[go: up one dir, main page]

JP3749426B2 - Induction motor control device - Google Patents

Induction motor control device Download PDF

Info

Publication number
JP3749426B2
JP3749426B2 JP2000218462A JP2000218462A JP3749426B2 JP 3749426 B2 JP3749426 B2 JP 3749426B2 JP 2000218462 A JP2000218462 A JP 2000218462A JP 2000218462 A JP2000218462 A JP 2000218462A JP 3749426 B2 JP3749426 B2 JP 3749426B2
Authority
JP
Japan
Prior art keywords
frequency
induction motor
current
component
command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000218462A
Other languages
Japanese (ja)
Other versions
JP2002034290A (en
Inventor
美博 永瀧
正人 小山
祐司 蔵本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000218462A priority Critical patent/JP3749426B2/en
Publication of JP2002034290A publication Critical patent/JP2002034290A/en
Application granted granted Critical
Publication of JP3749426B2 publication Critical patent/JP3749426B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、速度検出器を付加しないで誘導電動機をインバータにて安定に運転する制御装置に関するものである。
【0002】
【従来の技術】
図6は、従来のインバータにて誘導電動機を安定に運転する制御系の構成図であり、図において、1は速度指令ωrと誘導電動機IM2の速度ωrとの偏差ωrerrを検出する偏差検出器、3は偏差検出器1の偏差ωrerrからIM2のすべり周波数推定値ωsを推定する比例積分演算(PI)部、4はPI部3のすべり周波数推定値ωsとIM2の速度ωrとにより出力周波数指令ωを演算する加算器、5は加算器4の出力周波数指令ωにより任意の電圧指令Vを演算するV/F制御器、6は加算器4の出力周波数指令ωとV/F制御器5の電圧指令Vにより三相正弦波電圧基準V ,V ,V を演算する相電圧基準信号発生器、7は相電圧基準信号発生器6の三相正弦波電圧基準V ,V ,V によりIM2に印加する三相電圧V,V,V、を出力するインバータユニット、2はインバータユニット7の三相電圧V,V,Vにより運転される誘導電動機(IM)、8はIM2の速度ωrを検出する速度検出器である。
【0003】
次に動作について説明する。図6による制御系構成にて、インバータユニット7により運転されているIM2が不安定となる場合、IM2には速度指令ωrと速度ωrの差に基づく、すべり周波数ωsが発生する。この時、偏差検出器1により速度指令ωrとIM2の速度ωrの偏差ωrerrが検出され、PI部3にて偏差ωrerrが0となるまで、すべり周波数推定値ωs が変化し、加算器4にてすべり周波数ωs とIM2の速度ωrから出力周波数指令ωが演算される。このように、従来の方法は、速度指令ωrにIM2の速度ωrが一致するように、速度フィードバック制御系にて構成されているため誘導電動機を安定に運転することができる。
【0004】
【発明が解決しようとする課題】
従来の誘導電動機を安定に制御するためには、図6のようにIM2の速度ωrを検出する速度検出器8を特別に設置する必要があった。この速度検出器8が故障または誤動作した場合には、偏差検出器1に入力される速度ωrはIM2の実速度とは異なり、図6の制御構成が誤動作し、IM2の速度ωrは速度指令ωrに対して良好な運転特性が得られなくなる問題点があった。
【0005】
この発明は、上記のような問題点を解消するためになされたもので、速度検出器を用いることなく、インバータにより誘導電動機を安定に運転する制御装置を得ることを目的とする。
【0006】
【課題を解決するための手段】
この発明に係る誘導電動機の制御装置は、速度検出器を有さない誘導電動機をインバータを介して駆動制御する誘導電動機の制御装置において、誘導電動機の入力電流を検出する電流検出器、この電流検出器の検出電流を3φ/2φ変換して誘導電動機のトルク分電流を演算する3φ/2φ変換器、3φ/2φ変換器で演算したトルク分電流から低周波成分を通過させ、高周波雑音をカットしてトルク分電流の振動成分を取り出すバンドパスフィルタと、この振動成分から周波数補正分を演算するゲイン演算部を有する周波数補正分演算部、外部から入力される周波数指令から上記周波数補正分を減算し出力周波数指令を演算する減算器、上記周波数指令に基づき上記周波数補正分で補正された電圧指令値を出力するV/F制御器、及び上記電圧指令値と上記出力周波数指令に基づいて三相電圧基準を出力しインバータの出力を制御する相電圧基準信号発生器を備え、振動を抑制して安定に運転するように制御するものである。
【0007】
また、速度検出器を有さない誘導電動機をインバータを介して駆動制御する誘導電動機の制御装置において、誘導電動機の入力電流を検出する電流検出器、
この電流検出器の検出電流を3φ/2φ変換して誘導電動機のトルク分電流を演算する3φ/2φ変換器、3φ/2φ変換器で演算したトルク分電流から低周波成分を通過させ、高周波雑音をカットしてトルク分電流の振動成分を取り出すバンドパスフィルタと、この振動成分から周波数補正分を演算するゲイン演算部を有する周波数補正分演算部、外部から入力される周波数指令に基づき上記周波数補正分で補正された電圧指令値を出力するV/F制御器、及び上記電圧指令値に基づいて三相電圧基準を出力しインバータの出力を制御する相電圧基準信号発生器を備え、振動を抑制して安定に運転するように制御するものである。
【0008】
また、周波数補正分演算部には、3φ/2φ変換器で演算したトルク分電流に、周波数指令または出力周波数指令に対応して重み付けする重み関数発生器を有するものである。
【0009】
【発明の実施の形態】
実施の形態1.
以下、この発明の実施の形態を図をもとに説明する。図1は実施の形態1による誘導電動機の制御装置を示す構成図である。図1において、5は周波数指令ωにより任意の電圧指令値Vを演算するV/F制御器、6は減算器14の出力周波数指令ωとV/F制御器5の電圧指令値Vにより三相正弦波電圧基準V ,V ,V を演算する相電圧基準信号発生器、7は相電圧基準信号発生器6の三相正弦波電圧基準V ,V ,V により誘導電動機IM2に印加する三相電圧V,V,Vを出力するインバータユニット(すなわちインバータ)、2はインバータユニット7の三相電圧V,V,Vにより運転制御される誘導電動機(IM)である。
【0010】
10a,10b,10cはインバータユニット7からIM2に流れる電流I,I,Iをおのおの検出する電流検出器、11は減算器14の出力周波数指令ωにより三角関数信号SINωt、COSωtを発生する三角関数信号発生器、12は電流検出器10a,10b,10cの電流I,I,Iを三角関数信号発生器11の三角関数信号SINωt、COSωtにて3φ/2φ変換することでIM2のトルク分電流Iqを演算する3φ/2φ変換部、13は3φ/2φ変換部12のトルク分電流Iqからトルク分電流の不安定成分つまり振動成分を取り出すハイパスフィルタと、上記トルク分電流の不安定成分から周波数補正分ωを演算するゲイン演算部Kaからなる周波数補正分演算部、14は周波数補正分演算部13のωと周波数指令ωから出力周波数指令ωを演算する減算器、20は周波数指令ωから周波数補正分ωを減算する減算器で、減算器20の出力をV/F制御器5に入力し、電圧指令値V*に反映させる。
【0011】
図1の動作を説明する。図2は図1の各部の値の波形図である。図2(a)に示すようにIM2の速度ωrが振動している場合、図2(b)に示すようなすべり周波数が発生する。この時、トルク分電流Iqも次の(1)式の関係で図2(c)に示す振動成分が発生する。
Iq ∝ すべり周波数 -------------- (1)
【0012】
このトルク分電流Iqからハイパスフィルタを用いて振動成分のみを抽出し、次の(2)式の関係を用いて図2(d)に示す周波数補正成分ωを算出する。
ω ∝ トルク分電流Iqの振動成分 ------------- (2)
【0013】
減算器14では、上記周波数補正分ωと周波数指令ωから、出力周波数指令ωを次の(3)式にて求めて
ω = ω−ω -------------- (3)
相電圧基準信号発生器6に入力する。同様に減算器20でω−ωを求めV/F制御器5に入力し、補正された電圧指令値Vを出力する。
【0014】
出力周波数指令ωと補正された電圧指令値Vを相電圧基準信号発生器6に入力し、相電圧基準信号発生器6で演算する。相電圧基準信号発生器6で演算し出力された相電圧基準信号にて運転されたIM2のすべり周波数(∝トルク分電流Iq)は、図2(e)に示すように振動成分がなくなり、安定した誘導電動機の運転特性が得られることになる。なお、周波数補正分演算部13におけるゲインKa、ハイパスフィルタの時定数tについては、アナログ回路であればボリューム、デジタル回路であればメモリまたは自己消去可能な不揮発メモリなどによって構成され、容易に設定値を可変できるようになっていることは言うまでもない。
そして、上述では、周波数補正分演算部13のフィルタ構成をハイパスフィルタとしたが、図5のように、3φ/2φ変換部12のトルク分電流I q からトルク分電流の振動成分を取り出すと共に、低周波成分を通過させ、高周波雑音をカットとする、所望の周波数 成分のみを抽出するバンドパスフィルタを採用することにより、定常特性を損なうことなくより安定な運転特性を得ることができる。
【0015】
また、上記では、周波数指令ωを周波数補正分ωで補正してV/F制御器5に入力しているが、周波数指令ωをそのまま入力してV/F制御器5の仮出力を得、この仮出力を周波数補正分ωで補償してV/F制御器5の本出力を得てもよい。
【0016】
実施の形態1のように、周波数補正分ωで、電圧指令値Vと出力周波数指令ωの両方を補正するようにしているので、誘導電動機IM2の磁束を一定に保つことになり、振動を抑制するトルクの補償を効果的に達成することができる。
【0017】
実施の形態2.
また、周波数補正分ωを図3に示すように、V/F制御器5により電圧指令値Vにのみ反映させても安定な運転特性が得られる。これは、IM2の印加電圧V,V,Vを変化させてもトルク分電流が変化することによる。
このようにすることにより、構成要素の一部を削除でき、安価に目的を達成できる。
そして、図3では、周波数補正分演算部13のフィルタ構成をハイパスフィルタとしたが、図5のように、3φ/2φ変換部12のトルク分電流I q からトルク分電流の振動成分を取り出すと共に、低周波成分を通過させ、高周波雑音をカットとする、所望の周波数成分のみを抽出するバンドパスフィルタを採用することにより、定常特性を損なうことなくより安定な運転特性を得ることができる。
【0018】
実施の形態3.
また、実施の形態1,2において、図4に示すように、周波数補正分演算部13と3φ/2φ変換部12との間に周波数指令ωまたは、出力周波数指令ωに対応した重みを発生する重み関数発生器30を付加することで、所望の運転周波数付近において安定な運転特性を得ることができる。
【0019】
【発明の効果】
以上説明したように、この発明の誘導電動機の制御装置によれば、速度検出器を有さない誘導電動機をインバータを介して駆動制御する誘導電動機の制御装置において、誘導電動機の入力電流を検出する電流検出器、この電流検出器の検出電流を3φ/2φ変換して誘導電動機のトルク分電流を演算する3φ/2φ変換器、3φ/2φ変換器で演算したトルク分電流から低周波成分を通過させ、高周波雑音をカットしてトルク分電流の振動成分を取り出すバンドパスフィルタと、この振動成分から周波数補正分を演算するゲイン演算部を有する周波数補正分演算部、外部から入力される周波数指令から上記周波数補正分を減算し出力周波数指令を演算する減算器、上記周波数指令に基づき上記周波数補正分で補正された電圧指令値を出力するV/F制御器、及び上記電圧指令値と上記出力周波数指令に基づいて三相電圧基準を出力しインバータの出力を制御する相電圧基準信号発生器を備え、振動を抑制して安定に運転するように制御するようにしたので、速度検出器を用いずに誘導電動機の安定な運転特性を得ることができる。システムが安価に構成でき誘導電動機の安定な運転特性を得られる効果がある。さらに、トルク分電流の振動成分を取り出すフィルタは、低周波成分を通過させ、高周波雑音をカットするバンドパスフィルタであるので、定常特性を損なうことなくより安定な運転特性を得ることができる。
【0020】
また、速度検出器を有さない誘導電動機をインバータを介して駆動制御する誘導電動機の制御装置において、誘導電動機の入力電流を検出する電流検出器、この電流検出器の検出電流を3φ/2φ変換して誘導電動機のトルク分電流を演算する3φ/2φ変換器、3φ/2φ変換器で演算したトルク分電流から低周波成分を通過させ、高周波雑音をカットしてトルク分電流の振動成分を取り出すバンドパスフィルタと、この振動成分から周波数補正分を演算するゲイン演算部を有する周波数補正分演算部、外部から入力される周波数指令に基づき上記周波数補正分で補正された電圧指令値を出力するV/F制御器、及び上記電圧指令値に基づいて三相電圧基準を出力しインバータの出力を制御する相電圧基準信号発生器を備え、振動を抑制して安定に運転するように制御するので、速度検出器を用いずに誘導電動機の安定な運転特性を得ることができ、システムがさらに安価に構成できる。さらに、トルク分電流の振動成分を取り出すフィルタは、低周波成分を通過させ、高周波雑音をカットするバンドパスフィルタであるので、定常特性を損なうことなくより安定な運転特性を得ることができる。
【0022】
また、周波数補正分演算部には、3φ/2φ変換器で演算したトルク分電流に、周波数指令または出力周波数指令に対応して重み付けする重み関数発生器を有するので、所望の運転周波数付近において安定な運転特性を得ることができる。
【図面の簡単な説明】
【図1】 この発明の実施の形態1による誘導電動機の制御装置を示す構成図である。
【図2】 図1の各部の値の波形図である。
【図3】 実施の形態2による誘導電動機の制御装置を示す構成図である。である。
【図4】 実施の形態3による誘導電動機の制御装置の主要部を示す構成図である。
【図5】 実施の形態1,2による誘導電動機の制御装置の主要部を示す構成図である。
【図6】 従来の誘導電動機を安定に運転する制御系の構成図である。
【符号の説明】
2 誘導電動機 5 V/F制御器
6 相電圧基準信号発生器 7 インバータ
11 三角関数信号発生器 12 3φ/2φ変換部
13 周波数補正分演算部 14 減算器
20 減算器 30 重み関数発生器。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control device that stably operates an induction motor with an inverter without adding a speed detector.
[0002]
[Prior art]
FIG. 6 is a configuration diagram of a control system for stably operating an induction motor with a conventional inverter. In the figure, 1 is a deviation detection for detecting a deviation ωr err between the speed command ωr * and the speed ωr of the induction motor IM2. 3 is a proportional-integral operation (PI) unit for estimating the slip frequency estimated value ωs 1 of IM2 from the deviation ωr err of the deviation detector 1, and 4 is a slip frequency estimated value ωs 1 of the PI unit 3 and the speed ωr of IM2. adder for calculating the output frequency command omega 0 a, 5 an adder 4 outputs frequency command omega V / F controller for calculating an arbitrary voltage command V * by 0, the output frequency command omega 0 of 6 adders 4 And a phase voltage reference signal generator 7 for calculating the three-phase sine wave voltage reference V U * , V V * , V W * according to the voltage command V * of the V / F controller 5. three-phase sinusoidal voltage reference V U *, V V * V W * by three-phase voltage V U applied to IM2, V V, V W, an inverter unit for outputting, 2 three-phase voltage V U of the inverter unit 7, V V, V W induction motor is operated by ( IM) and 8 are speed detectors for detecting the speed ωr of IM2.
[0003]
Next, the operation will be described. When IM2 operated by the inverter unit 7 becomes unstable in the control system configuration shown in FIG. 6, a slip frequency ωs 1 based on the difference between the speed command ωr * and the speed ωr is generated in IM2. At this time, the deviation detector 1 detects the deviation ωr err between the speed command ωr * and the speed ωr of IM2, and the estimated slip frequency ωs 1 * changes until the deviation ωr err becomes zero in the PI unit 3. The adder 4 calculates the output frequency command ω 0 from the slip frequency ωs 1 * and the speed ωr of IM2. Thus, since the conventional method is constituted by the speed feedback control system so that the speed ωr of IM2 matches the speed command ωr * , the induction motor can be operated stably.
[0004]
[Problems to be solved by the invention]
In order to stably control the conventional induction motor, it is necessary to specially install a speed detector 8 for detecting the speed ωr of IM2 as shown in FIG. When the speed detector 8 fails or malfunctions, the speed ωr input to the deviation detector 1 is different from the actual speed of IM2, and the control configuration of FIG. 6 malfunctions, and the speed ωr of IM2 is the speed command ωr. * There was a problem that good operating characteristics could not be obtained.
[0005]
The present invention has been made to solve the above-described problems, and an object thereof is to obtain a control device that stably operates an induction motor using an inverter without using a speed detector.
[0006]
[Means for Solving the Problems]
An induction motor control device according to the present invention is an induction motor control device that drives and controls an induction motor having no speed detector via an inverter. The current detector detects an input current of the induction motor, and the current detection 3φ / 2φ converter by converting the detected current of the generator to 3φ / 2φ converter that calculates the torque component current of the induction motor The low frequency component is passed from the torque component current calculated by the 3φ / 2φ converter , and high frequency noise is cut A bandpass filter that extracts the vibration component of the torque component current, a frequency correction calculation unit having a gain calculation unit that calculates the frequency correction component from this vibration component, and subtracts the frequency correction component from the frequency command input from the outside. A subtractor that calculates an output frequency command, a V / F controller that outputs a voltage command value corrected by the frequency correction based on the frequency command, and the voltage Comprising a decree value and the output frequency command on the basis of outputs three-phase voltage reference phase voltage reference signal generator for controlling the output of the inverter, and controls to operate stably and suppress vibration.
[0007]
In addition, in an induction motor control device that drives and controls an induction motor that does not have a speed detector via an inverter, a current detector that detects an input current of the induction motor,
The current detected by this current detector is 3φ / 2φ converted to calculate the torque component current of the induction motor. The 3φ / 2φ converter, which passes the low frequency component from the torque component current calculated by the 3φ / 2φ converter, and the high frequency noise A band-pass filter that extracts the vibration component of the torque component current and a frequency correction calculation unit having a gain calculation unit that calculates a frequency correction component from the vibration component, and the frequency correction based on the frequency command input from the outside A V / F controller that outputs a voltage command value corrected in minutes and a phase voltage reference signal generator that outputs a three-phase voltage reference based on the voltage command value and controls the output of the inverter, thereby suppressing vibration. Therefore, it is controlled so as to operate stably.
[0008]
Further, the frequency correction component calculation unit includes a weight function generator that weights the torque component current calculated by the 3φ / 2φ converter in accordance with the frequency command or the output frequency command .
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing a control device for an induction motor according to a first embodiment. In FIG. 1, 5 is a V / F controller that calculates an arbitrary voltage command value V * according to a frequency command ω * , and 6 is an output frequency command ω 0 of a subtractor 14 and a voltage command value V of a V / F controller 5. The phase voltage reference signal generator for calculating the three-phase sine wave voltage reference V U * , V V * , V W * by * , 7 is the three-phase sine wave voltage reference V U * , V of the phase voltage reference signal generator 6 An inverter unit (that is, an inverter) that outputs three-phase voltages V U , V V , and V W to be applied to the induction motor IM2 by V * and V W * , and 2 is a three-phase voltage V U , V V , V of the inverter unit 7 An induction motor (IM) whose operation is controlled by W.
[0010]
Reference numerals 10a, 10b, and 10c denote current detectors that detect currents I U , I V , and I W flowing from the inverter unit 7 to IM2, respectively, and 11 denotes a trigonometric function signal SINω 0 t, COSω according to the output frequency command ω 0 of the subtractor 14. A trigonometric function signal generator 12 for generating 0 t is used to convert the currents I U , I V , and I W of the current detectors 10 a, 10 b, and 10 c into trigonometric function signals SINω 0 t and COSω 0 t of the trigonometric function signal generator 11. 3φ / 2φ converter for calculating the torque component current Iq of IM2 by performing 3φ / 2φ conversion, and 13 is a high pass for extracting an unstable component of the torque component current, that is, a vibration component from the torque component current Iq of the 3φ / 2φ converter 12 filters and, frequency correction calculation section consisting gain calculator Ka for computing the frequency correction amount omega s from unstable component of the torque current, 14 a frequency correction component Starring Omega s and subtracter for calculating an output frequency command omega 0 from the frequency command omega * parts 13, 20 is a subtractor for subtracting the frequency correction amount omega s from frequency command omega *, the output of the subtracter 20 V / F This is input to the controller 5 and reflected in the voltage command value V *.
[0011]
The operation of FIG. 1 will be described. FIG. 2 is a waveform diagram of values at various parts in FIG. When the speed ωr of IM2 is oscillating as shown in FIG. 2A, a slip frequency as shown in FIG. 2B is generated. At this time, the torque component current Iq also generates the vibration component shown in FIG.
Iq ∝ Slip frequency -------------- (1)
[0012]
Only a vibration component is extracted from the torque component current Iq using a high-pass filter, and a frequency correction component ω s shown in FIG. 2D is calculated using the relationship of the following equation (2).
ω s振動 Vibration component of torque current Iq ------------- (2)
[0013]
The subtractor 14 obtains the output frequency command ω 0 from the frequency correction ω s and the frequency command ω * by the following equation (3), and ω 0 = ω * −ω s -------- ------ (3)
Input to the phase voltage reference signal generator 6. Similarly, ω * −ω s is obtained by the subtracter 20 and input to the V / F controller 5 to output the corrected voltage command value V * .
[0014]
The output frequency command ω 0 and the corrected voltage command value V * are input to the phase voltage reference signal generator 6 and calculated by the phase voltage reference signal generator 6. The slip frequency (∝torque current Iq) of IM2 operated with the phase voltage reference signal calculated and output by the phase voltage reference signal generator 6 has no vibration component and is stable as shown in FIG. The operating characteristics of the induction motor thus obtained can be obtained. The gain Ka and the time constant t of the high-pass filter in the frequency correction calculation unit 13 are configured by a volume in the case of an analog circuit, a memory or a self-erasable nonvolatile memory in the case of a digital circuit, and can be easily set. Needless to say, it can be changed.
In the above description, the filter configuration of the frequency correction component calculation unit 13 is a high-pass filter. However, as shown in FIG. 5, the vibration component of the torque component current is extracted from the torque component current I q of the 3φ / 2φ conversion unit 12 . By adopting a band-pass filter that extracts only a desired frequency component that allows low-frequency components to pass and cuts high-frequency noise, more stable operation characteristics can be obtained without impairing steady-state characteristics.
[0015]
In the above description, the frequency command ω * is corrected by the frequency correction amount ω s and input to the V / F controller 5. However, the frequency command ω * is input as it is and the temporary output of the V / F controller 5 is input. The temporary output may be compensated with the frequency correction ω s to obtain the main output of the V / F controller 5.
[0016]
As in the first embodiment, since both the voltage command value V * and the output frequency command ω 0 are corrected by the frequency correction amount ω s , the magnetic flux of the induction motor IM2 is kept constant, Compensation of torque that suppresses vibration can be achieved effectively.
[0017]
Embodiment 2. FIG.
Further, as shown in FIG. 3, even if the frequency correction amount ω s is reflected only on the voltage command value V * by the V / F controller 5, stable operation characteristics can be obtained. This is because even if the applied voltages V U , V V and V W of IM2 are changed, the current corresponding to the torque changes.
By doing in this way, a part of component can be deleted and the objective can be achieved at low cost.
In FIG. 3, the filter configuration of the frequency correction amount calculation unit 13 is a high-pass filter. However, as shown in FIG. 5, the vibration component of the torque component current is extracted from the torque component current I q of the 3φ / 2φ conversion unit 12. By adopting a band-pass filter that passes only a low frequency component and cuts high frequency noise and extracts only a desired frequency component, a more stable operation characteristic can be obtained without impairing the steady state characteristic.
[0018]
Embodiment 3 FIG.
In the first and second embodiments, as shown in FIG. 4, a weight corresponding to the frequency command ω * or the output frequency command ω 0 is set between the frequency correction calculation unit 13 and the 3φ / 2φ conversion unit 12. By adding the weight function generator 30 to be generated, it is possible to obtain stable operation characteristics in the vicinity of a desired operation frequency .
[0019]
【The invention's effect】
As described above, according to the induction motor control apparatus of the present invention, in the induction motor control apparatus that drives and controls an induction motor that does not have a speed detector via an inverter, the input current of the induction motor is detected. Current detector, 3φ / 2φ converter converts current detected by this current detector to calculate torque component current of induction motor 3φ / 2φ converter 3φ / 2φ converter passes low frequency component from torque component current calculated by 3φ / 2φ converter A band-pass filter that cuts out high-frequency noise and extracts the vibration component of the torque component current, a frequency correction calculation unit having a gain calculation unit that calculates a frequency correction component from the vibration component, and a frequency command input from the outside A subtractor that subtracts the frequency correction value to calculate an output frequency command, and outputs a voltage command value corrected by the frequency correction value based on the frequency command. A controller and a phase voltage reference signal generator for controlling the output of the inverter by outputting a three-phase voltage reference based on the voltage command value and the output frequency command, and controlling so as to suppress vibration and operate stably. As a result, stable operating characteristics of the induction motor can be obtained without using a speed detector. The system can be configured at low cost, and there is an effect that stable operation characteristics of the induction motor can be obtained. Further, the filter for extracting the vibration component of the torque component current is a bandpass filter that passes the low-frequency component and cuts the high-frequency noise, so that more stable operation characteristics can be obtained without impairing the steady-state characteristics.
[0020]
In addition, in an induction motor control device that controls the drive of an induction motor without a speed detector via an inverter, a current detector that detects the input current of the induction motor, and the detected current of this current detector is converted into 3φ / 2φ Then, the 3φ / 2φ converter that calculates the torque component current of the induction motor passes the low frequency component from the torque component current calculated by the 3φ / 2φ converter , cuts the high frequency noise, and extracts the vibration component of the torque component current. A frequency correction component calculation unit having a band pass filter and a gain calculation unit for calculating a frequency correction component from the vibration component, and outputting a voltage command value corrected by the frequency correction component based on a frequency command input from the outside. / F controller and a phase voltage reference signal generator that outputs a three-phase voltage reference based on the voltage command value and controls the output of the inverter, and suppresses vibration and And controls to operate the, it is possible to obtain a stable operation characteristics of an induction motor without using a speed detector, the system can be further low cost. Further, the filter for extracting the vibration component of the torque component current is a bandpass filter that passes the low-frequency component and cuts the high-frequency noise, so that more stable operation characteristics can be obtained without impairing the steady-state characteristics.
[0022]
In addition, the frequency correction calculation unit has a weight function generator that weights the torque component current calculated by the 3φ / 2φ converter according to the frequency command or output frequency command, so that it is stable near the desired operating frequency. Driving characteristics can be obtained.
[Brief description of the drawings]
FIG. 1 is a configuration diagram illustrating an induction motor control apparatus according to Embodiment 1 of the present invention;
FIG. 2 is a waveform diagram of values at various parts in FIG. 1;
FIG. 3 is a block diagram showing a control device for an induction motor according to a second embodiment. It is.
FIG. 4 is a configuration diagram showing a main part of a control device for an induction motor according to a third embodiment.
FIG. 5 is a configuration diagram showing a main part of a control device for an induction motor according to Embodiments 1 and 2 ;
FIG. 6 is a configuration diagram of a control system for stably operating a conventional induction motor.
[Explanation of symbols]
2 Induction motor 5 V / F controller 6 Phase voltage reference signal generator 7 Inverter 11 Trigonometric function signal generator 12 3φ / 2φ conversion unit 13 Frequency correction calculation unit 14 Subtractor 20 Subtractor 30 Weight function generator.

Claims (3)

速度検出器を有さない誘導電動機をインバータを介して駆動制御する誘導電動機の制御装置において、
誘導電動機の入力電流を検出する電流検出器、
この電流検出器の検出電流を3φ/2φ変換して誘導電動機のトルク分電流を演算する3φ/2φ変換器、
3φ/2φ変換器で演算したトルク分電流から低周波成分を通過させ、高周波雑音をカットしてトルク分電流の振動成分を取り出すバンドパスフィルタと、この振動成分から周波数補正分を演算するゲイン演算部を有する周波数補正分演算部、
外部から入力される周波数指令から上記周波数補正分を減算し出力周波数指令を演算する減算器、
上記周波数指令に基づき上記周波数補正分で補正された電圧指令値を出力するV/F制御器、
及び上記電圧指令値と上記出力周波数指令に基づいて三相電圧基準を出力しインバータの出力を制御する相電圧基準信号発生器を備え、
振動を抑制して安定に運転するように制御する誘導電動機の制御装置。
In an induction motor control device that drives and controls an induction motor that does not have a speed detector via an inverter,
A current detector for detecting the input current of the induction motor,
A 3φ / 2φ converter for calculating a torque component current of the induction motor by converting the detected current of this current detector by 3φ / 2φ,
A bandpass filter that passes the low frequency component from the torque component current calculated by the 3φ / 2φ converter, cuts out the high frequency noise and extracts the vibration component of the torque component current, and gain calculation that calculates the frequency correction component from this vibration component A frequency correction calculation unit having a unit,
A subtractor that calculates the output frequency command by subtracting the frequency correction from the frequency command input from the outside,
A V / F controller that outputs a voltage command value corrected by the frequency correction based on the frequency command;
And a phase voltage reference signal generator for controlling the output of the inverter by outputting a three-phase voltage reference based on the voltage command value and the output frequency command,
A control device for an induction motor that performs control so as to suppress vibration and operate stably.
速度検出器を有さない誘導電動機をインバータを介して駆動制御する誘導電動機の制御装置において、
誘導電動機の入力電流を検出する電流検出器、
この電流検出器の検出電流を3φ/2φ変換して誘導電動機のトルク分電流を演算する3φ/2φ変換器、
3φ/2φ変換器で演算したトルク分電流から低周波成分を通過させ、高周波雑音をカットしてトルク分電流の振動成分を取り出すバンドパスフィルタと、この振動成分から周波数補正分を演算するゲイン演算部を有する周波数補正分演算部、
外部から入力される周波数指令に基づき上記周波数補正分で補正された電圧指令値を出力するV/F制御器、
及び上記電圧指令値に基づいて三相電圧基準を出力しインバータの出力を制御する相電圧基準信号発生器を備え、
振動を抑制して安定に運転するように制御する誘導電動機の制御装置。
In an induction motor control device that drives and controls an induction motor that does not have a speed detector via an inverter,
A current detector for detecting the input current of the induction motor,
A 3φ / 2φ converter for calculating a torque component current of the induction motor by converting the detected current of this current detector by 3φ / 2φ,
A bandpass filter that passes the low frequency component from the torque component current calculated by the 3φ / 2φ converter, cuts out the high frequency noise and extracts the vibration component of the torque component current, and gain calculation that calculates the frequency correction component from this vibration component A frequency correction calculation unit having a unit,
A V / F controller that outputs a voltage command value corrected by the frequency correction based on a frequency command input from the outside;
And a phase voltage reference signal generator for controlling the output of the inverter by outputting a three-phase voltage reference based on the voltage command value,
A control device for an induction motor that performs control so as to suppress vibration and operate stably.
周波数補正分演算部には、3φ/2φ変換器で演算したトルク分電流に、周波数指令または出力周波数指令に対応して重み付けする重み関数発生器を有する請求項1又は請求項2記載の誘導電動機の制御装置。  3. The induction motor according to claim 1, wherein the frequency correction component calculation unit includes a weight function generator that weights the torque component current calculated by the 3φ / 2φ converter in accordance with the frequency command or the output frequency command. Control device.
JP2000218462A 2000-07-19 2000-07-19 Induction motor control device Expired - Lifetime JP3749426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000218462A JP3749426B2 (en) 2000-07-19 2000-07-19 Induction motor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000218462A JP3749426B2 (en) 2000-07-19 2000-07-19 Induction motor control device

Publications (2)

Publication Number Publication Date
JP2002034290A JP2002034290A (en) 2002-01-31
JP3749426B2 true JP3749426B2 (en) 2006-03-01

Family

ID=18713403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000218462A Expired - Lifetime JP3749426B2 (en) 2000-07-19 2000-07-19 Induction motor control device

Country Status (1)

Country Link
JP (1) JP3749426B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4221307B2 (en) * 2004-01-07 2009-02-12 日立アプライアンス株式会社 Synchronous motor control device, electrical equipment and module
JP4679487B2 (en) * 2006-10-27 2011-04-27 三菱電機株式会社 Motor control device and refrigeration air conditioner
EP2221236B1 (en) * 2007-12-14 2014-08-06 Mitsubishi Electric Corporation Electric power-steering controller
CN103701385B (en) * 2013-12-17 2016-06-08 中冶南方(武汉)自动化有限公司 The suppressing method of induction machine V/F opened loop control vibration
CN112671306B (en) * 2021-01-20 2023-04-14 上海辛格林纳新时达电机有限公司 Method and device for suppressing vibration of VF-controlled three-phase motor
JP7501388B2 (en) 2021-01-25 2024-06-18 株式会社明電舎 POWER CONVERSION SYSTEM AND METHOD FOR CONTROLLING POWER CONVERSION SYSTEM

Also Published As

Publication number Publication date
JP2002034290A (en) 2002-01-31

Similar Documents

Publication Publication Date Title
JP4988329B2 (en) Beatless control device for permanent magnet motor
JP3813637B2 (en) AC motor control device
KR100934311B1 (en) Inverter device
US5400240A (en) Power converter apparatus
JP2008206391A (en) Reduction of subharmonic oscillation in high-frequency action of power inverter
WO1998042070A1 (en) Apparatus and method for controlling induction motor
JPH03270685A (en) Controller for induction motor
JP4889329B2 (en) Control device for voltage source inverter
JP4911352B2 (en) Electric motor control device and control method
JP5412820B2 (en) AC motor control device and control method
JP3591414B2 (en) Control device for permanent magnet synchronous motor
JP3749426B2 (en) Induction motor control device
JPH1189297A (en) Power converting device
TWI427916B (en) Inverter control device and control method thereof
RU2486658C1 (en) Electric motor control device
JP4533677B2 (en) Power converter
EP0121792A2 (en) Vector control method and system for an induction motor
JP7459906B2 (en) motor control device
JP2004248450A (en) Power converter
JP4543720B2 (en) Speed sensorless vector controller
JP6018792B2 (en) Power converter control method
JPH11262300A (en) Power inverting equipment
JPH10201099A (en) Active filter
JP4698312B2 (en) Power converter
JP4351469B2 (en) Induction motor control device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051201

R151 Written notification of patent or utility model registration

Ref document number: 3749426

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131209

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term