[go: up one dir, main page]

JP3755622B2 - Mixed gas separation method - Google Patents

Mixed gas separation method Download PDF

Info

Publication number
JP3755622B2
JP3755622B2 JP09682497A JP9682497A JP3755622B2 JP 3755622 B2 JP3755622 B2 JP 3755622B2 JP 09682497 A JP09682497 A JP 09682497A JP 9682497 A JP9682497 A JP 9682497A JP 3755622 B2 JP3755622 B2 JP 3755622B2
Authority
JP
Japan
Prior art keywords
gas
adsorption tank
adsorption
tank
desorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09682497A
Other languages
Japanese (ja)
Other versions
JPH10286425A (en
Inventor
洋実 木山
武治 嶋本
貴彦 安田
信之 大八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Water Inc
Original Assignee
Air Water Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Water Inc filed Critical Air Water Inc
Priority to JP09682497A priority Critical patent/JP3755622B2/en
Publication of JPH10286425A publication Critical patent/JPH10286425A/en
Application granted granted Critical
Publication of JP3755622B2 publication Critical patent/JP3755622B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、圧力スイング吸着法(PSA法)による混合ガス分離方法に関するものである。
【0002】
【従来の技術】
従来から、空気等の混合ガスから酸素等の製品ガスを分離する方法として種々の方法が用いられているが、最近では、装置の設計の容易さや設備費,運転費等の安価なことから、吸着剤を用いた分離方法が広く用いられている。この吸着剤を用いる分離方法は、一般に圧力スイング吸着法(PSA法)と呼ばれており、複数の吸着槽に窒素ガスを選択的に吸着する吸着剤を充填し、各吸着槽に対する原料空気の導入、加圧による窒素ガスの吸着、減圧による窒素ガスの脱着(吸着槽の再生)、昇圧等の操作を繰り返し行うことにより酸素ガスを分離発生するようになっている。このようなPSA法では、3槽以上の吸着槽を用いる方法が主流であるが、最近では、装置規模や設備費の低減等に有効な2槽の吸着槽を用いる方法も多く考え出されている。
【0003】
上記のような、2槽の吸着槽を用いる方法として、特開平7−265635号公報に示す分離方法が提案されている。この分離方法は、図11に示すように、2つの床31,32と製品溜め33と供給材料ブロアー34と真空ポンプ35を用い、まず、供給材料空気(周囲空気)を供給材料ブロアー34により圧縮し、すでに吸着圧に加圧されている第1の床31に導入し、吸着剤に空気中の窒素を吸着させ、吸着剤に吸着されない空気中の酸素を製品酸素としてマニホールド36を経由して製品溜め33に引き出す。このとき、第2の床32を真空ポンプ35により減圧排気する。ついで、第1の床31における酸素生産の後半期に製品酸素の一部をパージ用ガスとしてマニホールド37を経由して第2の床32に送る。つぎに、第2の床32に供給材料ブロアー34により圧縮した供給材料空気を導入し、一方、第1および第2の床31,32の出口同士を接続し、第1の床31の残留ガスをマニホールド38を経由して第2の床32に回収するとともに、第1の床31を真空ポンプ35により減圧排気する。つぎに、第1および第2の床31,32の出口同士の接続を中断し、その状態で第1の床31からの減圧排気と第2の床32への供給材料空気の導入を続ける。そののち、第1の床31と第2の床32を入れ換えて、上記の方法を繰り返すことを行う。この分離方法では、供給材料ブロアー34と真空ポンプ35が間断なく作動している。
【0004】
また、特開平8−71350号公報に示す吸着方法も提案されている。すなわち、段階1において、下方脱着圧力にある第1の床の上端に上方供給圧力にある第2の床から並流減圧(第2の床の上端からの残留気体放出)により取り出した気体を回収する。この段階1では、供給ブロワーおよび排気ブロワーは無負荷状態にある。つぎに、段階1A(オーバラップ段階)において、段階1を続行し、同時に第1の床の下端に供給ブロワーにより供給気体を導入し、第2の床から排気ブロワーにより減圧排気する。第1の床が上方吸着圧力に達すると、段階2になる。この段階2において、追加供給空気を第1の床の下端に導入し、生成物気体(供給気体中の容易に吸着されない成分)を上端から抜き出す。つぎに、段階3では、供給気体の追加供給を続行する。そして、第1の床の上端から回収した生成物気体の一部をパージ気体として第2の床の上端へ転流する。段階3の完了に際して、第1の床の再生を、並流減圧−圧力均等化段階である段階4でもって始め、第1の床の残留気体を第1の床の上端から抜き出して第2の床の上端に回収する(この期間中、供給ブロワーおよび排気ブロワーは無負荷状態にある)。このような段階4以降は、第1の床と第2の床を入れ換えて、上記の方法を繰り返すことを行う。
【0005】
【発明が解決しようとする課題】
しかしながら、上記の分離方法では、第1の床31の残留ガスを第2の床32の出口から回収する際に、同時にこの第2の床32の入口から供給材料ブロアー34により圧縮した供給材料空気をも導入しているため、残留ガスの回収効率が悪いという問題がある。すなわち、上記残留ガスの回収は、第1および第2の床31,32の出口同士を接続し、第2の床32の真空を利用して(すなわち、第1および第2の床31,32の圧力差を利用して)行うものであり、上記残留ガスの回収時に供給材料空気の導入をも行う場合には、第2の床32の内圧がすぐに上昇し、大きな圧力差を長く得ることができないためである。一方、上記の吸着方法では、残留気体の回収時に排気ブロワーが無負荷状態にあり、ブロワー効率が低下したり、動力を無駄に消費したりする等の問題がある。すなわち、排気ブロワーが無負荷状態にあるということは、通常、排気ブロワーを全く休止させているのではなく、無負荷運転をしているということであり、このような排気ブロワーの無駄な使用によるブロワー効率の低下や無駄な動力消費等の悪影響が出てくるためである。
【0006】
この発明は、このような事情に鑑みなされたもので、2槽の吸着槽を用い、回収効率が良く、ブロワー効率の低下を招くことのない混合ガス分離方法の提供をその目的とする。
【0007】
【課題を解決するための手段】
上記の目的を達成するため、この発明の混合ガス分離方法は、特定ガスを選択的に吸着する吸着剤を充填した第1および第2の吸着槽と製品ガス貯槽とを設け、下記の(A)〜(E)の5工程をこの順に操作したのち第1吸着槽と第2吸着槽を逆にして再度下記の(A)〜(E)の5工程をこの順に操作するという10工程を繰り返して行うようにしたという構成をとる。
(A)減圧脱着排気を終了した第1吸着槽のガス出口と吸着を終了した第2吸着槽のガス出口を連通して第1吸着槽に第2吸着槽に残留するガスを回収し、第2吸着槽のガス入口からこの第2吸着槽の吸着剤に吸着された特定ガスを減圧脱着し排気する工程。
(B)残留ガスの回収を継続する第1吸着槽のガス入口に原料ガスを導入し、第2吸着槽での減圧脱着排気を継続する工程。
(C)残留ガスの回収を終了し原料ガスの導入を継続する第1吸着槽のガス出口に製品ガス貯槽の製品ガスを導入し、第2吸着槽での減圧脱着排気を継続する工程。
(D)製品ガスの導入を終了し原料ガスの導入を継続する第1吸着槽の吸着剤に原料ガス中の特定ガスを吸着させ、吸着剤に吸着されないガスを製品ガスとしてガス出口から発生させて製品ガス貯槽に導入し、第2吸着槽での減圧脱着排気を継続する工程。
(E)原料ガスの導入および製品ガスの発生を継続する第1吸着槽のガス出口から発生した製品ガスの一部を第2吸着槽のガス出口に導入し、第2吸着槽での減圧脱着排気を継続する工程。
【0008】
すなわち、この発明の混合ガス分離方法は、特定ガスを選択的に吸着する吸着剤を充填した第1および第2の吸着槽と製品ガス貯槽とを設けている。そして、下記の(A)〜(E)の5工程をこの順に操作したのち第1吸着槽と第2吸着槽を逆にして再度下記の(A)〜(E)の5工程をこの順に操作するという10工程を繰り返して行うようにしている。すなわち、(A)工程では、製品ガスの回収率を高めるために、吸着の終了した第2吸着槽(加圧状態)に残留するガス(製品成分を多く含むガス)を、減圧脱着の終了した第1吸着槽(減圧状態)に、両槽の圧力差を利用して回収する。このとき、第1吸着槽への原料ガスの導入を休止しており、より大きな圧力差を利用した回収を行うことができる。また、第2吸着槽の減圧脱着排気を開始する。これにより、第1吸着槽の圧力は上昇し、第2吸着槽の圧力は降下し、両槽の圧力は均圧化に向かう。(B)工程では、両槽の圧力がほぼ等しくなるまで均圧化を継続し、さらに回収を行う。また、第1吸着槽への原料ガスの導入を開始し、これにより第1吸着槽の昇圧時間を短縮しながら、より多くの原料ガスを導入することができる。第1吸着槽への原料ガスの導入は、この均圧化と同時に、または終了後に開始しても良い。(C)工程では、両槽の均圧化回収が終了しており、その状態で第1吸着槽への原料ガスの導入を継続しながら、この第1の吸着槽に製品ガス貯槽から高濃度製品ガスを導入する。この操作により、第1吸着槽は吸着槽の能力が損なわれることなく昇圧され、次の(D)工程において、製品ガスを安定して発生することができる。また、第2吸着槽の減圧脱着排気をさらに継続する。(D)工程では、第1吸着槽への原料ガスの導入を継続し、製品ガスを安定して発生し、製品ガス貯槽に供給する。また、第2吸着槽の減圧脱着排気をさらに継続する。(E)工程では、(D)工程の状態を継続しながら、製品ガスの一部を第2吸着槽に導入し、製品ガス分圧を上昇させることにより、吸着された特定ガスの減圧脱着を促進する。
【0009】
このように、この発明では、2槽の吸着槽を用いるPSA法により、製品ガスを安定して分離発生させることができる。しかも、回収工程では、一方の吸着槽への原料ガスの導入を休止した状態で、この一方の吸着槽に他方の吸着槽から残留ガスを回収するようにしているため、大きな圧力差を利用した回収が行える。したがって、回収工程での回収効率が良く、より少ない吸着剤量および少ない動力で、効率良く原料ガスから製品ガスを分離発生することができる。さらに、両吸着槽の減圧脱着排気を休止することがなく、減圧脱着排気のために無駄に動力を消費することがなく、減圧脱着排気のための手段(ブロアー等)の効率低下を招くこともない。この発明は、主に空気から酸素ガスを分離発生する用途に用いられるが、混合ガスより有益な成分ガスを分離発生することにも利用できる。
【0010】
【発明の実施の形態】
つぎに、この発明の実施の形態を図面にもとづいて詳しく説明する。
【0011】
図1はこの発明の混合ガス分離方法に用いる混合ガス分離装置を示している。図において、1は原空ブロワであり、外部から原料空気(大気空気)を取り入れて圧縮したのち原料空気取入パイプ11に送り込む。3,4は同様構造に作製された左右一対の吸着槽である。両吸着槽3,4には、その内部に、除湿用の吸着剤(活性アルミナ)が充填されてなる下側アルミナ層5と、窒素吸着用の吸着剤(ゼオライト)が充填されてなる上側吸着剤層6(下側アルミナ層5上に載置されている)とが上下積層状に収容されている。7はレシーバータンク(製品酸素ガス貯蔵槽)であり、両吸着槽3,4で製造された製品酸素ガスを貯留する。8は真空ポンプであり、両吸着槽3,4内を減圧排気する。
【0012】
12は原料空気取入パイプ11と左吸着槽3の(入口端3aから延びる)入口パイプ3cとを連結する自動開閉弁12a付き第1導入パイプであり、13は原料空気取入パイプ11と右吸着槽4の(入口端4aから延びる)入口パイプ4cとを連結する自動開閉弁13a付き第2導入パイプである。14は左吸着槽3の入口パイプ3cと真空ポンプ8の入口パイプ8aとを連結する自動開閉弁14a付き第1排気パイプであり、15は右吸着槽4の入口パイプ4cと真空ポンプ8の入口パイプ8aとを連結する自動開閉弁15a付き第2排気パイプである。図において、22は原空ブロワ1の上流側部分と下流側部分とを連結する自動開閉弁22a付き戻しパイプである。
【0013】
16は左吸着槽3の(出口端3bから延びる)出口パイプ3dとレシーバータンク7の入口パイプ7aとを連結する自動開閉弁16a付き第1導出パイプであり、17は右吸着槽4の(出口端4bから延びる)出口パイプ4dとレシーバータンク7の入口パイプ7aとを連結する自動開閉弁17a付き第2導出パイプである。18は左吸着槽3の出口パイプ3dの中間部と右吸着槽4の出口パイプ4dの中間部とを連結する自動開閉弁18a,手動流量調整弁18b付き第1連結パイプであり、19は左吸着槽3の出口パイプ3dの先端部と右吸着槽4の出口パイプ4bの先端部とを連結する自動開閉弁19a,手動流量調整弁19b付き第2連結パイプである。20はレシーバータンク7の入口パイプ7aに設けた自動開閉弁であり、この自動開閉弁20の上流側部分と下流側部分が手動流量調整弁21a付きバイパス用パイプ21で連結されている。このバイパス用パイプ21の手動流量調整弁21aの流量設定は自動開閉弁20の流量設定より少量に設定されている。
【0014】
上記の混合ガス分離装置を用い、つぎのようにして原料空気から酸素ガスと窒素ガスとを分離することができる。すなわち、第1工程(図2参照)では、自動開閉弁12a,15a,16a,20を開弁し、自動開閉弁13a,14a,17a,18a,19a,22aを閉弁する。その状態で、原空ブロワ1により取り入れた原料空気を圧縮して原料空気取入パイプ11に送り出し、第1導入パイプ12,入口パイプ3cを経て入口端3aから左吸着槽3に供給する。この左吸着槽3においては、供給された原料空気(圧縮空気)をさきに下側アルミナ層5に通し、この下側アルミナ層5の吸着剤で原料空気中の水分,炭酸ガス等を吸着除去し、つぎに上側吸着剤層6に通し、この上側吸着剤層6の吸着剤で圧縮空気中の窒素を主に吸着したのち、下側アルミナ層5および上側吸着剤層6で吸着されない酸素を製品酸素ガス(純度93%程度)として出口端3bから抜き出す(吸着分離工程)。そして、この出口端3bから抜き出した製品酸素ガスを出口パイプ3d,第1導出パイプ16,入口パイプ7aを経てレシーバータンク7に供給する。一方、右吸着槽4においては、その内部を入口パイプ4c,第2排気パイプ15,入口パイプ8aを介して真空ポンプ8により減圧排気し、下側アルミナ層5の吸着剤に吸着されている水分,炭酸ガス等と、上側吸着剤層6の吸着剤に吸着されている窒素等を脱着させる(減圧再生工程)。
【0015】
第2工程(図3参照)では、左吸着槽3において、上記の吸着分離工程を継続している。一方、右吸着槽4においては、上記の減圧再生工程の最終段階で自動開閉弁19aを開弁し、出口パイプ3dを通る製品酸素ガスの一部を第2連結パイプ19,出口パイプ4dを経由して出口端4bから右吸着槽4に供給する。この製品酸素ガスの供給により、上側吸着剤層6の吸着剤からの窒素の脱着が促進され、再生効率が向上する(製品パージ工程)。
【0016】
第3工程(図4参照)では、自動開閉弁14a,18aを開弁し、自動開閉弁12a,15a,16a,19aを閉弁し、右吸着槽4の負圧(真空圧)を利用し、(上記の吸着分離工程が終了した)左吸着槽3の塔頂に残留している比較的酸素純度が高いガス(酸素純度:21〜93%程度)を第1連結パイプ18を経由して(上記の減圧再生工程が終了しており、右吸着槽4を真空ポンプ8により減圧排気していない)右吸着槽4の出口パイプ4dから回収する(回収工程の前半段階)。一方、左吸着槽3においては、その内部を入口パイプ3c,第1排気パイプ14,入口パイプ8aを介して真空ポンプ8により減圧排気する。このため、自動開閉弁22aを開弁し、左吸着槽3に対する原空ブロワ1からの原料空気の供給を停止する。
【0017】
第4工程(図5参照)では、自動開閉弁13aを開弁し、自動開閉弁22aを閉弁し、原空ブロワ1により取り入れた原料空気を入口パイプ4cから右吸着槽4に供給する。このとき、左吸着槽3の出口端3bから右吸着槽4の出口端4bに、引き続き残留ガスを供給する(回収工程の後半段階)。
【0018】
第5工程(図6参照)では、自動開閉弁18aを閉弁し、左吸着槽3から右吸着槽4への残留ガスの供給を終了する。この時点で、右吸着槽4の内部はまだ負圧の状態にあり、これを大気圧付近にまで復圧するために、自動開閉弁17aを開弁し、自動開閉弁20を閉弁し、レシーバータンク7内の製品酸素ガスを入口パイプ7a,バイパス用パイプ21,第2導出パイプ17,出口パイプ4dを経由して右吸着槽4に供給する。このとき、右吸着槽4の入口端4aからは、引き続き原空ブロワ1により取り入れた原料空気を供給する(復圧工程)。
【0019】
第6工程(図7参照)では、自動開閉弁20を開弁する。すなわち、全体としては、自動開閉弁13a,14a,17a,20を開弁し、自動開閉弁12a,15a,16a,18a,19a,22aを閉弁する。その状態で、原空ブロワ1から送りだした圧縮空気を原料空気取入パイプ11,第2導入パイプ13を経て入口端4aから右吸着槽4に供給し、出口端4bから製品酸素ガスを抜き出す。この第6工程は、上記の第1工程に相当する工程であり、両吸着槽3,4の作用が入れ替わったものである。そして、第6工程以降も、第2〜第5工程と同様の工程(第2〜第5工程において、両吸着槽3,4の作用が入れ替わった工程)を行う。このようにして第1〜第5の工程を繰り返し行い、原料空気から酸素ガスと窒素ガスとを分離する。
【0020】
上記のように、この実施の形態では、2槽の吸着槽3,4を用いるPSA法により、安価で、製品酸素ガスを安定して分離発生することができる。しかも、回収効率が良く、より少ない吸着剤量および少ない動力で、効率良く原料空気から製品酸素ガスを分離発生することができる。さらに、真空ポンプ8を休止させることがなく、無駄に動力を消費することがない。また、吸着剤の能力を十分に引出し利用することにより、高い回収率で効濃度の目的成分ガスを混合ガスより分離発生できる。
【0021】
図8はこの発明の他の実施の形態を示している。この実施の形態では、図1の混合ガス分離装置において、第2導入パイプ13の自動開閉弁13a上流側部分から自動開閉弁25a付き分岐パイプ25が分岐し、大気に開放されている。この実施の形態では、上記の第4工程および第5工程において、自動開閉弁25aが開弁し、右吸着槽4内の負圧(真空圧)を利用することにより、大気空気を分岐パイプ25に自然流入させたのち、第2導入パイプ13を経由して入口端4aから右吸着槽4に導入するようにしている(図9および図10参照)。それ以外の部分は図1に示す実施の形態と同様であり、同様の部分には同じ符号を付している。(すなわち、第4工程および第5工程以外の工程は、図2〜図4,図7に示す工程と同様である)
【0022】
この実施の形態でも、図1に示す実施の形態と同様の作用効果を奏する。しかも、この実施の形態では、第4工程および第5工程において、原空ブロワ1により原料空気を右吸着槽4に供給する際に、右吸着槽4内の負圧(真空圧)により大気空気をも(原空ブロワ1を通さずに)同時に供給しているため、原空ブロワ1の容量を小さくすることができる。したがって、従来と同容量の原空ブロワ1を用いる場合には、製品酸素ガスの製造効率が向上する。
【0023】
なお、図8に示す実施の形態において、第4工程および第5工程の一方だけに分岐パイプ25の自動開閉弁25aを開閉してもよい。
【0024】
また、この発明が対象とする混合ガスの分離としては、例えば、空気からの酸素ガスの分離、または工業用ガス製造中の混合ガスからの特定有効ガス(例えば水素,一酸化炭素,ハイドロカーボン類等のあらゆる有効ガス)の濃縮,回収あるいは有毒ガスを含んだガスの浄化等を挙げることができる。また、本発明で用いる吸着剤としては、ゼオライト,シリカゲル,活性アルミナ,活性炭等の粒状物が挙げられ、単独でもしくは併せて用いられる。例えば、窒素の吸着剤としてはゼオライト,酸素の吸着剤としてはカーボン,炭酸ガスに対してはゼオライト等が用いられる。また、除湿用としてはシリカゲル,活性アルミナが好適に用いられ、空気中のハイドロカーボンの吸着に対しては活性炭等が用いられる。
【0025】
【発明の効果】
以上のように、この発明の混合ガス分離方法によれば、2槽の吸着槽を用いるPSA法により、製品ガスを安定して分離発生させることができる。しかも、回収工程では、一方の吸着槽への原料ガスの導入を休止した状態で、この一方の吸着槽に他方の吸着槽から残留ガスを回収するようにしているため、大きな圧力差を利用した回収が行える。したがって、回収工程での回収効率が良く、より少ない吸着剤量および少ない動力で、効率良く原料ガスから製品ガスを分離発生することができる。さらに、両吸着槽の減圧脱着排気を休止することがなく、減圧脱着排気のために無駄に動力を消費することがなく、減圧脱着排気のための手段(ブロアー等)の効率低下を招くこともない。この発明は、主に空気から酸素ガスを分離発生する用途に用いられるが、混合ガスより有益な成分ガスを分離発生することにも利用できる。
【図面の簡単な説明】
【図1】この発明に用いる混合ガス分離装置の構成図である。
【図2】上記混合ガス分離装置の作用を示す説明図である。
【図3】上記混合ガス分離装置の作用を示す説明図である。
【図4】上記混合ガス分離装置の作用を示す説明図である。
【図5】上記混合ガス分離装置の作用を示す説明図である。
【図6】上記混合ガス分離装置の作用を示す説明図である。
【図7】上記混合ガス分離装置の作用を示す説明図である。
【図8】上記混合ガス分離装置の他の実施の形態を示す構成図である。
【図9】上記他の実施の形態の作用を示す説明図である。
【図10】上記他の実施の形態の作用を示す説明図である。
【図11】従来例の作用を示す説明図である。
【符号の説明】
1 原空ブロワ
3 左吸着槽
4 右吸着槽
7 レシーバータンク
10 真空ポンプ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a mixed gas separation method by a pressure swing adsorption method (PSA method).
[0002]
[Prior art]
Conventionally, various methods have been used as a method for separating a product gas such as oxygen from a mixed gas such as air, but recently, because of the ease of designing the equipment, the equipment costs, the operating costs, etc., Separation methods using adsorbents are widely used. This separation method using an adsorbent is generally called a pressure swing adsorption method (PSA method), and a plurality of adsorption tanks are filled with an adsorbent that selectively adsorbs nitrogen gas, and the raw material air for each adsorption tank is filled. Oxygen gas is separated and generated by repeatedly performing operations such as introduction, adsorption of nitrogen gas by pressurization, desorption of nitrogen gas by decompression (regeneration of the adsorption tank), and pressurization. In such a PSA method, a method using three or more adsorption tanks is the mainstream, but recently, many methods using two adsorption tanks effective for reducing the scale of equipment and equipment costs have been devised. Yes.
[0003]
As a method using two adsorption tanks as described above, a separation method shown in JP-A-7-265635 has been proposed. As shown in FIG. 11, this separation method uses two beds 31 and 32, a product reservoir 33, a feed blower 34, and a vacuum pump 35. First, feed air (ambient air) is compressed by the feed blower 34. Then, it is introduced into the first bed 31 that has already been pressurized to the adsorption pressure, adsorbs the nitrogen in the air to the adsorbent, and passes through the manifold 36 with oxygen in the air that is not adsorbed by the adsorbent as product oxygen. Pull out to product reservoir 33. At this time, the second floor 32 is evacuated by the vacuum pump 35. Next, in the second half of the oxygen production in the first bed 31, part of the product oxygen is sent to the second bed 32 via the manifold 37 as a purge gas. Next, the feed air compressed by the feed blower 34 is introduced into the second floor 32, while the outlets of the first and second beds 31, 32 are connected to each other, and the residual gas in the first floor 31 is connected. Is recovered to the second floor 32 via the manifold 38 and the first floor 31 is evacuated by the vacuum pump 35. Next, the connection between the outlets of the first and second floors 31 and 32 is interrupted, and the vacuum exhaust from the first floor 31 and the introduction of the feed air to the second floor 32 are continued in this state. Thereafter, the first floor 31 and the second floor 32 are exchanged and the above method is repeated. In this separation method, the feed blower 34 and the vacuum pump 35 operate without interruption.
[0004]
Also, an adsorption method shown in Japanese Patent Laid-Open No. 8-71350 has been proposed. That is, in stage 1, the gas extracted by cocurrent decompression (residual gas discharge from the upper end of the second bed) from the second bed at the upper supply pressure at the upper end of the first bed at the lower desorption pressure is recovered. To do. In this stage 1, the supply blower and the exhaust blower are in an unloaded state. Next, in stage 1A (overlap stage), stage 1 is continued, and at the same time, a supply gas is introduced into the lower end of the first bed by the supply blower, and reduced pressure is exhausted from the second bed by the exhaust blower. Stage 2 is reached when the first bed reaches the upper adsorption pressure. In this stage 2, additional supply air is introduced into the lower end of the first bed and product gas (a component that is not easily adsorbed in the supply gas) is withdrawn from the upper end. Next, in stage 3, the additional supply of supply gas is continued. And a part of product gas collect | recovered from the upper end of the 1st bed is commutated to the upper end of the 2nd bed as purge gas. Upon completion of stage 3, regeneration of the first bed begins with stage 4, which is a cocurrent depressurization-pressure equalization stage, with the residual gas in the first bed being withdrawn from the top of the first bed and the second bed. Collect at the top of the floor (during this period, the supply and exhaust blowers are unloaded). In Step 4 and subsequent steps, the first floor and the second floor are exchanged and the above method is repeated.
[0005]
[Problems to be solved by the invention]
However, in the above separation method, when the residual gas of the first bed 31 is recovered from the outlet of the second bed 32, the feed air compressed by the feed blower 34 from the inlet of the second bed 32 at the same time. Is also introduced, so there is a problem that the recovery efficiency of residual gas is poor. That is, the recovery of the residual gas is performed by connecting the outlets of the first and second floors 31 and 32 and using the vacuum of the second floor 32 (that is, the first and second floors 31 and 32). If the feed air is also introduced during the recovery of the residual gas, the internal pressure of the second bed 32 immediately rises and a large pressure difference is obtained. It is because it cannot be done. On the other hand, in the above adsorption method, there is a problem that the exhaust blower is in an unloaded state when the residual gas is recovered, and the blower efficiency is reduced or power is wasted. That is, when the exhaust blower is in a no-load state, it usually means that the exhaust blower is not stopped at all, but is in a no-load operation. This is because adverse effects such as a decrease in blower efficiency and unnecessary power consumption occur.
[0006]
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a mixed gas separation method that uses two adsorption tanks, has high recovery efficiency, and does not cause a decrease in blower efficiency.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the mixed gas separation method of the present invention is provided with first and second adsorption tanks filled with an adsorbent that selectively adsorbs a specific gas, and a product gas storage tank. ) To (E) are operated in this order, and then the first adsorption tank and the second adsorption tank are reversed and the following five processes (A) to (E) are repeated in this order. It is configured to do so.
(A) The gas outlet of the first adsorption tank that has completed the vacuum desorption exhaust and the gas outlet of the second adsorption tank that has completed the adsorption are communicated to collect the gas remaining in the second adsorption tank in the first adsorption tank; (2) A step of desorbing and exhausting the specific gas adsorbed by the adsorbent in the second adsorption tank from the gas inlet of the second adsorption tank.
(B) A step of introducing the raw material gas into the gas inlet of the first adsorption tank for continuing the recovery of the residual gas and continuing the vacuum desorption / desorption in the second adsorption tank.
(C) A step of introducing the product gas in the product gas storage tank into the gas outlet of the first adsorption tank where the recovery of the residual gas is completed and continuing the introduction of the raw material gas, and continuing the vacuum desorption / desorption in the second adsorption tank.
(D) The specific gas in the raw material gas is adsorbed to the adsorbent of the first adsorption tank that finishes the introduction of the product gas and continues the introduction of the raw material gas, and a gas that is not adsorbed by the adsorbent is generated as a product gas from the gas outlet The process of introducing into the product gas storage tank and continuing the vacuum desorption / desorption in the second adsorption tank.
(E) A part of the product gas generated from the gas outlet of the first adsorption tank that continues the introduction of the raw material gas and the generation of the product gas is introduced into the gas outlet of the second adsorption tank, and depressurization desorption in the second adsorption tank The process of continuing exhaust.
[0008]
That is, the mixed gas separation method of the present invention is provided with first and second adsorption tanks and a product gas storage tank filled with an adsorbent that selectively adsorbs a specific gas. Then, after the following five steps (A) to (E) are operated in this order, the first adsorption tank and the second adsorption tank are reversed and the following five steps (A) to (E) are operated again in this order. The 10 steps of performing are repeated. That is, in the step (A), in order to increase the recovery rate of the product gas, the gas remaining in the second adsorption tank (pressurized state) after completion of adsorption (gas containing a lot of product components) is completely desorbed. The first adsorption tank (reduced pressure state) is recovered by utilizing the pressure difference between the two tanks. At this time, the introduction of the raw material gas to the first adsorption tank is suspended, and recovery using a larger pressure difference can be performed. Moreover, the vacuum desorption exhaust of the second adsorption tank is started. As a result, the pressure in the first adsorption tank rises, the pressure in the second adsorption tank drops, and the pressure in both tanks goes to pressure equalization. In step (B), pressure equalization is continued until the pressures in both tanks are substantially equal, and further recovery is performed. Moreover, introduction of the raw material gas into the first adsorption tank is started, so that more raw material gas can be introduced while shortening the pressurization time of the first adsorption tank. The introduction of the raw material gas into the first adsorption tank may be started simultaneously with the pressure equalization or after the completion. In step (C), the pressure equalization recovery of both tanks has been completed, and in this state, while continuing the introduction of the raw material gas to the first adsorption tank, the high concentration from the product gas storage tank to this first adsorption tank. Introduce product gas. By this operation, the pressure of the first adsorption tank is increased without impairing the capacity of the adsorption tank, and product gas can be stably generated in the next step (D). Further, the desorption / desorption of the second adsorption tank is further continued. In the step (D), the introduction of the raw material gas into the first adsorption tank is continued, the product gas is stably generated and supplied to the product gas storage tank. Further, the desorption / desorption of the second adsorption tank is further continued. In the step (E), while continuing the state of the step (D), a part of the product gas is introduced into the second adsorption tank, and the product gas partial pressure is increased, thereby desorbing the adsorbed specific gas under reduced pressure. Facilitate.
[0009]
Thus, in this invention, product gas can be stably separated and generated by the PSA method using two adsorption tanks. In addition, in the recovery step, since the introduction of the raw material gas to one adsorption tank is suspended, residual gas is recovered from the other adsorption tank to this one adsorption tank, so a large pressure difference is utilized. Can be recovered. Accordingly, the recovery efficiency in the recovery process is good, and the product gas can be efficiently separated from the raw material gas with a smaller amount of adsorbent and less power. Furthermore, the desorption / desorption exhaust of both adsorption tanks is not suspended, the power is not consumed unnecessarily for the desorption / desorption, and the efficiency of the means for the desorption / desorption (such as a blower) may be reduced. Absent. The present invention is mainly used for the purpose of separating and generating oxygen gas from air, but can also be used for separating and generating a component gas that is more useful than a mixed gas.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in detail with reference to the drawings.
[0011]
FIG. 1 shows a mixed gas separator used in the mixed gas separation method of the present invention. In the figure, reference numeral 1 denotes a raw air blower, which takes in raw material air (atmospheric air) from the outside, compresses it, and sends it to a raw material air intake pipe 11. Reference numerals 3 and 4 denote a pair of left and right adsorption tanks having the same structure. Both adsorption tanks 3 and 4 have a lower alumina layer 5 filled with a dehumidifying adsorbent (active alumina) and an upper adsorption filled with a nitrogen adsorbent (zeolite). The agent layer 6 (placed on the lower alumina layer 5) is accommodated in an upper and lower laminated form. Reference numeral 7 denotes a receiver tank (product oxygen gas storage tank), which stores the product oxygen gas produced in both adsorption tanks 3 and 4. Reference numeral 8 denotes a vacuum pump, which evacuates the inside of both adsorption tanks 3 and 4.
[0012]
Reference numeral 12 denotes a first introduction pipe with an automatic opening / closing valve 12a for connecting the raw material air intake pipe 11 and the inlet pipe 3c (extending from the inlet end 3a) of the left adsorption tank 3, and 13 denotes the raw material air intake pipe 11 and the right This is a second introduction pipe with an automatic opening / closing valve 13a that connects the inlet pipe 4c (extending from the inlet end 4a) of the adsorption tank 4. Reference numeral 14 denotes a first exhaust pipe with an automatic opening / closing valve 14 a that connects the inlet pipe 3 c of the left adsorption tank 3 and the inlet pipe 8 a of the vacuum pump 8, and 15 denotes an inlet pipe 4 c of the right adsorption tank 4 and an inlet of the vacuum pump 8. This is a second exhaust pipe with an automatic opening / closing valve 15a for connecting the pipe 8a. In the figure, reference numeral 22 denotes a return pipe with an automatic opening / closing valve 22a for connecting the upstream portion and the downstream portion of the raw air blower 1.
[0013]
Reference numeral 16 denotes a first outlet pipe with an automatic opening / closing valve 16a for connecting the outlet pipe 3d (extending from the outlet end 3b) of the left adsorption tank 3 and the inlet pipe 7a of the receiver tank 7; This is a second lead-out pipe with an automatic opening / closing valve 17a for connecting the outlet pipe 4d (extending from the end 4b) and the inlet pipe 7a of the receiver tank 7. Reference numeral 18 denotes a first connecting pipe with an automatic opening / closing valve 18a and a manual flow rate adjusting valve 18b for connecting an intermediate part of the outlet pipe 3d of the left adsorption tank 3 and an intermediate part of the outlet pipe 4d of the right adsorption tank 4; This is a second connecting pipe with an automatic opening / closing valve 19a and a manual flow rate adjusting valve 19b for connecting the tip of the outlet pipe 3d of the adsorption tank 3 and the tip of the outlet pipe 4b of the right adsorption tank 4. Reference numeral 20 denotes an automatic opening / closing valve provided in the inlet pipe 7a of the receiver tank 7. The upstream side portion and the downstream side portion of the automatic opening / closing valve 20 are connected by a bypass pipe 21 with a manual flow rate adjusting valve 21a. The flow rate setting of the manual flow rate adjustment valve 21 a of the bypass pipe 21 is set to be smaller than the flow rate setting of the automatic opening / closing valve 20.
[0014]
Using the above mixed gas separator, oxygen gas and nitrogen gas can be separated from the raw air as follows. That is, in the first step (see FIG. 2), the automatic opening / closing valves 12a, 15a, 16a, 20 are opened, and the automatic opening / closing valves 13a, 14a, 17a, 18a, 19a, 22a are closed. In this state, the raw material air taken in by the raw air blower 1 is compressed and sent to the raw material air intake pipe 11 and supplied to the left adsorption tank 3 from the inlet end 3a through the first introduction pipe 12 and the inlet pipe 3c. In the left adsorption tank 3, the supplied raw material air (compressed air) is passed through the lower alumina layer 5, and moisture, carbon dioxide, etc. in the raw material air are adsorbed and removed by the adsorbent of the lower alumina layer 5. Then, after passing through the upper adsorbent layer 6 and mainly adsorbing nitrogen in the compressed air with the adsorbent of the upper adsorbent layer 6, oxygen that is not adsorbed by the lower alumina layer 5 and the upper adsorbent layer 6 is removed. Extracted from the outlet end 3b as product oxygen gas (purity of about 93%) (adsorption separation step). The product oxygen gas extracted from the outlet end 3b is supplied to the receiver tank 7 through the outlet pipe 3d, the first outlet pipe 16, and the inlet pipe 7a. On the other hand, in the right adsorption tank 4, the inside is evacuated by the vacuum pump 8 through the inlet pipe 4c, the second exhaust pipe 15, and the inlet pipe 8a, and the moisture adsorbed by the adsorbent of the lower alumina layer 5 , Carbon dioxide and the like and nitrogen adsorbed on the adsorbent of the upper adsorbent layer 6 are desorbed (reduced pressure regeneration step).
[0015]
In the second step (see FIG. 3), the above-described adsorption separation step is continued in the left adsorption tank 3. On the other hand, in the right adsorption tank 4, the automatic opening / closing valve 19a is opened at the final stage of the above-described decompression regeneration process, and part of the product oxygen gas passing through the outlet pipe 3d passes through the second connecting pipe 19 and the outlet pipe 4d. And it supplies to the right adsorption tank 4 from the exit end 4b. By supplying the product oxygen gas, the desorption of nitrogen from the adsorbent of the upper adsorbent layer 6 is promoted, and the regeneration efficiency is improved (product purge step).
[0016]
In the third step (see FIG. 4), the automatic open / close valves 14a, 18a are opened, the automatic open / close valves 12a, 15a, 16a, 19a are closed, and the negative pressure (vacuum pressure) of the right adsorption tank 4 is used. The gas having a relatively high oxygen purity (oxygen purity: about 21 to 93%) remaining at the top of the left adsorption tank 3 (the above-described adsorption separation step is completed) is routed through the first connection pipe 18. (The above-described decompression regeneration process is completed, and the right adsorption tank 4 is not evacuated by the vacuum pump 8) Recovery is performed from the outlet pipe 4d of the right adsorption tank 4 (the first half of the collection process). On the other hand, the inside of the left adsorption tank 3 is evacuated by the vacuum pump 8 through the inlet pipe 3c, the first exhaust pipe 14, and the inlet pipe 8a. For this reason, the automatic opening / closing valve 22a is opened, and the supply of the raw material air from the raw blower 1 to the left adsorption tank 3 is stopped.
[0017]
In the fourth step (see FIG. 5), the automatic open / close valve 13a is opened, the automatic open / close valve 22a is closed, and the raw air taken in by the raw blower 1 is supplied to the right adsorption tank 4 from the inlet pipe 4c. At this time, the residual gas is continuously supplied from the outlet end 3b of the left adsorption tank 3 to the outlet end 4b of the right adsorption tank 4 (second stage of the recovery step).
[0018]
In the fifth step (see FIG. 6), the automatic opening / closing valve 18a is closed, and the supply of residual gas from the left adsorption tank 3 to the right adsorption tank 4 is terminated. At this time, the inside of the right adsorption tank 4 is still in a negative pressure state, and in order to restore the pressure to near atmospheric pressure, the automatic open / close valve 17a is opened, the automatic open / close valve 20 is closed, and the receiver Product oxygen gas in the tank 7 is supplied to the right adsorption tank 4 via the inlet pipe 7a, the bypass pipe 21, the second outlet pipe 17, and the outlet pipe 4d. At this time, the raw material air taken in by the raw air blower 1 is continuously supplied from the inlet end 4a of the right adsorption tank 4 (return pressure process).
[0019]
In the sixth step (see FIG. 7), the automatic opening / closing valve 20 is opened. That is, as a whole, the automatic open / close valves 13a, 14a, 17a and 20 are opened, and the automatic open / close valves 12a, 15a, 16a, 18a, 19a and 22a are closed. In this state, the compressed air sent from the raw air blower 1 is supplied to the right adsorption tank 4 from the inlet end 4a through the raw air intake pipe 11 and the second introduction pipe 13, and the product oxygen gas is extracted from the outlet end 4b. The sixth step is a step corresponding to the first step described above, in which the actions of both adsorption tanks 3 and 4 are interchanged. And after the 6th process, the same process as the 2nd-5th process (process in which the operation of both adsorption tanks 3 and 4 was replaced in the 2nd-5th process) is performed. In this way, the first to fifth steps are repeated to separate oxygen gas and nitrogen gas from the raw air.
[0020]
As described above, in this embodiment, the product oxygen gas can be stably generated at low cost by the PSA method using the two adsorption tanks 3 and 4. In addition, the recovery efficiency is good, and the product oxygen gas can be efficiently separated from the raw material air with a smaller amount of adsorbent and less power. Furthermore, the vacuum pump 8 is not paused, and power is not consumed wastefully. Further, by sufficiently drawing out and using the capacity of the adsorbent, the target component gas having an effective concentration can be separated and generated from the mixed gas with a high recovery rate.
[0021]
FIG. 8 shows another embodiment of the present invention. In this embodiment, in the mixed gas separation device of FIG. 1, the branch pipe 25 with the automatic open / close valve 25a branches from the upstream side portion of the automatic open / close valve 13a of the second introduction pipe 13 and is opened to the atmosphere. In this embodiment, in the above fourth and fifth steps, the automatic opening / closing valve 25a is opened, and the atmospheric air is branched off by using the negative pressure (vacuum pressure) in the right adsorption tank 4. Then, it is introduced into the right adsorption tank 4 from the inlet end 4a via the second introduction pipe 13 (see FIGS. 9 and 10). Other parts are the same as those of the embodiment shown in FIG. 1, and the same reference numerals are given to the same parts. (That is, the steps other than the fourth step and the fifth step are the same as the steps shown in FIGS. 2 to 4 and 7).
[0022]
This embodiment also has the same effects as the embodiment shown in FIG. Moreover, in this embodiment, when the raw air blower 1 supplies the raw air to the right adsorption tank 4 in the fourth and fifth steps, atmospheric air is generated by the negative pressure (vacuum pressure) in the right adsorption tank 4. Are supplied simultaneously (without passing through the original blower 1), the capacity of the original blower 1 can be reduced. Therefore, when the raw empty blower 1 having the same capacity as the conventional one is used, the production efficiency of the product oxygen gas is improved.
[0023]
In the embodiment shown in FIG. 8, the automatic opening / closing valve 25a of the branch pipe 25 may be opened / closed only in one of the fourth step and the fifth step.
[0024]
The separation of the mixed gas targeted by the present invention includes, for example, separation of oxygen gas from air, or specific effective gas (for example, hydrogen, carbon monoxide, hydrocarbons) from the mixed gas during industrial gas production. The concentration and recovery of any effective gas, etc.) or the purification of a gas containing a toxic gas. In addition, examples of the adsorbent used in the present invention include granular materials such as zeolite, silica gel, activated alumina, activated carbon and the like, and they are used alone or in combination. For example, zeolite is used as an adsorbent for nitrogen, carbon is used as an adsorbent for oxygen, and zeolite is used for carbon dioxide. Silica gel and activated alumina are preferably used for dehumidification, and activated carbon or the like is used for adsorption of hydrocarbons in the air.
[0025]
【The invention's effect】
As described above, according to the mixed gas separation method of the present invention, the product gas can be stably separated and generated by the PSA method using two adsorption tanks. In addition, in the recovery process, since the introduction of the raw material gas to one adsorption tank is suspended, the residual gas is recovered from the other adsorption tank to this one adsorption tank, so a large pressure difference is utilized. Can be recovered. Accordingly, the recovery efficiency in the recovery process is good, and the product gas can be efficiently separated from the raw material gas with a smaller amount of adsorbent and less power. Furthermore, the desorption / desorption exhaust of both adsorption tanks is not suspended, the power is not consumed unnecessarily for the desorption / desorption, and the efficiency of the means for the desorption / desorption (such as a blower) may be reduced. Absent. The present invention is mainly used for the purpose of separating and generating oxygen gas from air, but can also be used to separate and generate component gases that are more useful than mixed gas.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a mixed gas separator used in the present invention.
FIG. 2 is an explanatory view showing the operation of the mixed gas separation device.
FIG. 3 is an explanatory view showing the operation of the mixed gas separation device.
FIG. 4 is an explanatory view showing the operation of the mixed gas separation device.
FIG. 5 is an explanatory view showing the operation of the mixed gas separation device.
FIG. 6 is an explanatory diagram showing the operation of the mixed gas separation device.
FIG. 7 is an explanatory view showing the operation of the mixed gas separation device.
FIG. 8 is a configuration diagram showing another embodiment of the mixed gas separation device.
FIG. 9 is an explanatory diagram showing the operation of the other embodiment.
FIG. 10 is an explanatory diagram showing the operation of the other embodiment.
FIG. 11 is an explanatory diagram showing the operation of a conventional example.
[Explanation of symbols]
1 Original empty blower 3 Left adsorption tank 4 Right adsorption tank 7 Receiver tank 10 Vacuum pump

Claims (1)

特定ガスを選択的に吸着する吸着剤を充填した第1および第2の吸着槽と製品ガス貯槽とを設け、下記の(A)〜(E)の5工程をこの順に操作したのち第1吸着槽と第2吸着槽を逆にして再度下記の(A)〜(E)の5工程をこの順に操作するという10工程を繰り返して行うようにしたことを特徴とする混合ガス分離方法。
(A)減圧脱着排気を終了した第1吸着槽のガス出口と吸着を終了した第2吸着槽のガス出口を連通して第1吸着槽に第2吸着槽に残留するガスを回収し、第2吸着槽のガス入口からこの第2吸着槽の吸着剤に吸着された特定ガスを減圧脱着し排気する工程。
(B)残留ガスの回収を継続する第1吸着槽のガス入口に原料ガスを導入し、第2吸着槽での減圧脱着排気を継続する工程。
(C)残留ガスの回収を終了し原料ガスの導入を継続する第1吸着槽のガス出口に製品ガス貯槽の製品ガスを導入し、第2吸着槽での減圧脱着排気を継続する工程。
(D)製品ガスの導入を終了し原料ガスの導入を継続する第1吸着槽の吸着剤に原料ガス中の特定ガスを吸着させ、吸着剤に吸着されないガスを製品ガスとしてガス出口から発生させて製品ガス貯槽に導入し、第2吸着槽での減圧脱着排気を継続する工程。
(E)原料ガスの導入および製品ガスの発生を継続する第1吸着槽のガス出口から発生した製品ガスの一部を第2吸着槽のガス出口に導入し、第2吸着槽での減圧脱着排気を継続する工程。
First and second adsorption tanks filled with an adsorbent that selectively adsorbs a specific gas and a product gas storage tank are provided, and the following five steps (A) to (E) are operated in this order, and then the first adsorption is performed. A mixed gas separation method characterized in that 10 steps of repeating the following 5 steps (A) to (E) in this order by reversing the tank and the second adsorption tank are performed in this order.
(A) The gas outlet of the first adsorption tank that has completed the vacuum desorption exhaust and the gas outlet of the second adsorption tank that has completed the adsorption are communicated to collect the gas remaining in the second adsorption tank in the first adsorption tank; (2) A step of desorbing and exhausting the specific gas adsorbed by the adsorbent in the second adsorption tank from the gas inlet of the second adsorption tank.
(B) A step of introducing the raw material gas into the gas inlet of the first adsorption tank for continuing the recovery of the residual gas and continuing the vacuum desorption / desorption in the second adsorption tank.
(C) A step of introducing the product gas in the product gas storage tank into the gas outlet of the first adsorption tank where the recovery of the residual gas is completed and continuing the introduction of the raw material gas, and continuing the vacuum desorption / desorption in the second adsorption tank.
(D) The specific gas in the raw material gas is adsorbed to the adsorbent of the first adsorption tank that finishes the introduction of the product gas and continues the introduction of the raw material gas, and a gas that is not adsorbed by the adsorbent is generated as a product gas from the gas outlet. The process of introducing into the product gas storage tank and continuing the vacuum desorption / desorption in the second adsorption tank.
(E) A part of the product gas generated from the gas outlet of the first adsorption tank that continues the introduction of the raw material gas and the generation of the product gas is introduced into the gas outlet of the second adsorption tank, and depressurization desorption in the second adsorption tank The process of continuing exhaust.
JP09682497A 1997-04-15 1997-04-15 Mixed gas separation method Expired - Fee Related JP3755622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09682497A JP3755622B2 (en) 1997-04-15 1997-04-15 Mixed gas separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09682497A JP3755622B2 (en) 1997-04-15 1997-04-15 Mixed gas separation method

Publications (2)

Publication Number Publication Date
JPH10286425A JPH10286425A (en) 1998-10-27
JP3755622B2 true JP3755622B2 (en) 2006-03-15

Family

ID=14175320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09682497A Expired - Fee Related JP3755622B2 (en) 1997-04-15 1997-04-15 Mixed gas separation method

Country Status (1)

Country Link
JP (1) JP3755622B2 (en)

Also Published As

Publication number Publication date
JPH10286425A (en) 1998-10-27

Similar Documents

Publication Publication Date Title
KR100260001B1 (en) Pressure swing adsorption process
TWI221785B (en) Vacuum swing adsorption process with controlled waste gas withdrawal
JP2634138B2 (en) Separation method of gas components by vacuum swing adsorption method
KR100300939B1 (en) Improved vacuum pressure swing adsorption process
CA2189232C (en) Method of recovering oxygen-rich gas
TW436316B (en) Pressure swing process and system using single adsorber and single blower for separating a gas mixture
US5906674A (en) Process and apparatus for separating gas mixtures
JP3464766B2 (en) PSA method using simultaneous evacuation of top and bottom of adsorbent bed
JP2000153124A (en) Pressure swing adsorption for producing oxygen-enriched gas
JP2006239692A (en) Pressure swing adsorption process and apparatus
JPH01258721A (en) Adsorptive separation using dual adsorbing bed
JPH0788316A (en) Separation of nitrogen-enriched gas and device therefor
JPH0871350A (en) Simultaneous stage pressure variation type adsorption method
WO2002085496A1 (en) Method and system for separating gas
US5997611A (en) Single vessel gas adsorption system and process
JPH07745A (en) Gas separation
JP3654658B2 (en) Pressure fluctuation adsorption type oxygen production method and apparatus
JP3755622B2 (en) Mixed gas separation method
JPH10272332A (en) Gas separation device and its operation method
JPH11267439A (en) Gas separation and gas separator for performing same
JP3654661B2 (en) Oxygen generation method by pressure fluctuation adsorption separation method
TW587955B (en) Pressure swing adsorption process with controlled internal depressurization flow
JP3121293B2 (en) Mixed gas separation method by pressure swing adsorption method
JPH10194708A (en) Oxygen enricher
JPH0938443A (en) Gas separation device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100106

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110106

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110106

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120106

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120106

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140106

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees