[go: up one dir, main page]

JP3764528B2 - Plasma melting treatment method for radioactive solid waste and plasma melting treatment equipment used therefor - Google Patents

Plasma melting treatment method for radioactive solid waste and plasma melting treatment equipment used therefor Download PDF

Info

Publication number
JP3764528B2
JP3764528B2 JP18239596A JP18239596A JP3764528B2 JP 3764528 B2 JP3764528 B2 JP 3764528B2 JP 18239596 A JP18239596 A JP 18239596A JP 18239596 A JP18239596 A JP 18239596A JP 3764528 B2 JP3764528 B2 JP 3764528B2
Authority
JP
Japan
Prior art keywords
solid waste
plasma melting
radioactive solid
plasma
preheating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18239596A
Other languages
Japanese (ja)
Other versions
JPH1026696A (en
Inventor
正士 天川
晋示 安井
和郎 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP18239596A priority Critical patent/JP3764528B2/en
Publication of JPH1026696A publication Critical patent/JPH1026696A/en
Application granted granted Critical
Publication of JP3764528B2 publication Critical patent/JP3764528B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Gasification And Melting Of Waste (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、原子力発電所等で発生する放射性固体廃棄物例えば低レベル放射性固体廃棄物のプラズマ溶融処理方法およびそれに使用するプラズマ溶融処理設備に関する。さらに詳述すると、本発明は放射性固体廃棄物に含まれるセシウム化合物のプラズマ溶融処理時の揮発による環境放出を防止する放射性固体廃棄物のプラズマ溶融処理方法およびそれに使用するプラズマ溶融処理設備に関するものである。
【0002】
【従来の技術】
原子力発電所等から排出される放射性固体廃棄物例えば低レベル放射性固体廃棄物の処理方法として、プラズマ加熱によって溶融処理を行う技術が研究されている。この方法では、低レベル放射性固体廃棄物を分別することなく一括して溶融処理することが可能であり廃棄物処理に要するコストの削減を図ることができると共に、放射性核種であるセシウムのスラグ層内への封じ込めを図ることができて放射線防護の観点からも有利である。
【0003】
【発明が解決しようとする課題】
しかしながら、原子力発電所等で発生する低レベル放射性廃棄物には様々な種類のものが混じっており、放射能汚染された塩化ビニルが廃棄物として廃棄されることがある。塩化ビニルを含む低レベル放射性廃棄物を一括して溶融処理した場合、塩化ビニルに含まれる塩素によってスラグ層に捕捉されていた酸化セシウムが揮発してしまうという問題がある。即ち、プラズマ溶融処理中に酸化物としてスラグ層に捕捉されていたセシウムが塩素と反応して塩化物になる。塩化セシウムはイオン結合性であるためにイオン融体であるスラグ層中で容易に解離し、揮発するためと考えられている。このことがプラズマ溶融処理方法の実用化の障害となっている。
【0004】
図2に、低レベル放射性固体廃棄物の処理を想定して実施した溶融試験の結果を示す。これは、フランスCAE(フランス原子力公社)が燃料再処理工程等から発生する放射性廃棄物を模擬した試料を模擬核種とともにプラズマ加熱によって溶融した際に得られた結果である(引用文献:H.Massit,G.Naud,R.Atabek and W.Hoffelner,"Evaluation of the plasma centrifugal process for radioactive waste treatment",International Incinaeration Conference,May 1995,U.S.A )。試料として、塩化ビニル、ポリエチレン、セルローズ等の混合比を変えたA,B,Cの3種類の模擬廃棄物、廃棄物処理施設等から発生する灰(アッシュ)及びイオン交換樹脂を使用している。折れ線グラフは溶融試料に含有される塩素の重量割合(wt%)を、棒グラフは溶融後のスラグ層へ移行したセシウムの重量割合(wt%)をそれぞれ示している。図からも明らかなように、溶融試料に含まれる塩素の重量割合が6%から19%に増加すると、スラグ層へ捕捉されるCs(セシウム)の割合が22%から4%と大幅に低下していることが分かる。即ち、溶融試料中の塩素濃度が高いと、セシウムのスラグ層への移行率が低下することが明らかである。
【0005】
このように、セシウムが塩素を含む廃棄物によって揮発し易くなることが指摘されているものの、効果的な対策は従来から採られておらず、プラズマ溶融処理方法の実用化の為には有効な対策技術の開発が要望されている。
【0006】
本発明は、揮発性のセシウムを溶融固体化中に捕捉させるために、塩素とスラグ層との接触を防止できる放射性固体廃棄物のプラズマ溶融処理方法およびそれに使用するプラズマ溶融処理設備を提供することを目的とする。
【0007】
【課題を解決するための手段】
かかる目的を達成するために請求項1記載の発明は、放射性固体廃棄物をプラズマ加熱によって溶融させる放射性固体廃棄物のプラズマ溶融処理方法において、放射性固体廃棄物を250℃以上でかつセシウムの沸点未満の温度で予熱して放射性固体廃棄物中の塩素を気体成分として抜き取った後にプラズマ加熱溶融処理を行うようにしている。
【0008】
即ち、塩化ビニルなどに含まれる塩素は250℃で気体成分として抜け始め、300℃以上になると塩化ビニルなどから塩素が抜け出す速度が十分な速度となり、400℃を越える温度では塩化ビニルなどの中には塩素がほとんど残らないと考えられる。この温度はセシウムの沸点(例えば、セシウムの沸点は760℃)に比べて十分に低温である。反面、セシウムの沸点に達すると、セシウムの蒸発が起こる上に脱塩素への影響は400℃のときと大差ない。そこで、プラズマ溶融処理前に、放射性固体廃棄物を250℃以上でかつセシウムの沸点未満の温度、好ましくは請求項2に記載するように300〜400℃で予熱すると、放射性固体廃棄物中の塩化ビニル等に含まれる塩素が気体成分として抜き取られる。ここで、予熱時間は特に重要ではなく、固体廃棄物が300℃〜400℃に加熱されれば十分である。
【0009】
したがって、放射性固体廃棄物を分別せずに塩化ビニルなどを含んだ状態でプラズマ溶融処理を行っても、プラズマ溶融処理中に塩素が発生することがなく、あるいは塩素量が極めて少なくなり、スラグ層に捕捉されている酸化セシウムが塩化物となって解離し揮発することが少なくなる。
【0010】
また、請求項3記載の発明は、プラズマ溶融炉からの排ガスの熱で廃棄物予熱を行うようにしている。この場合、プラズマ溶融処理で発生した熱を有効利用できる。
【0011】
また、請求項4記載のプラズマ溶融処理設備は、プラズマ溶融炉に投入される前の放射性固体廃棄物を250℃以上でかつセシウムの沸点未満の温度に予熱すると共に放射性固体廃棄物中から発生した塩素ガスを抜き取る排気手段を備えた予熱部を設けている。この場合、廃棄物の予熱による塩素の抜き取りとプラズマ溶融処理とが連続的に実施可能である。
【0012】
更に、請求項5記載の発明は、プラズマ溶融炉の排ガスを予熱部を通して予熱部で放射性固体廃棄物中から発生した塩素ガスと共に排気することにより、プラズマ溶融炉からの排ガスを予熱部の熱源として利用するようにしている。この場合、予熱部で発生した塩素ガスがプラズマ溶融炉側へ逆流することがなく、スラグ層に捕捉されている酸化セシウムと塩素との反応を確実に防止してセシウムの捕捉率を上げる。
【0013】
【発明の実施の形態】
以下、本発明の構成を図面に示す最良の形態に基づいて詳細に説明する。
【0014】
図1に、本発明を低レベル放射性固体廃棄物のプラズマ溶融処理方法に適用した実施形態をプラズマ溶融処理設備の概念を示す。プラズマ溶融炉1の投入口の前には排気手段たる排ガス処理装置6を備えた予熱部2が設けられている。予熱部2は、例えばプラズマ溶融炉1よりも高い位置に設けられており、予熱部2で発生したガスがプラズマ溶融炉1側へより流入し難くなるように設けられている。また、排ガス処理装置6は、例えば予熱部2のプラズマ溶融炉1から離れた方の端部に接続され、プラズマ溶融炉1内で発生した高温の排ガスが予熱部2内に導かれてから予熱部2で発生したガスと共に排出されるように設けられている。したがって、プラズマ溶融炉1からの排ガスによって、予熱部2内では低レベル放射性固体廃棄物(以下、単に固体廃棄物という)3が予熱され、排ガス熱回収が行われる。固体廃棄物3は、プラズマ溶融炉1からの排ガスによって、あるいは外部予熱装置8によって、若しくは双方の熱によって、250℃以上でかつセシウムの沸点未満の温度例えば760℃未満、好ましくは300〜400℃の範囲に予熱される。また、プラズマ溶融炉1への固体廃棄物3の投入は、投入装置7によって予熱部2へまず投入されてから所定の予熱処理が施された後に重力落下あるいは公知の送り手段ないし供給手段によってプラズマ炉1へ適量ずつ連続的に送られる。
