[go: up one dir, main page]

JP3772708B2 - Multicolor light emitting lamp and light source - Google Patents

Multicolor light emitting lamp and light source Download PDF

Info

Publication number
JP3772708B2
JP3772708B2 JP2001248455A JP2001248455A JP3772708B2 JP 3772708 B2 JP3772708 B2 JP 3772708B2 JP 2001248455 A JP2001248455 A JP 2001248455A JP 2001248455 A JP2001248455 A JP 2001248455A JP 3772708 B2 JP3772708 B2 JP 3772708B2
Authority
JP
Japan
Prior art keywords
light emitting
layer
light
led
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001248455A
Other languages
Japanese (ja)
Other versions
JP2006024583A (en
Inventor
隆 宇田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001248455A priority Critical patent/JP3772708B2/en
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to US10/486,985 priority patent/US7479731B2/en
Priority to AT02765340T priority patent/ATE384337T1/en
Priority to DE60224681T priority patent/DE60224681T2/en
Priority to PCT/JP2002/008317 priority patent/WO2003017387A1/en
Priority to CNB028156773A priority patent/CN100344002C/en
Priority to EP02765340A priority patent/EP1419535B1/en
Priority to TW91118661A priority patent/TW569472B/en
Publication of JP2006024583A publication Critical patent/JP2006024583A/en
Application granted granted Critical
Publication of JP3772708B2 publication Critical patent/JP3772708B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Led Devices (AREA)
  • Led Device Packages (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、複数の発光ダイオード(LED)を用いた波長を相違する多色を発光できる多色発光ランプ(lamp)を構成するための技術に関する。
【0002】
【従来の技術】
従来より、例えば、光の三原色である赤色光(R)、緑色光(G)、及び青色光(B)の各色を出射できる発光ダイオード(LED)を隣接して配置し、RGB型の多色(multi−color)発光ランプを構成する技術が知られている。例えば、発光波長を450ナノメータ(nm)とする青色帯光を出射するLED(青色系LED)と、525nm前後の緑色帯光を出射する緑色系LEDと、波長をおよそ600nm〜700nmとする赤色帯光を出射する赤色系LEDを一体化させてRGB型多色発光ランプを構成する技術例がある(「ディスプレイ技術」(1998年9月25日、共立出版(株)発行、初版2刷)、100〜101頁参照)。
【0003】
従来において、多色発光ランプは、窒化ガリウム・インジウム(GaXIn1-XN:0≦X≦1)等のIII−V族化合物半導体を発光層とするGaXIn1-XN系青色系LED(特公昭55−3834号公報参照)を利用して構成されている(「III族窒化物半導体」(1999年12月8日、(株)培風館発行、252〜254頁参照)。緑色系LEDには、GaXIn1-XN緑色系LED、或いはリン化ガリウム(GaP)を発光層とするホモ(同種)接合型GaP緑色系LEDがある(▲1▼上記の「III族窒化物半導体」、249〜252頁、及び▲2▼「III−V族化合物半導体」(1994年5月20日、(株)培風館発行初版)、253〜261頁参照)。また、赤色系LEDには、砒化アルミニウム・ガリウム混晶(AlXGa1-XAs:0<X<1)或いはリン化アルミニウム・ガリム・インジウム((AlXGa1-XYIn1-YP:0≦X≦1、0<Y<1)等のIII−V族化合物半導体を発光層とするLEDがある(寺本 巌著、「半導体デバイス概論」(1995年3月30日、(株)培風館発行、116〜118頁参照)。
【0004】
また、補色の関係にある、例えば、青色帯光と黄色帯光との混色により白色光が得られるのも知られている(「光の鉛筆−光技術者のための応用光学−」(1989年6月20日、(株)新技術コミュニケーションズ発行第7版、51頁参照)。青色系LEDと組み合わせるに好適な黄色系LEDには、発光波長を約590nmとする砒化リン化ガリウム(GaAs1-ZZ:0<Z<1)発光層を備えたホモ接合型GaAsP系LED及びリン化アルミニウム・ガリウム・インジウム混晶((AlXGa1-XYIn1-YP:0≦X≦1、0<Y<1で一般にはY≒0.5)ヘテロ(異種)接合型LEDが利用できる(J.Crystal Growth,221(2000),652〜656頁参照)。
【0005】
多色発光ランプを構成する窒化ガリウム・インジウム(GaXIn1-XN(0≦X≦1))系LEDは、電気絶縁性のサファイア(α−Al23単結晶)を基板材料として構成されているのが通常である(上記の「III族窒化物半導体」、243〜252頁参照)。絶縁性結晶基板には、LEDを駆動するための電流(駆動電流)を流通できないため、正負両電極は基板の同一の表面側に設置されている。一方、ホモ接合型GaP系或いはホモ接合型GaAs1-ZZ系LEDは、導電性のリン化ガリウム(GaP)単結晶または砒化ガリウム(GaAs)単結晶を利用して構成されているため、正負何れか一方の極性の電極のみが表面側に配置されている(上記の「半導体デバイス概論」、117参照)。
【0006】
【発明が解決しようとする課題】
何れも絶縁性結晶を基板とする従来のGaXIn1-XN(0≦X≦1)系青色LED、緑色系LED及び赤色系LEDを利用してRGB三色一体型の白色ランプを構成しようとすると、各LEDの表面に正負双方の極性の電極が配置された構成となっているため、双方の極性の電極への極性別の結線(ボンディング)が必要とされ煩雑となっている。導電性の基板、特に、同一の伝導性の導電性基板を利用して、結線すべき電極の極性を正負何れかに統一できれば、結線の煩雑さは回避できる。
【0007】
最近では、導電性の珪素単結晶(シリコン)上に設けた含硼素III−V族化合物半導体層とIII−V族化合物半導体からなる発光層とを利用して青色系LEDを構成する技術が開示されている(米国特許6,069,021号参照)。緑色系或いは赤色系LEDを構成するに利用したと同一の伝導性の導電性基板を用いる青色系LEDを用いれば、従来の結線操作の煩雑さを回避して、RGB型多色発光ランプを簡便に構成できる。
【0008】
転じて、GaXIn1-XN系青色LEDと共に多色発光ランプを構成しているGaP系或いはGaAs1-ZZ系LEDは、ホモ(homo)接合型の構成となっている。このため、GaP系或いはGaAs1-ZZ系LEDの発光強度は、GaXIn1-XN(0≦X≦1)ダブルヘテロ(DH)接合型LEDに比較すれば低く、発光強度的に均衡のとれた多色発光ランプをもたらすに至っていない。発光または放射再結合を起こすキャリアに「閉じ込め」効果を発揮できるヘテロ(hetero)接合型の構成とすれば、より高い強度の発光がもたらされると期待される。
【0009】
本発明は、結線の煩雑さを回避できる構成からなる青色系LEDを利用して多色発光ランプを構成するための技術を提供する。特に、緑色光を高強度で出射できるヘテロ接合型GaP系LEDとで多色発光ランプを構成するための技術を提供する。また例えば、青色系LEDと黄色系LEDとから多色発光ランプを構成するにあたり、結線に煩雑さを要しない青色系LEDと、高発光強度の発光をもたらすヘテロ接合型GaAs1-ZZ系黄色LEDとから多色発光ランプを構成するための技術を提供する。また、本発明に係わる多色発光ランプから構成される光源を提供する。
【0010】
【課題を解決するための手段】
即ち本発明は、次の(1)乃至(5)項に記載の特徴を有する多色発光ランプを提供する。
(1)導電性の基板表面上に設けられた、非晶質または多結晶の、硼素(B)を含むIII−V族化合物半導体(含硼素III−V族化物半導体)からなる低温緩衝層と、低温緩衝層上に設けられた、硼素(B)とリン(P)とを含むリン化硼素(BP)系III−V族化合物半導体からなる障壁層と、障壁層上に設けられたIII−V族化合物半導体からなる発光層とを具備する青色帯光を出射する青色系発光ダイオード(LED)が備えられていることを特徴とする、複数のLEDを併設して配置して構成された多色発光ランプ。
(2)基板上に設けられた発光層と、発光層上に設けられたリン化硼素系III−V族化合物半導体層からなる上部障壁層とを備えてなる黄色帯光を出射するヘテロ接合型黄色系LEDを含むことを特徴とする上記(1)に記載の多色発光ランプ。
(3)基板上に設けられた発光層と、発光層上に設けられたリン化硼素系III−V族化合物半導体層からなる上部障壁層とを備えてなる緑色帯光を出射するヘテロ接合型緑色系LEDを含むことを特徴とする上記(1)または(2)に記載の多色発光ランプ。
(4)基板上に設けられた発光層と、発光層上に設けられたリン化硼素系III−V族化合物半導体層からなる上部障壁層とを備えてなる赤色帯光を出射するヘテロ接合型赤色系LEDを含むことを特徴とする上記(1)乃至(3)の何れか1項に記載の多色発光ランプ。
(5)基板が、同一の伝導形の単結晶から構成されていることを特徴とする上記(1)乃至(4)の何れか1項に記載の多色発光ランプ。
【0011】
また本発明は、
(6)上記(1)乃至(5)のいずれか1項に記載の多色発光ランプを用いた光源。
である。
【0012】
【発明の実施の形態】
本発明の第1の実施形態に係わる青色系LED1Aの断面構造を図1に模式的に例示する。基板101には、n形またはp形伝導性の導電性単結晶を利用すると、基板101の裏面にオーミック(Ohmic)性の裏面電極106を設置できるため、青色系LED1Aを簡便に構成できる。導電性の基板101として好適な単結晶材料には、珪素単結晶(シリコン)、リン化ガリウム(GaP)、砒化ガリウム(GaAs)、炭化珪素(SiC)、或いはリン化硼素(BP)(▲1▼J.Electrochem.Soc.,120(1973)、p.p.802〜806.、及び▲2▼米国特許5,042,043号公報参照)等の半導体単結晶がある。特に、抵抗率を10ミリオーム(mΩ)以下、より望ましくは1mΩ以下とする低い比抵抗(抵抗率)の導電性単結晶基板は、順方向電圧(所謂、Vf)の低いLEDをもたらすに貢献できる。
【0013】
単結晶基板101上には、含硼素III−V族化合物半導体からなる、結晶性に優れる下部障壁層103を形成するための緩衝層102を設ける。緩衝層102は例えば、一般式BαAlβGaγIn1- α - β - γ1- δAsδ(0<α≦1、0≦β<1、0≦γ<1、0<α+β+γ≦1、0≦δ<1)で表記されるリン化硼素系半導体から好適に構成できる。また、例えば、一般式BαAlβGaγIn1- α - β - γ1- δδ(0<α≦1、0≦β<1、0≦γ<1、0<α+β+γ≦1、0<δ<1)で表記される窒素(N)を含むリン化硼素系半導体から構成できる。好ましくは、構成元素数が少なく、簡便に構成できる2元結晶或いは3元混晶から構成する。例えば、単量体リン化硼素(BP)、リン化アルミニウム・硼素混晶(BαAlβP:0<α≦1、α+β=1)、リン化硼素・ガリウム混晶(BαGaδP:0<α≦1、α+δ=1)、或いはリン化硼素・インジウム混晶(BαIn1- αP:0<α≦1)などから構成する。
【0014】
特に、低温で形成された非晶質または多結晶の含硼素III−V族化合物半導体層からなる緩衝層(低温緩衝層)102は、基板101と下部障壁層103との格子不整合性を緩和して、ミスフィット転位等の結晶欠陥密度の小さい下部障壁層103をもたらす作用を発揮する(上記の米国特許6,029,021号参照)。また、低温緩衝層102を、下部障壁層103をなす含硼素III−V族化合物半導体を構成する元素(構成元素)を含む含硼素III−V族化合物半導体から構成すると、その構成元素の「成長核」としての作用により、連続性のある下部障壁層103の形成が促進される利点がある。例えば、非晶質または多結晶のBαAlβGaγIn1- α - β - γ1- δAsδ層(0<α≦1、0≦β<1、0≦γ<1、0<α+β+γ≦1、0≦δ<1)は、MOCVD法(Inst.Phys.Conf.Ser.,No.129(IOP PublishingLtd.,1993)、157〜162頁参照)により約250℃〜750℃で形成できる(米国特許6,194,744号参照)。約500℃以下の低温では、非晶質を主体とする含硼素III−V族化合物半導体層が得られ易い。およそ500℃〜750℃のより高温領域では多結晶を主体とする含硼素III−V族化合物半導体層が得られる。as−grown状態で非晶質の低温緩衝層102は、より高温の750℃〜約1200℃の温度環境に曝されると多結晶層に変換されるのが通常である。緩衝層102が非晶質層か多結晶層であるかは、例えば、一般的なX線回折法、電子線回折法に依る回折像の解析から知れる。低温緩衝層102を構成する非晶質層または多結晶層の層厚は望ましくは約1nm以上で100nm以下、更に望ましくは2nm以上で50nm以下とする。
【0015】
緩衝層102上には、含硼素III−V族化合物半導体からなる下部障壁層103を設ける。発光層104の下地層(被堆積層)となる下部障壁層103は、室温での禁止帯幅(band gap)を3.0±0.2eVとするリン化硼素(BP)を母体材料として構成された硼素(B)とリン(P)とを含むリン化硼素(BP)系III−V族化合物半導体層から好適に構成できる。例えば、室温での禁止帯幅を3.0eVとする単量体のリン化硼素(boron monophosphide)とリン化ガリウム(GaP:室温禁止帯幅≒2.3eV)との混晶である、室温での禁止帯幅を約2.7eVとする窒化リン化ガリウム混晶(B0.50Ga0.50P)から好適に下部障壁層103を構成できる。室温で高い禁止帯幅を有するリン化硼素層は、特に、成長速度と原料の供給比率の双方を規定された範囲内に設定することにより形成できる。成長速度は、好ましくは毎分2nm以上で30nm以下とする。また、成長速度と併せて、原料のV族原料とIII族原料の供給比率(所謂、V/III比)を好ましくは15以上で60以下の範囲に規定すると、室温で高い禁止帯幅を有するリン化硼素層が形成できる。禁止帯幅は例えば、屈折率(=n)と消衰係数(=k)から求められる複素誘電率の虚数部(ε2=2・n・k)の光エネルギー依存性から求められる。
【0016】
また、緩衝層102との接合界面で緩衝層102に格子整合し、且つ、発光層104側の表面で発光層104に格子整合する含硼素III−V族化合物半導体層からなる下部障壁層103は、ミスフィット(misfit)転位、積層欠陥等の結晶欠陥密度の低い良質の発光層104をもたらすに貢献できる。緩衝層102及び発光層104の双方の層に格子整合する下部障壁層103は、例えば、第III族若しくは第V族の構成元素の組成に勾配を付した含硼素III−V族化合物半導体層から構成できる(特開2000−22211号公報参照)。構成元素の組成勾配は、層厚の増加方向に一律に、または段階的に、或いは非直線的に増減させる何れの様式でも付すことができる。例えば、シリコン基板101に格子整合するリン化硼素・ガリウム混晶(B0.02Ga0.98P)からなる緩衝層102上に、緩衝層102との接合面から窒化ガリウム・インジウム(Ga0.90In0.10N:格子定数≒4.557Å)からなる発光層104との接合面に向けて、硼素組成比(=X)を0.02からを0.98に直線的に増加させたリン化硼素・ガリウム組成勾配層(BαGaδP:α=0.02→0.98、対応してδ=0.98→0.02)から構成できる。
【0017】
発光層104は、例えば、青色帯の短波長可視光を放射できる窒化ガリウム・インジウム(GaXIn1-XN:0≦X≦1)等のIII−V族化合物半導体から構成する(上記の特公昭55−3834号公報参照)。また、窒化リン化ガリウム(GaN1-XX:0≦X≦1)から構成できる(Appl.Phys.Lett.,60(20)(1992)、2540〜2542頁参照)。また、砒化窒化ガリウム(GaN1-XAsX:0≦X≦1)から構成できる。発光層104は、これらのIII−V族化合物半導体層を井戸(well)層とする単一(single)または多重(multi)量子井戸(quantum well)構造から構成できる。
【0018】
発光層104上に、上部障壁層105を設ければ、ダブルヘテロ(DH)構造型の発光部を構成できる。上部障壁層105は、上記の室温での禁止帯幅を3.0±0.2eVとする単量体のリン化硼素(boron monophosphide)、及びそれを基材としたリン化硼素(BP)系III−V族化合物半導体から構成できる。また、窒化ガリウム(GaN)或いは窒化アルミニウム・ガリウム混晶(AlXGa1-XN:0<X<1)等のIII−V族化合物半導体から構成できる。
【0019】
本発明に係わるダブルヘテロ接合(DH)構造型のLED1Aは、例えば上部障壁層105上にオーミック(Ohmic)性の表面電極106を設け、また、基板101の裏面にオーミック性の裏面電極107を配置して構成する。上部障壁層105を含硼素III−V族化合物半導体から構成した場合、p形オーミック電極は、例えば、金・亜鉛(Au・Zn)合金、金・ベリリウム(Au・Be)合金等から構成できる。また、金・ゲルマニウム(Au・Ge)合金、金・インジウム(Au・In)合金、並びに金・錫(Au・Sn)合金などの金合金等からn形オーミック電極を形成できる。良好なオーミック接触性を発揮する電極を形成するために、表面電極106を良導性のコンタクト(contact)層上に設けることもできる。本発明に係わる高い禁止帯幅の含硼素III−V族化合物半導体層からは、発光を取り出し方向に透過する窓層を兼用する表面オーミック電極106用途のコンタクト層を好適に構成できる。
【0020】
本発明の第2の実施形態に係わるヘテロ接合型黄色系LED2Aの断面構造例を図2に模式的に例示する。図2にあって、図1に記載したものと同一の構成要素には、同一の符号を付してある。
【0021】
ヘテロ接合型黄色系LED2Aは、n形或いはp形の伝導性の砒化ガリウム(GaAs)単結晶を基板101として構成する。基板101と発光層104との中間には、基板101と発光層104との間の格子不整合性を緩和する、例えば、GaAs1-ZZからなる組成勾配層108を設ける。この格子不整合性を緩和する措置に依り、良好な結晶性の発光層104を獲得できる。
【0022】
発光層104は、例えば、n形或いはp形の砒化リン化ガリウム(GaAs1-ZZ)から構成する。特に、窒素(N)を等電子的不純物(isoelectronic trap)として含むGaAs1-ZZからは、高強度の発光をもたらすに好都合となる発光層104を構成できる。例えば、砒素(As)組成比(=1−Z)を大凡、0.25とするGaAs0.250.75からは、波長を約580nmとする黄色帯光を出射する発光層を構成できる。
【0023】
本発明に係わるヘテロ接合型黄色系LED2Aの特徴は、発光層104上に含硼素III−V族化合物半導体からなる上部障壁層105を設ける構成にある。上部障壁層105は、上記の室温での禁止帯幅を3.0±0.2eVとする単量体のリン化硼素(BP)またはそれを基材としたリン化硼素(BP)系III−V族化合物半導体から特に好適に構成できる。また、この様な高い禁止帯幅の含硼素III−V族化合物半導体からなる上部障壁層105は、発光を外部に透過するに好適な発光透過層(窓層)としても作用できる。このため、上部障壁層105の発揮するキャリアの「閉じ込め」作用と、発光を外部へ効率的に透過する作用に依って、高い発光強度のヘテロ接合型黄色系LED2Aがもたらされる。
【0024】
特に、発光層104上に、250℃以上で750℃以下の比較的に低温で形成した非晶質を主体とするリン化硼素系III−V族化合物半導体からなる上部障壁層105をヘテロ接合させる手段に依れば、被熱に因る発光層104の熱的な劣化を抑制するに効果が挙げられる。即ち、発光層104の結晶性を良好に維持できるため、高強度の発光をもたらす発光層104を提供できる。
【0025】
本発明の第3の実施形態に係わるヘテロ接合型緑色系LED3Aの断面構造例を図3に模式的に例示する。図3にあって、図1または図2に記載したと同一の構成要素には、同一の符号を付してある。
【0026】
緑色系LED3Aは、n形或いはp形の伝導性のリン化ガリウム(GaP)単結晶を基板101として構成する。基板101上には、例えば、液相エピタキシャル(LPE)成長法に依り、n形或いはp形の第1のリン化ガリウム(GaP)層109を設ける。第1のGaP層109の上には、例えば、LPE法に依り、第1のGaP層109とは伝導形を逆とした第2のGaP層110を設ける。第1及び第2のGaP層109、110とから、pn接合型の発光部を構成する。発光層となす例えば、第2のGaP層110を、窒素(N)を等電子的不純物として添加したGaPから構成すると高い強度の発光をもたらす発光層が提供される。
【0027】
本発明に係わるヘテロ接合型緑色系LED3Aは、発光層となす第2のGaP層110上にリン化硼素系III−V族化合物半導体からなる上部障壁層105を設けたヘテロ(異種)接合型LEDであることを特徴としている。ヘテロ接合型構造は発光層上に、上部障壁層105を設けることで構成できる。上部障壁層105は、上記の室温での禁止帯幅を3.0±0.2eVとする単量体のリン化硼素(BP)またはそれを基材としたリン化硼素系III−V族化合物半導体から特に好適に構成できる。また、この様な高い禁止帯幅のリン化硼素系III−V族化合物半導体からなる上部障壁層105は、発光層にキャリアを閉じ込める作用を発揮すると共に、発光を外部に透過するに好適な発光透過層(窓層)としても作用する。このため、高い発光強度のヘテロ接合型緑色系LED3Aをもたらすに貢献できる。
【0028】
特に、発光層上に、250℃以上で750℃以下の比較的に低温で形成した非晶質を主体とするリン化硼素系III−V族化合物半導体からなる上部障壁層105をヘテロ接合させる手段に依れば、被熱に因る発光層の熱的な劣化を抑制するに効果が挙げられる。即ち、発光層の結晶性を良好に維持できるため、高強度の発光をもたらす発光層を提供するに効果が挙げられる。
【0029】
本発明の第4の実施形態に係わるヘテロ接合型赤色系LED4Aは、図4に例示した断面構造を示すGaP系LEDから構成できる。図4にあって、図1乃至図3に記載したものと同一の構成要素には、同一の符号を付してある。
【0030】
ヘテロ接合型GaP系赤色LED4Aは、発光層104を例えば、亜鉛(Zn)と酸素(O)とを共に添加したp形GaP層として構成できる。ヘテロ接合型の赤色系LED4Aは、LPE法或いはMOCVD法等の気相成長手段により得た発光層104上に、発光層104とは逆の伝導形のリン化硼素系III−V族化合物半導体からなる上部障壁層105を設けて構成できる。発光層104とヘテロ接合をなす上部障壁層105は、上記の室温での禁止帯幅を3.0±0.2eVとする単量体のリン化硼素(BP)またはそれを基材としたリン化硼素系III−V族化合物半導体から特に好適に構成できる。また、この様な高い禁止帯幅のリン化硼素系III−V族化合物半導体からなる上部障壁層105は、発光層104にキャリアを閉じ込める作用を発揮すると共に、発光を外部に透過するに好適な発光透過層(窓層)としても作用する。このため、高い発光強度のヘテロ接合型赤色系LED4Aをもたらすに貢献できる。
【0031】
特に、発光層104上に、250℃以上で750℃以下の比較的に低温で形成した非晶質を主体とするリン化硼素系III−V族化合物半導体からなる上部障壁層105をヘテロ接合させる手段に依れば、被熱に因る発光層104の熱的な劣化を抑制するに効果が挙げられる。即ち、発光層104の結晶性を良好に維持できるため、高強度の発光をもたらす発光層104を提供するに効果が挙げられる。
【0032】
ヘテロ接合型赤色系LEDはまた、例えば、リン化アルミニウム・ガリウム・インジウム混晶((AlXGa1-XYIn1-YP:0<X<1、0<Y<1)を発光層とするリン化アルミニウム・ガリウム・インジウム(AlGaInP)系LEDから構成できる(上記のJ.Crystal Growth、221(2000)、652〜656頁参照)。AlGaInP系混晶LEDでは、GaP赤色系LEDに比較してより高強度の発光が得られる利点がある。特に、表面電極を上部障壁層上に分散して配置したオーミック電極分散型のAlGaInP系混晶LEDからは、発光層の全面に略均等に素子駆動電流を流通させられるため高強度の赤色光が出射される(上記のJ.Crystal Growth、221(2000)参照)。
【0033】
青色系LEDと、ヘテロ接合型の黄色系、緑色系、及び赤色系LED1A〜4Aを同一の伝導型を有する導電性の基板101から構成すると、基板101の裏面に同一の極性のオーミック電極107を敷設できる。従って、極性を共通とする一台座に接地させられて、多色発光ランプを簡便に構成できる。また、LEDの表面電極106の極性も統一でき、何れか一極性の表面電極への結線操作のみで簡便に多色発光ランプを構成できる。本発明の第5の実施形態の好例として、硼素(B)添加p形珪素単結晶(シリコン)を基板101とする青色系LED1Aと、亜鉛(Zn)添加p形リン化ガリウム(GaP)単結晶を基板101とするヘテロ接合型緑色系LED3Aと、亜鉛(Zn)添加p形砒化ガリウム(GaAs)単結晶を基板とするヘテロ接合型赤色系LED4Aとを集合させて多色発光ランプを構成する例が挙げられる。また、例えば、リン(P)またはアンチモン(Sb)添加n形シリコンを基板101とする青色系LED1Aと、珪素(Si)添加n形砒化ガリウムを基板101とするヘテロ接合型黄色系LED2Aとを集合させて多色発光ランプを構成する。即ち、所謂、通称nサイドアップ(side up)型或いはpサイドアップ型の何れかに統一されたLEDを利用すれば、従来の煩雑な結線操作を回避して、簡便に多色発光ランプを得ることができる。
【0034】
本発明に係わる多色発光ランプ10は次の如くの工程をもって構成できる。図5に例示する如く、例えば、nサイドアップ型の青色系LED1Aとヘテロ接合型黄色系LED2Aとを、台座15上の銀(Ag)或いはアルミニウム(Al)等の金属を鍍金した金属被膜16に導電性の接合材で固定する。これより、各LED1A、2Aを構成するために利用した導電性の基板11の裏面に設けた裏面電極14を台座15に電気的に接続させる。また、各LED1A、2Aの例えば、上部障壁層12上に設置した表面電極13を台座15に付属する端子17、18に結線する。発光輝度に極端な差異を生ずる場合には、各LED1A,2Aに個別に専用の端子17、18を設け、各LED1A、2Aに通流する電流を個別に調整して、輝度を調節できる仕組みとすると、都合良く混色が達成され多色発光ランプ10を容易に得ることができる。
【0035】
また、本発明に係わる多色発光ランプ10を集合させれば、光源を構成できる。例えば、複数の白色ランプ10を電気的に並列に接続させて、定電圧駆動型の白色光源を構成できる。また、電気的に直列に多色発光ランプを接続して定電流駆動型の多色光源を構成できる。これらの多色光源は、従来の白熱蛍光型程、点灯に電力を要しないため、低消費電力型でしかも長寿命の多色光源として特に有用に利用できる。例えば、室内照明用光源として利用できる。また、例えば、屋外表示器用途や間接照明用途の多色光源として利用できる。
【0036】
【実施例】
(第1実施例)
シリコンを基板とする青色LEDとGaAs1-ZZ系黄色LEDとを組み合わせて構成した多色発光ランプを例にして本発明を具体的に説明する。
【0037】
本第1実施例に係わる多色発光ランプ20の断面模式図を図6に示す。多色発光ランプ20は、青色帯光及び黄色帯光の発光強度の均衡を図るため、1個の青色系LED1Aと2個の黄色系LED2Aとを集合させて構成した。
【0038】
青色LED1Aには、次記の(1)項に記す基板101上に順次、(2)〜(5)項に記載の機能層を積層させた積層構造体に、(6)〜(7)項に記載のオーミック性の表面及び裏面電極を配置して構成したn−サイドアップ型LEDを用いた。
(1)硼素(B)ドープp形(111)−Si単結晶基板101
(2)トリエチル硼素((C253B)/ホスフィン(PH3)/水素(H2)系常圧MOCVD法により、350℃で成長させた、層厚を5nmとした、リン化硼素(BP)からなる緩衝層102
(3)上記のMOCVD気相成長手段を利用して、850℃でマグネシウム(Mg)をドーピングした、基板101表面に略平行に配列した{110}結晶面から主になるp形リン化硼素(BP)からなる下部障壁層103(キャリア濃度≒4×1018cm-3、層厚≒700nm)
(4)立方晶のn形Ga0.94In0.06N層(格子定数=4.538Å)から主になる発光層104(キャリア濃度≒3×1017cm-3、層厚≒180nm)
(5)上記のMOCVD反応系により400℃で成長させた、室温での禁止帯幅を3.1eVとする、非晶質を主体とするn形のリン化硼素(BP)層からなる上部障壁層105(キャリア濃度≒8×1016cm-3、層厚≒480nm)
(6)上部障壁層105の中央に配置した金・ゲルマニウム(Au・Ge)円形電極(直径=120μm)からなるオーミック性の表面電極106
(7)p形Si基板101の裏面の略全面に設けた、アルミニウム(Al)からなるオーミック性の裏面電極107
【0039】
また、青色系LED1Aには、次の(a)〜(d)項に記載の特性を呈するLEDを利用した。
(a)発光中心波長:430nm
(b)輝度:6ミリカンデラ(mcd)
(c)順方向電圧:3ボルト(V)(順方向電流=20ミリアンペア(mA))
(d)逆方向電圧:8V(逆方向電流=10μA)
【0040】
黄色LED2Aには、次記の(1)項に記す基板101上に順次、(2)乃至(4)項に記載の機能層を積層させた積層構造体に、(5)及び(6)項に記載のオーミック性の表面及び裏面電極を配置して構成したnサイドアップ型LEDを用いた。
(1)亜鉛(Zn)ドープp形(100)−GaAs単結晶基板101
(2)ガリウム(Ga)/アルシン(AsH3)/水素(H2)系ハイドライド気相成長(VPE)法により、720℃で成長させた、Znドープp形GaAs1-ZZ組成勾配層(キャリア濃度≒1×1018cm-3、層厚=15μm)108
(3)上記のハイドライドVPE手段を利用して、720℃で成長させた、窒素(N)を等電子的不純物として添加した珪素(Si)ドープn形GaAs0.250.75発光層104
(4)(C253B/PH3/H2系MOCVD反応系により400℃で成長させた、室温での禁止帯幅を2.7eVとする、非晶質を主体とするn形の砒化リン化硼素(BP0.95As0.05)層からなる上部障壁層105(キャリア濃度≒4×1018cm-3、層厚≒750nm)
(5)上部障壁層105の中央に配置した金・ゲルマニウム(Au・Ge)円形電極(直径=120μm)からなるオーミック性の表面電極106
(6)p形GaAs基板101の裏面の略全面に設けた、金・亜鉛(Au・Zn)からなるオーミック性の裏面電極107
【0041】
また、黄色系LED2Aには、次の(a)〜(d)項に記載の特性を呈するLEDを利用した。
(a)発光中心波長:580nm
(b)輝度:3ミリカンデラ(mcd)
(c)順方向電圧:2ボルト(V)(順方向電流=20ミリアンペア(mA))
(d)逆方向電圧:5V(逆方向電流=10μA)
【0042】
一辺を300μmとする正方形の青色系LED1A及び黄色LED2Aを集合させた多色発光ランプ20は、次の(A)〜(C)に記載の工程を経由して構成した。
(A)LED1A、2Aのp形各裏面電極107を共通の台座15に例えば、導電性の接着材を用いてチップ−オン−ボード(chip−on−board)手段により固定する工程
(B)LED1A、2Aのn形各表面電極106を、台座15とは電気的に絶縁された2個の端子17、18に個別にウェッジ(wedge)ボンディング手段或いはボール(ball)ボンディング手段により結線する工程
【0043】
多色発光ランプ20は各LED1A、2Aに個別に結線を施して構成したため、青色単一光のランプとしても利用できる。或いは、黄色帯の単一光を発するランプとしても利用できる。また、青色系LED1Aと黄色系LED2Aとに同時に通電すれば白色ランプとしても利用できる多色ランプが提供されることとなった。
【0044】
(第2実施例)
シリコンを基板とする青色系LEDを含むRGB型の多色発光ランプを構成する場合を例にして本発明を具体的に説明する。
【0045】
本第2実施例に係わる多色発光ランプ30の構成を図7の断面模式図に示す。RGB型多色発光ランプ30は、上記の第1実施例に記載の青色系LED1Aと、ヘテロ接合型GaP緑色系LED3Aと、ヘテロ接合型AlGaAs赤色系LED4Aとを組み合わせて構成した。
【0046】
青色系LED1Aは、次記の(1)項に記す基板101上に順次、(2)〜(5)項に記載の機能層を積層させた積層構造体に、(6)〜(7)項に記載のオーミック性の表面及び裏面電極を配置して構成した。本第2実施例に係わるp−サイドアップ型の青色系LED1Aには、上記の第1実施例とn−サイドアップ型青色系LED1Aと同等の発光特性を示すダブルヘテロ(DH)接合型LEDを用いた。
(1)リン(P)ドープn形(100)−Si単結晶基板101
(2)トリエチル硼素((C253B)/ホスフィン(PH3)/水素(H2)系常圧MOCVD法により、400℃で成長させた、層厚を15nmとする、基板101を構成するSi単結晶(格子定数≒5.431Å)に格子整合するn形リン化硼素・インジウム混晶(B0.33In0.67P)からなる緩衝層102
(3)上記のMOCVD気相成長手段を利用して、850℃で珪素(Si)をドーピングした、基板101表面に略平行に配列した{110}結晶面から主になるn形リン化硼素・インジウム(BXIn1-XP:X=0.33→0.98)組成勾配層からなる下部障壁層103(キャリア濃度≒1×1018cm-3、層厚≒560nm)。リン化硼素・インジウム(BXIn1-XP)組成勾配層の硼素(B)組成比(=X)は、緩衝層102との接合界面でX=0.33とし、発光層104と接合する表面で0.98としてある。
(4)立方晶のn形Ga0.90In0.10N(格子定数≒4.557Å)層から主になる発光層104(キャリア濃度≒4×1017cm-3、層厚≒150nm)
(5)上記のMOCVD反応系により400℃で成長させた、室温での禁止帯幅を3.1eVとする、非晶質を主体とするマグネシウム(Mg)ドープp形リン化硼素・インジウム(B0.98In0.02P:格子定数≒4.557Å)層からなる上部障壁層105(キャリア濃度≒2×1019cm-3、層厚≒400nm)
(6)上部障壁層105の中央に配置した金・亜鉛(Au・Zn)円形電極(直径=130μm)からなるオーミック性の表面電極106
(7)n形Si基板101の裏面の略全面に設けた、アルミニウム(Al)からなるオーミック性の裏面電極107
【0047】
ヘテロ接合型GaP系緑色LED3Aとして、次記の(1)項に記す基板101上に順次、(2)及び(3)項に記載の機能層を積層させた積層構造体に、(4)及び(5)項に記載のオーミック性の表面及び裏面電極を配置して構成したp−サイドアップ型単一ヘテロ(single hetero:SH)接合型LEDを用いた。
(1)珪素(Si)ドープn形(100)2°オフ(off)−GaP単結晶基板101
(2)一般的な液相エピタキシャル(LPE)法により(上記の「III−V族化合物半導体」、253〜256頁参照)、800℃で成長させた、アイソエレクトロニックトラップとして窒素(N)を6×1018cm-3の原子濃度で添加した、珪素(Si)ドープn形GaPからなる発光層104
(3)上記のMOCVD反応系により380℃で成長させた、室温での禁止帯幅を3.0eVとする、非晶質を主体とするp形のリン化硼素(BP)層からなる上部障壁層105(キャリア濃度≒3×1019cm-3、層厚≒400nm)
(4)上部障壁層105の中央に配置した金・ベリリウム(Au・Be)円形電極(直径=110μm)からなるオーミック性の表面電極106
(5)n形GaP基板101の裏面の略全面に設けた、金・ゲルマニウム合金(Au95重量%・Ge5重量%)からなるオーミック性の裏面電極107
【0048】
また、ヘテロ接合型GaP緑色系LED3Aには、次の(a)〜(d)項に記載の特性を呈するLEDを利用した。
(a)発光中心波長:555nm
(b)輝度:5ミリカンデラ(mcd)
(c)順方向電圧:2ボルト(V)(順方向電流=20ミリアンペア(mA))
(d)逆方向電圧:5V(逆方向電流=10μA)
【0049】
ヘテロ接合型赤色系LED4Aは、珪素(Si)ドープn形(100)−Si単結晶を基板101とする、n形砒化アルミニウム・ガリウム(AlGaAs)発光層104とp形のリン化硼素(BP)層からなる上部障壁層105とのpn接合型のLEDを利用した。p−サイドアップ型の赤色系LED4Aの主要な特性を以下に記す。
(a)発光中心波長:660nm
(b)輝度:8ミリカンデラ(mcd)
(c)順方向電圧:2ボルト(V)(順方向電流=20ミリアンペア(mA)
(d)逆方向電圧:5V(逆方向電流=10μA)
【0050】
一辺を約250μmとする正方形の青色系LED1A、ヘテロ接合型緑色LED3A、及びヘテロ接合型赤色系LED4Aを次記の(A)〜(C)の工程を経由して集合させ、RGB型の多色発光ランプ30を構成した。
(A)LED1A、3A、4Aのn形各裏面電極107を共通の台座15に例えば、導電性の接着材を用いてチップ−オン−ボード(chip−on−board)手段により固定する工程
(B)LED1A、3A、4Aのp形各表面電極106を、台座15とは電気的に絶縁された3個の端子17〜19に個別にウェッジ(wedge)ボンディング手段或いはボール(ball)ボンディング手段により結線する工程
【0051】
多色発光ランプ30は各LED1A、3A、4Aに個別に結線を施して構成したため、青色帯、緑色帯、或いは赤色帯の単一光のランプとしても利用できる。特に、本第2実施例のランプ30は、含硼素III−V族半導体層を利用したヘテロ接合型GaP系LED3Aを利用しているので、高輝度の緑色帯の単一光を発するランプとしても利用できた。。また、LED1A、3A、4Aは、個別に結線を施しているため、各LEDに通流する順方向電流を個別に調整できるため、RGB各発光色の混色光を発生させられる。また、各LED1A、3A、4Aを同時に点灯させることにより、白色光を発せられるRGB型多色発光ランプ30が提供されることとなった。
【0052】
(第3実施例)
上記の第2実施例に記載のRGB型多色発光ランプ30を集合させて、光源を構成する場合を例にして本発明の内容を説明する。
【0053】
本発明に係わる光源40は、RGB型多色発光ランプ30の平面図を図8に模式的に示す如く、例えば、規則的に等間隔に配列して構成する。配列した各ランプ30の端子18の個々に順方向電流を制御して通流できる配線を施せば、色度を調節でき、表示(ディスプレイ)用途等の多色ランプを構成できる。
【0054】
【発明の効果】
本発明に依れば、リン化硼素系III−V族化合物半導体層を障壁層として備えたヘテロ接合型の発光素子、例えば、ヘテロ接合型GaP系緑色LED、或いはヘテロ接合型GaAs1-ZZ系LEDを利用して多色発光ランプ及び光源を構成することとしたので、高い強度の発光をもたらす、例えば、RGB混色型の多色発光ランプを提供できる。
【0055】
また本発明に依れば、特に導電性の基板材料を使用し、基板の裏面に電極を設けて構成した青色帯光を出射する発光素子、例えば、含硼素III−V族化合物半導体層を備えた青色系LEDを利用して多色発光ランプ及び光源を構成することとしたので、容易な結線(ボンディング)操作をもって、高強度の多色発光ランプ及び光源を提供できる。
【図面の簡単な説明】
【図1】本発明に係わる青色系LEDの断面模式図である。
【図2】 本発明に係わるヘテロ接合型黄色系LEDの断面模式図である。
【図3】本発明に係わるヘテロ接合型緑色系LEDの断面模式図である。
【図4】本発明に係わるヘテロ接合型赤色系LEDの断面模式図である。
【図5】本発明に係わる多色発光ランプの断面模式図である。
【図6】第1実施例に係る多色発光ランプの断面模式図である。
【図7】第2実施例に係る多色発光ランプの断面模式図である。
【図8】第3実施例に係る多色発光ランプを用いた光源の構成を示す平面図である。
【符号の説明】
1A、2A、3A、4A LED
10、20、30 多色発光ランプ
40 光源
11 基板
12 上部障壁層
13 表面電極
14 裏面電極
15 台座
16 金属被膜
17、18、19 端子
101 単結晶基板
102 緩衝層
103 下部障壁層
104 発光層
105 上部障壁層
106 表面電極
107 裏面電極
108 組成勾配層
109 第1のGaP層
110 第2のGaP層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technique for forming a multicolor light emitting lamp (lamp) capable of emitting multiple colors having different wavelengths using a plurality of light emitting diodes (LEDs).
[0002]
[Prior art]
Conventionally, for example, light emitting diodes (LEDs) that can emit each of the three primary colors of light, red light (R), green light (G), and blue light (B), are arranged adjacent to each other, and RGB type multicolor A technique for forming a (multi-color) light-emitting lamp is known. For example, an LED (blue LED) that emits blue band light having an emission wavelength of 450 nanometers (nm), a green LED that emits green band light of around 525 nm, and a red band having a wavelength of approximately 600 nm to 700 nm. There is a technology example in which a red LED that emits light is integrated to constitute an RGB type multi-color light emitting lamp (“Display Technology” (published on September 25, 1998, Kyoritsu Publishing Co., Ltd., 2nd edition), 100-101 pages).
[0003]
Conventionally, a multicolor light emitting lamp is a Ga X In 1-X N-based blue light emitting layer made of a III-V group compound semiconductor such as gallium nitride indium (Ga X In 1-X N: 0 ≦ X ≦ 1). (Refer to Japanese Patent Publication No. 55-3834) ("Group III nitride semiconductor" (December 8, 1999, published by Bafukan Co., Ltd., pages 252-254). There are Ga X In 1-X N green LEDs or homo (homogeneous) junction type GaP green LEDs having a light emitting layer of gallium phosphide (GaP) ((1) above-mentioned “Group III nitride”) Pp. 249-252, and (2) "III-V compound semiconductor" (May 20, 1994, first published by Bafukan Co., Ltd.), pages 253-261). Is a mixed crystal of aluminum arsenide and gallium ( l X Ga 1-X As: 0 <X <1) , or aluminum phosphide, Gallim indium ((Al X Ga 1-X ) Y In 1-Y P: 0 ≦ X ≦ 1,0 <Y <1) There is an LED having a light emitting layer of a III-V group compound semiconductor such as Tetsuji Teramoto, “Introduction to Semiconductor Devices” (published March 30, 1995, Baifukan Co., Ltd., pages 116 to 118).
[0004]
In addition, it is also known that white light can be obtained by, for example, color mixing of blue band light and yellow band light in a complementary color relationship (“Light Pencil-Applied Optics for Optical Engineers” (1989). (See page 51, New Technology Communications, Inc., published on June 20, 2010.) Yellow LEDs suitable for combination with blue LEDs include gallium arsenide (GaAs 1) having an emission wavelength of about 590 nm. -Z P Z: 0 <Z < 1) homo having a light emitting layer junction GaAsP-based LED and aluminum phosphide, gallium indium mixed crystal ((Al X Ga 1-X ) Y In 1-Y P: 0 ≦ Hetero (heterogeneous) junction type LED can be used (X.ltoreq.1, 0 <Y <1, and generally Y.apprxeq.0.5) (see J. Crystal Growth, 221 (2000), pages 652-656).
[0005]
The gallium indium nitride (Ga X In 1-X N (0 ≦ X ≦ 1)) LED constituting the multicolor light emitting lamp is made of electrically insulating sapphire (α-Al 2 O 3 single crystal) as a substrate material. Generally, it is configured (see “Group III nitride semiconductor” above, pages 243 to 252). Since the current (drive current) for driving the LED cannot flow through the insulating crystal substrate, both the positive and negative electrodes are installed on the same surface side of the substrate. On the other hand, homozygous GaP-based or homozygous GaAs 1-Z P Z based LED is the conductivity of the gallium phosphide (GaP) by utilizing a single crystal or gallium arsenide (GaAs) single crystal is constituted, Only electrodes having either positive or negative polarity are arranged on the surface side (see “Overview of Semiconductor Devices”, 117 above).
[0006]
[Problems to be solved by the invention]
All are composed of RGB three-color integrated white lamp using conventional Ga X In 1-X N (0 ≦ X ≦ 1) blue LED, green LED and red LED with insulating crystal as substrate. If it is going to be, since it becomes the structure by which the electrode of both positive and negative polarity is arrange | positioned on the surface of each LED, the connection (bonding) according to polarity to the electrode of both polarities is needed, and it is complicated. If the polarity of the electrodes to be connected can be unified to either positive or negative by using a conductive substrate, in particular, the same conductive substrate, the complexity of the connection can be avoided.
[0007]
Recently, a technique for constructing a blue LED using a boron-containing group III-V compound semiconductor layer and a light emitting layer made of a group III-V compound semiconductor provided on a conductive silicon single crystal (silicon) has been disclosed. (See US Pat. No. 6,069,021). If a blue LED using a conductive substrate having the same conductivity as that used to construct a green or red LED is used, the conventional multi-color light-emitting lamp can be simplified by avoiding the complexity of the conventional wiring operation. Can be configured.
[0008]
Turned, GaP-based or GaAs 1-Z P Z based LED constituting a multicolor light-emitting lamp together with the Ga X In 1-X N-based blue LED has a structure of the homo (homo) junction. Therefore, the emission intensity of the GaP-based or GaAs 1-Z P Z based LED is, Ga X In 1-X N (0 ≦ X ≦ 1) double hetero (DH) lower in comparison to the junction LED, luminous strength Has not led to a balanced multicolor light emitting lamp. A heterojunction structure that can exhibit a “confinement” effect on a carrier that generates light emission or radiative recombination is expected to produce higher intensity light emission.
[0009]
The present invention provides a technique for constructing a multicolor light emitting lamp using a blue LED having a configuration capable of avoiding complicated wiring. In particular, the present invention provides a technique for forming a multicolor light emitting lamp with a heterojunction GaP-based LED that can emit green light with high intensity. In addition, for example, when a multi-color light emitting lamp is composed of a blue LED and a yellow LED, a blue LED that does not require complicated connection, and a heterojunction GaAs 1-Z PZ system that emits light with high emission intensity. A technique for constructing a multicolor light emitting lamp from a yellow LED is provided. Moreover, the light source comprised from the multicolor light emission lamp concerning this invention is provided.
[0010]
[Means for Solving the Problems]
That is, the present invention provides a multicolor light emitting lamp having the features described in the following items (1) to (5).
(1) a low-temperature buffer layer made of an amorphous or polycrystalline III-V compound semiconductor containing boron (B) (boron-containing III-V compound semiconductor) provided on the surface of a conductive substrate; A barrier layer made of a boron phosphide (BP) group III-V compound semiconductor containing boron (B) and phosphorus (P) provided on the low-temperature buffer layer; and III- provided on the barrier layer A light emitting layer composed of a V group compound semiconductor and a blue light emitting diode (LED) that emits blue band light is provided. Color light-emitting lamp.
(2) Heterojunction type that emits yellowish light comprising a light emitting layer provided on a substrate and an upper barrier layer made of a boron phosphide-based III-V compound semiconductor layer provided on the light emitting layer The multicolor light-emitting lamp described in (1) above, comprising a yellow LED.
(3) Heterojunction type that emits green band light comprising a light emitting layer provided on a substrate and an upper barrier layer made of a boron phosphide-based III-V compound semiconductor layer provided on the light emitting layer The multicolor light-emitting lamp described in (1) or (2) above, comprising a green LED.
(4) Heterojunction type that emits red band light comprising a light emitting layer provided on a substrate and an upper barrier layer made of a boron phosphide-based III-V compound semiconductor layer provided on the light emitting layer The multicolor light-emitting lamp according to any one of (1) to (3), wherein the multicolor light-emitting lamp includes a red LED.
(5) The multicolor light-emitting lamp according to any one of (1) to (4), wherein the substrate is made of a single crystal of the same conductivity type.
[0011]
The present invention also provides
(6) A light source using the multicolor light-emitting lamp described in any one of (1) to (5) above.
It is.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 schematically illustrates a cross-sectional structure of a blue LED 1A according to the first embodiment of the present invention. If an n-type or p-type conductive single crystal is used for the substrate 101, an ohmic back electrode 106 can be installed on the back surface of the substrate 101, and thus the blue LED 1A can be simply configured. A single crystal material suitable for the conductive substrate 101 includes silicon single crystal (silicon), gallium phosphide (GaP), gallium arsenide (GaAs), silicon carbide (SiC), or boron phosphide (BP) (▲ 1 ▼ J. Electrochem. Soc., 120 (1973), pp. 802 to 806, and (2) US Pat. No. 5,042,043). In particular, a low resistivity (resistivity) conductive single crystal substrate having a resistivity of 10 milliohms (mΩ) or less, more preferably 1 mΩ or less can contribute to an LED having a low forward voltage (so-called Vf). .
[0013]
A buffer layer 102 is formed on the single crystal substrate 101 to form a lower barrier layer 103 made of a boron-containing III-V compound semiconductor and having excellent crystallinity. For example, the buffer layer 102 may have a general formula B α Al β Ga γ In 1- α - β - γ P 1- δ As δ (0 <α ≦ 1, 0 ≦ β <1, 0 ≦ γ <1, 0 <α + β + γ). It can be suitably configured from a boron phosphide-based semiconductor represented by ≦ 1, 0 ≦ δ <1). Further, for example, the general formula B α Al β Ga γ In 1- α - β - γ P 1- δ N δ (0 <α ≦ 1, 0 ≦ β <1, 0 ≦ γ <1, 0 <α + β + γ ≦ 1) , 0 <δ <1), and a boron phosphide-based semiconductor containing nitrogen (N). Preferably, it is composed of a binary crystal or a ternary mixed crystal that has a small number of constituent elements and can be easily constructed. For example, monomeric boron phosphide (BP), aluminum phosphide / boron mixed crystal (B α Al β P: 0 <α ≦ 1, α + β = 1), boron phosphide / gallium mixed crystal (B α Ga δ P) : 0 <α ≦ 1, α + δ = 1), or a boron phosphide / indium mixed crystal (B α In 1- α P: 0 <α ≦ 1).
[0014]
In particular, a buffer layer (low temperature buffer layer) 102 made of an amorphous or polycrystalline boron-containing group III-V compound semiconductor layer formed at a low temperature alleviates lattice mismatch between the substrate 101 and the lower barrier layer 103. Thus, the lower barrier layer 103 having a small crystal defect density such as misfit dislocation is exhibited (see the above-mentioned US Pat. No. 6,029,021). Further, when the low-temperature buffer layer 102 is composed of a boron-containing group III-V compound semiconductor containing an element (constituent element) constituting the boron-containing group III-V compound semiconductor forming the lower barrier layer 103, “growth of the constituent element” There is an advantage that the formation of a continuous lower barrier layer 103 is promoted by the action of “nucleus”. For example, an amorphous or polycrystalline B α Al β Ga γ In 1- α - β - γ P 1- δ As δ layer (0 <α ≦ 1, 0 ≦ β <1, 0 ≦ γ <1, 0 <Α + β + γ ≦ 1, 0 ≦ δ <1) is about 250 ° C. to 750 ° C. according to MOCVD method (Inst. Phys. Conf. Ser., No. 129 (see IOP Publishing Ltd., 1993), pages 157 to 162). (See US Pat. No. 6,194,744). At a low temperature of about 500 ° C. or lower, a boron-containing group III-V compound semiconductor layer mainly composed of amorphous is easily obtained. In a higher temperature range of about 500 ° C. to 750 ° C., a boron-containing group III-V compound semiconductor layer mainly composed of polycrystal is obtained. The amorphous low-temperature buffer layer 102 in the as-grown state is usually converted to a polycrystalline layer when exposed to a higher temperature environment of 750 ° C. to about 1200 ° C. Whether the buffer layer 102 is an amorphous layer or a polycrystalline layer is known from, for example, analysis of a diffraction image by a general X-ray diffraction method or electron beam diffraction method. The layer thickness of the amorphous layer or polycrystalline layer constituting the low-temperature buffer layer 102 is desirably about 1 nm to 100 nm, and more desirably 2 nm to 50 nm.
[0015]
A lower barrier layer 103 made of a boron-containing III-V compound semiconductor is provided on the buffer layer 102. The lower barrier layer 103 serving as a base layer (deposited layer) of the light emitting layer 104 is composed of boron phosphide (BP) having a band gap of 3.0 ± 0.2 eV at room temperature as a base material. The boron phosphide (BP) -based III-V group compound semiconductor layer containing boron (B) and phosphorus (P) can be suitably configured. For example, at room temperature, which is a mixed crystal of monomeric boron phosphide having a band gap of 3.0 eV at room temperature and gallium phosphide (GaP: room temperature band gap≈2.3 eV). The lower barrier layer 103 can be preferably formed from a gallium nitride phosphide mixed crystal (B 0.50 Ga 0.50 P) having a forbidden band width of about 2.7 eV. A boron phosphide layer having a high forbidden band width at room temperature can be formed by setting both the growth rate and the supply ratio of raw materials within a prescribed range. The growth rate is preferably 2 nm or more and 30 nm or less per minute. In addition to the growth rate, when the supply ratio of the group V source material to the group III material (so-called V / III ratio) is preferably set in the range of 15 to 60, it has a high forbidden bandwidth at room temperature. A boron phosphide layer can be formed. The forbidden band width is obtained, for example, from the light energy dependence of the imaginary part (ε 2 = 2 · n · k) of the complex dielectric constant obtained from the refractive index (= n) and the extinction coefficient (= k).
[0016]
The lower barrier layer 103 made of a boron-containing III-V compound semiconductor layer lattice-matched to the buffer layer 102 at the bonding interface with the buffer layer 102 and lattice-matched to the light-emitting layer 104 on the surface on the light-emitting layer 104 side It is possible to contribute to providing a high-quality light-emitting layer 104 having a low crystal defect density such as misfit dislocation and stacking fault. The lower barrier layer 103 lattice-matched to both the buffer layer 102 and the light emitting layer 104 is, for example, a boron-containing group III-V compound semiconductor layer having a gradient in the composition of the group III or group V constituent elements. It can be configured (see Japanese Patent Laid-Open No. 2000-22211). The compositional gradient of the constituent elements can be applied in any manner that increases or decreases uniformly, stepwise, or non-linearly in the increasing direction of the layer thickness. For example, on a buffer layer 102 made of a boron phosphide / gallium mixed crystal (B 0.02 Ga 0.98 P) lattice-matched to the silicon substrate 101, gallium nitride indium (Ga 0.90 In 0.10 N: Boron phosphide / gallium composition gradient in which the boron composition ratio (= X) is linearly increased from 0.02 to 0.98 toward the bonding surface with the light emitting layer 104 having a lattice constant ≈4.557 Å) It can be composed of layers (B α Ga δ P: α = 0.02 → 0.98, correspondingly δ = 0.98 → 0.02).
[0017]
The light emitting layer 104 is made of, for example, a group III-V compound semiconductor such as gallium nitride indium (Ga X In 1-X N: 0 ≦ X ≦ 1) that can emit blue-band short-wavelength visible light (the above-mentioned) (See Japanese Patent Publication No. 55-3834). Further, it can be composed of gallium nitride phosphide (GaN 1-X P X : 0 ≦ X ≦ 1) (see Appl. Phys. Lett., 60 (20) (1992), pages 2540 to 2542). Further, it can be composed of gallium arsenide nitride (GaN 1-X As X : 0 ≦ X ≦ 1). The light emitting layer 104 may be formed of a single or multi quantum well structure in which these III-V compound semiconductor layers are well layers.
[0018]
When the upper barrier layer 105 is provided on the light emitting layer 104, a double hetero (DH) structure type light emitting portion can be configured. The upper barrier layer 105 includes the above-described monomeric boron phosphide having a forbidden band width of 3.0 ± 0.2 eV at room temperature, and a boron phosphide (BP) system based on the boron phosphide. It can consist of a III-V compound semiconductor. Moreover, gallium nitride (GaN) or aluminum gallium nitride mixed crystal (Al X Ga 1-X N : 0 <X <1) can be made of III-V compound semiconductor such as.
[0019]
In the double heterojunction (DH) structure type LED 1A according to the present invention, for example, an ohmic surface electrode 106 is provided on the upper barrier layer 105, and an ohmic back electrode 107 is disposed on the back surface of the substrate 101. And configure. When the upper barrier layer 105 is made of a boron-containing III-V group compound semiconductor, the p-type ohmic electrode can be made of, for example, a gold / zinc (Au / Zn) alloy, a gold / beryllium (Au / Be) alloy, or the like. Further, an n-type ohmic electrode can be formed from a gold alloy such as a gold / germanium (Au / Ge) alloy, a gold / indium (Au / In) alloy, and a gold / tin (Au / Sn) alloy. In order to form an electrode that exhibits good ohmic contact, the surface electrode 106 may be provided on a highly conductive contact layer. From the boron-containing group III-V compound semiconductor layer having a high forbidden band according to the present invention, a contact layer for the surface ohmic electrode 106 that also serves as a window layer that transmits light emitted in the extraction direction can be suitably configured.
[0020]
An example of a cross-sectional structure of the heterojunction yellow LED 2A according to the second embodiment of the present invention is schematically illustrated in FIG. In FIG. 2, the same components as those described in FIG. 1 are denoted by the same reference numerals.
[0021]
The heterojunction yellow LED 2 </ b> A includes an n-type or p-type conductive gallium arsenide (GaAs) single crystal as a substrate 101. The intermediate between the substrate 101 and the light emitting layer 104, to relax the lattice mismatch between the substrate 101 and the light emitting layer 104, for example, providing a composition gradient layer 108 composed of GaAs 1-Z P Z. A light-emitting layer 104 with good crystallinity can be obtained by taking measures to alleviate this lattice mismatch.
[0022]
The light emitting layer 104 is made of, for example, n-type or p-type gallium arsenide phosphide (GaAs 1-Z P Z ). In particular, from GaAs 1-Z P Z containing nitrogen (N) as an isoelectronic impurity, a light emitting layer 104 that is convenient for providing high intensity light emission can be formed. For example, from GaAs 0.25 P 0.75 having an arsenic (As) composition ratio (= 1-Z) of approximately 0.25, a light emitting layer that emits yellowish light having a wavelength of about 580 nm can be formed.
[0023]
The heterojunction yellow LED 2A according to the present invention is characterized in that an upper barrier layer 105 made of a boron-containing III-V group compound semiconductor is provided on the light emitting layer 104. The upper barrier layer 105 is composed of a monomeric boron phosphide (BP) having a forbidden band width of 3.0 ± 0.2 eV at room temperature or a boron phosphide (BP) -based III-III based thereon. A group V compound semiconductor can be particularly preferably configured. Further, the upper barrier layer 105 made of such a boron-containing group III-V compound semiconductor having a high forbidden band width can also act as a light-emitting transmission layer (window layer) suitable for transmitting light to the outside. Therefore, the heterojunction type yellow LED 2A with high emission intensity is brought about by the “confinement” effect of the carrier exhibited by the upper barrier layer 105 and the effect of efficiently transmitting the emitted light to the outside.
[0024]
In particular, an upper barrier layer 105 made of a boron phosphide-based III-V group compound semiconductor mainly composed of amorphous material formed at a relatively low temperature of 250 ° C. or higher and 750 ° C. or lower is heterojunctioned on the light emitting layer 104. According to the means, there is an effect of suppressing thermal deterioration of the light emitting layer 104 due to heat. That is, since the crystallinity of the light-emitting layer 104 can be maintained well, the light-emitting layer 104 that provides high-intensity light emission can be provided.
[0025]
An example of a cross-sectional structure of a heterojunction green LED 3A according to the third embodiment of the present invention is schematically illustrated in FIG. In FIG. 3, the same components as those described in FIG. 1 or 2 are denoted by the same reference numerals.
[0026]
The green LED 3 </ b> A includes an n-type or p-type conductive gallium phosphide (GaP) single crystal as a substrate 101. An n-type or p-type first gallium phosphide (GaP) layer 109 is provided on the substrate 101 by, for example, a liquid phase epitaxial (LPE) growth method. On the first GaP layer 109, for example, a second GaP layer 110 having a conductivity type opposite to that of the first GaP layer 109 is provided by an LPE method. The first and second GaP layers 109 and 110 constitute a pn junction type light emitting unit. For example, if the second GaP layer 110 is made of GaP to which nitrogen (N) is added as an isoelectronic impurity, a light emitting layer that provides high intensity light emission is provided.
[0027]
A heterojunction green LED 3A according to the present invention is a heterojunction junction LED in which an upper barrier layer 105 made of a boron phosphide III-V compound semiconductor is provided on a second GaP layer 110 serving as a light emitting layer. It is characterized by being. The heterojunction structure can be formed by providing the upper barrier layer 105 on the light emitting layer. The upper barrier layer 105 is a monomeric boron phosphide (BP) having a forbidden band width of 3.0 ± 0.2 eV at room temperature or a boron phosphide-based III-V group compound based thereon. It can be particularly preferably configured from a semiconductor. Further, the upper barrier layer 105 made of a boron phosphide-based III-V group compound semiconductor having such a high forbidden band exhibits a function of confining carriers in the light emitting layer and is suitable for transmitting light to the outside. Also acts as a transmission layer (window layer). For this reason, it can contribute to bringing about heterojunction type green LED3A of high luminous intensity.
[0028]
In particular, means for heterojunction the upper barrier layer 105 made of a boron phosphide-based III-V group compound semiconductor mainly composed of amorphous formed at a relatively low temperature of 250 ° C. or higher and 750 ° C. or lower on the light emitting layer. According to the above, there is an effect in suppressing the thermal degradation of the light emitting layer due to heat. That is, since the crystallinity of the light emitting layer can be maintained satisfactorily, there is an effect in providing a light emitting layer that provides high intensity light emission.
[0029]
The heterojunction red LED 4A according to the fourth embodiment of the present invention can be composed of a GaP LED having the cross-sectional structure illustrated in FIG. In FIG. 4, the same components as those described in FIGS. 1 to 3 are denoted by the same reference numerals.
[0030]
In the heterojunction GaP red LED 4A, the light emitting layer 104 can be configured as a p-type GaP layer to which, for example, both zinc (Zn) and oxygen (O) are added. The heterojunction type red LED 4A is formed from a boron phosphide-based III-V compound semiconductor having a conductivity type opposite to that of the light emitting layer 104 on the light emitting layer 104 obtained by vapor phase growth means such as LPE method or MOCVD method. The upper barrier layer 105 can be provided. The upper barrier layer 105 that forms a heterojunction with the light-emitting layer 104 is composed of the above-described monomeric boron phosphide (BP) having a forbidden band width of 3.0 ± 0.2 eV at room temperature or phosphorus based on it. A boron fluoride III-V compound semiconductor can be particularly suitably configured. In addition, the upper barrier layer 105 made of a boron phosphide-based III-V group compound semiconductor having such a high forbidden band exhibits the effect of confining carriers in the light emitting layer 104 and is suitable for transmitting light emission to the outside. It also acts as a light-emitting transmission layer (window layer). For this reason, it can contribute to bringing about heterojunction type red LED4A of high luminous intensity.
[0031]
In particular, an upper barrier layer 105 made of a boron phosphide-based III-V group compound semiconductor mainly composed of amorphous material formed at a relatively low temperature of 250 ° C. or higher and 750 ° C. or lower is heterojunctioned on the light emitting layer 104. According to the means, there is an effect of suppressing thermal deterioration of the light emitting layer 104 due to heat. That is, since the crystallinity of the light emitting layer 104 can be maintained satisfactorily, there is an effect in providing the light emitting layer 104 that provides high intensity light emission.
[0032]
The heterozygous red LED, for example, aluminum phosphide, gallium indium mixed crystal: emitting ((Al X Ga 1-X ) Y In 1-Y P 0 <X <1,0 <Y <1) It can be composed of an aluminum phosphide-gallium-indium (AlGaInP) LED as a layer (see J. Crystal Growth, 221 (2000), pages 652-656 above). The AlGaInP mixed crystal LED has an advantage that light emission with higher intensity can be obtained as compared with the GaP red LED. In particular, an ohmic electrode dispersion type AlGaInP based mixed crystal LED in which surface electrodes are dispersed on an upper barrier layer can transmit device driving current almost uniformly over the entire surface of the light emitting layer, so that high-intensity red light is emitted. (See J. Crystal Growth, 221 (2000) above).
[0033]
When the blue LED and the heterojunction yellow, green, and red LEDs 1A to 4A are composed of the conductive substrate 101 having the same conductivity type, the ohmic electrode 107 having the same polarity is formed on the back surface of the substrate 101. Can be laid. Therefore, the multicolor light-emitting lamp can be simply configured by being grounded to a pedestal having a common polarity. Moreover, the polarity of the surface electrode 106 of LED can also be unified, and a multicolor light emission lamp can be simply comprised only by the connection operation to the surface electrode of any one polarity. As a good example of the fifth embodiment of the present invention, a blue LED 1A using a boron (B) -doped p-type silicon single crystal (silicon) as a substrate 101, and a zinc (Zn) -doped p-type gallium phosphide (GaP) single crystal. Example of configuring a multicolor light emitting lamp by assembling a heterojunction green LED 3A having a substrate 101 and a heterojunction red LED 4A having a zinc (Zn) -doped p-type gallium arsenide (GaAs) single crystal as a substrate Is mentioned. Further, for example, a blue LED 1A using phosphorus (P) or antimony (Sb) -doped n-type silicon as a substrate 101 and a heterojunction yellow LED 2A using silicon (Si) -added n-type gallium arsenide as a substrate 101 are assembled. Thus, a multicolor light emitting lamp is constructed. In other words, if a so-called so-called n-side-up type LED or p-side-up type LED is used, a conventional multi-color light emitting lamp can be obtained simply by avoiding the conventional complicated wiring operation. be able to.
[0034]
The multicolor light emitting lamp 10 according to the present invention can be constituted by the following steps. As illustrated in FIG. 5, for example, an n-side-up blue LED 1A and a heterojunction yellow LED 2A are formed on a metal coating 16 plated with a metal such as silver (Ag) or aluminum (Al) on a pedestal 15. Secure with conductive bonding material. Thus, the back electrode 14 provided on the back surface of the conductive substrate 11 used for configuring the LEDs 1A and 2A is electrically connected to the pedestal 15. Further, for example, the surface electrode 13 installed on the upper barrier layer 12 of each LED 1 </ b> A, 2 </ b> A is connected to terminals 17, 18 attached to the base 15. When there is an extreme difference in light emission luminance, a dedicated terminal 17, 18 is provided for each LED 1A, 2A, and the current flowing through each LED 1A, 2A is individually adjusted to adjust the luminance. Then, color mixing is achieved conveniently and the multicolor light-emitting lamp 10 can be obtained easily.
[0035]
Further, a light source can be configured by assembling the multicolor light emitting lamps 10 according to the present invention. For example, a constant voltage drive type white light source can be configured by electrically connecting a plurality of white lamps 10 in parallel. In addition, a constant current drive type multicolor light source can be configured by electrically connecting multicolor light emitting lamps in series. Since these multicolor light sources require less power for lighting than conventional incandescent fluorescent light sources, they can be used particularly effectively as low power consumption and long-life multicolor light sources. For example, it can be used as a light source for room illumination. For example, it can be used as a multicolor light source for outdoor display or indirect illumination.
[0036]
【Example】
(First embodiment)
Silicon illustrate the present invention and a blue LED and GaAs 1-Z P Z based multicolor light-emitting lamp which is constructed by combining the yellow LED as an example of the substrate.
[0037]
A schematic cross-sectional view of the multicolor light emitting lamp 20 according to the first embodiment is shown in FIG. The multi-color light emitting lamp 20 is configured by assembling one blue LED 1A and two yellow LEDs 2A in order to balance the emission intensity of blue band light and yellow band light.
[0038]
In the blue LED 1A, the layered structure in which the functional layers described in the items (2) to (5) are sequentially stacked on the substrate 101 described in the following item (1) is combined with the items (6) to (7). The n-side-up type LED which arrange | positioned and comprised the ohmic surface and back surface electrode as described in 1 was used.
(1) Boron (B) doped p-type (111) -Si single crystal substrate 101
(2) Triethyl boron ((C 2 H 5 ) 3 B) / phosphine (PH 3 ) / hydrogen (H 2 ) system grown at 350 ° C. by atmospheric pressure MOCVD, with a layer thickness of 5 nm. Buffer layer 102 made of boron (BP)
(3) Using the above MOCVD vapor phase growth means, p-type boron phosphide (mainly p-type boron phosphide) doped from magnesium (Mg) at 850 ° C. and consisting mainly of {110} crystal planes arranged substantially parallel to the surface of the substrate 101. BP) lower barrier layer 103 (carrier concentration≈4 × 10 18 cm −3 , layer thickness≈700 nm)
(4) Light-emitting layer 104 mainly composed of cubic n-type Ga 0.94 In 0.06 N layer (lattice constant = 4.538Å) (carrier concentration≈3 × 10 17 cm −3 , layer thickness≈180 nm)
(5) An upper barrier made of an amorphous n-type boron phosphide (BP) layer grown at 400 ° C. by the MOCVD reaction system and having a forbidden band width of 3.1 eV at room temperature. Layer 105 (carrier concentration≈8 × 10 16 cm −3 , layer thickness≈480 nm)
(6) Ohmic surface electrode 106 made of a gold / germanium (Au · Ge) circular electrode (diameter = 120 μm) disposed in the center of the upper barrier layer 105
(7) Ohmic back electrode 107 made of aluminum (Al) provided on substantially the entire back surface of the p-type Si substrate 101.
[0039]
Moreover, LED which exhibits the characteristic as described in the following (a)-(d) term was utilized for blue-type LED1A.
(A) Emission center wavelength: 430 nm
(B) Luminance: 6 millicandela (mcd)
(C) Forward voltage: 3 volts (V) (forward current = 20 mA (mA))
(D) Reverse voltage: 8 V (reverse current = 10 μA)
[0040]
The yellow LED 2A has a laminated structure in which the functional layers described in the items (2) to (4) are sequentially laminated on the substrate 101 described in the following item (1), and the items (5) and (6). The n-side-up type LED in which the ohmic front and back electrodes described in 1 are arranged is used.
(1) Zinc (Zn) doped p-type (100) -GaAs single crystal substrate 101
(2) Zn-doped p-type GaAs 1-Z PZ composition gradient layer grown at 720 ° C. by gallium (Ga) / arsine (AsH 3 ) / hydrogen (H 2 ) hydride vapor phase epitaxy (VPE) method (Carrier concentration≈1 × 10 18 cm −3 , layer thickness = 15 μm) 108
(3) Silicon (Si) -doped n-type GaAs 0.25 P 0.75 light emitting layer 104 grown at 720 ° C. using nitrogen (N) as an isoelectronic impurity by using the hydride VPE means.
(4) Grown at 400 ° C. by (C 2 H 5 ) 3 B / PH 3 / H 2 MOCVD reaction system, n-type mainly composed of amorphous material having a forbidden band width of 2.7 eV at room temperature Upper barrier layer 105 composed of a boron arsenide phosphide (BP 0.95 As 0.05 ) layer (carrier concentration≈4 × 10 18 cm −3 , layer thickness≈750 nm)
(5) Ohmic surface electrode 106 made of a gold / germanium (Au · Ge) circular electrode (diameter = 120 μm) disposed in the center of the upper barrier layer 105
(6) Ohmic back electrode 107 made of gold / zinc (Au / Zn) provided on substantially the entire back surface of the p-type GaAs substrate 101
[0041]
Moreover, LED which exhibits the characteristic as described in the following (a)-(d) term was utilized for 2A of yellow LED.
(A) Emission center wavelength: 580 nm
(B) Luminance: 3 millicandela (mcd)
(C) Forward voltage: 2 volts (V) (forward current = 20 mA (mA))
(D) Reverse voltage: 5 V (reverse current = 10 μA)
[0042]
The multicolor light emitting lamp 20 in which the square blue LED 1A and the yellow LED 2A each having a side of 300 μm were assembled was formed through the steps described in the following (A) to (C).
(A) Step of fixing the p-type back electrodes 107 of the LEDs 1A and 2A to the common base 15 by using, for example, a chip-on-board means using a conductive adhesive (B) LED 1A A process of individually connecting each of the 2A n-type surface electrodes 106 to the two terminals 17 and 18 electrically insulated from the base 15 by wedge bonding means or ball bonding means. ]
Since the multicolor light emitting lamp 20 is configured by individually connecting the LEDs 1A and 2A, it can be used as a blue single light lamp. Alternatively, it can be used as a lamp that emits a single light of a yellow band. In addition, if a blue LED 1A and a yellow LED 2A are energized simultaneously, a multicolor lamp that can be used as a white lamp is provided.
[0044]
(Second embodiment)
The present invention will be described in detail by taking as an example the case of constructing an RGB type multicolor light emitting lamp including a blue LED having a silicon substrate.
[0045]
The structure of the multicolor light emitting lamp 30 according to the second embodiment is shown in a schematic cross-sectional view of FIG. The RGB type multicolor light emitting lamp 30 is configured by combining the blue LED 1A described in the first embodiment, the heterojunction type GaP green LED 3A, and the heterojunction type AlGaAs red LED 4A.
[0046]
The blue LED 1A is formed by laminating the functional layers described in the items (2) to (5) in order on the substrate 101 described in the item (1) below, (6) to (7) The ohmic front and back electrodes described in 1 were arranged. The p-side-up blue LED 1A according to the second embodiment includes a double hetero (DH) junction type LED having the same light emission characteristics as the first embodiment and the n-side-up blue LED 1A. Using.
(1) Phosphorus (P) doped n-type (100) -Si single crystal substrate 101
(2) Triethyl boron ((C 2 H 5 ) 3 B) / phosphine (PH 3 ) / hydrogen (H 2 ) substrate grown at 400 ° C. by atmospheric pressure MOCVD method, substrate 101 having a layer thickness of 15 nm Buffer layer 102 made of n-type boron phosphide / indium mixed crystal (B 0.33 In 0.67 P) lattice-matched to the Si single crystal (lattice constant≈5.43143) constituting
(3) Using the above-described MOCVD vapor phase growth means, silicon (Si) is doped at 850 ° C., and the n-type boron phosphide mainly composed of {110} crystal planes arranged substantially parallel to the surface of the substrate 101 Lower barrier layer 103 (carrier concentration≈1 × 10 18 cm −3 , layer thickness≈560 nm) composed of an indium (B X In 1-X P: X = 0.33 → 0.98) composition gradient layer. The boron (B) composition ratio (= X) of the boron phosphide / indium (B X In 1-X P) composition gradient layer is set to X = 0.33 at the bonding interface with the buffer layer 102 and bonded to the light emitting layer 104. 0.98 at the surface to be used.
(4) Luminescent layer 104 mainly composed of cubic n-type Ga 0.90 In 0.10 N (lattice constant≈4.557Å) layer (carrier concentration≈4 × 10 17 cm −3 , layer thickness≈150 nm)
(5) Magnesium (Mg) -doped p-type boron phosphide / indium (B) mainly composed of amorphous material, grown at 400 ° C. by the MOCVD reaction system and having a band gap at room temperature of 3.1 eV. 0.98 In 0.02 P: lattice constant≈4.557Å) upper barrier layer 105 (carrier concentration≈2 × 10 19 cm −3 , layer thickness≈400 nm)
(6) Ohmic surface electrode 106 made of a gold / zinc (Au / Zn) circular electrode (diameter = 130 μm) disposed in the center of the upper barrier layer 105
(7) Ohmic back electrode 107 made of aluminum (Al) provided on substantially the entire back surface of the n-type Si substrate 101.
[0047]
As a heterojunction type GaP-based green LED 3A, a laminated structure in which the functional layers described in the items (2) and (3) are sequentially stacked on the substrate 101 described in the item (1) below, (4) and A p-side-up single hetero (SH) junction type LED configured by arranging the ohmic front and back electrodes described in the section (5) was used.
(1) Silicon (Si) doped n-type (100) 2 ° off-GaP single crystal substrate 101
(2) Nitrogen (N) 6 as an isoelectronic trap grown at 800 ° C. by a general liquid phase epitaxial (LPE) method (see “III-V compound semiconductor” above, pages 253 to 256). Light emitting layer 104 made of silicon (Si) -doped n-type GaP added at an atomic concentration of × 10 18 cm −3
(3) Upper barrier made of amorphous p-type boron phosphide (BP) layer grown at 380 ° C. by the above MOCVD reaction system and having a forbidden band width of 3.0 eV at room temperature Layer 105 (carrier concentration≈3 × 10 19 cm −3 , layer thickness≈400 nm)
(4) Ohmic surface electrode 106 made of a gold / beryllium (Au · Be) circular electrode (diameter = 110 μm) disposed in the center of the upper barrier layer 105
(5) Ohmic back electrode 107 made of gold / germanium alloy (Au 95 wt% / Ge 5 wt%) provided on substantially the entire back surface of the n-type GaP substrate 101.
[0048]
Moreover, LED which exhibits the characteristic as described in the following (a)-(d) term was utilized for heterojunction type GaP green type LED3A.
(A) Emission center wavelength: 555 nm
(B) Luminance: 5 millicandela (mcd)
(C) Forward voltage: 2 volts (V) (forward current = 20 mA (mA))
(D) Reverse voltage: 5 V (reverse current = 10 μA)
[0049]
The heterojunction red LED 4A includes an n-type aluminum arsenide / gallium (AlGaAs) light-emitting layer 104 and a p-type boron phosphide (BP) using a silicon (Si) -doped n-type (100) -Si single crystal as a substrate 101. A pn junction type LED with an upper barrier layer 105 made of a layer was used. The main characteristics of the p-side-up red LED 4A are described below.
(A) Emission center wavelength: 660 nm
(B) Luminance: 8 milli candela (mcd)
(C) Forward voltage: 2 volts (V) (forward current = 20 mA (mA)
(D) Reverse voltage: 5 V (reverse current = 10 μA)
[0050]
A square blue LED 1A having a side of about 250 μm, a heterojunction green LED 3A, and a heterojunction red LED 4A are assembled through the following steps (A) to (C) to obtain RGB multicolor A light emitting lamp 30 was constructed.
(A) Step of fixing the n-type back electrodes 107 of the LEDs 1A, 3A, 4A to the common base 15 by using, for example, a chip-on-board means using a conductive adhesive (B ) The p-type surface electrodes 106 of the LEDs 1A, 3A, and 4A are individually connected to the three terminals 17 to 19 that are electrically insulated from the pedestal 15 by wedge bonding means or ball bonding means. Process to do [0051]
Since the multicolor light emitting lamp 30 is configured by individually connecting the LEDs 1A, 3A, and 4A, it can be used as a single light lamp of a blue band, a green band, or a red band. In particular, since the lamp 30 of the second embodiment uses a heterojunction type GaP-based LED 3A using a boron-containing III-V group semiconductor layer, it can be used as a lamp that emits a single light of a high-brightness green band. It was available. . Further, since the LEDs 1A, 3A, and 4A are individually connected, the forward currents flowing through the LEDs can be individually adjusted, so that mixed color light of each of the RGB emission colors can be generated. Moreover, the RGB type multicolor light-emitting lamp 30 capable of emitting white light is provided by simultaneously lighting the LEDs 1A, 3A, and 4A.
[0052]
(Third embodiment)
The contents of the present invention will be described by taking as an example the case where the RGB type multicolor light emitting lamps 30 described in the second embodiment are assembled to form a light source.
[0053]
The light source 40 according to the present invention is configured, for example, by regularly arranging the plan view of the RGB type multicolor light emitting lamp 30 at regular intervals as schematically shown in FIG. If wiring that allows the forward current to be individually controlled through the terminals 18 of the lamps 30 arranged is provided, chromaticity can be adjusted, and a multicolor lamp for display (display) use or the like can be configured.
[0054]
【The invention's effect】
According to the present invention, a heterojunction type light emitting device having a boron phosphide-based III-V compound semiconductor layer as a barrier layer, for example, a heterojunction type GaP green LED, or a heterojunction type GaAs 1-Z P Since the multi-color light-emitting lamp and the light source are configured using the Z- based LED, for example, an RGB mixed color multi-color light-emitting lamp that provides high-intensity light emission can be provided.
[0055]
Further, according to the present invention, a light emitting element that emits blue band light, for example, a boron-containing III-V compound semiconductor layer, which is configured by using a conductive substrate material and providing an electrode on the back surface of the substrate is provided. Since the multi-color light emitting lamp and the light source are configured using the blue LED, a high-intensity multi-color light emitting lamp and the light source can be provided with an easy connection (bonding) operation.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a blue LED according to the present invention.
FIG. 2 is a schematic cross-sectional view of a heterojunction yellow LED according to the present invention.
FIG. 3 is a schematic sectional view of a heterojunction green LED according to the present invention.
FIG. 4 is a schematic cross-sectional view of a heterojunction red LED according to the present invention.
FIG. 5 is a schematic cross-sectional view of a multicolor light emitting lamp according to the present invention.
FIG. 6 is a schematic cross-sectional view of a multicolor light emitting lamp according to the first embodiment.
FIG. 7 is a schematic sectional view of a multicolor light emitting lamp according to a second embodiment.
FIG. 8 is a plan view showing a configuration of a light source using a multicolor light emitting lamp according to a third embodiment.
[Explanation of symbols]
1A, 2A, 3A, 4A LED
10, 20, 30 Multicolor light emitting lamp 40 Light source 11 Substrate 12 Upper barrier layer 13 Front electrode 14 Back electrode 15 Base 16 Metal coating 17, 18, 19 Terminal 101 Single crystal substrate 102 Buffer layer 103 Lower barrier layer 104 Light emitting layer 105 Upper part Barrier layer 106 Front electrode 107 Back electrode 108 Composition gradient layer 109 First GaP layer 110 Second GaP layer

Claims (5)

導電性の基板表面上に設けられた、非晶質または多結晶の、硼素(B)を含むIII−V族化合物半導体(含硼素III−V族化物半導体)からなる低温緩衝層と、低温緩衝層上に設けられた、硼素(B)とリン(P)とを含むリン化硼素(BP)系III−V族化合物半導体からなる障壁層と、障壁層上に設けられたIII−V族化合物半導体からなる発光層とを具備する青色帯光を出射する青色系発光ダイオード(LED)を備え、かつ、基板上に設けられた発光層と、発光層上に設けられたリン化硼素系III−V族化合物半導体層からなる上部障壁層とを備えてなる黄色帯光を出射するヘテロ接合型黄色系LEDを備えた多色発光ランプ。A low-temperature buffer layer made of an amorphous or polycrystalline III-V group compound semiconductor containing boron (B) (boron-containing group III-V compound semiconductor) provided on a conductive substrate surface; A barrier layer made of a boron phosphide (BP) group III-V compound semiconductor containing boron (B) and phosphorus (P) provided on the layer, and a group III-V compound provided on the barrier layer A blue light emitting diode (LED) that emits blue band light comprising a light emitting layer made of a semiconductor, a light emitting layer provided on a substrate, and a boron phosphide-based III- provided on the light emitting layer A multicolor light emitting lamp comprising a heterojunction yellow LED that emits yellowish light comprising an upper barrier layer made of a group V compound semiconductor layer . 導電性の基板表面上に設けられた、非晶質または多結晶の、硼素(B)を含むIII−V族化合物半導体(含硼素III−V族化物半導体)からなる低温緩衝層と、低温緩衝層上に設けられた、硼素(B)とリン(P)とを含むリン化硼素(BP)系III−V族化合物半導体からなる障壁層と、障壁層上に設けられたIII−V族化合物半導体からなる発光層とを具備する青色帯光を出射する青色系発光ダイオード(LED)を備え、かつ、基板上に設けられた発光層と、発光層上に設けられたリン化硼素系III−V族化合物半導体層からなる上部障壁層とを備えてなる緑色帯光を出射するヘテロ接合型緑色系LEDを備えた多色発光ランプ。 A low-temperature buffer layer made of an amorphous or polycrystalline III-V group compound semiconductor containing boron (B) (boron-containing group III-V compound semiconductor) provided on a conductive substrate surface; A barrier layer made of a boron phosphide (BP) group III-V compound semiconductor containing boron (B) and phosphorus (P) provided on the layer, and a group III-V compound provided on the barrier layer A blue light emitting diode (LED) that emits blue band light comprising a light emitting layer made of a semiconductor, a light emitting layer provided on a substrate, and a boron phosphide-based III- provided on the light emitting layer A multicolor light-emitting lamp including a heterojunction green LED that emits green band light including an upper barrier layer made of a group V compound semiconductor layer . 導電性の基板表面上に設けられた、非晶質または多結晶の、硼素(B)を含むIII−V族化合物半導体(含硼素III−V族化物半導体)からなる低温緩衝層と、低温緩衝層上に設けられた、硼素(B)とリン(P)とを含むリン化硼素(BP)系III−V族化合物半導体からなる障壁層と、障壁層上に設けられたIII−V族化合物半導体からなる発光層とを具備する青色帯光を出射する青色系発光ダイオード(LED)を備え、かつ、基板上に設けられた発光層と、発光層上に設けられたリン化硼素系III−V族化合物半導体層からなる上部障壁層とを備えてなる赤色帯光を出射するヘテロ接合型赤色系LEDを備えた多色発光ランプ。 A low-temperature buffer layer made of an amorphous or polycrystalline III-V group compound semiconductor containing boron (B) (boron-containing group III-V compound semiconductor) provided on a conductive substrate surface; A barrier layer made of a boron phosphide (BP) group III-V compound semiconductor containing boron (B) and phosphorus (P) provided on the layer, and a group III-V compound provided on the barrier layer A blue light emitting diode (LED) that emits blue band light comprising a light emitting layer made of a semiconductor, a light emitting layer provided on a substrate, and a boron phosphide-based III- provided on the light emitting layer A multicolor light-emitting lamp including a heterojunction red LED that emits red band light including an upper barrier layer made of a group V compound semiconductor layer . 基板が、同一の伝導形の単結晶から構成されていることを特徴とする請求項1乃至3の何れか1項に記載の多色発光ランプ。4. The multicolor light-emitting lamp according to claim 1 , wherein the substrate is made of a single crystal having the same conductivity type. 請求項1乃至4の何れか1項に記載の多色発光ランプを用いた光源。A light source using the multicolor light-emitting lamp according to claim 1 .
JP2001248455A 2001-08-20 2001-08-20 Multicolor light emitting lamp and light source Expired - Fee Related JP3772708B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2001248455A JP3772708B2 (en) 2001-08-20 2001-08-20 Multicolor light emitting lamp and light source
AT02765340T ATE384337T1 (en) 2001-08-20 2002-08-16 MULTI-COLOR LIGHT EISSION LAMP AND LIGHT SOURCE
DE60224681T DE60224681T2 (en) 2001-08-20 2002-08-16 MULTICOLOR LIGHT EMISSION LAMP AND LIGHT SOURCE
PCT/JP2002/008317 WO2003017387A1 (en) 2001-08-20 2002-08-16 Multicolor light-emitting lamp and light source
US10/486,985 US7479731B2 (en) 2001-08-20 2002-08-16 Multicolor light-emitting lamp and light source
CNB028156773A CN100344002C (en) 2001-08-20 2002-08-16 Multicolor light-emitting lamp and light source
EP02765340A EP1419535B1 (en) 2001-08-20 2002-08-16 Multicolor light-emitting lamp and light source
TW91118661A TW569472B (en) 2001-08-20 2002-08-19 Multi-color luminous lamp and its light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001248455A JP3772708B2 (en) 2001-08-20 2001-08-20 Multicolor light emitting lamp and light source

Publications (2)

Publication Number Publication Date
JP2006024583A JP2006024583A (en) 2006-01-26
JP3772708B2 true JP3772708B2 (en) 2006-05-10

Family

ID=32588011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001248455A Expired - Fee Related JP3772708B2 (en) 2001-08-20 2001-08-20 Multicolor light emitting lamp and light source

Country Status (2)

Country Link
JP (1) JP3772708B2 (en)
TW (1) TW569472B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12183770B2 (en) 2020-07-15 2024-12-31 Lg Display Co., Ltd. Display device and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12183770B2 (en) 2020-07-15 2024-12-31 Lg Display Co., Ltd. Display device and method of manufacturing the same

Also Published As

Publication number Publication date
JP2006024583A (en) 2006-01-26
TW569472B (en) 2004-01-01

Similar Documents

Publication Publication Date Title
US7479731B2 (en) Multicolor light-emitting lamp and light source
US8389975B2 (en) Group III nitride semiconductor light-emitting device
JP2000068555A (en) Lighting system
JP3700609B2 (en) COMPOUND SEMICONDUCTOR LIGHT EMITTING DEVICE, ITS MANUFACTURING METHOD, LAMP AND LIGHT SOURCE
JP3567926B2 (en) pn junction type boron phosphide-based semiconductor light emitting device, method for manufacturing the same, and light source for display device
JPH05167101A (en) Semiconductor light emitting element
US6835962B2 (en) Stacked layer structure, light-emitting device, lamp, and light source unit
US6831293B2 (en) P-n junction-type compound semiconductor light-emitting device, production method thereof, lamp and light source
JP4285837B2 (en) AlGaInP light emitting device with window layer
JP2001298215A (en) Light-emitting element
JP3504976B2 (en) Semiconductor light emitting device
US6774402B2 (en) Pn-juction type compound semiconductor light-emitting device, production method thereof and white light-emitting diode
JP3772708B2 (en) Multicolor light emitting lamp and light source
JP4799769B2 (en) GaP light emitting diode
JP3747867B2 (en) Pn junction type compound semiconductor light emitting device, manufacturing method thereof, lamp and light source
JP3614143B2 (en) Pn junction type compound semiconductor light emitting device, manufacturing method thereof, white light emitting diode
JP2001015803A (en) AlGaInP LIGHT EMITTING DIODE
JP2004356601A (en) Light emitting diode
JP3651422B2 (en) Laminated structure, light emitting element, lamp, and light source
JP3557571B2 (en) Light-emitting element laminated structure, light-emitting element, lamp and light source
JP3646706B2 (en) Boron phosphide-based semiconductor light-emitting diode and manufacturing method thereof
JP3649170B2 (en) Laminated structure and light emitting element, lamp, and light source using the same
JPH05335619A (en) Light-emitting diode and its manufacture
JPH11307812A (en) Nitride semiconductor light emitting element
JP3736401B2 (en) COMPOUND SEMICONDUCTOR DEVICE, ITS MANUFACTURING METHOD, LIGHT EMITTING DEVICE, LAMP, AND LIGHT SOURCE

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060206

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees