[go: up one dir, main page]

JP3745885B2 - Method for producing aromatic compound using methane as raw material - Google Patents

Method for producing aromatic compound using methane as raw material Download PDF

Info

Publication number
JP3745885B2
JP3745885B2 JP23911597A JP23911597A JP3745885B2 JP 3745885 B2 JP3745885 B2 JP 3745885B2 JP 23911597 A JP23911597 A JP 23911597A JP 23911597 A JP23911597 A JP 23911597A JP 3745885 B2 JP3745885 B2 JP 3745885B2
Authority
JP
Japan
Prior art keywords
catalyst
methane
reaction
aromatic compound
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23911597A
Other languages
Japanese (ja)
Other versions
JPH1160514A (en
Inventor
勝 市川
隆一郎 大西
社田 劉
群 董
隆夫 川村
Original Assignee
市川 勝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 市川 勝 filed Critical 市川 勝
Priority to JP23911597A priority Critical patent/JP3745885B2/en
Publication of JPH1160514A publication Critical patent/JPH1160514A/en
Application granted granted Critical
Publication of JP3745885B2 publication Critical patent/JP3745885B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/76Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C07C2529/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、天然ガス等の低級炭化水素から化学工業、薬品類、プラスチック類などの化学製品の原料であるベンゼン及びナフタレン類を主成分とする芳香族化合物と高純度の水素ガスを効率的に製造し得る触媒とその製造方法に関するものである。
【0002】
【従来の技術】
従来、ベンゼン、トルエン、キシレン等の芳香族化合物は主にナフサから製造されている。
また、ナフタレン類の製造方法としては石炭などの溶剤抽出法、天然ガスやアセチレンなどのガス熱分解法などの非触媒方法が採られている。しかし、これら従来法ではベンゼン及びナフタレン類は石炭やアセチレンなどの原料に対して数パーセントしか得られず、また副生芳香族化合物や炭化水素、タールや非溶解性の炭素残留物が多く、問題点を有している。また石炭などの溶剤抽出法では多量の有機溶剤を必要とする難点もある。
またメタンやアセチレンの熱分解法による製造方法では、数%以上の変換効率でナフタレン類を製造するには1000℃以上の反応温度が必要であるにもかかわらず、ナフタレン類の収量は変換メタンあるいはアセチレンの1%以下であり、実用上問題があった。
【0003】
他に、触媒を用いたナフタレン類の製造法としては、オルトキシレン等のアルキルベンゼン類を高温で白金類担持触媒を用いて脱水素縮合化反応することによりナフタレン類を製造する方法も知られているが、ナフタレン類の変換効率は低く、また原料として用いるアルキルベンゼン類が高価であることもあって実用上問題があった。
【0004】
さらに、本発明において併産される水素ガスの製造法としては、水成ガス(ウォターガスシフト)反応あるいは原油の熱分解法、製鉄廃ガスを用いる水素製造法などがあげられるが、製造ガス中に触媒毒である硫黄類、一酸化炭素等が含まれることから、これら従来法で製造された水素ガスの場合は触媒毒の除去、精製に多大な負荷と設備を必要とする工業的問題があった。
【0005】
一方、低級炭化水素とりわけメタンからベンゼン等の芳香族化合物と水素とを併産する方法としては、触媒の存在下、酸素あるいは酸化剤の非存在下にメタンを反応させる方法が知られている。この際の触媒としてはZSM−5に担持されたモリブデンが有効とされている〔「JOURNAL OF CATALYSIS」165,150−161(1997)、及び該文献に引用された文献等〕。しかしながら、これらの触媒した場合でも、炭素析出が多いことやメタンの転化率が低いという問題点のほかに、触媒のライフが非常に短いという問題点を有している。
【0006】
【発明が解決しようとする課題】
本発明は斯かる従来技術の実状と問題点に鑑み、天然ガス等の低級炭化水素を用いて有用な化学原料であるベンゼン、ナフタレン等の芳香族化合物と水素ガスとを同時に製造する有効な低級炭化水素変換用触媒並びにそれを用いた芳香族化合物の製造法を提供することを課題とする。
【0007】
【課題を解決するための手段】
本発明者らは前記課題を達成するために、鋭意検討を行った結果、本発明を完成するに至った。
本発明は、触媒の存在下にメタンを反応させて芳香族炭化水素を主成分とする芳香族化合物及び水素を製造するにあたり、一酸化炭素及び/又は二酸化炭素の共存下に反応を行うことを特徴とする、芳香族炭化水素を主成分とする芳香族化合物及び水素の製造方法に関する。
【0008】
また本発明は、モリブデンを担持したメタロシリケートとからなる触媒の存在下、メタンを反応させて芳香族炭化水素を主成分とする芳香族化合物及び水素を製造するにあたり、一酸化炭素及び/又は二酸化炭素の共存下に反応を行う事を特徴とする芳香族炭化水素を主成分とする芳香族化合物及び水素の製造方法に関する。
【0011】
また本発明は、一酸化炭素及び/又は二酸化炭素の添加量が、反応に供給する全原料ガスにおける容量%として0.01〜30%の範囲であることを特徴とする、低級炭化水素を反応させて芳香族炭化水素を主成分とする芳香族化合物及び水素を製造する前記の各芳香族化合物及び水素の製造方法に関する。
【0012】
【発明の実施の形態】
本発明では、触媒の存在下、メタンを反応させ芳香族炭化水素を主成分とする芳香族化合物及び水素を製造するにあたり、一酸化炭素及び二酸化炭素から選ばれた一種又は二種のガスの共存下に反応を行うことが重要である。一酸化炭素及び/又は二酸化炭素の共存下に反応を行うことにより、低級炭化水素の反応転化率を向上させ、さらにベンゼンの生成速度の低下を著しく抑制することができる。
【0013】
一酸化炭素や二酸化炭素は、それぞれ、単独で添加しても両者を混合して添加しても差し支えない。
一酸化炭素及び/又は二酸化炭素の添加量は、反応系に供給する原料ガスにおける容量%として0.01〜30%、好ましくは0.1〜25%の範囲である。この範囲よりも添加量が少ないとその効果が小さく、また、この範囲より添加量が多いと反応器の容積効率が悪くなるため好ましくない。
【0014】
本発明で原料として用いられる低級炭化水素は、重量%で少なくとも50%、好ましくは、少なくとも70%のメタンを含有するものである。メタン含有量がこの範囲であれば、その他に炭素数が2〜6の飽和及び不飽和炭化水素が含まれていても差し支えない。これらの炭化水素の例としては、エタン、エチレン、プロパン、プロピレン、n−ブタン、イソブタン、n−ブテン及びイソブテン等が例示できる。
【0015】
本発明で触媒として用いるメタロシリケートとしては、例えばアルミノシリケートの場合、シリカ及びアルミナからなる多孔質担体であるモレキュラーシーブ5A(UTA)、フォジャサイト(NaY)及びNaX,ZSM−5やリン酸を主成分とするALPO−5、VPI−5等の多孔質担体で6〜13Åのミクロ細孔やチャンネルからなることを特徴とするゼオライト担体やシリカを主成分とし一部アルミナを成分として含むメゾ細孔(10〜100Å)の筒状細孔(チャンネル)で特徴づけられるFSM−16やMCM−41などのメゾ細孔多孔質担体などが例示できる。アルミノシリケートの他に、シリカ及びチタニアから成るチタノシリケート等も用いることが出来る。
【0016】
本発明で用いるメタロシリケートは表面積が200〜1000m2 /gであり、ミクロ及びメゾ細孔は5〜100Åの範囲のものが好ましい。また、例えばアミルノシリケートの場合のシリカとアルミナの含有比としては、通常入手し得る多孔質担体のシリカ/アルミナ=1〜8000のものを用いることができるが、本発明の低級炭化水素の芳香族化反応を、実用的な低級炭化水素の転化率及び芳香族化合物への選択率で実施するためには、シリカ/アルミナ比は10〜100であることが好ましい。
【0017】
本発明の触媒に用いられるモリブデン金属並びにそれらの化合物から選ばれた少なくとも一種とメタロシリケートからなる低級炭化水素の芳香族化触媒は、モリブデンを含む前駆体をメタロシリケートに担持することにより得ることができる。
本発明で用いられるモリブデンを含む前駆体の例としては、モリブデンの塩化物、臭化物等のハロゲン化物、硝酸塩、硫酸塩、リン酸塩等の鉱酸塩、炭酸塩、酢酸塩、蓚酸塩等のカルボン酸塩を例示することができる。
【0018】
モリブデンからなる成分をメタロシリケートに担持させる際の、金属又はその化合物の担持量に特に制限はないが、通常、全触媒重量に基づいて0.001〜50%、好ましくは0.01〜40%が良好な担持量範囲である。
【0019】
モリブデン成分をメタロシリケートに担持させる方法としては、前述した金属の前駆体の水溶液あるいはアルコール等の有機溶媒の溶液としてメタロシリケートに含浸担持させるか、あるいはイオン変換方法により担持させた後、不活性ガスあるいは酸素ガス中で加熱処理する方法がある。この方法の一例をより具体的に説明すると、まず最初に、例えばメタロシリケート担体に硝酸亜鉛の水溶液を含浸担持させ、さらに乾燥して溶媒を適当量除いた後、窒素含有酸素気流中又は純酸素気流中で250〜800℃、好ましくは350〜600℃で加熱処理して亜鉛を担持したメタロシリケート触媒を製造することができる。
【0021】
モリブデンを含む第一成分の前駆体の例としては、パラモリブデン酸アンモニウム、リンモリブデン酸、12ケイモリブデン酸の他に、塩化物、臭化物等のハロゲン化物、硝酸塩、硫酸塩、リン酸塩等の鉱酸塩、炭酸塩、酢酸塩、蓚酸塩等のカルボン酸塩等が例示できる。
【0022】
また、第二成分を含む前駆体の例としては、第二成分の塩化物、臭化物等のハロゲン化物、硝酸塩、硫酸塩、リン酸塩等の鉱酸塩、炭酸塩、酢酸塩、蓚酸塩等のカルボン酸塩等が例示できる。
【0023】
モリブデンをメタロシリケートに担持させて触媒を形成する際の、金属としてのモリブデンの担持量は、全触媒重量に基づいて0.001以上、50%未満、好ましくは0.01〜40%が良好な担持量範囲であり、第二成分の担持量は0.001以上、50%未満、好ましくは0.01〜40%が良好な担持量範囲である。
ただし、モリブデンと第二成分の担持量の合計は、全触媒重量に基づいて0.002〜50%、好ましくは0.02〜40%の担持量範囲である。
また、メタロシリケートへの金属の担持方法や、加熱処理方法は上述した方法と同様に実施できる。
【0024】
本発明で用いられるモリブデンを含有するヘテロポリ酸とメタロシリケートとからなる低級炭化水素の芳香族化触媒は、ヘテロポリ酸をメタロシリケートに担持することにより製造出来る。
ヘテロポリ酸の例としては、12−リンモリブデン酸、12−リンモリブデンタングステン酸、12−リンモリブデンバナジン酸等が例示できる。
【0025】
ヘテロポリ酸をメタロシリケートに担持する際の、金属と担体の重量割合(使用されるヘテロポリ酸中に含まれるモリブデン金属の重量と担体の重量割合)は、全触媒重量に基づいてそれぞれ0.001〜50%、好ましくは0.01〜40%の範囲である。また、メタロシリケートへのヘテロポリ酸の担持方法や、加熱処理方法は上述した方法と同様に実施できる。
本発明に用いる触媒は粉末状又はペレット状及びその他の形状のいずれの形状であっても使用できる。
【0026】
本発明に用いるメタンの変換触媒は、芳香族化合物を生成する誘導期を短縮するため、水素ガスやヒドラジン、金属水素化合物、例えばBH3 、NaH、AlH3 等による前処理を含む触媒活性化過程を施してもよい。
【0027】
本発明のメタンの変換反応は、回分式あるいは流通式の反応形式で実施されるが、固定床、移動床又は流動化床等の流通式反応形式で実施することが好ましい。
反応は、メタンを、一酸化炭素及び/又は二酸化炭素の存在下で300〜800℃、好ましくは450〜775℃で触媒と接触させることによって行われる。
反応は、0.1〜10気圧、好ましくは1〜7気圧で好適に実施される。重量時間空間速度(WHSV)は0.1〜10であり、好ましくは0.5〜5.0である。
反応生成物から回収される未反応原料及び反応に添加される一酸化炭素又は二酸化炭素は、芳香族化反応に再循環させることができる。
【0028】
【実施例】
以下に、本発明を実施例によりさらに詳細に説明する。
なお、メタン転化率、炭化水素選択率、炭化水素の分布及び水素生成速度は以下のように定義した。

Figure 0003745885
水素生成速度=触媒1gあたり、1秒間に生成した水素のnmol数
ベンゼン生成速度=触媒1gあたり、1秒間に生成したベンゼンのnmol数
【0029】
実施例1
HZSM−5にモリブデンを担持した触媒の調製方法
パラモリブデン酸アンモニウム塩0.66gを10mlの蒸留水に溶解し、HZSM−5(シリカ/アルミナ比=23、表面積800m2 /g、細孔径=7Å)の粉末12gを加え、充分に攪拌しながら回転式減圧エバポレーターを用いて蒸発乾固して、パラモリブデン酸アンモニウムのHZSM−5担持体を得た。これを石英製反応管(1.2φ、長さ30cm、V字タイプ)に充填後、純酸素ガス流下(40ml/分、1気圧)、400℃で4時間焼成して薄草色粉末として、全触媒重量に基づいて3%のモリブデンをHZSM−5に担持した触媒(以下、Mo(3%)/HZSM−5と略記する)を得た。
【0030】
実施例2
実施例1で調製したMo(3%)/HZSM−5触媒を用いて、メタンの芳香族化反応を行った。
Mo(3%)/HZSM−5触媒(シリカ/アルミナ比=23)0.3gを固定床流通式反応装置の石英製反応管(内径8mm)に充填し、反応温度700℃、常圧で原料ガスとしてメタンガスに一酸化炭素を所定量添加したガスを7.5ml/minの流量で供給し、メタンの芳香族化反応を行った。
反応管流出物中には未反応のメタンの他に、水素、一酸化炭素、二酸化炭素、炭素数2〜5の炭化水素、ベンゼン、トルエン、キシレン、メシチレン、ナフタレン、メチルナフタレン、ジメチルナフタレン、アントラセン等が存在していた。
反応開始後、200分経過後の結果を表1に、400分経過後の結果を表2に、1440分経過後の結果を表3に示す。
【0031】
比較例1
実施例2において、原料ガス中に一酸化炭素を添加しない以外は、実施例2と同様の方法でメタンの芳香族化反応を行った。反応開示後、200分経過後の結果を表1に、400分経過後の結果を表2に、1440分経過後の結果を表3に示す。
【0032】
【表1】
Figure 0003745885
【0033】
注(表1〜4に共通)
CO濃度:供給原料ガス中の一酸化炭素の容量%
転化率 :メタン転化率
HC選択率:炭化水素選択率
HC分布:炭化水素の分布
6 6 :ベンゼン
108 :ナフタレン
【0034】
【表2】
Figure 0003745885
【0035】
【表3】
Figure 0003745885
【0036】
実施例3
実施例2において、原料ガス中に一酸化炭素に変えて二酸化炭素を用いた以外は、実施例2と同様の方法でメタンの芳香族化反応を行った。反応開始後、1300分経過後の結果を表4に、1840分経過後の結果を表5に示す。
【0037】
【表4】
Figure 0003745885
【0038】
【表5】
Figure 0003745885
【0039】
【発明の効果】
以上の結果から、本発明によれば、触媒の存在下、メタンを芳香族化反応に付して高付加価値製品であるベンゼン、トルエン、キシレン及びナフタレン等の芳香族炭化水素及び水素を製造する際に、一酸化炭素又は二酸化炭素の共存下に反応を行うことにより、メタンの反応転化率を向上させることができ、さらにベンゼン等の芳香族化合物及び水素の生成速度の低下を著しく抑制することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention efficiently converts aromatic hydrocarbons mainly composed of benzene and naphthalene and high-purity hydrogen gas, which are raw materials for chemical products such as chemical industry, chemicals, and plastics from lower hydrocarbons such as natural gas. The present invention relates to a catalyst that can be produced and a method for producing the same.
[0002]
[Prior art]
Conventionally, aromatic compounds such as benzene, toluene and xylene are mainly produced from naphtha.
As a method for producing naphthalenes, non-catalytic methods such as solvent extraction methods such as coal and gas pyrolysis methods such as natural gas and acetylene are employed. However, in these conventional methods, only a few percent of benzene and naphthalene can be obtained with respect to raw materials such as coal and acetylene, and there are many by-product aromatic compounds, hydrocarbons, tar, and insoluble carbon residues, which is problematic. Has a point. In addition, solvent extraction methods such as coal have a drawback that requires a large amount of organic solvent.
Also, in the production method of methane and acetylene by the thermal decomposition method, the production of naphthalenes requires a reaction temperature of 1000 ° C. or more to produce naphthalenes with a conversion efficiency of several percent or more. It was 1% or less of acetylene, and there was a problem in practical use.
[0003]
In addition, as a method for producing naphthalenes using a catalyst, a method for producing naphthalenes by subjecting alkylbenzenes such as orthoxylene to a dehydrogenative condensation reaction using a platinum-supported catalyst at a high temperature is also known. However, the conversion efficiency of naphthalenes is low, and the alkylbenzenes used as a raw material are expensive, causing problems in practical use.
[0004]
Furthermore, examples of the method for producing the hydrogen gas produced in the present invention include an aquatic gas (water gas shift) reaction, a pyrolysis method of crude oil, a hydrogen production method using iron manufacturing waste gas, and the like. Since sulfur and carbon monoxide, which are catalyst poisons, are included, hydrogen gas produced by these conventional methods has an industrial problem that requires a large load and equipment for removal and purification of the catalyst poison. It was.
[0005]
On the other hand, as a method for producing lower hydrocarbons, in particular methane, aromatic compounds such as benzene and hydrogen, a method is known in which methane is reacted in the presence of a catalyst and in the absence of oxygen or an oxidizing agent. Molybdenum supported on ZSM-5 is effective as a catalyst in this case (“JOURNAL OF CATALYSIS” 165, 150-161 (1997), and literatures cited in the literature). However, even when these catalysts are used, there are problems that the life of the catalyst is very short in addition to the problems that carbon deposition is large and the conversion rate of methane is low.
[0006]
[Problems to be solved by the invention]
In view of the actual situation and problems of the prior art, the present invention is effective in producing an aromatic compound such as benzene and naphthalene, which is a useful chemical raw material, and hydrogen gas simultaneously using a lower hydrocarbon such as natural gas. It is an object of the present invention to provide a hydrocarbon conversion catalyst and a method for producing an aromatic compound using the catalyst.
[0007]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors have completed the present invention.
The present invention relates to the reaction in the presence of carbon monoxide and / or carbon dioxide in producing an aromatic compound mainly composed of aromatic hydrocarbons and hydrogen by reacting methane in the presence of a catalyst. The present invention relates to an aromatic compound mainly comprising an aromatic hydrocarbon and a method for producing hydrogen.
[0008]
The present invention also provides carbon monoxide and / or carbon dioxide in the production of an aromatic compound mainly composed of aromatic hydrocarbons and hydrogen by reacting methane in the presence of a catalyst comprising molybdenum-supported metallosilicate. The present invention relates to an aromatic compound mainly composed of an aromatic hydrocarbon and a method for producing hydrogen, characterized in that the reaction is performed in the presence of carbon.
[0011]
The present invention also provides a reaction with lower hydrocarbons, characterized in that the amount of carbon monoxide and / or carbon dioxide added is in the range of 0.01 to 30% as a volume% of the total raw material gas supplied to the reaction. The present invention relates to an aromatic compound mainly composed of an aromatic hydrocarbon and hydrogen, and to each of the above aromatic compounds and a method for producing hydrogen.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, coexistence of one or two gases selected from carbon monoxide and carbon dioxide in the production of an aromatic compound mainly composed of an aromatic hydrocarbon and hydrogen by reacting methane in the presence of a catalyst. It is important to carry out the reaction below. By performing the reaction in the coexistence of carbon monoxide and / or carbon dioxide, the reaction conversion rate of the lower hydrocarbon can be improved, and the decrease in the production rate of benzene can be remarkably suppressed.
[0013]
Carbon monoxide and carbon dioxide may be added alone or in combination.
The addition amount of carbon monoxide and / or carbon dioxide is in the range of 0.01 to 30%, preferably 0.1 to 25% as a volume% in the raw material gas supplied to the reaction system. If the addition amount is less than this range, the effect is small, and if the addition amount is more than this range, the volumetric efficiency of the reactor deteriorates, which is not preferable.
[0014]
The lower hydrocarbon used as a raw material in the present invention contains at least 50%, preferably at least 70% methane by weight. If the methane content is within this range, other saturated and unsaturated hydrocarbons having 2 to 6 carbon atoms may be included. Examples of these hydrocarbons include ethane, ethylene, propane, propylene, n-butane, isobutane, n-butene and isobutene.
[0015]
As the metallosilicate used as a catalyst in the present invention, for example, in the case of aluminosilicate, molecular sieve 5A (UTA), faujasite (NaY), NaX, ZSM-5 and phosphoric acid, which are porous carriers made of silica and alumina, are used. A porous carrier such as ALPO-5, VPI-5, etc., which is the main component, consisting of 6 to 13 micropores and channels, and a meso-fine material containing silica as a main component and partly alumina as a component. Examples include mesoporous porous carriers such as FSM-16 and MCM-41 characterized by cylindrical pores (channels) having pores (10 to 100 mm). In addition to aluminosilicate, titanosilicate composed of silica and titania can also be used.
[0016]
The metallosilicate used in the present invention preferably has a surface area of 200 to 1000 m 2 / g and micro and mesopores in the range of 5 to 100 mm. For example, as the content ratio of silica and alumina in the case of amylnosilicate, a commonly available porous carrier of silica / alumina = 1 to 8000 can be used. In order to carry out the grouping reaction at a practical lower hydrocarbon conversion and selectivity to aromatic compounds, the silica / alumina ratio is preferably 10-100.
[0017]
A lower hydrocarbon aromatization catalyst comprising at least one selected from molybdenum metal and compounds thereof used in the catalyst of the present invention and a metallosilicate can be obtained by supporting a precursor containing molybdenum on a metallosilicate. it can.
Examples of precursors containing molybdenum used in the present invention include halides such as molybdenum chlorides and bromides, mineral salts such as nitrates, sulfates and phosphates, carbonates, acetates, oxalates and the like. Carboxylic acid salts can be exemplified.
[0018]
There is no particular limitation on the amount of the metal or its compound when the component consisting of molybdenum is supported on the metallosilicate, but usually 0.001 to 50%, preferably 0.01 to 40% based on the total catalyst weight. Is a good loading range.
[0019]
As a method for supporting the molybdenum component on the metallosilicate, the metal precursor is impregnated and supported as an aqueous solution of the above-mentioned metal precursor or an organic solvent such as alcohol, or after being supported by an ion conversion method, and then an inert gas. Alternatively, there is a method of heat treatment in oxygen gas. An example of this method will be described more specifically. First, for example, a metallosilicate carrier is impregnated with an aqueous solution of zinc nitrate, dried, and after removing an appropriate amount of solvent, in a nitrogen-containing oxygen stream or pure oxygen. A metallosilicate catalyst carrying zinc can be produced by heat treatment in an air stream at 250 to 800 ° C., preferably 350 to 600 ° C.
[0021]
Examples of precursors of the first component containing molybdenum include ammonium paramolybdate, phosphomolybdic acid, 12 silicomolybdic acid, halides such as chloride and bromide, nitrates, sulfates, phosphates and the like. Examples thereof include carboxylates such as mineral acid salts, carbonates, acetates, and oxalates.
[0022]
Examples of the precursor containing the second component include halides such as chloride and bromide of the second component, mineral salts such as nitrates, sulfates and phosphates, carbonates, acetates, oxalates, etc. The carboxylate salt etc. can be illustrated.
[0023]
When the catalyst is formed by supporting molybdenum on a metallosilicate, the supported amount of molybdenum as a metal is 0.001 or more and less than 50%, preferably 0.01 to 40% based on the total catalyst weight. The supported amount range is such that the supported amount of the second component is 0.001 or more and less than 50%, preferably 0.01 to 40%.
However, the total supported amount of molybdenum and the second component is in the range of 0.002 to 50%, preferably 0.02 to 40%, based on the total catalyst weight.
Moreover, the metal loading method to the metallosilicate and the heat treatment method can be carried out in the same manner as described above.
[0024]
The lower hydrocarbon aromatization catalyst comprising the heteropolyacid containing molybdenum and the metallosilicate used in the present invention can be produced by supporting the heteropolyacid on the metallosilicate.
Examples of heteropolyacids include 12-phosphomolybdic acid, 12-phosphomolybdenum tungstic acid, 12-phosphomolybdenum vanadic acid, and the like.
[0025]
When the heteropolyacid is supported on the metallosilicate, the weight ratio of the metal and the support (the weight ratio of the molybdenum metal contained in the heteropolyacid used and the weight ratio of the support) is 0.001 to 0.001 based on the total catalyst weight, respectively. It is 50%, preferably in the range of 0.01-40%. In addition, the method for supporting the heteropolyacid on the metallosilicate and the heat treatment method can be carried out in the same manner as described above.
The catalyst used in the present invention can be used in any form of powder, pellets, and other shapes.
[0026]
The methane conversion catalyst used in the present invention is a catalyst activation process including pretreatment with hydrogen gas, hydrazine, metal hydride, such as BH 3 , NaH, AlH 3, etc., in order to shorten the induction period for producing an aromatic compound. May be applied.
[0027]
The methane conversion reaction of the present invention is carried out in a batch-type or flow-type reaction mode, but is preferably carried out in a flow-type reaction mode such as a fixed bed, moving bed or fluidized bed.
The reaction is carried out by contacting methane with the catalyst in the presence of carbon monoxide and / or carbon dioxide at 300-800 ° C, preferably 450-775 ° C.
The reaction is suitably carried out at 0.1 to 10 atmospheres, preferably 1 to 7 atmospheres. The weight hourly space velocity (WHSV) is 0.1 to 10, preferably 0.5 to 5.0.
Unreacted raw material recovered from the reaction product and carbon monoxide or carbon dioxide added to the reaction can be recycled to the aromatization reaction.
[0028]
【Example】
Hereinafter, the present invention will be described in more detail by way of examples.
The methane conversion rate, hydrocarbon selectivity, hydrocarbon distribution, and hydrogen production rate were defined as follows.
Figure 0003745885
Hydrogen production rate = nmoles of hydrogen produced per second per gram of catalyst Benzene production rate = nmoles of benzene produced per second per gram of catalyst
Example 1
Preparation Method of Catalyst with Molybdenum Supported on HZSM-5 0.66 g of ammonium paramolybdate was dissolved in 10 ml of distilled water, and HZSM-5 (silica / alumina ratio = 23, surface area 800 m 2 / g, pore size = 7Å). ) Was added and evaporated to dryness using a rotary vacuum evaporator with sufficient stirring to obtain an HZSM-5 carrier of ammonium paramolybdate. After filling this into a quartz reaction tube (1.2φ, length 30 cm, V-shaped), it was fired at 400 ° C. for 4 hours under a pure oxygen gas flow (40 ml / min, 1 atm) as a light grass-colored powder. A catalyst (hereinafter abbreviated as Mo (3%) / HZSM-5) having 3% molybdenum supported on HZSM-5 based on the catalyst weight was obtained.
[0030]
Example 2
Using the Mo (3%) / HZSM-5 catalyst prepared in Example 1, methane aromatization reaction was performed.
A quartz reaction tube (inner diameter: 8 mm) of Mo (3%) / HZSM-5 catalyst (silica / alumina ratio = 23) was charged into a fixed-bed flow reactor and the raw material at a reaction temperature of 700 ° C. and normal pressure. A gas obtained by adding a predetermined amount of carbon monoxide to methane gas as a gas was supplied at a flow rate of 7.5 ml / min to perform aromatization reaction of methane.
In the reaction tube effluent, in addition to unreacted methane, hydrogen, carbon monoxide, carbon dioxide, hydrocarbons having 2 to 5 carbon atoms, benzene, toluene, xylene, mesitylene, naphthalene, methylnaphthalene, dimethylnaphthalene, anthracene Etc. existed.
The results after 200 minutes from the start of the reaction are shown in Table 1, the results after 400 minutes are shown in Table 2, and the results after 1440 minutes are shown in Table 3.
[0031]
Comparative Example 1
In Example 2, the methane aromatization reaction was performed in the same manner as in Example 2 except that carbon monoxide was not added to the raw material gas. After the reaction is disclosed, the results after 200 minutes are shown in Table 1, the results after 400 minutes are shown in Table 2, and the results after 1440 minutes are shown in Table 3.
[0032]
[Table 1]
Figure 0003745885
[0033]
Note (common to Tables 1 to 4)
CO concentration:% of carbon monoxide in the feed gas
Conversion: methane conversion HC selectivity: hydrocarbon selectivity HC distribution: hydrocarbon distribution C 6 H 6 : benzene C 10 H 8 : naphthalene
[Table 2]
Figure 0003745885
[0035]
[Table 3]
Figure 0003745885
[0036]
Example 3
In Example 2, the aromatization reaction of methane was performed in the same manner as in Example 2 except that carbon dioxide was used instead of carbon monoxide in the raw material gas. Table 4 shows the results after 1300 minutes after the start of the reaction, and Table 5 shows the results after 1840 minutes.
[0037]
[Table 4]
Figure 0003745885
[0038]
[Table 5]
Figure 0003745885
[0039]
【The invention's effect】
From the above results, according to the present invention, methane is subjected to an aromatization reaction in the presence of a catalyst to produce aromatic hydrocarbons and hydrogen such as benzene, toluene, xylene and naphthalene, which are high value-added products. When the reaction is carried out in the presence of carbon monoxide or carbon dioxide, the reaction conversion rate of methane can be improved, and the reduction of the production rate of aromatic compounds such as benzene and hydrogen is remarkably suppressed. Can do.

Claims (2)

芳香族化合物の製造方法において、メタロシリケートにモリブデンを担持した触媒の存在下に、一酸化炭素及び/又は二酸化炭素の少なくともいずれか一方の共存下にてメタンから芳香族炭化水素および水素を製造することを特徴とする芳香族化合物の製造方法。  In the method for producing an aromatic compound, an aromatic hydrocarbon and hydrogen are produced from methane in the presence of at least one of carbon monoxide and / or carbon dioxide in the presence of a catalyst in which molybdenum is supported on a metallosilicate. The manufacturing method of the aromatic compound characterized by the above-mentioned. 一酸化炭素及び/又は二酸化炭素の添加量が、反応に供給する全原料ガスにおける容量%として0.01〜30%の範囲であることを特徴とする請求項1記載の芳香族化合物の製造方法。  The method for producing an aromatic compound according to claim 1, wherein the addition amount of carbon monoxide and / or carbon dioxide is in the range of 0.01 to 30% as a volume% in the total raw material gas supplied to the reaction. .
JP23911597A 1997-08-21 1997-08-21 Method for producing aromatic compound using methane as raw material Expired - Lifetime JP3745885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23911597A JP3745885B2 (en) 1997-08-21 1997-08-21 Method for producing aromatic compound using methane as raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23911597A JP3745885B2 (en) 1997-08-21 1997-08-21 Method for producing aromatic compound using methane as raw material

Publications (2)

Publication Number Publication Date
JPH1160514A JPH1160514A (en) 1999-03-02
JP3745885B2 true JP3745885B2 (en) 2006-02-15

Family

ID=17040027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23911597A Expired - Lifetime JP3745885B2 (en) 1997-08-21 1997-08-21 Method for producing aromatic compound using methane as raw material

Country Status (1)

Country Link
JP (1) JP3745885B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8642493B2 (en) 2008-11-25 2014-02-04 Meidensha Corporation Process for producing lower-hydrocarbon aromatization catalyst and lower-hydrocarbon aromatization catalyst
WO2014208757A1 (en) 2013-06-27 2014-12-31 株式会社ブリヂストン Antioxidant, rubber composition, and tire

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001110437A (en) * 1999-10-12 2001-04-20 Kansai Research Institute Hydrogen fuel supply system for fuel cell
JP2001334151A (en) * 2000-05-30 2001-12-04 Masaru Ichikawa Catalyst for converting lower hydrocarbon into aromatic compound and method for producing aromatic compound and hydrogen from lower hydrocarbon as raw material
JP2001334152A (en) * 2000-05-30 2001-12-04 Masaru Ichikawa Catalyst for converting lower hydrocarbon into aromatic compound and method for producing aromatic compound and hydrogen from lower hydrocarbon as raw material
JP2006016353A (en) * 2004-07-02 2006-01-19 Taisei Corp Method for producing aromatic compound and hydrogen from lower hydrocarbon
RU2349569C2 (en) 2004-07-28 2009-03-20 Мейденся Корпорейшн Method of producing aromatic hydrocarbon and hydrogen
US7683227B2 (en) * 2004-12-22 2010-03-23 Exxonmobil Chemical Patents Inc. Production of aromatic hydrocarbons from methane
CA2620480C (en) 2005-09-30 2012-01-03 Meidensha Corporation Process for production of aromatic compound
WO2007126811A2 (en) * 2006-04-21 2007-11-08 Exxonmobil Chemical Patent Inc. Process for methane conversion
WO2007142864A2 (en) * 2006-05-31 2007-12-13 Exxonmobil Chemical Patents Inc. Use of isotopic analysis for determination of aromatic hydrocarbons produced from methane
CN101652177B (en) 2007-03-20 2013-11-13 株式会社明电舍 Catalyst for aromatization of lower hydrocarbon and process for producing aromatic compound
JP5568833B2 (en) * 2007-11-12 2014-08-13 株式会社明電舎 Lower hydrocarbon aromatization catalyst and method for producing aromatic compound
JP5568834B2 (en) * 2007-03-20 2014-08-13 株式会社明電舎 Lower hydrocarbon aromatization catalyst and method for producing aromatic compound
JP5540462B2 (en) 2007-06-07 2014-07-02 株式会社明電舎 Regeneration method for lower hydrocarbon aromatization catalyst
US8558045B2 (en) 2007-06-29 2013-10-15 Meidensha Corporation Catalyst for aromatization of lower hydrocarbons and process for production of aromatic compounds
JP5315698B2 (en) * 2007-06-29 2013-10-16 株式会社明電舎 Method for producing aromatic compound
JP5286815B2 (en) * 2008-02-20 2013-09-11 株式会社明電舎 Lower hydrocarbon aromatization catalyst and method for producing aromatic compound
WO2009020045A1 (en) 2007-08-03 2009-02-12 Mitsui Chemicals, Inc. Process for production of aromatic hydrocarbons
WO2009091336A1 (en) 2008-01-16 2009-07-23 Agency For Science, Technology And Research Catalyst preparation and methods of using such catalysts
JP5736633B2 (en) * 2008-04-18 2015-06-17 株式会社明電舎 Catalyst and production method thereof
CN102112417A (en) * 2008-07-29 2011-06-29 株式会社明电舍 Process for producing aromatic compound
JP5151951B2 (en) * 2008-12-12 2013-02-27 株式会社明電舎 Lower hydrocarbon aromatization catalyst and method for producing the catalyst
JP2011195535A (en) * 2010-03-23 2011-10-06 Meidensha Corp Method for producing aromatic compound
JP5283665B2 (en) * 2010-07-02 2013-09-04 勝 市川 Lower hydrocarbon aromatic compound catalyst, aromatic compound using lower hydrocarbon as raw material, and method for producing hydrogen
JP5283666B2 (en) * 2010-07-02 2013-09-04 勝 市川 Lower hydrocarbon aromatic compound catalyst, aromatic compound using lower hydrocarbon as raw material, and method for producing hydrogen
JP2015063560A (en) * 2014-12-25 2015-04-09 株式会社明電舎 Method for producing aromatic hydrocarbon

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8642493B2 (en) 2008-11-25 2014-02-04 Meidensha Corporation Process for producing lower-hydrocarbon aromatization catalyst and lower-hydrocarbon aromatization catalyst
WO2014208757A1 (en) 2013-06-27 2014-12-31 株式会社ブリヂストン Antioxidant, rubber composition, and tire

Also Published As

Publication number Publication date
JPH1160514A (en) 1999-03-02

Similar Documents

Publication Publication Date Title
JP3745885B2 (en) Method for producing aromatic compound using methane as raw material
JP3755955B2 (en) Lower hydrocarbon aromatization catalyst and method for producing aromatic compound using the catalyst
US6239057B1 (en) Catalyst for the conversion of low carbon number aliphatic hydrocarbons to higher carbon number hydrocarbons, process for preparing the catalyst and process using the catalyst
JP5266225B2 (en) Process for producing aromatic hydrocarbons
JP3985038B2 (en) Process for producing aromatic hydrocarbons and hydrogen from lower hydrocarbons
US8097763B2 (en) Process for production of aromatic compound
KR20110082600A (en) Stable form-selective catalysts for aromatic alkylation and methods of using and preparing the same
JP3755968B2 (en) Lower hydrocarbon aromatization catalyst and process for producing aromatic compounds using the catalyst
EP0202000A1 (en) Aromatisation of paraffins
JP2001334151A (en) Catalyst for converting lower hydrocarbon into aromatic compound and method for producing aromatic compound and hydrogen from lower hydrocarbon as raw material
EP0068542B1 (en) A process for alkylating benzene or c1 to c5-alkyl-substituted benzenes
WO2012002269A1 (en) Method for producing aromatic hydrocarbon
JP2001334152A (en) Catalyst for converting lower hydrocarbon into aromatic compound and method for producing aromatic compound and hydrogen from lower hydrocarbon as raw material
JP5283665B2 (en) Lower hydrocarbon aromatic compound catalyst, aromatic compound using lower hydrocarbon as raw material, and method for producing hydrogen
JP5283666B2 (en) Lower hydrocarbon aromatic compound catalyst, aromatic compound using lower hydrocarbon as raw material, and method for producing hydrogen
JP5564769B2 (en) Lower hydrocarbon aromatization catalyst and method for producing aromatic compound
JP4943671B2 (en) Lower hydrocarbon aromatization catalyst and method for producing aromatic hydrocarbon and hydrogen from lower hydrocarbon using the same
US20230021410A1 (en) Alkyl-Demethylation Processes and Catalyst Compositions Therefor
EP0105591B1 (en) Catalytic conversion of methanol into light olefins
JP4302954B2 (en) Method for producing lower hydrocarbon aromatic compound catalyst
WO2011118279A1 (en) Method of manufacture for aromatic compound
JP3171877B2 (en) Process for producing liquid hydrocarbon mixtures from ethane
JP4790356B2 (en) Lower hydrocarbon reforming catalyst
JP5151951B2 (en) Lower hydrocarbon aromatization catalyst and method for producing the catalyst
US12023655B2 (en) Oxides of sulfur and their use as oxygen transfer reagents

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050315

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20050719

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20050808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081202

Year of fee payment: 3

S202 Request for registration of non-exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R315201

S221 Written request for registration of change of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081202

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term