[go: up one dir, main page]

JP3772192B2 - Wall-contact type electrode in phase control multi-electrode type AC discharge device - Google Patents

Wall-contact type electrode in phase control multi-electrode type AC discharge device Download PDF

Info

Publication number
JP3772192B2
JP3772192B2 JP30126396A JP30126396A JP3772192B2 JP 3772192 B2 JP3772192 B2 JP 3772192B2 JP 30126396 A JP30126396 A JP 30126396A JP 30126396 A JP30126396 A JP 30126396A JP 3772192 B2 JP3772192 B2 JP 3772192B2
Authority
JP
Japan
Prior art keywords
electrode
discharge
gap
wall
insulating sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30126396A
Other languages
Japanese (ja)
Other versions
JPH10130836A (en
Inventor
和憲 松本
Original Assignee
株式会社ムサシノキカイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ムサシノキカイ filed Critical 株式会社ムサシノキカイ
Priority to JP30126396A priority Critical patent/JP3772192B2/en
Publication of JPH10130836A publication Critical patent/JPH10130836A/en
Application granted granted Critical
Publication of JP3772192B2 publication Critical patent/JP3772192B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Physical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高密度で大容量の弱電離低温プラズマを効率的に安定して発生する新しい放電装置に関し、特にその放電電極に関する。
【0002】
【発明が解決しようとする課題】
低ガス圧力下の弱電離低温プラズマにおいて、中性ガス温度が室温程度であることが、種々の材料に熱的な変形、変質を伴わせずにプラズマによる処理を可能ならしめている。この特徴は、繊維やプラスチックなどの特に熱に弱い材料の処理や表面への被膜形成において、大変有用である。
【0003】
低温プラズマを利用するこれら被膜形成技術において、低温プラズマの高密度化は重要な位置を占める。高密度プラズマが得られれば、より低い圧力下での放電維持が可能となり、各種被膜の膜質改善や堆積速度の向上などを図ることができるからである。
【0004】
そこで従来では、マグネトロン放電装置に見られるように、低温プラズマを高密度化するため、別途に磁界を加えることが行われていた。
マグネトロン放電装置は、電界と直交する磁界を加えることで電子にドリフト運動を起こさせ、ガス原子との衝突確率を上げてイオン化効率の向上を意図するものであり、これによって低圧力下でも安定して放電を維持することが可能となり、被膜形成の高速化と低温化を実現する。
【0005】
このマグネトロン放電装置を含め、従来の放電装置における低温プラズマを発生させるための電極の形状や配置は、応用対象の要求によって異なるが、形状が平板あるいは円柱状の電極群を円周あるいは直線状に配置するのが一般的であった。
【0006】
これらの電極は、その形状や配置のために冷却効率が低く、あまり冷却されないので大きなパワーを投入することができず、放電面積も小さいので電極間に高密度なプラズマを広範囲にわたって均一に発生させることが困難であった。
【0007】
マグネトロン放電装置の場合は、電極に装着した磁石が放電によって電極が加熱されても、磁石の温度をキュリー温度以下に保つように冷却する必要がある。また、磁石を移動させて円周状に配置した電極の外周を回転させたり、直線状に配置した電極の背後を摺動させるとプラズマを均一化する効果があるが、従来の電極に磁石を装着する方法では磁石を移動させることが困難であった。
【0008】
そこで、本出願人は放電電極を複数の電極片に分割し、放電室内壁に薄膜状の絶縁シートを介して密着して固定することにより、電極の冷却効率を高め、放電面積を大きくして、磁石の利用を容易にする特徴を持つ壁密着型電極を先に出願した。
【0009】
この壁密着型電極は、壁に密着して取り付けた電極へ位相制御(配列)交流電源を供給するので、隣り合う電極間には電位差が存在する。
もし、電極間間隙における絶縁シート上に導電性の薄膜などが放電中にスパッタなどにより付着すると、電極間がショートしてしまう。
従って、間隙における絶縁シート上の電気的絶縁性を、放電時において常に保つために、何らかの保護をこの間隙に施すことが必要である。
【0010】
そこで本発明は、放電電極の形状と配置を工夫することにより、電極間間隙に露出する絶縁シートをスパッタ粒子などの付着から保護することを目的になされたものである。
【0011】
【課題を解決するための手段】
かかる目的を達成するために、本発明は以下のように構成した。
【0012】
すなわち、放電室内壁に複数の電極片を薄膜状の絶縁シートを介して密着して固定し、各々の電極片に位相制御多出力交流電源を供給してなる位相制御多電極型交流放電装置において、
前記電極片の側面に凹凸を形成し、隣り合う電極片どうしが非接触で且つ重なり合うようにこれらの凹凸を組み合わせ、しかして前記電極片間の間隙に露出する前記絶縁シートを前記電極片により覆うことを特徴とする壁密着型電極である。
【0013】
【発明の実施の形態】
以下に、図面を参照して本発明の実施の形態について説明する。
【0014】
図1と図2に、本発明を実施した円筒形放電装置の横断面図(図2のA−A´面)と縦断面図(図1のB−B´面)を示す。
放電装置1は、6片の断面円弧形分割電極2を僅かな間隙2aを設けて同心円上に配列し、絶縁シート3を介して円筒状の真空容器4の内壁に密着して固定する。
図1に示すように、分割電極2の側面を傾斜させて間隙2aに露出する絶縁シート3が直接放電領域に対面しないようにする。
これにより、間隙2aに露出する絶縁シート3をスパッタ粒子などの付着から保護する。
【0015】
真空容器4は水冷式二重管を形成し、冷却水5を流して真空容器4の内壁に密着する6片の分割電極2を冷却する。
真空容器4の外壁には、隣り合う極性を逆にして配列した6本の棒状磁石6を間隙2aの後方の外壁に沿って密着して固定し、さらにその外周を円筒状の磁気シールド管7で覆う。
【0016】
6片の分割電極2には、位相が1/6周期ずつずれていて振幅が同じ大きさの6個の位相制御交流電源(図示しない)を給電線(図示しない)を介して接続する。
【0017】
本発明の放電装置は以上のような構成で、真空容器4内を排気装置(図示しない)によって真空排気し、6片の分割電極2に位相制御交流を給電して放電電気エネルギーを供給する。
これにより、図3に示すように、真空容器4の内壁に沿って安定な交流グロー放電が生じる。
【0018】
図3は、本発明の円筒形放電装置の横断面(図2のA−A´面)における磁力線と放電(プラズマ)の閉じ込めの様子を示す。
図中の矢印付き直線および上下方向を示す記号は、分割電極2中央部の近傍における円周方向の磁場と径方向の電場の向きを表し、aは放電(プラズマ)領域を表す。
隣り合う磁石6の極性が反対なので、磁力線が分割電極2を覆うようにできる。
従って、放電は各々の分割電極2表面近傍の中央部に閉じ込められる。
分割電極2近傍における交流電界の向きは、対辺の位置にある分割電極2との電位差が最も大きいので、分割電極2表面に略垂直な正あるいは負の方向(径方向)になる。
【0019】
図4に、本発明の壁密着型電極の断面図の一例を示す。
この壁密着型電極は、隣り合う電極2どうしが非接触で且つ重なり合うように電極2側面に設けた凹凸を組み合わせ、電極2間の間隙に露出する絶縁シート3を電極2により覆う。
これにより、平面視電極2間の間隙2aに露出する絶縁シート3が直接放電領域に対面しないようにする。
【0020】
この壁密着型電極は、放電領域中央部から放電室4壁面を見たとき、電極2間に隙間がないように見えるので、壁面積に対する電極2の総面積の割合を実質的に100%にできる。従って、電極2表面に沿って一様に放電を発生させたり、電極2をターゲットとして電極2の放電室4側に一様にスパッタ粒子を放出させることができる。
【0021】
ここで、狭い電極2の隙間2aにおける放電(持続)の発生が懸念されるが、この隙間2a間距離において電子電離雪崩が充分成長できなければ、その心配はない。
一般的に、電子電離雪崩が充分成長し、持続放電が発生する隙間2a間距離はガス圧力に依存し、パッシェンの実験則から求められる。
低ガス圧力の場合、持続放電が発生するための隙間2a間距離は大きくなるので、図4における、隣り合う電極2間の隙間2aが狭い程この間での放電は発生しにくい。
【0022】
ガス圧力が高く、電極2の隙間2aでの放電が問題になる場合は、隙間2aの両側の電極2表面に絶縁膜(SiO2 など)を施し、放電の発生を防止する。
【0023】
図5、図6および図7に、実用的な電極2の変形例を示す。
放電領域から絶縁シート3に至る間隙2aの凹凸を複雑にすればするほど、スパッタ粒子やラジカル粒子の絶縁シート3への流入を抑えることができるが、製作に手間が掛り実用的でない。
【0024】
図5(a)は、電極2側面の中央にコの字形の凹凸を設けた例であり、(b)は、電極2側面を階段状に出し入れさせた例である。
図6(a)は、電極2側面の中央にくの字形の凹凸を設けた例であり、(b)は、電極2側面を傾斜状に出し入れさせた例である。
図7(a)は、電極2側面の中央に半円形の凹凸を設けた例であり、(b)は、電極2側面を円弧状に出し入れさせた例である。
但し、電極2の角張った部分へは適当に丸み加工を施し、電界が集中しないようにする。
以上の電極2の内、加工および組み立ての容易さから、図6(b)の電極2の隙間2aを傾斜させる形の実用性は高い。
【0025】
図8に、電極2の間隙2aの絶縁シート3から装置内部へガスを供給し、その供給流により放電領域から電極2の間隙2aへ流入しようとするスパッタ粒子やラジカル粒子を追い返し(阻止し)、間隙2aにおける絶縁シート3を保護する方法を示す。
この方法は、表面に等間隔の小孔を明けた絶縁性のパイプ(セラミックなど)2bを、間隙2aの絶縁シート3上に取り付け、パイプ2bの小孔からガスを流出させて放電容器4内部にガスを供給する。このとき、ポンプでガスを放電容器4外部に排気し、放電容器4内部のガス圧力を必要な圧力に保つ。
この方法は、ガスの噴出流がある程度大きく、かつ、電極2の間隙2aに沿って一様にガスを供給する装置の設置が容易である場合に有効である。
【0026】
図9に、隣り合う電極2との間に台座2cを設けて覆い2dを設置し、間隙2aにおける絶縁シート3を保護する方法を示す。
この方法は直接的な方法で、覆い2dが導電性あるいは非導電性の材質に拘らず、覆い2dと電極2との間に隙間を保ち、覆い2dと電極2との間の電気的絶縁性を保つ。これは、非導電性の覆い2dの場合でも、その表面に導電性の薄膜などが付着する可能性があるからである。
【0027】
覆い2dは、スパッタ粒子などがある程度堆積したら、取り外して交換できるように、着脱自在に構成する。
電極2との間に設置した覆い2dは1本ずつ取り外してもよいが、例えば、図10に示すように、複数本の覆い2dをセットにして籠状に形成し、着脱自在に電極2の間隙2aに取り付けてもよい。
【0028】
覆い2dの材質として、放電に晒されてもガス放出やスパッタなどが発生しにくい耐熱性の素材(モリブデンなど)を使用する。ここで、覆い2dの構造をメッシュ状(網状)にすれば、間隙2aの真空排気を容易にでき、さらに、メッシュの隙間に装置内部で発生するダスト(塵)を取り込むことができる。
【0029】
【発明の効果】
本発明の壁密着型電極は以上のような構成で、電極片の側面に凹凸を形成し、隣り合う電極片どうしが非接触で且つ重なり合うようにこれらの凹凸を組み合わせて電極片間の間隙に露出する絶縁シートをこの電極片により覆う。
従って、本発明によれば、電極間の間隙に露出する絶縁シートが平面視直接放電領域に対面しないので、電極間間隙に露出する絶縁シートをスパッタ粒子などの付着から保護する。
また、本発明の壁密着型電極は、放電領域中央部から放電室壁面を見たとき、電極間に隙間がないように見えるので、壁面積に対する電極の総面積の割合を実質的に100%にできる。
このため、電極表面に沿って一様に放電を発生させたり、電極をターゲットとして電極の放電室側に一様にスパッタ粒子を放出させることができる。
【図面の簡単な説明】
【図1】本発明の円筒形放電装置の横断面図である。
【図2】本発明の円筒形放電装置の縦断面図である。
【図3】円筒形放電装置の磁力線と放電の様子を示す図である。
【図4】本発明の壁密着型電極の断面図である。
【図5】本発明の壁密着型電極の変形例の断面図である。
【図6】本発明の壁密着型電極のその他の変形例の断面図である。
【図7】本発明の壁密着型電極のその他の変形例の断面図である。
【図8】ガス流により電極間隙の絶縁シートを保護する方法を示す図である。
【図9】覆いにより電極間隙の絶縁シートを保護する方法を示す図である。
【図10】籠状に形成した覆いを示す図である。
【符号の説明】
1 放電装置
2 分割電極
3 絶縁シート
4 真空容器
5 冷却水
6 磁石
7 磁気シールド
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a new discharge device that efficiently and stably generates high-density, large-capacity, weakly ionized low-temperature plasma, and more particularly to a discharge electrode thereof.
[0002]
[Problems to be solved by the invention]
In a weakly ionized low temperature plasma under a low gas pressure, the neutral gas temperature is about room temperature, which makes it possible to treat various materials with plasma without causing thermal deformation or alteration. This feature is very useful in the treatment of particularly heat-sensitive materials such as fibers and plastics and the formation of a film on the surface.
[0003]
In these film formation technologies using low temperature plasma, increasing the density of low temperature plasma occupies an important position. This is because if high-density plasma is obtained, discharge can be maintained under a lower pressure, and the film quality of various coatings and the deposition rate can be improved.
[0004]
Therefore, conventionally, as seen in magnetron discharge devices, a separate magnetic field has been applied to increase the density of low-temperature plasma.
The magnetron discharge device is intended to improve the ionization efficiency by causing the electron to drift by applying a magnetic field orthogonal to the electric field and increasing the probability of collision with gas atoms. Thus, it is possible to maintain the discharge and realize high speed and low temperature of the film formation.
[0005]
The shape and arrangement of electrodes for generating low-temperature plasma in conventional discharge devices, including this magnetron discharge device, vary depending on the requirements of the application target, but a flat or cylindrical electrode group is arranged in a circle or a straight line. It was common to place.
[0006]
These electrodes have low cooling efficiency due to their shape and arrangement, and are not cooled so much so that a large amount of power cannot be input and the discharge area is small, so that a high-density plasma is uniformly generated between the electrodes over a wide range. It was difficult.
[0007]
In the case of a magnetron discharge device, it is necessary to cool the magnet attached to the electrode so that the temperature of the magnet is kept below the Curie temperature even when the electrode is heated by discharge. In addition, moving the magnet to rotate the outer periphery of the circumferentially arranged electrode or sliding the back of the linearly arranged electrode has the effect of making the plasma uniform. It was difficult to move the magnet by the mounting method.
[0008]
Therefore, the applicant divides the discharge electrode into a plurality of electrode pieces, and closes and fixes the discharge electrode to the inner wall of the discharge chamber via a thin-film insulating sheet, thereby increasing the cooling efficiency of the electrode and increasing the discharge area. An application for a wall-contact type electrode having the feature of facilitating the use of a magnet was first filed.
[0009]
This wall-contact type electrode supplies a phase control (array) AC power source to an electrode attached in close contact with the wall, so that there is a potential difference between adjacent electrodes.
If a conductive thin film or the like adheres to the insulating sheet in the gap between the electrodes by sputtering during discharge, the electrodes are short-circuited.
Accordingly, in order to always maintain the electrical insulation on the insulating sheet in the gap during discharge, it is necessary to provide some protection to the gap.
[0010]
Accordingly, the present invention has been made for the purpose of protecting the insulating sheet exposed to the gap between the electrodes from adhesion of sputtered particles by devising the shape and arrangement of the discharge electrodes.
[0011]
[Means for Solving the Problems]
In order to achieve this object, the present invention is configured as follows.
[0012]
That is, in a phase control multi-electrode type AC discharge device in which a plurality of electrode pieces are closely attached and fixed to a discharge chamber wall via a thin-film insulating sheet, and a phase control multi-output AC power source is supplied to each electrode piece. ,
Concavities and convexities are formed on the side surfaces of the electrode pieces, and the concavities and convexities are combined so that adjacent electrode pieces are not in contact with each other, and the insulating sheet exposed in the gap between the electrode pieces is covered with the electrode pieces. This is a wall-contact electrode.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0014]
1 and 2 are a cross-sectional view (A-A 'plane in FIG. 2) and a vertical cross-sectional view (B-B' plane in FIG. 1) of a cylindrical discharge device embodying the present invention.
In the discharge device 1, six pieces of cross-sectional arc-shaped divided electrodes 2 are arranged concentrically with a slight gap 2 a, and are closely fixed to an inner wall of a cylindrical vacuum vessel 4 through an insulating sheet 3.
As shown in FIG. 1, the side surface of the divided electrode 2 is inclined so that the insulating sheet 3 exposed to the gap 2a does not directly face the discharge region.
Thereby, the insulating sheet 3 exposed to the gap 2a is protected from adhesion of sputtered particles and the like.
[0015]
The vacuum vessel 4 forms a water-cooled double tube, and the cooling water 5 is flowed to cool the six pieces of divided electrodes 2 that are in close contact with the inner wall of the vacuum vessel 4.
On the outer wall of the vacuum vessel 4, six rod-shaped magnets 6 arranged with the polarities adjacent to each other are fixed in close contact with the outer wall at the back of the gap 2 a, and the outer periphery thereof is a cylindrical magnetic shield tube 7. Cover with.
[0016]
Six phase-controlled AC power supplies (not shown) having phases that are shifted by 1/6 period and having the same amplitude are connected to the six pieces of divided electrodes 2 via feeder lines (not shown).
[0017]
The discharge device of the present invention is configured as described above, and the inside of the vacuum vessel 4 is evacuated by an exhaust device (not shown), and phase control alternating current is supplied to the six pieces of divided electrodes 2 to supply discharge electric energy.
As a result, as shown in FIG. 3, a stable AC glow discharge is generated along the inner wall of the vacuum vessel 4.
[0018]
FIG. 3 shows a state of confinement of magnetic field lines and discharge (plasma) in a cross section (A-A ′ plane in FIG. 2) of the cylindrical discharge device of the present invention.
In the drawing, a straight line with an arrow and a symbol indicating the vertical direction indicate the direction of a circumferential magnetic field and a radial electric field in the vicinity of the central portion of the divided electrode 2, and a indicates a discharge (plasma) region.
Since the polarities of the adjacent magnets 6 are opposite, the lines of magnetic force can cover the divided electrodes 2.
Accordingly, the discharge is confined in the central portion in the vicinity of the surface of each divided electrode 2.
The direction of the alternating electric field in the vicinity of the divided electrode 2 is the positive or negative direction (radial direction) substantially perpendicular to the surface of the divided electrode 2 because the potential difference with the divided electrode 2 at the opposite side is the largest.
[0019]
FIG. 4 shows an example of a cross-sectional view of the wall-contact type electrode of the present invention.
In this wall-contact type electrode, concavities and convexities provided on the side surfaces of the electrodes 2 are combined so that adjacent electrodes 2 are not in contact with each other, and the insulating sheet 3 exposed in the gap between the electrodes 2 is covered with the electrodes 2.
This prevents the insulating sheet 3 exposed in the gap 2a between the planar view electrodes 2 from directly facing the discharge region.
[0020]
Since this wall-contact type electrode looks like there is no gap between the electrodes 2 when the wall surface of the discharge chamber 4 is viewed from the center of the discharge region, the ratio of the total area of the electrode 2 to the wall area is substantially 100%. it can. Accordingly, it is possible to generate a discharge uniformly along the surface of the electrode 2 or to discharge sputtered particles uniformly to the discharge chamber 4 side of the electrode 2 using the electrode 2 as a target.
[0021]
Here, there is a concern about the occurrence of discharge (sustainment) in the gap 2a of the narrow electrode 2, but there is no concern if the electron ionization avalanche cannot grow sufficiently in the distance between the gaps 2a.
In general, the distance between the gaps 2a where the electron ionization avalanche grows sufficiently and the sustained discharge occurs depends on the gas pressure and can be obtained from Paschen's experimental law.
In the case of a low gas pressure, the distance between the gaps 2a for generating the sustained discharge becomes large. Therefore, the smaller the gap 2a between the adjacent electrodes 2 in FIG.
[0022]
When the gas pressure is high and discharge in the gap 2a of the electrode 2 becomes a problem, an insulating film (SiO2 or the like) is applied to the surface of the electrode 2 on both sides of the gap 2a to prevent the occurrence of discharge.
[0023]
5, 6, and 7 show a modification of the practical electrode 2.
As the unevenness of the gap 2a from the discharge region to the insulating sheet 3 becomes more complicated, the inflow of sputtered particles or radical particles into the insulating sheet 3 can be suppressed, but it takes time to manufacture and is not practical.
[0024]
FIG. 5A is an example in which a U-shaped unevenness is provided at the center of the side surface of the electrode 2, and FIG. 5B is an example in which the side surface of the electrode 2 is taken in and out in a stepped manner.
FIG. 6A is an example in which a concave and convex shape is provided at the center of the side surface of the electrode 2, and FIG. 6B is an example in which the side surface of the electrode 2 is inclined.
FIG. 7A is an example in which a semicircular unevenness is provided in the center of the side surface of the electrode 2, and FIG. 7B is an example in which the side surface of the electrode 2 is taken in and out in an arc shape.
However, the rounded portion of the electrode 2 is appropriately rounded so that the electric field is not concentrated.
Among the electrodes 2 described above, practicality of the form in which the gap 2a of the electrode 2 in FIG.
[0025]
In FIG. 8, gas is supplied from the insulating sheet 3 in the gap 2a of the electrode 2 to the inside of the apparatus, and the sputtered particles and radical particles that attempt to flow into the gap 2a of the electrode 2 from the discharge region are repelled (blocked) by the supply flow. A method for protecting the insulating sheet 3 in the gap 2a will be described.
In this method, an insulating pipe (ceramic or the like) 2b having small holes at equal intervals on the surface is mounted on an insulating sheet 3 in the gap 2a, and gas is allowed to flow out of the small holes in the pipe 2b to discharge the inside of the discharge vessel 4 To supply gas. At this time, the gas is exhausted to the outside of the discharge vessel 4 by a pump, and the gas pressure inside the discharge vessel 4 is maintained at a necessary pressure.
This method is effective when the gas flow is large to some extent and it is easy to install a device that uniformly supplies gas along the gap 2a of the electrode 2.
[0026]
FIG. 9 shows a method for protecting the insulating sheet 3 in the gap 2a by providing a pedestal 2c between adjacent electrodes 2 and installing a cover 2d.
This method is a direct method. Regardless of the material of the cover 2d being conductive or non-conductive, a gap is maintained between the cover 2d and the electrode 2, and the electrical insulation between the cover 2d and the electrode 2 is maintained. Keep. This is because even in the case of the nonconductive cover 2d, a conductive thin film or the like may adhere to the surface.
[0027]
The cover 2d is configured to be detachable so that it can be removed and replaced after sputter particles or the like have accumulated to some extent.
The covers 2d installed between the electrodes 2 may be removed one by one. For example, as shown in FIG. 10, a plurality of covers 2d are formed into a bowl shape, and the electrodes 2 are detachable. You may attach to the gap | interval 2a.
[0028]
As the material of the cover 2d, a heat-resistant material (such as molybdenum) that hardly generates gas or spatters even when exposed to electric discharge is used. Here, if the structure of the cover 2d is made mesh-like (net-like), the gap 2a can be easily evacuated, and dust generated inside the apparatus can be taken into the mesh gap.
[0029]
【The invention's effect】
The wall-contact type electrode of the present invention has the above-described configuration, and forms irregularities on the side surfaces of the electrode pieces, and these irregularities are combined in a gap between the electrode pieces so that adjacent electrode pieces are non-contacting and overlapping. The exposed insulating sheet is covered with this electrode piece.
Therefore, according to the present invention, since the insulating sheet exposed in the gap between the electrodes does not directly face the discharge region in plan view, the insulating sheet exposed in the gap between the electrodes is protected from adhesion of sputtered particles and the like.
In addition, when the wall-contact type electrode according to the present invention is viewed from the center of the discharge region, there is no gap between the electrodes, so the ratio of the total area of the electrode to the wall area is substantially 100%. Can be.
For this reason, discharge can be uniformly generated along the electrode surface, or sputtered particles can be uniformly discharged to the discharge chamber side of the electrode using the electrode as a target.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a cylindrical discharge device of the present invention.
FIG. 2 is a longitudinal sectional view of a cylindrical discharge device of the present invention.
FIG. 3 is a diagram showing lines of magnetic force and a state of discharge of a cylindrical discharge device.
FIG. 4 is a cross-sectional view of a wall-contact type electrode of the present invention.
FIG. 5 is a cross-sectional view of a modification of the wall-contact type electrode of the present invention.
FIG. 6 is a cross-sectional view of another modification of the wall-contact type electrode of the present invention.
FIG. 7 is a cross-sectional view of another modification of the wall-contact electrode of the present invention.
FIG. 8 is a diagram showing a method for protecting an insulating sheet in an electrode gap by a gas flow.
FIG. 9 is a diagram showing a method for protecting an insulating sheet in an electrode gap with a cover.
FIG. 10 is a view showing a cover formed in a bowl shape.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Discharge device 2 Divided electrode 3 Insulation sheet 4 Vacuum vessel 5 Cooling water 6 Magnet 7 Magnetic shield

Claims (1)

放電室内壁に複数の電極片を薄膜状の絶縁シートを介して密着して固定し、各々の電極片に位相制御多出力交流電源を供給してなる位相制御多電極型交流放電装置において、
前記電極片の側面に凹凸を形成し、隣り合う電極片どうしが非接触で且つ重なり合うようにこれらの凹凸を組み合わせ、しかして前記電極片間の間隙に露出する前記絶縁シートを前記電極片により覆うことを特徴とする壁密着型電極。
In a phase control multi-electrode type AC discharge device in which a plurality of electrode pieces are closely attached and fixed to a discharge chamber wall via a thin film insulating sheet, and a phase control multi-output AC power supply is supplied to each electrode piece.
Concavities and convexities are formed on the side surfaces of the electrode pieces, and the concavities and convexities are combined so that adjacent electrode pieces are not in contact with each other, and the insulating sheet exposed in the gap between the electrode pieces is covered with the electrode pieces. A wall-contact type electrode characterized by that.
JP30126396A 1996-10-25 1996-10-25 Wall-contact type electrode in phase control multi-electrode type AC discharge device Expired - Fee Related JP3772192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30126396A JP3772192B2 (en) 1996-10-25 1996-10-25 Wall-contact type electrode in phase control multi-electrode type AC discharge device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30126396A JP3772192B2 (en) 1996-10-25 1996-10-25 Wall-contact type electrode in phase control multi-electrode type AC discharge device

Publications (2)

Publication Number Publication Date
JPH10130836A JPH10130836A (en) 1998-05-19
JP3772192B2 true JP3772192B2 (en) 2006-05-10

Family

ID=17894718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30126396A Expired - Fee Related JP3772192B2 (en) 1996-10-25 1996-10-25 Wall-contact type electrode in phase control multi-electrode type AC discharge device

Country Status (1)

Country Link
JP (1) JP3772192B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009123258A1 (en) 2008-04-02 2009-10-08 富山県 Ultraviolet generation device and lighting device using same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001069649A1 (en) * 2000-03-13 2001-09-20 Toyama Prefecture Phase controlled multi-electrode type ac discharge light source
JP4932178B2 (en) * 2005-04-22 2012-05-16 立山マシン株式会社 Multi-phase AC plasma generator
JP2007193997A (en) * 2006-01-17 2007-08-02 Tateyama Machine Kk Plasma treatment device
JP2007193996A (en) * 2006-01-17 2007-08-02 Tateyama Machine Kk Polyphase ac plasma generation method and device
WO2013003065A2 (en) * 2011-06-30 2013-01-03 Soladigm, Inc. Sputter target and sputtering methods
CN108342703A (en) * 2018-03-08 2018-07-31 深圳市华星光电半导体显示技术有限公司 Shield and sputter equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009123258A1 (en) 2008-04-02 2009-10-08 富山県 Ultraviolet generation device and lighting device using same

Also Published As

Publication number Publication date
JPH10130836A (en) 1998-05-19

Similar Documents

Publication Publication Date Title
JP3652702B2 (en) Linear arc discharge generator for plasma processing
KR101667642B1 (en) Closed drift magnetic field ion source apparatus containing self-cleaning anode and a process for substrate modification therewith
JP2556637B2 (en) Deposition system on substrate by magnetron cathode
US6254745B1 (en) Ionized physical vapor deposition method and apparatus with magnetic bucket and concentric plasma and material source
JP5824072B2 (en) Sputtering equipment
US5069772A (en) Apparatus for coating substrates by means of a magnetron cathode
MXPA05003537A (en) Device for carrying out a plasma-assisted process.
JP3772192B2 (en) Wall-contact type electrode in phase control multi-electrode type AC discharge device
WO2006093953A1 (en) Sputtering target with an insulating ring and a gap between the ring and the target
JP3022794B2 (en) Diamond-like carbon thin film deposition equipment
JPH01156471A (en) Sputtering cathode
JP2001500569A (en) Method and apparatus for coating a substrate by gas flow sputtering
JP2000073167A (en) Device for coating substrate in vacuum chamber
TWI507557B (en) Magnetron and magnetron sputtering apparatus
US5182001A (en) Process for coating substrates by means of a magnetron cathode
GB2110719A (en) Sputtering apparatus
JP4431910B2 (en) Sputtering cathode and magnetron type sputtering apparatus provided with the same
KR102156989B1 (en) Vacuum arc film forming apparatus and film forming method
JPH10134994A (en) Multi-electrode magnetic field forming device for multi-electrode discharging device
RU2453628C1 (en) Device for application of coating on dielectric in discharge
JPH10125495A (en) Phase control multi-electrode type alternating current discharge device using electrode placed in control
KR100683653B1 (en) Cathode for sputtering device
JP2013079420A (en) Sputtering apparatus
CN113745079B (en) Ion source and method
JP3305655B2 (en) Plasma CVD equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051227

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees