen peroxide concentration of 3.0% by weight, Example 8 containing a water-soluble polymer has the smallest value and is excellent. In any embodiment, the polishing rate of silicon dioxide, which is an insulating layer, is lower than that of the metal layer, and polishing can be reliably stopped near the upper surface of this layer.
[0031]
【The invention's effect】
The polishing liquid for metal of the present invention has a pH of 3 or less, and a polishing rate ratio of tantalum, tantalum alloy, tantalum nitride and other tantalum compounds and copper or copper alloy used as a barrier layer conductor only with an oxidant concentration. Therefore, it is possible to apply a polishing liquid having the same blending component in all process locations where barrier layer polishing is required, and efficiently form a buried pattern of a metal film.

Claims (18)

導体の酸化剤、金属表面に対する保護膜形成剤、酸及び水を含有する研磨液であり、pHが3以下であり、酸化剤の濃度により銅または銅合金とタンタル、窒化タンタル、タンタル合金またはその他のタンタル化合物との研磨速度比を調整することを特徴とする金属用研磨液。Polishing liquid containing conductor oxidizing agent, metal surface protective film forming agent, acid and water, pH is 3 or less, copper or copper alloy and tantalum, tantalum nitride, tantalum alloy or others depending on the concentration of oxidizing agent A polishing slurry for metal, characterized by adjusting a polishing rate ratio with a tantalum compound . 酸化剤の濃度が、0.01〜10重量%である請求項1に記載の金属用研磨液。  The metal polishing slurry according to claim 1, wherein the concentration of the oxidizing agent is 0.01 to 10% by weight. さらに水溶性高分子を含有する請求項1または請求項2に記載の金属用研磨液。  The metal polishing slurry according to claim 1 or 2, further comprising a water-soluble polymer. 水溶性高分子が、ポリアクリル酸もしくはその塩、ポリメタクリル酸もしくはその塩、ポリアクリルアミド、ポリビニルアルコール、ポリビニルピロリドンからなる群から選ばれた少なくとも1種である請求項3に記載の金属用研磨液。  The metal-polishing liquid according to claim 3, wherein the water-soluble polymer is at least one selected from the group consisting of polyacrylic acid or a salt thereof, polymethacrylic acid or a salt thereof, polyacrylamide, polyvinyl alcohol, and polyvinylpyrrolidone. . 酸が、有機酸である請求項1ないし請求項4のいずれかに記載の金属用研磨液。  The metal polishing slurry according to any one of claims 1 to 4, wherein the acid is an organic acid. 酸が、マロン酸、リンゴ酸、酒石酸、グリコール酸及びクエン酸から選ばれた少なくとも1種である請求項5に記載の金属用研磨液。  The metal polishing slurry according to claim 5, wherein the acid is at least one selected from malonic acid, malic acid, tartaric acid, glycolic acid and citric acid. 金属表面に対する保護膜形成剤が、ベンゾトリアゾール(BTA)及びその誘導体から選ばれた少なくとも1種である請求項1ないし請求項6のいずれかに記載の金属用研磨液。  The metal polishing slurry according to any one of claims 1 to 6, wherein the protective film forming agent for the metal surface is at least one selected from benzotriazole (BTA) and derivatives thereof. 導体の酸化剤が、過酸化水素、硝酸、過ヨウ素酸カリウム、次亜塩素酸及びオゾン水より選ばれた少なくとも1種である請求項1ないし請求項7のいずれかに記載の金属用研磨液。  The metal polishing slurry according to any one of claims 1 to 7, wherein the conductor oxidizing agent is at least one selected from hydrogen peroxide, nitric acid, potassium periodate, hypochlorous acid, and ozone water. . 金属用研磨液に、砥粒を添加した請求項1ないし請求項8のいずれかに記載の金属用研磨液。  The metal polishing liquid according to any one of claims 1 to 8, wherein abrasive grains are added to the metal polishing liquid. 砥粒が、シリカ、アルミナ、セリア、チタニア、ジルコニア、ゲルマニアより選ばれた少なくとも1種である請求項9に記載の金属用研磨液。  The metal polishing slurry according to claim 9, wherein the abrasive is at least one selected from silica, alumina, ceria, titania, zirconia, and germania. 砥粒が、平均粒径100nm以下のコロイダルシリカまたはコロイダルアルミナである請求項10に記載の金属用研磨液。  The metal polishing slurry according to claim 10, wherein the abrasive grains are colloidal silica or colloidal alumina having an average particle size of 100 nm or less. 導体が、銅または銅合金のバリア層である請求項1ないし請求項11のいずれかに記載の金属用研磨液。  The metal polishing slurry according to any one of claims 1 to 11, wherein the conductor is a barrier layer of copper or a copper alloy. バリア層が、タンタルまたは窒化タンタルである請求項12に記載の金属用研磨液。Barrier layer, tantalum or metal-polishing liquid of claim 12 is tantalum nitride. タンタル又は窒化タンタルと二酸化シリコン膜の研磨速度比(Ta/SiO2、TaN/SiO2)が10より大きいことを特徴とする請求項1ないし請求項13のいずれかに記載の金属用研磨液。The metal polishing slurry according to any one of claims 1 to 13, wherein the polishing rate ratio (Ta / SiO 2 , TaN / SiO 2 ) of tantalum or tantalum nitride to the silicon dioxide film is greater than 10. 請求項1ないし請求項14のいずれかに記載の金属用研磨液を用いて、タンタル、窒化タンタル、タンタル合金及びその他のタンタル化合物から選ばれた少なくとも1種からなるバリア層を研磨する研磨方法。  A polishing method for polishing a barrier layer made of at least one selected from tantalum, tantalum nitride, a tantalum alloy, and other tantalum compounds using the metal polishing liquid according to claim 1. 請求項1ないし請求項14のいずれかに記載の金属用研磨液を用いて、タンタルまたは窒化タンタルからなるバリア層を研磨する研磨方法。A polishing method for polishing a barrier layer made of tantalum or tantalum nitride, using the metal polishing liquid according to claim 1. 請求項1ないし請求項14のいずれかに記載の金属用研磨液を用いて、銅または銅合金とそのバリア層としてタンタル、窒化タンタル、タンタル合金またはその他のタンタル化合物からなる層を含む面を研磨する研磨方法。A surface containing copper or a copper alloy and a layer made of tantalum, tantalum nitride, a tantalum alloy or another tantalum compound as a barrier layer thereof is polished using the metal polishing liquid according to any one of claims 1 to 14. Polishing method. 銅又は銅合金を有する面を、導体の酸化剤、金属表面に対する保護膜形成剤、酸及び水を含有するpH3以下の研磨液で研磨する工程、並びに、銅又は銅合金を有する面の下層にあるタンタル、窒化タンタル、タンタル合金またはその他のタンタル化合物を含む面を、導体の酸化剤、金属表面に対する保護膜形成剤、酸及び水を含有するpH3以下の研磨液で研磨する工程を有し、銅又は銅合金とタンタル、窒化タンタル、タンタル合金またはその他のタンタル化合物との研磨速度比を前記酸化剤の濃度を変化させることにより調整することを特徴とする研磨方法。Polishing a surface having copper or a copper alloy with an oxidizing agent for a conductor, a protective film forming agent for a metal surface, a polishing solution having a pH of 3 or less containing acid and water, and a lower layer of the surface having a copper or copper alloy Polishing a surface containing a certain tantalum, tantalum nitride, tantalum alloy or other tantalum compound with a polishing solution having a pH of 3 or less containing an oxidant of a conductor, a protective film forming agent for a metal surface, an acid and water; A polishing method comprising adjusting a polishing rate ratio of copper or a copper alloy and tantalum, tantalum nitride, a tantalum alloy or other tantalum compounds by changing a concentration of the oxidizing agent.
JP25558599A 1999-09-09 1999-09-09 Polishing liquid for metal and method for polishing substrate Expired - Lifetime JP3780767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25558599A JP3780767B2 (en) 1999-09-09 1999-09-09 Polishing liquid for metal and method for polishing substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25558599A JP3780767B2 (en) 1999-09-09 1999-09-09 Polishing liquid for metal and method for polishing substrate

Publications (2)

Publication Number Publication Date
JP2001085372A JP2001085372A (en) 2001-03-30
JP3780767B2 true JP3780767B2 (en) 2006-05-31

Family

ID=17280772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25558599A Expired - Lifetime JP3780767B2 (en) 1999-09-09 1999-09-09 Polishing liquid for metal and method for polishing substrate

Country Status (1)

Country Link
JP (1) JP3780767B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005109257A (en) * 2003-09-30 2005-04-21 Fujimi Inc Polishing composition
US8900473B2 (en) 2008-08-06 2014-12-02 Hitachi Chemical Company, Ltd. Polishing solution for CMP, and method for polishing substrate using the polishing solution for CMP
US9799532B2 (en) 2010-02-15 2017-10-24 Hitachi Chemical Company, Ltd. CMP polishing solution and polishing method
US10796921B2 (en) 2009-07-16 2020-10-06 Hitachi Chemical Company, Ltd. CMP fluid and method for polishing palladium

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1243071C (en) 1998-12-28 2006-02-22 日立化成工业株式会社 Metal grinding liquid material, metal grinding liquid, its producing method and grinding method using it
CN100378145C (en) 2001-06-21 2008-04-02 花王株式会社 Slurry Composition
CN100336179C (en) * 2002-04-30 2007-09-05 日立化成工业株式会社 Polishing fluid and polishing method
US7553345B2 (en) 2002-12-26 2009-06-30 Kao Corporation Polishing composition
JP5907333B2 (en) * 2011-08-22 2016-04-26 Jsr株式会社 Chemical mechanical polishing aqueous dispersion and chemical mechanical polishing method using the same
US10059860B2 (en) 2014-02-26 2018-08-28 Fujimi Incorporated Polishing composition
JP6366308B2 (en) 2014-03-12 2018-08-01 株式会社ディスコ Processing method
CN108621033B (en) * 2017-03-21 2020-04-07 中芯国际集成电路制造(上海)有限公司 Polishing method of polishing pad
KR20200021520A (en) 2017-08-08 2020-02-28 히타치가세이가부시끼가이샤 Polishing method and polishing liquid

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005109257A (en) * 2003-09-30 2005-04-21 Fujimi Inc Polishing composition
US8900473B2 (en) 2008-08-06 2014-12-02 Hitachi Chemical Company, Ltd. Polishing solution for CMP, and method for polishing substrate using the polishing solution for CMP
US10796921B2 (en) 2009-07-16 2020-10-06 Hitachi Chemical Company, Ltd. CMP fluid and method for polishing palladium
US9799532B2 (en) 2010-02-15 2017-10-24 Hitachi Chemical Company, Ltd. CMP polishing solution and polishing method

Also Published As

Publication number Publication date
JP2001085372A (en) 2001-03-30

Similar Documents

Publication Publication Date Title
JP5472049B2 (en) Abrasives for chemical mechanical polishing
JP5381701B2 (en) Polishing liquid for metal and polishing method
JP3780767B2 (en) Polishing liquid for metal and method for polishing substrate
JP2004031443A (en) Polishing solution and polishing method
JP4992826B2 (en) Polishing liquid and polishing method
JP2002270546A (en) Polishing liquid for conductor and polishing method using the same
JP4759779B2 (en) Substrate polishing method
JP4683681B2 (en) Polishing liquid for metal and substrate polishing method using the same
JP2004031442A (en) Polishing solution and polishing method
JP2003068683A (en) Polishing liquid for metal and method for polishing
JP4224221B2 (en) Polishing liquid for conductor and polishing method using the same
JP4684121B2 (en) Chemical mechanical polishing abrasive and substrate polishing method
JPWO2004012248A1 (en) Polishing liquid and polishing method
JP4555990B2 (en) CMP polishing liquid for semiconductor metal film and method for polishing substrate
JP2009152647A (en) Metal polishing solution and substrate polishing method using the same
JP2001068437A (en) Polishing liquid and polishing method for metal
JP4710915B2 (en) Polishing method
JP2004363141A (en) Liquid and method for polishing metal
JP2004123931A (en) Polishing solution and polishing method
JP3902896B2 (en) Polishing liquid for metal and substrate polishing method using the same
JP4774669B2 (en) Polishing liquid and polishing method
JP2006191132A (en) Abrasive powder for chemical mechanical polishing and method for polishing substrate
JP2009259950A (en) Polishing solution for cmp and polishing method of substrate using the same
JP2005203602A (en) One set of polishing solution for cmp and method for polishing substrate
JP2008118112A (en) Polishing solution for cmp and polishing method of substrate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050627

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060227

R151 Written notification of patent or utility model registration

Ref document number: 3780767

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term