JPH05335619A - Light-emitting diode and its manufacture - Google Patents
Light-emitting diode and its manufactureInfo
- Publication number
- JPH05335619A JPH05335619A JP13694592A JP13694592A JPH05335619A JP H05335619 A JPH05335619 A JP H05335619A JP 13694592 A JP13694592 A JP 13694592A JP 13694592 A JP13694592 A JP 13694592A JP H05335619 A JPH05335619 A JP H05335619A
- Authority
- JP
- Japan
- Prior art keywords
- active layer
- layer
- type
- phosphide
- emitting diode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 239000012535 impurity Substances 0.000 claims abstract description 24
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 17
- 229910052738 indium Inorganic materials 0.000 claims description 12
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 11
- 239000000758 substrate Substances 0.000 claims description 10
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 claims description 9
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 6
- 229910052733 gallium Inorganic materials 0.000 claims description 6
- HZXMRANICFIONG-UHFFFAOYSA-N gallium phosphide Chemical compound [Ga]#P HZXMRANICFIONG-UHFFFAOYSA-N 0.000 claims description 6
- IHGSAQHSAGRWNI-UHFFFAOYSA-N 1-(4-bromophenyl)-2,2,2-trifluoroethanone Chemical compound FC(F)(F)C(=O)C1=CC=C(Br)C=C1 IHGSAQHSAGRWNI-UHFFFAOYSA-N 0.000 claims description 5
- 229910005540 GaP Inorganic materials 0.000 claims description 5
- 238000005253 cladding Methods 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 239000004065 semiconductor Substances 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 239000013078 crystal Substances 0.000 abstract description 18
- 238000009792 diffusion process Methods 0.000 abstract description 11
- 230000006798 recombination Effects 0.000 abstract description 2
- 238000005215 recombination Methods 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 17
- AXAZMDOAUQTMOW-UHFFFAOYSA-N dimethylzinc Chemical compound C[Zn]C AXAZMDOAUQTMOW-UHFFFAOYSA-N 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 238000002109 crystal growth method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000007547 defect Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 238000004943 liquid phase epitaxy Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000001451 molecular beam epitaxy Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- RGGPNXQUMRMPRA-UHFFFAOYSA-N triethylgallium Chemical compound CC[Ga](CC)CC RGGPNXQUMRMPRA-UHFFFAOYSA-N 0.000 description 2
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 2
- IBEFSUTVZWZJEL-UHFFFAOYSA-N trimethylindium Chemical compound C[In](C)C IBEFSUTVZWZJEL-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- SPVXKVOXSXTJOY-UHFFFAOYSA-N selane Chemical compound [SeH2] SPVXKVOXSXTJOY-UHFFFAOYSA-N 0.000 description 1
- 229910000058 selane Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000000927 vapour-phase epitaxy Methods 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Led Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、化合物半導体を材料
とする発光ダイオード(以下「LED」という)および
その製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting diode (hereinafter referred to as "LED") made of a compound semiconductor and a method for manufacturing the same.
【0002】[0002]
【従来の技術】可視光LEDは、 III−V族化合物半導
体のヒ化ガリウム・アルミニウム(GaAlAs)、リ
ン化ガリウム(GaP)、ヒ化・リン化ガリウム(Ga
AsP)を用い、赤から、緑色の発光色を持つものが実
用化されている。これらはパイロットランプ、数字表示
器などの屋内用途だけではなく、GaAlAsを用いた
赤、GaPを用いた緑色LEDの高輝度化により、屋外
情報板、信号灯、ハイマウントストップランプ等、屋外
での用途を拡大している。しかしさらに用途を拡大する
ためには、緑色LEDのさらなる高輝度化、及び橙、黄
色LEDの高輝度化が不可欠である。この要求を満たす
材料として、リン化インジウム・ガリウム・アルミニウ
ム(InGaAlP)がある。2. Description of the Related Art Visible light LEDs are III-V group compound semiconductor gallium arsenide aluminum (GaAlAs), gallium phosphide (GaP), gallium arsenide phosphide (Ga).
AsP) has been put to practical use that has emission colors from red to green. These are not only indoor applications such as pilot lamps and numerical displays, but also outdoor applications such as outdoor information boards, signal lights, and high-mount stop lamps due to the high brightness of red LEDs using GaAlAs and green LEDs using GaP. Is expanding. However, in order to further expand the applications, it is essential to further increase the brightness of the green LED and the brightness of the orange and yellow LEDs. As a material satisfying this requirement, there is indium gallium aluminum phosphide (InGaAlP).
【0003】InGaAlPは、安価で、高品質な結晶
基板が得られるGaAsと格子整合が可能であり、Ga
As基板上にエピタキシャル成長することにより得られ
る。さらにGaAsとの格子整合条件下で組成を変える
ことで、バンドギャップを1.9〜2.35eVとする
ことができる。このうち、1.9〜2.3eVが直接遷
移型であり、これは波長で、650(赤色)〜540
(緑色)nmに相当する。これらの性質は高輝度LED
を作製する場合に重要な条件、つまり、(1) 結晶欠陥が
少ないこと、(2) 活性層が直接遷移型のバンド構造を持
つこと、(3) 活性層を活性層よりバンドギャップが大き
な層ではさむ、いわゆるダブルヘテロ(DH)構造が形
成可能なこと、を満足している。InGaAlP is inexpensive and can be lattice-matched with GaAs to obtain a high-quality crystal substrate.
It is obtained by epitaxial growth on an As substrate. Furthermore, the band gap can be set to 1.9 to 2.35 eV by changing the composition under the lattice matching condition with GaAs. Of these, 1.9 to 2.3 eV is a direct transition type, which is a wavelength of 650 (red) to 540.
Corresponds to (green) nm. These properties are high brightness LED
The conditions that are important for manufacturing are: (1) there are few crystal defects, (2) the active layer has a direct transition type band structure, and (3) the active layer has a larger bandgap than the active layer. It is satisfied that the so-called double hetero (DH) structure can be formed.
【0004】InGaAlPのエピタキシャル成長は、
GaAlAs、GaP、GaAsPの結晶成長に用いら
れる液相成長(LPE)法,クロライド気相成長(CV
PE)法などの熱平衡状態下での結晶成長法では困難で
あり、非熱平衡状態下での結晶成長法である有機金属気
相成長(MOVPE)法,分子線エピタキシー(MB
E)法により行われる。最近、この中でも特にMOVP
E法が用いられている。またp型結晶を成長するため
に、p型不純物として、Zn、Mg、Be等が用いられ
ている。The epitaxial growth of InGaAlP is
Liquid phase epitaxy (LPE) method used for crystal growth of GaAlAs, GaP and GaAsP, chloride vapor phase epitaxy (CV)
It is difficult to perform the crystal growth method under the thermal equilibrium state such as PE) method, and the metal organic chemical vapor deposition (MOVPE) method, the molecular beam epitaxy (MB) method, which is the crystal growth method under the non-thermal equilibrium state.
E) method. Recently, especially MOVP
Method E is used. Further, Zn, Mg, Be or the like is used as a p-type impurity in order to grow a p-type crystal.
【0005】図5は第1の従来例の発光ダイオードのチ
ップ断面構造図である。この発光ダイオードは、発光波
長620nmのInGaAlP橙色LEDであり、結晶
成長には、減圧MOVPE法を用いる。In,Ga,A
l,p型不純物のZnの原料は、それぞれ有機金属のト
リメチルインジウム(TMI),トリエチルガリウム
(TEG),トリメチルアルミニウム(TMA),ジメ
チル亜鉛(DMZ)を用い、リン,ヒ素,n型不純物の
Se原料は、それぞれ水素化物のフォスフィン(PH
3 ),アルシン(AsH3 ),セレン化水素(H2 S
e)を用いる。成長温度は700℃、成長圧力は60T
orrで一定とする。また各層の成長速度は、2μm/
hourである。FIG. 5 is a sectional view of a chip of a light emitting diode of a first conventional example. This light emitting diode is an InGaAlP orange LED having an emission wavelength of 620 nm, and a low pressure MOVPE method is used for crystal growth. In, Ga, A
As the raw materials of Zn as the 1- and p-type impurities, trimethylindium (TMI), triethylgallium (TEG), trimethylaluminum (TMA), and dimethylzinc (DMZ), which are organic metals, are used, respectively. The raw materials are phosphine (PH
3 ), arsine (AsH 3 ), hydrogen selenide (H 2 S
e) is used. Growth temperature is 700 ° C, growth pressure is 60T
It is constant at orr. The growth rate of each layer is 2 μm /
Hour.
【0006】n−GaAs基板1(電子濃度n=2×1
018cm-3、厚さ350μm)上にまず、n−GaAs
バッファ層2(n=1×1018cm-3)を0.5μm成
長後、n−In0.5 (Ga0.3 Al0.7 )0.5 Pクラッ
ド層3(n=1×1018cm -3)を1.0μm、アンド
ープIn0.5 (Ga0.8 Al0.2 )0.5 P活性層4を
0.5μm、p−In0.5 (Ga0.3 Al0.7 )0.5 P
クラッド層5(正孔濃度p=5×1017cm-3)を1.
0μm成長する。これら各層の組成は、GaAs基板1
と格子整合し、且つ、発光領域となる活性層4は発光波
長が620nmとなるように、またクラッド層3,5
は、活性層4よりもバンドギャップが大きくなるように
する。このように、活性層4を活性層4よりバンドギャ
ップの大きなクラッド層3,5で挟む構造をDH構造と
いい、クラッド層3,5から活性層4に注入されたキャ
リアを閉じ込める役割を果たす。これにより、活性層4
内の注入キャリア密度が増し、再結合確率が増大する結
果、発光効率が大幅に向上する。N-GaAs substrate 1 (electron concentration n = 2 × 1
018cm-3, Thickness of 350 μm), firstly n-GaAs
Buffer layer 2 (n = 1 × 1018cm-3) Is 0.5 μm
After a long time, n-In0.5(Ga0.3Al0.7)0.5P crack
Layer 3 (n = 1 × 1018cm -3) Is 1.0 μm, and
Loop In0.5(Ga0.8Al0.2)0.5P active layer 4
0.5 μm, p-In0.5(Ga0.3Al0.7)0.5P
Cladding layer 5 (hole concentration p = 5 × 1017cm-3) To 1.
It grows to 0 μm. The composition of each of these layers is GaAs substrate 1
The active layer 4 which is lattice-matched with
The length is 620 nm and the clad layers 3, 5
Has a band gap larger than that of the active layer 4.
To do. In this way, the active layer 4 is more
The structure sandwiched between the clad layers 3 and 5 having a large gap is called the DH structure.
The clad layers 3 and 5 injected into the active layer 4
Plays the role of confining the rear. Thereby, the active layer 4
As a result, the density of injected carriers in the interior increases and the recombination probability increases.
As a result, the luminous efficiency is significantly improved.
【0007】このDH構造に続いて、p−Ga0.3 Al
0.7 As窓層6(p=3×1018cm-3)を7μm成長
する。窓層6は活性層4内で発生した光を外部に取り出
すため、発光波長に対して透明である。またp側電極7
からの電流が、活性層4に到達するまでにチップ全体に
広がるために、Znを高濃度にドーピングして比抵抗を
下げ、また厚く成長する。さらにその上にp−GaAs
コンタクト層8(p=5×1018cm-3)を0.5μm
成長する。その後、コンタクト層8上に直径140μm
の円形のp側電極7を、またGaAs基板1の裏面には
n側電極9を全面に真空蒸着法により形成する。さら
に、p−GaAsコンタクト層8をp側電極7の下以外
をウェットエッチングにより除去した後、一辺が300
μmの正方形のチップに切り出す。Following this DH structure, p-Ga 0.3 Al
A 0.7 As window layer 6 (p = 3 × 10 18 cm −3 ) is grown to 7 μm. Since the window layer 6 takes out the light generated in the active layer 4 to the outside, it is transparent to the emission wavelength. Also, the p-side electrode 7
In order to spread the current from the above to the entire chip before reaching the active layer 4, Zn is doped at a high concentration to lower the specific resistance and grow thick. On top of that, p-GaAs
Contact layer 8 (p = 5 × 10 18 cm −3 ) 0.5 μm
grow up. Then, a diameter of 140 μm on the contact layer 8
The circular p-side electrode 7 and the n-side electrode 9 are formed on the entire back surface of the GaAs substrate 1 by vacuum deposition. Further, after removing the p-GaAs contact layer 8 except the portion under the p-side electrode 7 by wet etching, one side is 300
Cut into μm square chips.
【0008】以上の方法により作製したLEDチップ
を、ステム上に銀(Ag)ペーストにより固定し、金
(Au)線を接続する。これに順方向に電圧を印加し、
通電することにより発光させる。The LED chip manufactured by the above method is fixed on the stem with silver (Ag) paste, and the gold (Au) wire is connected. Applying a voltage to this in the forward direction,
It emits light when energized.
【0009】[0009]
【発明が解決しようとする課題】しかしながら上記従来
の構成では、DH構造の採用、窓層6の厚膜化、Znの
高濃度ドーピングにもかかわらず、順方向電流20mA
の時、約70ミリルーメン(mlm)と満足すべき輝度
が得られない。また、室温下、順方向電流50mAで通
電試験を実施したところ、200時間後に初期の輝度の
約30%にまで劣化し、信頼性的にも不十分である。こ
れは結晶成長中に、窓層6に高濃度にドーピングされた
Znが活性層4にまで多量に熱拡散するためであり、活
性層4に拡散したZnは、活性層4中に非発光中心など
の結晶欠陥を作る。これは内部量子効率を低下させ、高
輝度が得られない原因となる。さらに通電試験中に上記
結晶欠陥が原因となって転位が増殖し、輝度が劣化する
原因となる。However, in the above conventional structure, the forward current is 20 mA despite the adoption of the DH structure, the thickening of the window layer 6 and the high concentration doping of Zn.
At that time, a satisfactory brightness of about 70 millilumens (mlm) cannot be obtained. Further, when an energization test was performed at room temperature with a forward current of 50 mA, it deteriorated to about 30% of the initial luminance after 200 hours, and the reliability was insufficient. This is because Zn doped in the window layer 6 at a high concentration is thermally diffused to the active layer 4 in a large amount during the crystal growth, and the Zn diffused in the active layer 4 is a non-radiative center in the active layer 4. Make crystal defects such as. This lowers the internal quantum efficiency and causes high brightness not to be obtained. Further, during the current-carrying test, the crystal defects cause the dislocations to multiply, which causes the deterioration of the brightness.
【0010】また、結晶成長中の活性層4へのZnの拡
散を抑えるために、他の従来例として、窓層6のキャリ
ア濃度のみを変更し、1×1018cm-3と低くした結
果、順方向電流20mAの輝度の値は約80mlmであ
り、あまり向上しなかった。しかし、上記通電試験にお
いて、1000時間まで輝度の劣化は認められなくなっ
た。これは窓層6のZnの濃度を下げたため、結晶成長
中の活性層4へのZnの拡散が抑えられた反面、窓層6
の抵抗が高くなり、p側電極7からの電流が活性層4に
到達するまでに充分広がらず、光の外部取り出し効率が
低下するためである。As another conventional example, in order to suppress the diffusion of Zn into the active layer 4 during crystal growth, only the carrier concentration of the window layer 6 was changed to a low value of 1 × 10 18 cm -3. The luminance value at a forward current of 20 mA was about 80 mlm, which was not so improved. However, in the above-mentioned energization test, the deterioration of luminance was not observed until 1000 hours. This is because the Zn concentration in the window layer 6 is lowered, so that the diffusion of Zn into the active layer 4 during crystal growth is suppressed, while the window layer 6 is suppressed.
Is increased, the current from the p-side electrode 7 does not spread sufficiently before reaching the active layer 4, and the light extraction efficiency is reduced.
【0011】この発明は、このような課題を解決するも
のであり、窓層の抵抗を低くし、結晶成長中の活性層へ
のp型不純物の拡散を抑え、高輝度で、信頼性に優れた
発光ダイオードおよびその製造方法を提供することを目
的とするものである。The present invention solves such a problem by lowering the resistance of the window layer and suppressing the diffusion of p-type impurities into the active layer during crystal growth, resulting in high brightness and excellent reliability. Another object of the present invention is to provide a light emitting diode and a method for manufacturing the same.
【0012】[0012]
【課題を解決するための手段】請求項1記載の発光ダイ
オードは、窓層の活性層に近い部分のp型不純物濃度を
低くし、窓層の活性層から遠い部分のp型不純物濃度を
高くしたことを特徴とする。請求項2記載の発光ダイオ
ードの製造方法は、窓層を成長する際に、窓層の活性層
に近い部分の成長温度より遠い部分の成長温度を低くす
ることを特徴とする。According to a first aspect of the present invention, a light emitting diode has a low p-type impurity concentration in a portion of the window layer close to the active layer and a high p-type impurity concentration in a portion of the window layer far from the active layer. It is characterized by having done. The method for manufacturing a light emitting diode according to a second aspect of the present invention is characterized in that, when the window layer is grown, the growth temperature of the portion farther from the growth temperature of the portion closer to the active layer of the window layer is lowered.
【0013】[0013]
【作用】請求項1記載の構成によれば、窓層の活性層に
近い部分のp型不純物濃度を低くしたことにより、活性
層へのp型不純物の拡散を抑え、活性層中の非発光中心
の発生を防ぐことができる。さらに窓層の活性層から遠
い部分のp型不純物濃度を高くしたことにより、窓層中
の抵抗を低くできる。その結果、高輝度で、信頼性に優
れたLEDを実現することができる。According to the structure of claim 1, the p-type impurity concentration in the portion of the window layer close to the active layer is lowered, so that diffusion of the p-type impurity into the active layer is suppressed and non-light emission in the active layer is achieved. You can prevent the occurrence of heart. Further, the resistance in the window layer can be lowered by increasing the p-type impurity concentration in the portion of the window layer far from the active layer. As a result, it is possible to realize an LED having high brightness and excellent reliability.
【0014】請求項2記載の製造方法によれば、p型不
純物の結晶中への取り込み効率は、成長温度が低いほど
高いため、窓層を成長する際に、窓層の活性層に近い部
分の成長温度より遠い部分の成長温度を低くすることに
より、p型不純物の原料供給量が同じでも活性層から近
い部分よりも遠い部分のp型不純物濃度を高くでき、さ
らに、窓層成長途中に成長温度を下げることで、p型不
純物の活性層への拡散を抑えることができ、活性層中の
非発光中心の発生を防ぐことができる。その結果、高輝
度で、信頼性に優れたLEDを製造できる。According to the manufacturing method of the second aspect, the efficiency of incorporating the p-type impurities into the crystal is higher as the growth temperature is lower. Therefore, when the window layer is grown, the portion of the window layer near the active layer is grown. By lowering the growth temperature of the portion farther than the growth temperature of p, the p-type impurity concentration of the portion farther from the portion closer to the active layer can be made higher even if the source supply amount of the p-type impurity is the same. By lowering the growth temperature, diffusion of p-type impurities into the active layer can be suppressed, and generation of non-radiative centers in the active layer can be prevented. As a result, an LED with high brightness and excellent reliability can be manufactured.
【0015】[0015]
【実施例】以下、この発明の実施例について図面を参照
しながら説明する。 〔第1の実施例;請求項1に対応〕図1はこの発明の第
1の実施例の発光ダイオードのチップ断面構造図であ
る。図1において、1はn−GaAs基板、2はn−G
aAsバッファ層、3はn−In0.5 (Ga0.3 Al
0.7 )0.5 Pクラッド層、4はアンドープIn0.5 (G
a0.8 Al0.2 )0.5 P活性層、5はp−In0.5 (G
a0.3 Al0.7 )0.5 Pクラッド層、6aはp−Ga
0.3 Al0.7 As窓層、7はp側電極、8はp−GaA
sコンタクト層、9はn側電極である。Embodiments of the present invention will be described below with reference to the drawings. [First Embodiment; Corresponding to Claim 1] FIG. 1 is a sectional view showing a chip structure of a light emitting diode according to a first embodiment of the present invention. In FIG. 1, 1 is an n-GaAs substrate, 2 is n-G
aAs buffer layer, 3 is n-In 0.5 (Ga 0.3 Al
0.7 ) 0.5 P clad layer, 4 is undoped In 0.5 (G
a 0.8 Al 0.2 ) 0.5 P active layer, 5 is p-In 0.5 (G
a 0.3 Al 0.7 ) 0.5 P clad layer, 6a is p-Ga
0.3 Al 0.7 As window layer, 7 p-side electrode, 8 p-GaA
The s contact layer 9 is an n-side electrode.
【0016】この発光ダイオードは、発光波長620n
mのInGaAlP橙色LEDであり、p−Ga0.3 A
l0.7 As窓層6aの正孔濃度が、図5に示す従来例の
p−Ga0.3 Al0.7 As窓層6の正孔濃度と異なる他
は従来例と同様である。この従来例との相違点である正
孔濃度分布を図2に示す。すなわち、この発光ダイオー
ドは、窓層6aの成長中にジメチル亜鉛(DMZ)の供
給量を変化させ、窓層6aの正孔濃度を、活性層4に近
い1μmのみ正孔濃度p=1×1018cm-3とし、残り
6μmはp=3×1018cm-3としている。なお、他の
結晶成長方法および成長条件は従来例と同じである。This light emitting diode has an emission wavelength of 620n.
m InGaAlP orange LED, p-Ga 0.3 A
The hole concentration of the l 0.7 As window layer 6 a is the same as that of the conventional example except that the hole concentration of the p-Ga 0.3 Al 0.7 As window layer 6 of the conventional example shown in FIG. 5 is different. FIG. 2 shows a hole concentration distribution, which is a difference from the conventional example. That is, in this light emitting diode, the supply amount of dimethylzinc (DMZ) is changed during the growth of the window layer 6a so that the hole concentration of the window layer 6a is only 1 μm close to the active layer 4 and the hole concentration p = 1 × 10. 18 cm −3 and the remaining 6 μm is p = 3 × 10 18 cm −3 . The other crystal growth methods and growth conditions are the same as in the conventional example.
【0017】この実施例によれば、順方向電流20mA
における輝度は約150mlmであった。この値は従来
例の場合の約2倍であり、大幅に輝度が向上した。また
室温下、順方向電流50mAで通電試験を実施したとこ
ろ、1000時間で初期の輝度の約90%の値を示し
た。このように、窓層6aの内、活性層4に近い領域の
Zn濃度を低くすることにより、活性層4へのZnの拡
散を抑え、活性層4中の非発光中心の発生を防ぐことが
できる。さらに活性層4から離れた領域のZn濃度を高
くすることにより、窓層6a中の抵抗を低くできる。そ
の結果、高輝度で、信頼性に優れたLEDを実現するこ
とができる。According to this embodiment, the forward current is 20 mA.
The brightness at was about 150 mlm. This value is about twice that in the case of the conventional example, and the brightness is significantly improved. When an energization test was conducted at room temperature with a forward current of 50 mA, a value of about 90% of the initial luminance was shown after 1000 hours. As described above, by lowering the Zn concentration in the region close to the active layer 4 in the window layer 6a, diffusion of Zn into the active layer 4 can be suppressed and generation of non-radiative centers in the active layer 4 can be prevented. it can. Further, by increasing the Zn concentration in the region distant from the active layer 4, the resistance in the window layer 6a can be lowered. As a result, it is possible to realize an LED having high brightness and excellent reliability.
【0018】〔第2の実施例;請求項1に対応〕つぎに
第2の実施例の発光ダイオードについて述べる。第2の
実施例の発光ダイオードは、第1の実施例におけるp−
Ga0.3 Al0. 7 As窓層6aの正孔濃度分布のみが異
なり、その他の構成は第1の実施例と同様であり、断面
構造図は省略し、p−Ga0.3 Al0.7 As窓層の正孔
濃度分布を図3に示す。[Second Embodiment: Corresponding to Claim 1] Next, a light emitting diode of a second embodiment will be described. The light emitting diode of the second embodiment is p-type in the first embodiment.
Differ only Ga 0.3 Al 0. 7 hole concentration distribution of As window layer 6a, the other configurations are the same as in the first embodiment, sectional view is omitted, the p-Ga 0.3 Al 0.7 As window layer The hole concentration distribution is shown in FIG.
【0019】すなわち、この第2の実施例の発光ダイオ
ードは、p−Ga0.3 Al0.7 As窓層の成長中にDM
Zの供給量を連続的に変化させ、正孔濃度をp=5×1
017cm-3からp=5×1018cm-3まで、活性層から
の距離に比例して変化させている。なお、第1の実施例
同様、他の結晶成長方法および成長条件は従来例と同じ
である。That is, the light emitting diode according to the second embodiment is DM-diffused during the growth of the p-Ga 0.3 Al 0.7 As window layer.
The hole concentration is changed to p = 5 × 1 by continuously changing the supply amount of Z.
It is changed in proportion to the distance from the active layer from 0 17 cm -3 to p = 5 × 10 18 cm -3 . Similar to the first embodiment, the other crystal growth methods and growth conditions are the same as in the conventional example.
【0020】この第2の実施例によれば、第1の実施例
と同様の効果が得られる。 〔第3の実施例;請求項2に対応〕この発明の第3の実
施例の発光ダイオードの製造方法について説明する。な
お、この実施例における発光ダイオードの断面構造図と
して、第1の実施例で用いた図1を用いることにする。According to the second embodiment, the same effect as that of the first embodiment can be obtained. [Third Embodiment: Corresponding to Claim 2] A method of manufacturing a light emitting diode according to a third embodiment of the present invention will be described. Note that FIG. 1 used in the first embodiment will be used as a cross-sectional structural view of the light emitting diode in this embodiment.
【0021】この実施例では、n−GaAs基板1への
n−GaAsバッファ層2,n−In0.5 (Ga0.3 A
l0.7 )0.5 Pクラッド層3,アンドープIn0.5 (G
a0. 8 Al0.2 )0.5 P活性層4,p−In0.5 (Ga
0.3 Al0.7 )0.5 Pクラッド層5,p側電極7,p−
GaAsコンタクト層8およびn側電極9の形成方法に
ついては従来例と同様であり、p−Ga0.3 Al0.7 A
s窓層6aの形成方法に特徴がある。以下、従来例と異
なる点について図4を用いて説明する。In this embodiment, the n-GaAs buffer layer 2, n-In 0.5 (Ga 0.3 A) on the n-GaAs substrate 1 is used.
l 0.7 ) 0.5 P cladding layer 3, undoped In 0.5 (G
a 0. 8 Al 0.2) 0.5 P active layer 4, p-In 0.5 (Ga
0.3 Al 0.7 ) 0.5 P clad layer 5, p-side electrode 7, p-
The method for forming the GaAs contact layer 8 and the n-side electrode 9 is the same as in the conventional example, and p-Ga 0.3 Al 0.7 A
The method for forming the s window layer 6a is characterized. Hereinafter, differences from the conventional example will be described with reference to FIG.
【0022】図4はこの実施例における結晶成長中の成
長温度の変化を示す。結晶成長方法及び成長条件は、従
来例とほぼ同じであるが、成長温度700℃でDMZを
供給しながら正孔濃度p=1×1018cm-3として窓層
6aの成長を開始し、30分後に成長温度をそれまでの
700℃から650℃に変更する。なお、DMZの供給
量は一定であり、成長速度は従来例同様、2μm/ho
urである。成長温度650℃のZnのGa0 .3Al
0.7 As中への取り込み効率は、成長温度700℃の約
3倍であることから、窓層6a中の正孔濃度分布は図2
とほぼ同じになる。FIG. 4 shows changes in the growth temperature during crystal growth in this embodiment. The crystal growth method and the growth conditions are almost the same as those in the conventional example, but the growth of the window layer 6a is started with the hole concentration p = 1 × 10 18 cm −3 while supplying DMZ at the growth temperature of 700 ° C. After a minute, the growth temperature is changed from the former 700 ° C. to 650 ° C. The supply rate of DMZ was constant, and the growth rate was 2 μm / ho as in the conventional example.
ur. Ga of the growth temperature of 650 ℃ of Zn 0 .3 Al
Since the incorporation efficiency into 0.7 As is about three times higher than the growth temperature of 700 ° C., the hole concentration distribution in the window layer 6a is shown in FIG.
Is almost the same as
【0023】この実施例によれば、順方向電流20mA
における輝度は約150mlmであり、第1,第2の実
施例と同じ値であった。また室温下、順方向電流50m
Aで通電試験を実施したところ、1000時間でも劣化
は見られず、第1,第2の実施例よりも優れた結果が得
られた。すなわちこの実施例によれば、Zn原料供給量
が同じでも、Znの結晶中への取り込み効率は成長温度
が低いほど高いため、成長温度を低くすることにより、
結晶中のZn濃度を高めることができる。従って、窓層
6aの内、活性層4から離れた領域の成長温度を、活性
層4から近い領域の成長温度に比べて低くすることによ
り、同じZn原料供給量で活性層4から近い領域よりも
離れた領域のZn濃度を高くでき、さらに、窓層6a成
長途中に成長温度を下げることで、Znの活性層4への
拡散をより抑えることができ、活性層4中の非発光中心
の発生を防ぐことができる。その結果、高輝度で、より
信頼性にも優れたLEDを実現できる。According to this embodiment, the forward current is 20 mA.
The luminance in Example was about 150 mlm, which was the same value as in the first and second examples. At room temperature, forward current 50m
When the energization test was carried out with A, no deterioration was observed even after 1000 hours, and excellent results were obtained as compared with the first and second examples. That is, according to this example, even if the supply amount of Zn raw material is the same, the efficiency of incorporation of Zn into the crystal is higher as the growth temperature is lower.
The Zn concentration in the crystal can be increased. Therefore, by lowering the growth temperature in the region apart from the active layer 4 in the window layer 6a compared to the growth temperature in the region close to the active layer 4, the same Zn source supply amount as compared to the region close to the active layer 4 is obtained. The Zn concentration in the distant region can be increased, and further, by lowering the growth temperature during the growth of the window layer 6a, the diffusion of Zn into the active layer 4 can be further suppressed, and the non-radiative center of the active layer 4 can be suppressed. It can be prevented from occurring. As a result, it is possible to realize an LED with high brightness and excellent reliability.
【0024】なお上記実施例では、活性層にIn
0.5 (Ga0.8 Al0.2 )0.5 Pを用いたが、他の組成
またはIn0.5 Ga0.5 Pの場合にも適応可能である。
また、窓層にGa0.3 Al0.7 Asを用いたが、他の組
成またはInGaAlPを用いても適応可能である。ま
た、p型不純物としてZnを用いたが、他の不純物を用
いた場合にも適応可能である。さらに、MOVPE成長
法を用いたが、他の成長法にも適応可能であることは言
うまでもない。In the above embodiment, the active layer is made of In
Although 0.5 (Ga 0.8 Al 0.2 ) 0.5 P was used, it can be applied to other compositions or In 0.5 Ga 0.5 P.
Further, although Ga 0.3 Al 0.7 As is used for the window layer, it can be applied by using another composition or InGaAlP. Although Zn is used as the p-type impurity, it can be applied to the case of using other impurities. Furthermore, although the MOVPE growth method was used, it goes without saying that it can be applied to other growth methods.
【0025】[0025]
【発明の効果】請求項1記載の発光ダイオードは、窓層
の活性層に近い部分のp型不純物濃度を低くしたことに
より、活性層へのp型不純物の拡散を抑え、活性層中の
非発光中心の発生を防ぐことができる。さらに窓層の活
性層から遠い部分のp型不純物濃度を高くしたことによ
り、窓層中の抵抗を低くできる。その結果、高輝度で、
信頼性に優れたLEDを実現することができる。In the light emitting diode according to the first aspect of the present invention, the concentration of the p-type impurity in the portion of the window layer close to the active layer is lowered, so that diffusion of the p-type impurity into the active layer is suppressed, and the non-existence of the non-active layer in the active layer. Generation of emission centers can be prevented. Further, the resistance in the window layer can be lowered by increasing the p-type impurity concentration in the portion of the window layer far from the active layer. As a result, with high brightness,
It is possible to realize an LED with excellent reliability.
【0026】請求項2記載の発光ダイオードの製造方法
は、p型不純物の結晶中への取り込み効率は、成長温度
が低いほど高いため、窓層を成長する際に、窓層の活性
層に近い部分の成長温度より遠い部分の成長温度を低く
することにより、p型不純物の原料供給量が同じでも活
性層から近い部分よりも遠い部分のp型不純物濃度を高
くでき、さらに、窓層成長途中に成長温度を下げること
で、p型不純物の活性層への拡散を抑えることができ、
活性層中の非発光中心の発生を防ぐことができる。その
結果、高輝度で、信頼性に優れたLEDを製造できる。In the method for manufacturing a light-emitting diode according to the second aspect, since the efficiency of incorporating p-type impurities into the crystal is higher as the growth temperature is lower, when the window layer is grown, it is closer to the active layer of the window layer. By lowering the growth temperature of the portion farther from the growth temperature of the portion, the p-type impurity concentration in the portion farther from the portion closer to the active layer can be made higher even if the source supply amount of the p-type impurity is the same. By lowering the growth temperature, the diffusion of p-type impurities into the active layer can be suppressed,
Generation of non-radiative centers in the active layer can be prevented. As a result, an LED with high brightness and excellent reliability can be manufactured.
【図1】この発明の第1の実施例の発光ダイオードのチ
ップ断面構造図である。FIG. 1 is a chip cross-sectional structural view of a light emitting diode according to a first embodiment of the present invention.
【図2】この発明の第1の実施例における正孔濃度分布
を示す図である。FIG. 2 is a diagram showing a hole concentration distribution in the first embodiment of the present invention.
【図3】この発明の第2の実施例における正孔濃度分布
を示す図である。FIG. 3 is a diagram showing a hole concentration distribution in the second embodiment of the present invention.
【図4】この発明の第3の実施例の発光ダイオードの製
造方法における結晶成長中の成長温度の変化を示す図で
ある。FIG. 4 is a diagram showing changes in the growth temperature during crystal growth in the method for manufacturing a light emitting diode according to the third embodiment of the present invention.
【図5】従来の発光ダイオードのチップ断面構造図であ
る。FIG. 5 is a cross-sectional structural diagram of a conventional light emitting diode chip.
1 n−GaAs基板 3 n−In0.5 (Ga0.3 Al0.7 )0.5 Pクラッ
ド層 4 アンドープIn0.5 (Ga0.8 Al0.2 )0.5 P
活性層 5 p−In0.5 (Ga0.3 Al0.7 )0.5 Pクラッ
ド層 6a p−Ga0.3 Al0.7 As窓層1 n-GaAs substrate 3 n-In 0.5 (Ga 0.3 Al 0.7 ) 0.5 P clad layer 4 undoped In 0.5 (Ga 0.8 Al 0.2 ) 0.5 P
Active layer 5 p-In 0.5 (Ga 0.3 Al 0.7 ) 0.5 P clad layer 6 a p-Ga 0.3 Al 0.7 As window layer
Claims (2)
ウム・ガリウム・アルミニウムからなるn型クラッド
層,リン化インジウム・ガリウムまたはリン化インジウ
ム・ガリウム・アルミニウムからなる活性層,p型リン
化インジウム・ガリウム・アルミニウムからなるp型ク
ラッド層を順次成長し、前記p型クラッド層上に、リン
化インジウム・ガリウム・アルミニウムまたはヒ化ガリ
ウム・アルミニウムからなる窓層を成長した発光ダイオ
ードであって、 前記窓層の前記活性層に近い部分のp型不純物濃度を低
くし、前記窓層の前記活性層から遠い部分のp型不純物
濃度を高くしたことを特徴とする発光ダイオード。1. An n-type semiconductor substrate on which an n-type cladding layer made of n-type indium gallium aluminum phosphide, an active layer made of indium gallium phosphide or indium gallium aluminum phosphide, and p-type phosphide are formed. A light-emitting diode comprising a p-type clad layer made of indium gallium-aluminum successively grown, and a window layer made of indium gallium-aluminum phosphide or gallium arsenide arsenide grown on the p-type clad layer. A light emitting diode, wherein a p-type impurity concentration of a portion of the window layer close to the active layer is lowered and a p-type impurity concentration of a portion of the window layer far from the active layer is increased.
ウム・ガリウム・アルミニウムからなるn型クラッド
層,リン化インジウム・ガリウムまたはリン化インジウ
ム・ガリウム・アルミニウムからなる活性層,p型リン
化インジウム・ガリウム・アルミニウムからなるp型ク
ラッド層を順次成長する工程と、 前記p型クラッド層上に、リン化インジウム・ガリウム
・アルミニウムまたはヒ化ガリウム・アルミニウムから
なる窓層を成長する工程とを含む発光ダイオードの製造
方法であって、 前記窓層を成長する際に、前記窓層の前記活性層に近い
部分の成長温度より遠い部分の成長温度を低くすること
を特徴とする発光ダイオードの製造方法。2. An n-type clad layer made of n-type indium gallium aluminum phosphide, an active layer made of indium gallium phosphide or indium gallium phosphide aluminum, and p-type phosphide on an n-type semiconductor substrate. A step of sequentially growing a p-type cladding layer made of indium gallium aluminum; and a step of growing a window layer made of indium gallium aluminum phosphide or gallium arsenide phosphide on the p type cladding layer. A method of manufacturing a light emitting diode, wherein, when growing the window layer, a growth temperature of a portion farther from a growth temperature of a portion of the window layer closer to the active layer is lowered. ..
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13694592A JPH05335619A (en) | 1992-05-28 | 1992-05-28 | Light-emitting diode and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13694592A JPH05335619A (en) | 1992-05-28 | 1992-05-28 | Light-emitting diode and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05335619A true JPH05335619A (en) | 1993-12-17 |
Family
ID=15187199
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13694592A Pending JPH05335619A (en) | 1992-05-28 | 1992-05-28 | Light-emitting diode and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05335619A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5856682A (en) * | 1995-05-26 | 1999-01-05 | Sharp Kabushiki Kaisha | Semiconductor light-emitting device and method for producing the same |
US6737669B2 (en) | 2001-11-27 | 2004-05-18 | Sharp Kabushiki Kaisha | Semiconductor light-emitting device |
JP2004356600A (en) * | 2003-03-31 | 2004-12-16 | Hitachi Cable Ltd | Semiconductor light emitting device |
US7652281B2 (en) | 2006-10-04 | 2010-01-26 | Hitachi Cable, Ltd. | Light emitting diode |
-
1992
- 1992-05-28 JP JP13694592A patent/JPH05335619A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5856682A (en) * | 1995-05-26 | 1999-01-05 | Sharp Kabushiki Kaisha | Semiconductor light-emitting device and method for producing the same |
US6074889A (en) * | 1995-05-26 | 2000-06-13 | Sharp Kabushiki Kaisha | Method for producing semiconductor light-emitting device with undoped spacer layer |
US6737669B2 (en) | 2001-11-27 | 2004-05-18 | Sharp Kabushiki Kaisha | Semiconductor light-emitting device |
JP2004356600A (en) * | 2003-03-31 | 2004-12-16 | Hitachi Cable Ltd | Semiconductor light emitting device |
US7652281B2 (en) | 2006-10-04 | 2010-01-26 | Hitachi Cable, Ltd. | Light emitting diode |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3152708B2 (en) | Semiconductor light emitting device | |
JP2002353499A (en) | Semiconductor light emitting device | |
JPH0897468A (en) | Semiconductor light emitting device | |
JP3602856B2 (en) | Semiconductor light emitting device and method of manufacturing the same | |
JP2900754B2 (en) | AlGaInP light emitting device | |
JP3458007B2 (en) | Semiconductor light emitting device | |
JPH0864866A (en) | Manufacture of semiconductor light emitting device | |
JPH09283799A (en) | Semiconductor light-emitting element | |
JPH05335619A (en) | Light-emitting diode and its manufacture | |
JP2001094151A (en) | Nitride compound semiconductor light-emitting element and manufacturing method therefor | |
JP2003008058A (en) | AlGaInP EPITAXIAL WAFER, METHOD OF MANUFACTURING THE SAME, AND SEMICONDUCTOR LIGHT-EMITTING ELEMENT USING THE SAME | |
JP2002208732A (en) | Compound semiconductor device | |
JP3700767B2 (en) | Semiconductor light emitting device | |
JPH0897469A (en) | Semiconductor light emitting device | |
JP3141888B2 (en) | Semiconductor light emitting device | |
JP2000049377A (en) | Method of manufacturing gallium nitride based compound semiconductor light emitting device | |
JP2004356601A (en) | Light emitting diode | |
JP2894779B2 (en) | Semiconductor light emitting device and method of manufacturing the same | |
JP3146637B2 (en) | Epitaxial wafer and yellow light emitting diode | |
JPH04313282A (en) | Light emitting diode | |
JP4594993B2 (en) | Semiconductor light emitting device and manufacturing method thereof | |
JP4376373B2 (en) | Epitaxial wafer for semiconductor light emitting device, manufacturing method thereof, and semiconductor light emitting device | |
JP2005235797A (en) | Semiconductor light emitting device | |
JP3202864B2 (en) | Light emitting diode | |
JP2004221356A (en) | Light emitting diode |