【0015】
なお、図中符号4はプラズマアークを発生させるプラズマトーチ、5は溶湯を固化させる固化装置、9は固体廃棄物3が溶融した溶湯である。
【0016】
以上のように構成されたプラズマ溶融処理設備を使用して本発明のプラズマ溶融処理方法は次のように実施される。勿論、本発明のプラズマ溶融処理方法は、図1のプラズマ溶融処理設備以外の設備でも実施可能である。
【0017】
まず、原子力発電所等から排出された低レベル放射性固体廃棄物3は、投入装置7によって予熱部2内に送り込まれる。そして、固体廃棄物3は、予熱部2を通過する間に250℃以上でかつセシウムの沸点未満の温度、即ち廃棄物3中に含まれているセシウムを蒸発させることがない程度の温度に予熱される。ここで、固体廃棄物3の予熱温度を250℃以上にするのは、固体廃棄物3に含まれる塩化ビニルから塩素を気体成分として抜き取るためで、この温度よりも低い場合には塩素が気体成分として抜けないからである。一方、廃棄物3の予熱温度をセシウムの沸点未満の温度にするのは、予熱部2においてセシウムの蒸発を防ぐためである。予熱温度が250℃でも脱塩素は開始されるが、300℃以上で十分に早い処理速度で塩素の抜けが起こる。また、400℃を越えると塩化ビニルなどの中には塩素がほとんど残らないと考えられるし、セシウムの沸点近くではセシウムの蒸発の虞が生ずるにも拘わらず脱塩素効果は400℃のときと大差ない。そこで、本実施形態では、固体廃棄物3は、300℃〜400℃の範囲で予熱される。勿論、それ以上の高温度に予熱することは可能であるしその場合には予熱時間が短くできることから400℃を越える高温に予熱することを妨げるものではないが、セシウムの沸点近くまで予熱温度を上げることはセシウムの蒸発を防ぐという観点からは好ましくはない。また、予熱には塩化ビニルに含まれる塩素が十分に抜き取られるに必要な時間をかけることが好ましく、固体廃棄物3に含まれている塩化ビニルの大きさや取付位置、形状などによって異なるが、要は固体廃棄物3が300℃〜400℃に加熱される条件であれば足りる。
【0018】
ここで、固体廃棄物3の予熱がプラズマ溶融炉1からの排ガスの熱によってのみ達成されない場合には、予熱装置8によって予熱を補助しても良い。このようにして、予熱部2内で固体廃棄物3が上述の温度に予熱されることで、固体廃棄物3中の塩化ビニル等に含有される塩素が気体成分となって当該固体廃棄物3から抜ける。
【0019】
固体廃棄物3に含まれる塩化ビニルから塩素が十分に抜けると、当該固体廃棄物3はプラズマ溶融炉1に投入される。そして、固体廃棄物3が塩化ビニルを含んだ状態のまま一括してアーク加熱されて溶融処理され、固体廃棄物中のセシウムがスラグ層に捕捉される。このとき、固体廃棄物3に含まれる塩化ビニルからは既に塩素が気体成分として抜かれているので、スラグ層に捕捉されている酸化セシウムが塩化物となって解離し揮発することがない。したがって、塩化ビニルなどの塩素を含む物質を含んだまま固体廃棄物3をプラズマ加熱によって溶融処理しても、セシウムの捕捉率が低下することはない。
【0020】
なお、上述の形態は本発明の好適な形態の一例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば、上述の説明では、プラズマ溶融炉1からの排ガスの熱を利用して予熱部2での予熱を行っているが、プラズマ溶融炉1からの排ガスは別の排ガス処理装置によって直接プラズマ溶融炉1から排気し、予熱部2は加熱装置だけで加熱するようにしても良い。また、プラズマ溶融炉1からの排ガスを予熱部2内に設置した熱交換器を通して熱源として利用することも可能である。
【0021】
また、一連のプラズマ溶融処理は、必ずしもプラズマ溶融炉1とは別個に予熱部2を設けた設備で連続的に実施する必要はなく、既存のプラズマ溶融炉1内でまず上記の予熱温度まで予熱して塩素をガス成分として抜き取り排気した後に、次いでプラズマ加熱により溶融処理を行うバッチ処理でも可能である。
【0022】
さらに、固体廃棄物3の予熱温度としては、必ずしも上述の300℃〜400℃の範囲に限るものではなく、固体廃棄物3に含まれるセシウムの気化を防止し且つ塩素を気化させることが可能な温度であれば良い。
【0023】
【発明の効果】
以上説明したように、請求項1記載の放射性固体廃棄物のプラズマ溶融処理方法は、放射性固体廃棄物を250℃以上でかつセシウムの沸点未満の温度で予熱して放射性固体廃棄物中の塩素を気体成分として抜き取った後にプラズマ溶融処理を行うので、固体廃棄物に塩化ビニルなどの塩素を含む物質が含まれているまま溶融処理を行っても、プラズマ溶融処理中に塩素がスラグ層に捕捉されている酸化セシウムと反応して塩化物として揮発させることがない。したがって、原子力発電所から発生する放射性固体廃棄物例えば低レベル放射性固体廃棄物を塩化ビニルなどの塩素を含む物質を除かずにそのまま溶融処理しても、揮発性の放射性核種を安定的にスラグ層に捕捉させることができ、放射性物質の環境放出を防いで放射線の防護に一層寄与できる。即ち、プラズマ加熱による放射性固体廃棄物の溶融処理の実用化を可能とする。
【0024】
また、塩化ビニルなどの塩素を含む物質を分別するための前処理を省くことが可能になるので、放射性固体廃棄物を一括して溶融処理できるというプラズマ溶融処理方法の利点を最大限に生かすことができる。
【0025】
更に、セシウムは廃棄物最終処分の前に適用されるスケーリングファクター法のキー核種でもあるので、廃棄体の放射能量の確認に役立つ。特に、請求項2に記載のように、300℃〜400℃で予熱するとき、最も安定した脱塩素が良好な処理時間で実施できる。
【0026】
また、請求項3記載のプラズマ溶融処理方法は、プラズマ炉からの排ガスの熱で予熱を行うようにしているので、排熱回収によりプラズマ溶融処理設備の熱効率を向上させ得る。
【0027】
また、請求項4記載のプラズマ溶融処理設備は、プラズマ溶融炉に投入される前の放射性固体廃棄物を250℃以上でかつセシウムの沸点未満の温度に予熱すると共に放射性固体廃棄物中から発生した塩素ガスを抜き取る排気手段を備えた予熱部を設けているので、固体廃棄物の予熱による塩素の抜き取りとプラズマ溶融処理とが連続的に実施可能である。
【0028】
更に、請求項5記載の発明は、プラズマ溶融炉の排ガスを予熱部を通して予熱部で放射性固体廃棄物中から発生した塩素ガスと共に排気することにより、プラズマ溶融炉からの排ガスを予熱部の熱源として利用するようにしているので、予熱部で発生した塩素ガスがプラズマ溶融炉側へ逆流することがなく、スラグ層に捕捉されている酸化セシウムと塩素との反応を確実に防止してセシウムの捕捉率を上げる。
【図面の簡単な説明】
【図1】本発明を適用したプラズマ溶融処理方法を実施する施設の一例を示す概念図である。
【図2】放射性廃棄物の塩素含有率とセシウムのスラグ層への移行率との関係を示す図てある。
【符号の説明】
1 プラズマ溶融炉
2 予熱部
3 放射性固体廃棄物
6 予熱部の排気手段たる排ガス処理装置
8 予熱部の予熱装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a plasma melting treatment method for radioactive solid waste generated at a nuclear power plant or the like, for example, low-level radioactive solid waste, and a plasma melting treatment facility used therefor. More specifically, the present invention relates to a method for plasma melting treatment of radioactive solid waste and a plasma melting treatment equipment used therefor, which prevent environmental release due to volatilization during plasma melting treatment of cesium compounds contained in radioactive solid waste. is there.
[0002]
[Prior art]
As a method for treating radioactive solid waste discharged from a nuclear power plant or the like, for example, low-level radioactive solid waste, a technique for performing melting treatment by plasma heating has been studied. In this method, low-level radioactive solid waste can be melt-processed in a batch without separation, and the cost required for waste treatment can be reduced, and the radioactive nuclides in the slag layer of cesium This is advantageous from the viewpoint of radiation protection.
[0003]
[Problems to be solved by the invention]
However, various types of low-level radioactive waste generated at nuclear power plants and the like are mixed, and radioactively contaminated vinyl chloride may be discarded as waste. When low-level radioactive waste containing vinyl chloride is melted together, there is a problem that cesium oxide captured in the slag layer is volatilized by chlorine contained in vinyl chloride. That is, cesium trapped in the slag layer as an oxide during the plasma melting process reacts with chlorine to become chloride. It is considered that cesium chloride is easily bonded and volatilized in the slag layer, which is an ionic melt, because it is ion-bonded. This is an obstacle to the practical application of the plasma melting treatment method.
[0004]
FIG. 2 shows the results of a melting test conducted assuming the treatment of low-level radioactive solid waste. This is the result obtained when French CAE (French Atomic Energy Agency) melts a sample simulating radioactive waste generated from the fuel reprocessing process etc. by plasma heating together with a simulated nuclide (cited reference: H. Massit , G. Naud, R. Atabek and W. Hoffelner, "Evaluation of the plasma centrifugal process for radioactive waste treatment", International Incinaeration Conference, May 1995, USA). As samples, three types of simulated waste of A, B and C with different mixing ratios such as vinyl chloride, polyethylene and cellulose, ash generated from waste treatment facilities, etc. and ion exchange resin are used. . The line graph indicates the weight ratio (wt%) of chlorine contained in the molten sample, and the bar graph indicates the weight ratio (wt%) of cesium transferred to the slag layer after melting. As is apparent from the figure, when the weight ratio of chlorine contained in the molten sample is increased from 6% to 19%, the ratio of Cs (cesium) trapped in the slag layer is greatly reduced from 22% to 4%. I understand that That is, it is clear that the migration rate of cesium to the slag layer decreases when the chlorine concentration in the molten sample is high.
[0005]
Thus, although it has been pointed out that cesium is likely to be volatilized by waste containing chlorine, effective measures have not been taken so far, and it is effective for practical use of the plasma melting treatment method. Development of countermeasure technology is demanded.
[0006]
The present invention provides a method for plasma melting treatment of radioactive solid waste capable of preventing contact between chlorine and a slag layer in order to trap volatile cesium during melt solidification, and a plasma melting treatment equipment used for the method. With the goal.
[0007]
[Means for Solving the Problems]
In order to achieve this object, the invention according to claim 1 is a method for plasma melting treatment of radioactive solid waste in which the radioactive solid waste is melted by plasma heating, wherein the radioactive solid waste is 250 ° C. or higher and lower than the boiling point of cesium. The plasma heating and melting treatment is performed after preheating at a temperature of 10% and extracting chlorine in the radioactive solid waste as a gas component .
[0008]
That is, chlorine contained in vinyl chloride begins to escape as a gas component at 250 ° C., and when it exceeds 300 ° C., the rate at which chlorine escapes from vinyl chloride is sufficient, and in temperatures exceeding 400 ° C. Seems to have little chlorine left. This temperature is sufficiently lower than the boiling point of cesium (for example, the boiling point of cesium is 760 ° C.). On the other hand, when the boiling point of cesium is reached, evaporation of cesium occurs and the influence on dechlorination is not much different from that at 400 ° C. Therefore, if the radioactive solid waste is preheated at a temperature of 250 ° C. or higher and lower than the boiling point of cesium, preferably 300 to 400 ° C. as described in claim 2, before the plasma melting treatment, chlorination in the radioactive solid waste is performed. Chlorine contained in vinyl or the like is extracted as a gas component. Here, the preheating time is not particularly important, and it is sufficient if the solid waste is heated to 300 ° C to 400 ° C.
[0009]
Therefore, even if the plasma melting process is performed in a state containing vinyl chloride without separating the radioactive solid waste, chlorine is not generated during the plasma melting process, or the amount of chlorine is extremely reduced, and the slag layer The cesium oxide trapped in is reduced to dissociate and volatilize as chloride.
[0010]
According to the invention described in claim 3, waste preheating is performed by the heat of the exhaust gas from the plasma melting furnace. In this case, the heat generated by the plasma melting process can be used effectively.
[0011]
Further, in the plasma melting processing facility according to claim 4, the radioactive solid waste before being put into the plasma melting furnace is preheated to a temperature of 250 ° C. or higher and lower than the boiling point of cesium and generated from the radioactive solid waste . A preheating part provided with exhaust means for extracting chlorine gas is provided. In this case, the extraction of chlorine by preheating the waste and the plasma melting process can be performed continuously.
[0012]
Further, in the invention described in claim 5, the exhaust gas from the plasma melting furnace is exhausted together with the chlorine gas generated from the radioactive solid waste in the preheating part through the preheating part, so that the exhaust gas from the plasma melting furnace is used as a heat source for the preheating part. I am trying to use it. In this case, the chlorine gas generated in the preheating part does not flow back to the plasma melting furnace side, and the reaction between cesium oxide and chlorine trapped in the slag layer is reliably prevented to increase the capture rate of cesium.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the configuration of the present invention will be described in detail based on the best mode shown in the drawings.
[0014]
FIG. 1 shows a concept of a plasma melting treatment facility, which is an embodiment in which the present invention is applied to a plasma melting treatment method for low-level radioactive solid waste. In front of the inlet of the plasma melting furnace 1, a preheating unit 2 having an exhaust gas treatment device 6 as exhaust means is provided. The preheating unit 2 is provided, for example, at a position higher than the plasma melting furnace 1, and is provided so that the gas generated in the preheating unit 2 is less likely to flow into the plasma melting furnace 1 side. The exhaust gas treatment device 6 is connected to, for example, the end of the preheating unit 2 away from the plasma melting furnace 1 and preheats after the high temperature exhaust gas generated in the plasma melting furnace 1 is introduced into the preheating unit 2. It is provided so as to be discharged together with the gas generated in the section 2. Therefore, the low-level radioactive solid waste (hereinafter simply referred to as solid waste) 3 is preheated in the preheating unit 2 by the exhaust gas from the plasma melting furnace 1, and exhaust gas heat recovery is performed. The solid waste 3 is heated to 250 ° C. or more and less than the boiling point of cesium, for example, less than 760 ° C., preferably 300 to 400 ° C., by the exhaust gas from the plasma melting furnace 1, by the external preheating device 8, or by the heat of both. Preheated to a range of Further, the solid waste 3 is charged into the plasma melting furnace 1 after being first charged into the preheating unit 2 by the charging device 7 and then subjected to a predetermined pre-heat treatment and then dropped by gravity or by a known feeding means or supplying means. An appropriate amount is continuously sent to the furnace 1.
[0015]
In the figure, reference numeral 4 is a plasma torch for generating a plasma arc, 5 is a solidifying device for solidifying the molten metal, and 9 is a molten metal in which the solid waste 3 is melted.
[0016]
The plasma melting processing method of the present invention is carried out as follows using the plasma melting processing equipment configured as described above. Of course, the plasma melting treatment method of the present invention can be implemented in facilities other than the plasma melting processing facility of FIG.
[0017]
First, the low-level radioactive solid waste 3 discharged from a nuclear power plant or the like is sent into the preheating unit 2 by the charging device 7. The solid waste 3 is preheated to a temperature that is 250 ° C. or higher and lower than the boiling point of cesium while passing through the preheating unit 2, that is, a temperature that does not evaporate cesium contained in the waste 3. Is done. Here, the reason why the preheating temperature of the solid waste 3 is set to 250 ° C. or more is to extract chlorine as a gaseous component from vinyl chloride contained in the solid waste 3, and when the temperature is lower than this temperature, the chlorine is a gaseous component. It is because it does not come off as. On the other hand, the reason why the preheating temperature of the waste 3 is set to a temperature lower than the boiling point of cesium is to prevent evaporation of cesium in the preheating portion 2. Dechlorination is started even at a preheating temperature of 250 ° C., but chlorine escape occurs at a sufficiently high processing speed at 300 ° C. or higher. In addition, it is considered that almost no chlorine remains in vinyl chloride at temperatures exceeding 400 ° C, and the dechlorination effect is much different from that at 400 ° C despite the possibility of evaporation of cesium near the boiling point of cesium. Absent. Therefore, in this embodiment, the solid waste 3 is preheated in the range of 300 ° C to 400 ° C. Of course, it is possible to preheat to a higher temperature, and in that case, the preheating time can be shortened, so that preheating to a high temperature exceeding 400 ° C. is not prevented, but the preheating temperature is reduced to near the boiling point of cesium. Raising is not preferable from the viewpoint of preventing evaporation of cesium. In addition, it is preferable that the preheating takes time necessary for sufficiently extracting chlorine contained in the vinyl chloride, and it depends on the size, mounting position, shape, etc. of the vinyl chloride contained in the solid waste 3. As long as the solid waste 3 is heated to 300 ° C. to 400 ° C., it is sufficient.
[0018]
Here, when the preheating of the solid waste 3 is not achieved only by the heat of the exhaust gas from the plasma melting furnace 1, the preheating device 8 may assist the preheating. In this way, the solid waste 3 is preheated to the above-mentioned temperature in the preheating unit 2, whereby chlorine contained in vinyl chloride or the like in the solid waste 3 becomes a gaseous component and the solid waste 3 Get out of it.
[0019]
When the chlorine is sufficiently removed from the vinyl chloride contained in the solid waste 3, the solid waste 3 is put into the plasma melting furnace 1. And the solid waste 3 is collectively arc-heated in the state containing vinyl chloride, it is melt-processed, and the cesium in a solid waste is capture | acquired by the slag layer. At this time, since chlorine is already extracted as a gaseous component from the vinyl chloride contained in the solid waste 3, the cesium oxide trapped in the slag layer does not dissociate and volatilize as chloride. Therefore, even if the solid waste 3 is melted by plasma heating while containing a substance containing chlorine such as vinyl chloride, the capture rate of cesium does not decrease.
[0020]
The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the scope of the present invention. For example, in the above description, the heat of the exhaust gas from the plasma melting furnace 1 is used to perform preheating in the preheating unit 2, but the exhaust gas from the plasma melting furnace 1 is directly processed by another exhaust gas processing apparatus. The preheating unit 2 may be heated only by a heating device. It is also possible to use the exhaust gas from the plasma melting furnace 1 as a heat source through a heat exchanger installed in the preheating unit 2.
[0021]
In addition, the series of plasma melting processes does not necessarily need to be continuously performed with the equipment provided with the preheating unit 2 separately from the plasma melting furnace 1, and is first preheated to the above preheating temperature in the existing plasma melting furnace 1. Then, after extracting chlorine as a gas component and exhausting it, a batch process of performing a melting process by plasma heating is also possible.
[0022]
Furthermore, the preheating temperature of the solid waste 3 is not necessarily limited to the above-described range of 300 ° C. to 400 ° C., and it is possible to prevent vaporization of cesium contained in the solid waste 3 and vaporize chlorine. Any temperature is acceptable.
[0023]
【The invention's effect】
As described above, in the method for plasma melting treatment of radioactive solid waste according to claim 1, the radioactive solid waste is preheated at a temperature of 250 ° C. or higher and lower than the boiling point of cesium to remove chlorine in the radioactive solid waste. Since the plasma melting process is performed after extraction as a gas component , chlorine is trapped in the slag layer during the plasma melting process even if the solid waste contains a substance containing chlorine such as vinyl chloride. It does not react with cesium oxide and volatilize as chloride. Therefore, even if radioactive solid waste generated from nuclear power plants, for example, low-level radioactive solid waste is directly melted without removing chlorine-containing substances such as vinyl chloride, volatile radionuclides are stably removed from the slag layer. And can contribute to the protection of radiation by preventing the release of radioactive substances into the environment. That is, the melting treatment of radioactive solid waste by plasma heating can be put into practical use.
[0024]
In addition, pretreatment for separating chlorine-containing substances such as vinyl chloride can be omitted, so that the advantages of the plasma melting method can be maximized because radioactive solid waste can be melted together. Can do.
[0025]
Furthermore, cesium is a key nuclide of the scaling factor method applied before the final disposal of the waste, so it helps to confirm the radioactive content of the waste. In particular, as described in claim 2, when preheating is performed at 300 ° C. to 400 ° C., the most stable dechlorination can be performed in a good processing time.
[0026]
In the plasma melting treatment method according to the third aspect, since preheating is performed with the heat of the exhaust gas from the plasma furnace, the heat efficiency of the plasma melting treatment facility can be improved by exhaust heat recovery.
[0027]
Further, in the plasma melting processing facility according to claim 4, the radioactive solid waste before being put into the plasma melting furnace is preheated to a temperature of 250 ° C. or higher and lower than the boiling point of cesium and generated from the radioactive solid waste . Since the preheating part provided with the exhaust means which extracts chlorine gas is provided, the extraction of chlorine by the preheating of the solid waste and the plasma melting process can be carried out continuously.
[0028]
Further, in the invention described in claim 5, the exhaust gas from the plasma melting furnace is exhausted together with the chlorine gas generated from the radioactive solid waste in the preheating part through the preheating part, so that the exhaust gas from the plasma melting furnace is used as a heat source for the preheating part. Since it is used, chlorine gas generated in the preheating part does not flow back to the plasma melting furnace side, and the reaction between cesium oxide and chlorine trapped in the slag layer is surely prevented to trap cesium. Increase the rate.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing an example of a facility for implementing a plasma melting processing method to which the present invention is applied.
FIG. 2 is a graph showing the relationship between the chlorine content of radioactive waste and the transfer rate of cesium to the slag layer.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Plasma melting furnace 2 Preheating part 3 Radioactive solid waste 6 Exhaust gas processing apparatus which is exhaust means of a preheating part 8 Preheating apparatus of a preheating part

Claims (5)

放射性固体廃棄物をプラズマ加熱によって溶融させる放射性固体廃棄物のプラズマ溶融処理方法において、前記放射性固体廃棄物を250℃以上でかつセシウムの沸点未満の温度で予熱して前記放射性固体廃棄物中の塩素を気体成分として抜き取った後に前記プラズマ加熱溶融処理を行うことを特徴とする放射性固体廃棄物のプラズマ溶融処理方法。In the method for plasma melting treatment of radioactive solid waste, wherein the radioactive solid waste is melted by plasma heating, the radioactive solid waste is preheated at a temperature of 250 ° C. or higher and lower than the boiling point of cesium, and chlorine in the radioactive solid waste A plasma melting treatment method for radioactive solid waste, wherein the plasma heating and melting treatment is performed after extracting as a gaseous component . 前記予熱は放射性固体廃棄物が300℃〜400℃になる温度であることを特徴とする請求項1記載の放射性固体廃棄物のプラズマ溶融処理方法。  The method for plasma melting treatment of radioactive solid waste according to claim 1, wherein the preheating is performed at a temperature at which the radioactive solid waste reaches 300 ° C to 400 ° C. プラズマ溶融炉からの排ガスの熱で前記予熱を行うことを特徴とする請求項1または2記載の放射性固体廃棄物のプラズマ溶融処理方法。  The method for plasma melting treatment of radioactive solid waste according to claim 1 or 2, wherein the preheating is performed by heat of exhaust gas from a plasma melting furnace. 放射性固体廃棄物をプラズマ加熱によって溶融させる放射性固体廃棄物のプラズマ溶融処理設備において、プラズマ溶融炉に投入される前の前記放射性固体廃棄物を250℃以上でかつセシウムの沸点未満の温度に予熱すると共に前記放射性固体廃棄物中から発生した塩素ガスを抜き取る排気手段を備える予熱部を有することを特徴とする放射性固体廃棄物のプラズマ溶融処理設備。In a plasma melting treatment facility for radioactive solid waste that melts radioactive solid waste by plasma heating, the radioactive solid waste before being put into the plasma melting furnace is preheated to a temperature of 250 ° C. or higher and lower than the boiling point of cesium. A radioactive solid waste plasma melting treatment facility comprising a preheating unit provided with exhaust means for extracting chlorine gas generated from the radioactive solid waste. 前記プラズマ溶融炉の排ガスを前記予熱部を通して前記予熱部で前記放射性固体廃棄物中から発生した前記塩素ガスと共に排気することにより、前記プラズマ溶融炉からの排ガスを前記予熱部の熱源として利用することを特徴とする請求項4記載の放射性固体廃棄物のプラズマ溶融処理設備。The exhaust gas from the plasma melting furnace is used as a heat source for the preheating part by exhausting the exhaust gas from the plasma melting furnace through the preheating part together with the chlorine gas generated from the radioactive solid waste in the preheating part. The facility for plasma melting treatment of radioactive solid waste according to claim 4.
JP18239596A 1996-07-11 1996-07-11 Plasma melting treatment method for radioactive solid waste and plasma melting treatment equipment used therefor Expired - Fee Related JP3764528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18239596A JP3764528B2 (en) 1996-07-11 1996-07-11 Plasma melting treatment method for radioactive solid waste and plasma melting treatment equipment used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18239596A JP3764528B2 (en) 1996-07-11 1996-07-11 Plasma melting treatment method for radioactive solid waste and plasma melting treatment equipment used therefor

Publications (2)

Publication Number Publication Date
JPH1026696A JPH1026696A (en) 1998-01-27
JP3764528B2 true JP3764528B2 (en) 2006-04-12

Family

ID=16117573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18239596A Expired - Fee Related JP3764528B2 (en) 1996-07-11 1996-07-11 Plasma melting treatment method for radioactive solid waste and plasma melting treatment equipment used therefor

Country Status (1)

Country Link
JP (1) JP3764528B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5661066B2 (en) * 2012-05-28 2015-01-28 株式会社 フュー・テクノロジー Method for treating incinerated ash containing radioactive material and treated solids
JP6253046B2 (en) * 2013-01-07 2017-12-27 国立研究開発法人物質・材料研究機構 Cesium extraction method
CN104966540B (en) * 2015-05-12 2017-08-22 中广核研究院有限公司 Solid waste treatment method is put during a kind of plasma is low
JP6185100B2 (en) * 2016-03-01 2017-08-23 日本碍子株式会社 Treatment method for radioactive cesium contaminants

Also Published As

Publication number Publication date
JPH1026696A (en) 1998-01-27

Similar Documents

Publication Publication Date Title
KR100930225B1 (en) Reprocessing device and method for reprocessing paraffin concentrate solidification drum in nuclear power plant
US4895678A (en) Method for thermal decomposition treatment of radioactive waste
EP0786436B1 (en) Process for melting glass and encapsulating radioactive components
KR102497975B1 (en) A treatment method for concentrated radioactive waste solidified by using paraffin wax and stored in the interim storage on the nuclear power plants
KR100369612B1 (en) System and Treatment Method for Low-and Intermediate-Level Radioactive Waste
JP3764528B2 (en) Plasma melting treatment method for radioactive solid waste and plasma melting treatment equipment used therefor
JP2633000B2 (en) How to treat highly radioactive waste
JP4777564B2 (en) Method for treating incinerator ash containing uranium
JPH0269697A (en) Treatment of used fuel
KR19990026212A (en) High temperature melt processing systems and methods for flammable and non-combustible radioactive waste
Sobolev et al. High temperature treatment of intermediate-level radioactive wastes-sia radon experience
RU2159473C1 (en) Method for recovering radionuclide-containing metal wastes
JP3858368B2 (en) Decontamination method and apparatus for fine metal waste
JPS6341520B2 (en)
KR102755735B1 (en) A treatment method for concentrated radioactive waste solidified by using paraffin wax and stored in the interim storage on the nuclear power plants
JP6621917B2 (en) Radionuclide separation method and radionuclide separation apparatus
JP2005164320A (en) Fusion treatment method for radioactive incombustible solid waste
Timmons et al. Vitrification tested on hazardous wastes
JPH0552995A (en) Separation method for waste liquid nuclear species
JPH10213697A (en) Decontamination method of radioactive waste
JP2004286627A (en) Method and apparatus for treating activated graphite
JP3858369B2 (en) Zirconium alloy waste decontamination method and apparatus
JP2017116468A (en) Decontamination method for iron containing radioactive cesium
JPH0149919B2 (en)
Campbell et al. Commissioning of a GeoMelt Vitrification Plant at the Central Laboratory on the Sellafield Site-17561

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100127

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120127

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130127

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees