[go: up one dir, main page]

JP2001334151A - Catalyst for converting lower hydrocarbon into aromatic compound and method for producing aromatic compound and hydrogen from lower hydrocarbon as raw material - Google Patents

Catalyst for converting lower hydrocarbon into aromatic compound and method for producing aromatic compound and hydrogen from lower hydrocarbon as raw material

Info

Publication number
JP2001334151A
JP2001334151A JP2000160615A JP2000160615A JP2001334151A JP 2001334151 A JP2001334151 A JP 2001334151A JP 2000160615 A JP2000160615 A JP 2000160615A JP 2000160615 A JP2000160615 A JP 2000160615A JP 2001334151 A JP2001334151 A JP 2001334151A
Authority
JP
Japan
Prior art keywords
catalyst
hydrogen
aromatic compound
lower hydrocarbon
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000160615A
Other languages
Japanese (ja)
Inventor
Masaru Ichikawa
勝 市川
Ryuichiro Onishi
隆一郎 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido Soda Co Ltd
Japan Steel Works Ltd
Original Assignee
Hokkaido Soda Co Ltd
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido Soda Co Ltd, Japan Steel Works Ltd filed Critical Hokkaido Soda Co Ltd
Priority to JP2000160615A priority Critical patent/JP2001334151A/en
Publication of JP2001334151A publication Critical patent/JP2001334151A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

(57)【要約】 【課題】 天然ガス等の低級炭化水素を用いてベンゼ
ン、ナフタレン等の芳香族化合物と水素ガスを製造する
ための芳香族化触媒及びその製造方法を提供する。 【解決手段】 Re又はその化合物の一種以上を必須と
し、所望により、Zn、Ga、Co、Fe又はそれらの
化合物の1種以上、Cr、W、Mo又はそれらの化合物
の1種以上、希土類金属またはその化合物の1種以上を
含む触媒材料と、メタロシリケートからなる触媒を用い
る。該触媒の存在下、好ましくは一酸化炭素及び/又は
二酸化炭素の共存下、低級炭化水素を原料に芳香族化合
物及び水素を製造する。 【効果】 ベンゼン、トルエン、キシレン及びナフタ
レン等の芳香族炭化水素と水素を効率的に製造できる。
又、一酸化炭素又は二酸化炭素の共存下に反応を行う
と、反応転化率が向上し、さらに経時的な生成速度の低
下を抑制して長時間安定した性能が得られる。
PROBLEM TO BE SOLVED: To provide an aromatization catalyst for producing an aromatic compound such as benzene and naphthalene and hydrogen gas using a lower hydrocarbon such as natural gas and a method for producing the same. SOLUTION: Re or one or more of its compounds is essential, and if desired, one or more of Zn, Ga, Co, Fe or their compounds, one or more of Cr, W, Mo or their compounds, a rare earth metal Alternatively, a catalyst comprising one or more of these compounds and a metallosilicate catalyst is used. An aromatic compound and hydrogen are produced from a lower hydrocarbon as a raw material in the presence of the catalyst, preferably in the presence of carbon monoxide and / or carbon dioxide. [Effect] Aromatic hydrocarbons such as benzene, toluene, xylene and naphthalene and hydrogen can be efficiently produced.
Further, when the reaction is carried out in the coexistence of carbon monoxide or carbon dioxide, the reaction conversion rate is improved, and furthermore, the reduction of the generation rate over time is suppressed, and stable performance for a long time is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、天然ガス等の低級
炭化水素から化学工業、薬品類、プラスチック類などの
化学製品の原料であるベンゼン及びナフタレン類を主成
分とする芳香族化合物と高純度の水素ガスを効率的に製
造し得る触媒とその製造方法に関するものである。
[0001] The present invention relates to an aromatic compound mainly composed of benzene and naphthalene, which is a raw material of chemical products such as chemical industry, chemicals, plastics, etc., from lower hydrocarbons such as natural gas and high purity. The present invention relates to a catalyst capable of efficiently producing hydrogen gas and a method for producing the same.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
ベンゼン、トルエン、キシレン等の芳香族化合物は主に
ナフサから製造されている。また、ナフタレン類の製造
方法としては石炭などの溶剤抽出法、天然ガスやアセチ
レンなどのガス熱分解法などの非触媒方法が採られてい
る。しかし、これら従来法ではベンゼン及びナフタレン
類は石炭やアセチレンなどの原料に対して数パーセント
しか得られず、また副生芳香族化合物や炭化水素、ター
ルや非溶解性の炭素残留物が多く、問題点を有してい
る。また石炭などの溶剤抽出法では多量の有機溶剤を必
要とする難点もある。またメタンやアセチレンの熱分解
法による製造方法では、数%以上の変換効率でナフタレ
ン類を製造するには1000℃以上の反応温度が必要で
あるにもかかわらず、ナフタレン類の収量は変換メタン
あるいはアセチレンの数%以下であり、実用上問題があ
った。
2. Description of the Related Art
Aromatic compounds such as benzene, toluene and xylene are mainly produced from naphtha. As a method for producing naphthalenes, non-catalytic methods such as a solvent extraction method using coal or the like and a gas pyrolysis method using natural gas or acetylene are used. However, in these conventional methods, only a few percent of benzene and naphthalenes are obtained from raw materials such as coal and acetylene, and there are many by-product aromatic compounds, hydrocarbons, tars, and insoluble carbon residues. Have a point. In addition, there is also a drawback that a large amount of organic solvent is required in the solvent extraction method for coal or the like. In addition, in the production method of methane or acetylene by the thermal decomposition method, the production of naphthalenes requires a reaction temperature of 1000 ° C. or more in order to produce naphthalenes with a conversion efficiency of several percent or more, but the yield of naphthalenes is reduced to methane or methane. It was less than several percent of acetylene, and there was a problem in practical use.

【0003】他に、触媒を用いたナフタレン類の製造法
としては、オルトキシレン等のアルキルベンゼン類を高
温で白金類担持触媒を用いて脱水素縮合化反応すること
によりナフタレン類を製造する方法も知られているが、
ナフタレン類の変換効率は低く、また原料として用いる
アルキルベンゼン類が高価であることもあって実用上問
題があった。
[0003] In addition, as a method for producing naphthalenes using a catalyst, there is also known a method for producing naphthalenes by subjecting an alkylbenzene such as orthoxylene to a dehydrocondensation reaction at a high temperature using a platinum-supported catalyst. Has been
The conversion efficiency of naphthalenes is low, and the alkylbenzenes used as raw materials are expensive.

【0004】さらに、本発明において併産される水素ガ
スの製造法としては、製鉄廃ガスや石炭の部分酸化で生
成する一酸化炭素を用いる水成ガス(ウォーターガスシ
フト)反応及び天然ガスの水蒸気改質反応による高温・
高圧の反応条件下で実施される工業プロセスがある。さ
らに原油の熱分解法での水素製造法などがあげられる
が、製造ガス中に触媒毒である硫黄や窒素酸化物等や、
生成される水素中に副生物である一酸化炭素等が含まれ
ることから、これら従来法で製造された水素ガスの場合
は触媒毒の除去、精製に多大な負荷と設備を必要とする
工業的問題があった。また、これら従来法による水素製
造法では水素生成に伴い多量の炭酸ガスを副生排出する
ことから地球環境の上から重大な問題がある。
Further, as a method for producing hydrogen gas co-produced in the present invention, there are a hydrogas (water gas shift) reaction using carbon monoxide generated by the partial oxidation of steelmaking waste gas and coal, and steam reforming of natural gas. High temperature
There are industrial processes performed under high pressure reaction conditions. Further, there is a method of producing hydrogen by a thermal cracking method of crude oil, and the like.
Since hydrogen produced contains carbon monoxide and other by-products, hydrogen gas produced by these conventional methods requires a large load and equipment for removing and refining catalyst poisons. There was a problem. In addition, these conventional methods for producing hydrogen have a serious problem in terms of the global environment because a large amount of carbon dioxide is discharged as a by-product of the production of hydrogen.

【0005】一方、低級炭化水素とりわけメタンからベ
ンゼン等の芳香族化合物と水素とを併産する方法として
は、触媒の存在下、酸素あるいは酸化剤の非存在下にメ
タンを反応させる方法が知られている。この際の触媒と
してはZSM−5に担持されたモリブデンが有効とされ
ている〔「JOURNAL OF CATALYSI
S」165頁、150−161頁(1997年)、及び
該文献に引用された文献等〕。しかしながら、これらの
触媒を使用した場合でも、炭素析出が多いことやメタン
の転化率が低いという問題点のほかに、触媒の寿命が非
常に短く実用化プロセスのための好ましい触媒性能が得
られないという問題点を有している。
On the other hand, as a method of simultaneously producing an aromatic compound such as benzene and hydrogen from a lower hydrocarbon, especially methane, a method of reacting methane in the presence of a catalyst and in the absence of oxygen or an oxidizing agent is known. ing. As a catalyst at this time, molybdenum supported on ZSM-5 is considered to be effective [“JOURNAL OF CATALYSI”.
S ", pages 165, 150-161 (1997), and references cited therein. However, even with the use of these catalysts, in addition to the problems of high carbon deposition and low methane conversion, the catalyst life is very short, and favorable catalyst performance for a practical process cannot be obtained. There is a problem that.

【0006】本発明は斯かる従来技術の実状と問題点に
鑑み、天然ガス等のメタンを主成分とする低級炭化水素
を用いて有用な化学原料であるベンゼン、ナフタレン等
の芳香族化合物と水素ガスとを高転化率で高選択率の触
媒性能をもって同時に製造することができ、しかも長時
間にわたり安定な触媒能を示すメタン等の低級炭化水素
の直接改質法触媒並びにそれを用いた芳香族化合物と水
素の製造法を提供することを課題とする。
The present invention has been made in view of the circumstances and problems of the prior art, and has been found to be effective in using aromatic compounds such as benzene and naphthalene, which are useful chemical raw materials, using lower hydrocarbons containing methane as a main component such as natural gas. Direct conversion method of lower hydrocarbons such as methane, which can simultaneously produce gas with high conversion and high selectivity catalytic performance, and shows stable catalytic performance for a long time, and aromatics using the same It is an object to provide a method for producing a compound and hydrogen.

【0007】[0007]

【課題を解決するための手段】本発明者らは前記課題を
達成するために、鋭意検討を行った結果、本発明を完成
するに至った。すなわち、本発明の低級炭化水素の芳香
族化合物化触媒のうち第1の発明は、レニウムまたはそ
の化合物で構成される群から選択される一種以上の触媒
材料と、該触媒材料を担持するメタロシリケートとを有
することを特徴とする。
Means for Solving the Problems The present inventors have made intensive studies to achieve the above object, and as a result, completed the present invention. That is, the first invention among the lower hydrocarbon aromatic compound conversion catalysts of the present invention is characterized by one or more catalyst materials selected from the group consisting of rhenium or a compound thereof, and a metallosilicate supporting the catalyst materials. And characterized in that:

【0008】第2の発明の低級炭化水素の芳香族化合物
化触媒は、第1の発明において、前記触媒材料として、
亜鉛、Ga、Co、鉄またはそれらの化合物で構成され
る群から選択される1種以上を含むことを特徴とする。
The catalyst for converting a lower hydrocarbon into an aromatic compound according to the second invention is the catalyst according to the first invention, wherein the catalyst material is
It is characterized by containing at least one selected from the group consisting of zinc, Ga, Co, iron and compounds thereof.

【0009】第3の発明の低級炭化水素の芳香族化合物
化触媒は、第1または第2の発明において、前記触媒材
料として、クロム、タングステン、モリブデンまたはそ
れらの化合物で構成される群から選択される1種以上を
含むことを特徴とする。
The catalyst for converting a lower hydrocarbon into an aromatic compound according to the third invention is selected from the group consisting of chromium, tungsten, molybdenum or a compound thereof as the catalyst material in the first or second invention. It is characterized by including one or more types.

【0010】第4の発明の低級炭化水素の芳香族化合物
化触媒は、第1〜第3の発明のいずれかにおいて、前記
触媒材料として、希土類金属またはその化合物で構成さ
れる群から選択される1種以上を含むことを特徴とす
る。
The catalyst for converting a lower hydrocarbon into an aromatic compound according to a fourth invention is the catalyst according to any one of the first to third inventions, wherein the catalyst material is selected from the group consisting of a rare earth metal or a compound thereof. It is characterized by including one or more types.

【0011】第5の発明の低級炭化水素の芳香族化合物
化触媒は、第1〜第4の発明のいずれかにおいて、前記
メタロシリケートが多孔質体であることを特徴とする。
[0011] A catalyst for converting a lower hydrocarbon into an aromatic compound according to a fifth invention is characterized in that, in any one of the first to fourth inventions, the metallosilicate is a porous material.

【0012】さらに、第6の発明の低級炭化水素を原料
とする芳香族化合物及び水素の製造方法は、第1〜第5
の発明のいずれかに記載の触媒の存在下で、メタン等の
低級炭化水素を反応させて芳香族炭化物を主成分とする
芳香族化合物と水素とを製造することを特徴とする。
Further, the method for producing an aromatic compound and hydrogen from a lower hydrocarbon as a raw material according to the sixth invention is described in the first to fifth aspects.
Wherein a lower hydrocarbon such as methane is reacted in the presence of the catalyst according to any one of the inventions to produce an aromatic compound having an aromatic carbide as a main component and hydrogen.

【0013】第7の発明の低級炭化水素を原料とする芳
香族化合物及び水素の製造方法は、第6の発明におい
て、前記反応を一酸化炭素及び/又は二酸化炭素の共存
下に行うことを特徴とする。
The method for producing an aromatic compound and hydrogen from a lower hydrocarbon according to the seventh invention is characterized in that, in the sixth invention, the reaction is carried out in the presence of carbon monoxide and / or carbon dioxide. And

【0014】第8の発明の低級炭化水素を原料とする芳
香族化合物及び水素の製造方法は、第7の発明におい
て、一酸化炭素及び/又は二酸化炭素の添加量が、反応
に供給する全原料ガスにおける容量%として0.01〜
30%の範囲であることを特徴とする。
The method for producing an aromatic compound and hydrogen from a lower hydrocarbon as a raw material according to the eighth invention is the method according to the seventh invention, wherein the amount of carbon monoxide and / or carbon dioxide added to the reaction 0.01 to as volume% in gas
It is characterized by being in the range of 30%.

【0015】[0015]

【発明の実施の形態】本発明は、後述する触媒(触媒材
料+担体)の存在下、低級炭化水素を反応させて芳香族
炭化水素を主成分とする芳香族化合物及び水素を製造す
る技術分野に適用される。ここで、本発明で原料として
用いられる低級炭化水素としては、重量%で少なくとも
50%、好ましくは、少なくとも70%のメタンを含有
する天然ガス等を示すことができる。メタン含有量がこ
の範囲であれば、その他に炭素数が2〜6の飽和及び不
飽和炭化水素が含まれていても差し支えない。これらの
炭化水素の例としては、エタン、エチレン、プロパン、
プロピレン、n−ブタン、イソブタン、n−ブチン及び
イソブテン等が例示できる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a technical field for producing an aromatic compound mainly composed of an aromatic hydrocarbon and hydrogen by reacting a lower hydrocarbon in the presence of a catalyst (catalyst material + support) described later. Applied to Here, the lower hydrocarbon used as a raw material in the present invention may be a natural gas containing at least 50% by weight, preferably at least 70% by weight of methane. If the methane content is within this range, saturated and unsaturated hydrocarbons having 2 to 6 carbon atoms may be additionally contained. Examples of these hydrocarbons include ethane, ethylene, propane,
Examples thereof include propylene, n-butane, isobutane, n-butyne, and isobutene.

【0016】本発明の触媒では担体としてメタロシリケ
ートを用いる。このメタロシリケートとしては多数の細
孔を有する多孔質体が望ましい。例えばアルミノシリケ
ートの場合、種々の組成から成るシリカ及びアルミナか
らなる多孔質担体であるモレキュラーシーブ5A(UT
A)、フォジャサイト (NaY)及びNaX、ZSM
−5、ZSM−11、ZSM−22、ZSM−48、β
−HZSMやリン酸を主成分とするALPO−5、SA
PO−5、VPI−5やMCM−22等の多孔質担体で
4〜8Åのミクロ細孔やチャンネルを有するゼオライト
担体を例示することができる。さらには、シリカを主成
分とし一部アルミナを成分として含むメゾ細孔(10〜
100Å)の筒状細孔(チャンネル)で特徴づけられる
FSM−16やMCM−41などのメゾ細孔多孔質担体
をシリコンアルコキサイド等を用いたCVD法によりメ
ゾ細孔径を4〜8Åに調整した修飾メゾ細孔材などを例
示できる。メタロシリケートとしてはアルミノシリケー
トやフェロシリケートの他に、シリカ及びチタニアから
成るチタノシリケート等の多孔質担体であり細孔径が4
〜8Åであるものを用いることが出来る。
In the catalyst of the present invention, a metallosilicate is used as a carrier. As the metallosilicate, a porous body having many pores is desirable. For example, in the case of aluminosilicate, molecular sieve 5A (UT) which is a porous carrier composed of silica and alumina having various compositions is used.
A), faujasite (NaY) and NaX, ZSM
-5, ZSM-11, ZSM-22, ZSM-48, β
-ALPO-5, SA mainly containing HZSM or phosphoric acid
Examples of porous carriers such as PO-5, VPI-5 and MCM-22 include zeolite carriers having micropores and channels of 4 to 8 °. Furthermore, mesopores containing silica as a main component and partially alumina as a component (10 to 10)
A mesopore porous carrier such as FSM-16 or MCM-41 characterized by cylindrical pores (channels) of 100 mm) is adjusted to 4-8 mm in mesopore diameter by a CVD method using silicon alkoxide or the like. And the like. The metallosilicate is a porous carrier such as titanosilicate composed of silica and titania, in addition to aluminosilicate and ferrosilicate.
Å8 ° can be used.

【0017】ただし、本発明で用いるメタロシリケート
にはミクロ及びメゾ細孔が5.5±1Åの範囲のものが
好ましく、さらに表面積が200〜1000m/gで
あるものがより好ましい。上記の細孔の大きさは、芳香
族化合物の分子の大きさとほぼ同じであり、これに起因
して上記範囲の細孔径を有するメタロシリケートを担体
として用いた触媒において特異な活性を示すものと思わ
れる。また、例えばアミルノシリケートの場合のシリカ
とアルミナの含有比としては、通常入手し得る多孔質担
体のシリカ/アルミナ比=1〜8000のものを用いる
ことができるが、本発明の低級炭化水素の芳香族化反応
を、実用的な低級炭化水素の転化率及び芳香族化合物へ
の選択率で実施するためには、シリカ/アルミナ比は1
0〜100であることが好ましい。
However, the metallosilicate used in the present invention preferably has micro and mesopores in the range of 5.5 ± 1 °, and more preferably has a surface area of 200 to 1000 m 2 / g. The size of the above pores is almost the same as the size of the molecule of the aromatic compound, and due to this, a specific activity is exhibited in a catalyst using a metallosilicate having a pore size in the above range as a carrier. Seem. Further, for example, as the content ratio of silica and alumina in the case of amylnosilicate, those having a silica / alumina ratio of a normally available porous carrier = 1 to 8000 can be used. In order to carry out the aromatization reaction at a practical lower hydrocarbon conversion and selectivity to aromatic compounds, the silica / alumina ratio must be 1
It is preferably from 0 to 100.

【0018】次に本発明の触媒では触媒材料としては、
レニウムまたはその化合物で構成される群から選択され
る一種以上を必須の材料とする。本発明の触媒では、触
媒材料が上記した群から選択される一種以上の材料での
み構成されるものであってもよいが、他の触媒材料を含
むものであってもよい。その一つとして、亜鉛、Ga、
Co、鉄またはそれらの化合物で構成される群から選択
される1種以上を示すことができる。他の一つとして、
クロム、タングステン、モリブデンまたはそれらの化合
物で構成される群から選択される1種以上を示すことが
できる。さらに他の一つとして、希土類金属またはその
化合物で構成される群から選択される1種以上を示すこ
とができる。上記した各群(レニウムまたはその化合物
による群は除く)からは、任意に触媒材料を選択するこ
とが可能であり、複数の群から触媒材料を選択するもの
であってもよい。
Next, in the catalyst of the present invention, as a catalyst material,
At least one selected from the group consisting of rhenium or its compounds is an essential material. In the catalyst of the present invention, the catalyst material may be composed of only one or more materials selected from the group described above, or may contain another catalyst material. One of them is zinc, Ga,
One or more selected from the group consisting of Co, iron or compounds thereof can be shown. As another one,
One or more selected from the group consisting of chromium, tungsten, molybdenum, or a compound thereof can be shown. As still another example, at least one selected from the group consisting of rare earth metals or compounds thereof can be shown. A catalyst material can be arbitrarily selected from each of the above groups (excluding the group using rhenium or a compound thereof), and a catalyst material may be selected from a plurality of groups.

【0019】これら触媒材料は、メタロシリケートに担
持させる際に、前駆体として用意することができる。前
駆体の例としては、塩化物、臭化物等のハロゲン化物、
硝酸塩、硫酸塩、リン酸塩等の鉱酸塩、炭酸塩、酢酸
塩、蓚酸塩等のカルボン酸塩や金属カルボニル錯体やシ
クロペンタジエニル錯体等の有機金属塩等を例示するこ
とができる。特に、レニウムの前駆体の例としては、レ
ニウムカルボニル化合物(Re(CO)10、Re
(CO)、(CRe(CO)、CHRe
)酸の他に、塩化物、臭化物等のハロゲン化物、硝
酸塩、硫酸塩、リン酸塩等の鉱酸塩、炭酸塩、酢酸塩、
蓚酸塩等のカルボン酸塩等が例示できる。また、前駆体
としては複合錯塩や複合酸化物を用いることもできる。
These catalyst materials can be prepared as precursors when supported on metallosilicate. Examples of the precursor include chlorides, halides such as bromide,
Examples thereof include mineral salts such as nitrates, sulfates and phosphates, carboxylate salts such as carbonate salts, acetate salts and oxalate salts, and organic metal salts such as metal carbonyl complexes and cyclopentadienyl complexes. In particular, examples of the precursor of rhenium include a rhenium carbonyl compound (Re 2 (CO) 10 , Re 6
(CO), (C 5 H 5 ) 2 Re (CO) 2 , CH 3 Re
O 3 ) In addition to acids, halides such as chlorides and bromides, mineral salts such as nitrates, sulfates and phosphates, carbonates, acetates,
Examples thereof include carboxylate such as oxalate. In addition, a complex complex salt or a complex oxide can be used as the precursor.

【0020】本発明の触媒は、これらの前駆体をメタロ
シリケートに担持することにより得ることができる。本
発明としては、上記触媒材料をメタロシリケートに担持
させる際の担持量に特に制限はないが、各群毎に、全触
媒重量に基づいて質量比で、0.001〜50%、好ま
しくは0.01〜40%が良好な担持量範囲である。な
お、複数の群から触媒材料を選択する場合は、触媒材料
の担持量の合計は、全触媒重量に基づいて0.002〜
50%、好ましくは0.02〜40%の範囲が望まし
い。なお、上記担持量範囲は、触媒材料に前駆体を用い
る場合には前駆体としての担持量を示す。
The catalyst of the present invention can be obtained by supporting these precursors on metallosilicate. In the present invention, the amount of the catalyst material to be supported on the metallosilicate is not particularly limited. For each group, 0.001 to 50%, preferably 0 to 50% by mass based on the total catalyst weight. 0.01 to 40% is a good range of the supported amount. When a catalyst material is selected from a plurality of groups, the total amount of the catalyst material carried is 0.002 to 0.002 based on the total catalyst weight.
A range of 50%, preferably 0.02 to 40% is desirable. When the precursor is used as the catalyst material, the supported amount range indicates the supported amount as the precursor.

【0021】上記触媒材料をメタロシリケートに担持さ
せる方法としては、前述した金属の前駆体の水溶液ある
いはアルコール等の有機溶媒の溶液としてメタロシリケ
ートに含浸担持させるか、あるいはイオン変換方法によ
り担持させた後、不活性ガスあるいは酸素ガス中で加熱
処理する方法がある。この方法の一例をより具体的に説
明すると、まず最初に、例えばメタロシリケート担体に
硝酸レニウム水溶液を含浸担持させ、さらに乾燥して溶
媒を適当量除いた後、窒素含有酸素気流中又は純酸素気
流中で250〜800℃、好ましくは350〜600℃
で加熱処理してレニウムを担持したメタロシリケート触
媒を製造することができる。また、複合酸化物や複合錯
塩を用いて触媒を得る場合にも同様の担持方法や、加熱
処理方法によって複合酸化物塩や複合錯塩からなる触媒
を得ることができる。
The above-mentioned catalyst material may be supported on the metallosilicate by impregnating and supporting the metallosilicate as an aqueous solution of the above-mentioned metal precursor or a solution of an organic solvent such as alcohol, or after supporting the metallosilicate by an ion conversion method. And heat treatment in an inert gas or oxygen gas. An example of this method will be described in more detail. First, for example, a metallosilicate carrier is impregnated and supported with an aqueous rhenium nitrate solution, and further dried to remove an appropriate amount of the solvent, and then in a nitrogen-containing oxygen stream or a pure oxygen stream. 250-800 ° C, preferably 350-600 ° C in
To produce a metallosilicate catalyst supporting rhenium. Also, when a catalyst is obtained using a composite oxide or a complex complex salt, a catalyst composed of the complex oxide salt or the complex complex salt can be obtained by the same supporting method or heat treatment method.

【0022】本発明で用いられる(1)レニウム及び/
又はその化合物(以下、第一成分という)、(2)亜
鉛、ガリウム、鉄、コバルト及びそれらの化合物からな
る群から所望により選ばれた少なくとも一種類(以下、
第二成分という)、(3)クロム、タングステン、モリ
ブデンまたはそれらの化合物からなる群から所望により
選ばれた少なくとも一種類(以下、第三成分という)、
及び(4)希土類金属またはその化合物からなる群から
所望により選ばれた少なくとも1種類、及び(5)担体
からなる低級炭化水素の芳香族化触媒は、以下の各方法
で製造することができる。即ち、(1)メタロシリケー
トに第一成分を担持した後、所望により選択した第二成
分以降を順次担持させる。(2)メタロシリケートに第
一成分および所望により選択した第二成分以降を適宜の
順序で担持させせる。(3)メタロシリケートに各成分
を同時に担持させる。これらの方法の中では、先ず、第
一成分をメタロシリケートに担持させるのが好ましい。
その後は、順次各成分を担持させてもよく、また複数の
成分を同時に担持させても良い。これは触媒として特に
重要な作用を果たす第一成分を最初に担持することによ
って、第一成分がメタロシリケートに確実に担持される
ことになり、触媒の耐久性が向上するためと考えられ
る。
The (1) rhenium and / or rhenium used in the present invention
Or a compound thereof (hereinafter, referred to as a first component);
(2nd component), (3) at least one kind selected from the group consisting of chromium, tungsten, molybdenum or a compound thereof (hereinafter, referred to as a third component),
And (4) at least one selected from the group consisting of rare earth metals or compounds thereof as desired, and (5) a catalyst for aromatizing lower hydrocarbons comprising a carrier can be produced by the following methods. That is, (1) after the first component is supported on the metallosilicate, the second component and the subsequent components selected as desired are loaded sequentially. (2) The first component and, if desired, the second component and the subsequent components are supported on the metallosilicate in an appropriate order. (3) Each component is simultaneously supported on the metallosilicate. Among these methods, first, it is preferable that the first component is supported on a metallosilicate.
Thereafter, each component may be loaded sequentially, or a plurality of components may be loaded simultaneously. This is presumably because the first component, which plays a particularly important role as a catalyst, is first supported, whereby the first component is reliably supported on the metallosilicate, and the durability of the catalyst is improved.

【0023】上記により得られる本発明の触媒は、粉末
状又はペレット状及びその他の形状のいずれの形状であ
ってもよく、形状が特に限定されるものではない。ま
た、本発明で用いる触媒は、芳香族化合物を生成する誘
導期を短縮するため、水素ガスやヒドラジン、金属水素
化合物、例えばBH、NaH、AlH等による前処
理を含む触媒活性化過程を施してもよい。
The catalyst of the present invention obtained as described above may be in any form of powder, pellet, and other shapes, and the shape is not particularly limited. Further, the catalyst used in the present invention includes a catalyst activation process including a pretreatment with hydrogen gas, hydrazine, a metal hydride compound, for example, BH 3 , NaH, AlH 3 or the like, in order to shorten the induction period for generating an aromatic compound. May be applied.

【0024】本発明の低級炭化水素を原料とする芳香族
化合物及び水素の製造方法では、上記した触媒をの存在
下で前述した低級炭化水素を原料として反応を起こさせ
る。この際には、一酸化炭素及び二酸化炭素から選ばれ
た一種又は二種のガスの共存下に反応を行うことが望ま
しい。一酸化炭素及び/又は二酸化炭素の共存下に反応
を行うことにより、低級炭化水素の反応転化率を向上さ
せ、さらにベンゼンおよび水素の生成速度が著しく低下
するのを抑制することができる。なお、一酸化炭素や二
酸化炭素は、それぞれ単独で添加しても両者を混合して
添加しても差し支えない。一酸化炭素及び/又は二酸化
炭素の添加量は、反応系に供給する原料ガスにおける容
量%として0.01〜30%、好ましくは0.1〜25
%の範囲である。これは、この範囲よりも添加量が少な
いとその効果が小さく、また、この範囲より添加量が多
いと反応器の容積効率が悪くなるためである。
In the method of the present invention for producing an aromatic compound and hydrogen using a lower hydrocarbon as a raw material, a reaction is caused using the above-mentioned lower hydrocarbon as a raw material in the presence of the above-mentioned catalyst. In this case, it is desirable to carry out the reaction in the presence of one or two gases selected from carbon monoxide and carbon dioxide. By performing the reaction in the coexistence of carbon monoxide and / or carbon dioxide, the reaction conversion of lower hydrocarbons can be improved, and furthermore, the rate of production of benzene and hydrogen can be suppressed from being significantly reduced. Note that carbon monoxide and carbon dioxide may be added alone or in a mixture of both. The addition amount of carbon monoxide and / or carbon dioxide is 0.01 to 30%, preferably 0.1 to 25 as a volume% in the raw material gas supplied to the reaction system.
% Range. This is because if the addition amount is smaller than this range, the effect is small, and if the addition amount is larger than this range, the volumetric efficiency of the reactor deteriorates.

【0025】また、本発明の低級炭化水素の変換反応
は、通常は回分式あるいは流通式の反応形式で実施され
るが、固定床、移動床又は流動化床等の流通式反応形式
で実施することが好ましい。反応は、メタン等の低級炭
化水素原料を、一酸化炭素及び/又は二酸化炭素の存在
下で300〜800℃、好ましくは450〜775℃の
温度で触媒と接触させることによって行うのが望まし
い。また、反応は、0.1〜10気圧、好ましくは1〜
7気圧で好適に実施される。重量時間空間速度(WHS
V)は0.1〜10であり、好ましくは0.5〜5.0
である。反応生成物から回収される未反応原料及び反応
に添加される一酸化炭素又は二酸化炭素は、芳香族化反
応に再循環させることができる。
The lower hydrocarbon conversion reaction of the present invention is usually carried out in a batch type or a flow type reaction system, but is carried out in a flow type reaction format such as a fixed bed, a moving bed or a fluidized bed. Is preferred. The reaction is desirably carried out by contacting a lower hydrocarbon raw material such as methane with a catalyst in the presence of carbon monoxide and / or carbon dioxide at a temperature of 300 to 800C, preferably 450 to 775C. The reaction is performed at 0.1 to 10 atm, preferably 1 to 10 atm.
It is preferably carried out at 7 atm. Weight hourly space velocity (WHS
V) is from 0.1 to 10, preferably from 0.5 to 5.0.
It is. Unreacted raw materials recovered from the reaction products and carbon monoxide or carbon dioxide added to the reaction can be recycled to the aromatization reaction.

【0026】上記反応により、ベンゼン、トルエン等の
芳香族炭化水素を主成分とする芳香族化合物が得られ
る。なお、得られる芳香族化合物の種別や化合物の比率
は原料によっても異なり、一律に規定されるものではな
い。また、この反応に伴って高純度の水素が得られる。
上記した芳香族化合物と水素とは、いずれか一方を有効
に利用してもよく、両方を有効利用しても良く、本発明
としては利用方法が限定されるものではない。また、そ
の利用分野も特に限定されるものではない。
By the above reaction, an aromatic compound mainly containing an aromatic hydrocarbon such as benzene and toluene is obtained. The type of aromatic compound and the ratio of the obtained compound vary depending on the raw material, and are not uniformly defined. In addition, high-purity hydrogen is obtained with this reaction.
Either one of the above-described aromatic compound and hydrogen may be used effectively, or both may be used effectively, and the present invention is not limited to a use method. The field of use is not particularly limited.

【0027】[0027]

【実施例】以下に、本発明を実施例によりさらに詳細に
説明する。なお、この実施例で用いているメタン転化
率、炭化水素選択率、炭化水素の分布及び水素生成速度
は以下のように定義した。 メタン転化率(%)=〔(原料メタンモル数−未反応の
メタンモル数)/原料メタンモル数〕×100 炭化水素選択率(%)=〔生成した全炭化水素のメタン
換算モル数/(原料メタンモル数−未反応のメタンモル
数)〕×100 炭化水素の分布(%)=〔着目する炭化水素のメタン換
算モル数/生成した全炭化水素のメタン換算モル数〕×
100 水素生成速度=触媒1gあたり、1秒間に生成した水素
のnmol数 ベンゼン生成速度=触媒1gあたり、1秒間に生成した
ベンゼンのnmol数
The present invention will be described in more detail with reference to the following examples. The methane conversion, hydrocarbon selectivity, hydrocarbon distribution and hydrogen generation rate used in this example were defined as follows. Methane conversion rate (%) = [(Mole number of raw material methane−Mole number of unreacted methane) / Mole number of raw material methane] × 100 Hydrocarbon selectivity (%) = [Mole number of converted methane of all generated hydrocarbons / (Mole number of raw material methane) -Unreacted methane moles)] x 100 Hydrocarbon distribution (%) = [methane converted moles of hydrocarbon of interest / methane converted moles of all generated hydrocarbons] x
100 Hydrogen generation rate = nmol number of hydrogen generated per second per g of catalyst Benzene generation rate = nmol number of benzene generated per second per g of catalyst

【0028】(実施例1)触媒材料の前駆体としてパラ
レニウム酸アンモニウム塩1.20gを10mlの蒸留
水に溶解し、これにメタロシリケート担体であるHZS
M−5(シリカ/アルミナ比=40、表面積870m
/g、細孔径=5.4×5.6Å)の粉末12gを加
え、充分に攪拌しながら回転式減圧エバポレーターを用
いて蒸発乾固して、パラレニウム酸アンモニウムのHZ
SM−5担持体を得た。これを石英製反応管(1.2c
m径、長さ30cm、V字タイプ)に充填後、純酸素ガ
ス流下(40ml/分、1気圧)、400℃で2時間焼
成して薄草色粉末として、全触媒重量に基づいて質量比
で6%のレニウムをHZSM−5に担持した触媒(以
下、Re(6%)/HZSM−5と略記する)を得た。
(Example 1) As a precursor of a catalyst material, 1.20 g of ammonium pararhenate was dissolved in 10 ml of distilled water, and HZS as a metallosilicate carrier was added thereto.
M-5 (silica / alumina ratio = 40, surface area 870 m 2
/ G, pore size = 5.4 × 5.65) and evaporate to dryness using a rotary vacuum evaporator with sufficient stirring to obtain HZ of ammonium pararhenate.
An SM-5 carrier was obtained. This is placed in a quartz reaction tube (1.2c
m diameter, length 30 cm, V-shaped), and calcined at 400 ° C for 2 hours under pure oxygen gas flow (40 ml / min, 1 atm) to obtain a pale green powder in a mass ratio based on the total catalyst weight. A catalyst in which 6% rhenium was supported on HZSM-5 (hereinafter abbreviated as Re (6%) / HZSM-5) was obtained.

【0029】また、触媒の製造時に、上記パラレニウム
酸アンモニウム塩1.20gに、Zn(NO、G
aCl、FeClまたはCoClを前駆体として
それぞれ加えて10mlの蒸留水に溶解し、上記と同様
の方法によって全触媒重量に基づいて質量比で6%のレ
ニウムと1%のZn、Ga、Fe、Coを含有する触媒
を得た。さらに、GaClをパラレニウム酸アンモニ
ウム塩に加えた前駆体を用いるものでは、担体として、
MCM−22(細孔径5.5Å)またはHZSM−11
(5.1×5.5Å)を用い、上記と同様の方法によっ
て触媒を得た。
During the production of the catalyst, Zn (NO 3 ) 2 and G were added to 1.20 g of the above ammonium salt of pararhenate.
aCl 3 , FeCl 3 or CoCl 2 were each added as a precursor, dissolved in 10 ml of distilled water, and treated in the same manner as above, with a mass ratio of 6% rhenium and 1% Zn, Ga, A catalyst containing Fe and Co was obtained. Further, in the case of using a precursor obtained by adding GaCl 3 to ammonium pararhenate, as a carrier,
MCM-22 (5.5Å pore size) or HZSM-11
(5.1 × 5.5 °), and a catalyst was obtained in the same manner as described above.

【0030】上記各触媒0.3gを固定床流通式反応装
置の石英製反応管(内径8mm)に充填し、反応温度7
50℃、3気圧で、メタンに対し2%炭酸ガスを添加し
た反応ガスを26ml/minの流量で供給しメタンの
芳香族化反応によるベンゼン及び水素の生成反応活性を
調べた。反応後200分後経過後の結果を表1に示し
た。
0.3 g of each of the above catalysts was charged into a quartz reaction tube (inner diameter 8 mm) of a fixed bed flow type reactor, and a reaction temperature of 7
A reaction gas obtained by adding 2% carbon dioxide gas to methane at 50 ° C. and 3 atm was supplied at a flow rate of 26 ml / min, and the reaction activity for producing benzene and hydrogen by the aromatization reaction of methane was examined. The results after a lapse of 200 minutes from the reaction are shown in Table 1.

【0031】表1から明らかなように、Reを必須とし
て含む本発明の触媒は、低級炭化水素原料であるメタン
からベンゼンおよびナフタレンが高い生成速度で得られ
ており、芳香族化合物化に優れている。また、これに伴
って水素が高い生成速度で製造されており、水素の製造
能力においても優れている。
As is evident from Table 1, the catalyst of the present invention containing Re as an essential component is capable of producing benzene and naphthalene at a high production rate from methane, which is a lower hydrocarbon raw material, and has excellent aromatic compound conversion. I have. Accordingly, hydrogen is produced at a high production rate, and the hydrogen production capacity is excellent.

【0032】[0032]

【表1】 [Table 1]

【0033】(実施例2)触媒材料の前駆体としてパラ
レニウム酸アンモニウム塩1.20gを10mlの蒸留
水に溶解し、これにメタロシリケート担体であるHZS
M−5(シリカ/アルミナ比=46、表面積800m
/g、細孔径=5.4×5.6Å)の粉末12gを加
え、充分に攪拌しながら回転式減圧エバポレーターを用
いて蒸発乾固して、パラレニウム酸アンモニウムのHZ
SM−5担持体を得た。これを石英製反応管(1.2c
m径、長さ30cm、V字タイプ)に充填後、純酸素ガ
ス流下(40ml/分、1気圧)、400℃で4時間焼
成して薄草色粉末として、全触媒重量に基づいて質量比
で6%のレニウムをHZSM−5に担持した触媒(以
下、Re(6%)/HZSM−5と略記する)を得た。
該触媒0.3gを固定床流通式反応装置の石英製反応管
(内径8mm)に充填し、反応温度750℃、3気圧で
原料ガスとしてメタンガスに一酸化炭素を所定量添加し
たガスを26ml/minの流量で供給し、メタンの芳
香族化反応を行った。反応管流出物中には未反応のメタ
ンの他に、水素、一酸化炭素、二酸化炭素、炭素数2〜
5の炭化水素、ベンゼン、トルエン、キシレン、メシチ
レン、ナフタレン、メチルナフタレン、ジメチルナフタ
レン、アントラセン等が存在していた。 反応開始後、
所定時間経過後の結果を表2に示した。
EXAMPLE 2 As a precursor of a catalyst material, 1.20 g of ammonium pararhenate was dissolved in 10 ml of distilled water, and HZS as a metallosilicate carrier was added thereto.
M-5 (silica / alumina ratio = 46, surface area 800 m 2
/ G, pore size = 5.4 × 5.65) and evaporate to dryness using a rotary vacuum evaporator with sufficient stirring to obtain HZ of ammonium pararhenate.
An SM-5 carrier was obtained. This is placed in a quartz reaction tube (1.2c
m diameter, length 30 cm, V-shaped), and calcined at 400 ° C for 4 hours under pure oxygen gas flow (40 ml / min, 1 atm) to obtain a pale green powder in a mass ratio based on the total catalyst weight. A catalyst in which 6% rhenium was supported on HZSM-5 (hereinafter abbreviated as Re (6%) / HZSM-5) was obtained.
0.3 g of the catalyst was charged into a quartz reaction tube (inner diameter: 8 mm) of a fixed bed flow type reactor, and a reaction temperature of 750 ° C., 3 atm, and a gas obtained by adding a predetermined amount of carbon monoxide to methane gas as a raw material gas at a flow rate of 26 ml / The mixture was supplied at a flow rate of min to perform an aromatization reaction of methane. In addition to unreacted methane, hydrogen, carbon monoxide, carbon dioxide, carbon number 2
5 hydrocarbons, benzene, toluene, xylene, mesitylene, naphthalene, methylnaphthalene, dimethylnaphthalene, anthracene and the like were present. After the reaction starts,
Table 2 shows the results after the elapse of the predetermined time.

【0034】(比較例1)また、メタンガス中に一酸化
炭素を添加しない以外は、実施例2と同様の方法でメタ
ンの芳香族化反応を行った。反応開始後、100分経過
後、400分経過後、1440分経過後の結果を同じく
表2に示した。
Comparative Example 1 An aromatization reaction of methane was carried out in the same manner as in Example 2 except that carbon monoxide was not added to methane gas. The results after 100 minutes, 400 minutes, and 1440 minutes after the start of the reaction are also shown in Table 2.

【0035】表2から明らかなように、一酸化炭素の共
存下に反応を行うことにより、低級炭化水素の反応転化
率が大幅に向上している。また、一酸化炭素を含まない
原料では、経時的に芳香族化合物及び水素の生成速度が
著しく低下しているが、一酸化炭素の共存下で反応を行
うものではこの低下が抑制されており、長時間、安定し
た性能が得られている。
As is clear from Table 2, the reaction conversion in the presence of carbon monoxide greatly improves the reaction conversion of lower hydrocarbons. Further, in the raw material containing no carbon monoxide, the generation rate of the aromatic compound and hydrogen is significantly reduced with time, but in the case where the reaction is performed in the coexistence of carbon monoxide, this reduction is suppressed. Stable performance has been obtained for a long time.

【0036】[0036]

【表2】 [Table 2]

【0037】(実施例3)この実施例では、実施例2に
おける原料ガス中への一酸化炭素の添加を二酸化炭素の
添加に変えた以外は、実施例2と同様の方法でメタンの
芳香族化反応を行った。反応開始後、420分経過後お
よび2000分経過後の結果を表3に示した。この表3
から明らかなように、二酸化炭素の共存下で反応を行う
場合にも、実施例2と同様に反応転化率の大幅な向上、
生成速度の経時的な低下が抑制されている。なお、これ
ら実施例では、一酸化炭素の共存下または二酸化炭素の
共存下でのみ評価を行ったが、一酸化炭素と二酸化炭素
がともに共存する環境においても同様の効果が得られる
ことが確認されている。
Example 3 In this example, the aromatic methane was produced in the same manner as in Example 2 except that the addition of carbon monoxide to the raw material gas in Example 2 was changed to the addition of carbon dioxide. The reaction was carried out. Table 3 shows the results after 420 minutes and 2000 minutes after the start of the reaction. This Table 3
As is clear from the above, even when the reaction is carried out in the coexistence of carbon dioxide, the reaction conversion is significantly improved as in Example 2,
The time-dependent decrease in the generation rate is suppressed. In these examples, evaluation was performed only in the coexistence of carbon monoxide or in the presence of carbon dioxide.However, it was confirmed that the same effect can be obtained in an environment in which both carbon monoxide and carbon dioxide coexist. ing.

【0038】[0038]

【表3】 [Table 3]

【0039】(実施例4)この実施例では、実施例2に
おいて用いたHZSM−5を他の多孔質担体に変更した
以外は、実施例2と同様の製造方法により触媒を製造し
た。なお、多孔質担体としてL−ゼオライト、ZSM−
12(6Å)、フェリオライト、β−HZSM−5
(5.5×6.5Å)、ZSM−11(5.1×5.5
Å)、SAPO−5(8Å)及びMCM−22(5.5
〜4.0Å)を用いた。上記の各触媒0.3gを実施例
2と同様に、固定床流通式反応装置の石英製反応管(内
径8mm)に充填し、反応温度750℃、3気圧で原料
ガスとしてメタンガスに二酸化炭素を体積比で2%を添
加した反応ガスを7.5ml/minの流量で供給し、
メタンの転化率、生成された炭化水素中のベンゼンの選
択率、ベンゼンの生成速度〔(nmole/g−Cat
/sec)反応開始後2時間後〕及び水素生成速度
〔(nmole/g−Cat/sec)]を測定した。
その結果は表4に示した。表4に示すように、メタルシ
リケートからなるいずれの多孔質担体を用いる場合に
も、芳香族化合物化が確実になされており、これに付随
して水素が効率的に生成されている。
Example 4 In this example, a catalyst was produced in the same manner as in Example 2, except that HZSM-5 used in Example 2 was changed to another porous carrier. In addition, L-zeolite, ZSM-
12 (6Å), feriolite, β-HZSM-5
(5.5 × 6.5Å), ZSM-11 (5.1 × 5.5)
Å), SAPO-5 (8Å) and MCM-22 (5.5)
44.0 °). In the same manner as in Example 2, 0.3 g of each of the above catalysts was charged into a quartz reaction tube (inner diameter 8 mm) of a fixed bed flow type reactor, and carbon dioxide was added to methane gas as a raw material gas at a reaction temperature of 750 ° C. and 3 atm. A reaction gas to which 2% by volume is added is supplied at a flow rate of 7.5 ml / min,
The conversion rate of methane, the selectivity of benzene in the produced hydrocarbon, and the production rate of benzene [(nmole / g-Cat
/ Sec) 2 hours after the start of the reaction] and the hydrogen generation rate [(nmole / g-Cat / sec)].
The results are shown in Table 4. As shown in Table 4, even when any of the porous supports made of metal silicate is used, the conversion to an aromatic compound is surely performed, and hydrogen is efficiently generated accompanying the conversion to an aromatic compound.

【0040】[0040]

【表4】 [Table 4]

【0041】[0041]

【発明の効果】以上の結果から、本発明によれば、少な
くともレニウムまたはその化合物を触媒材料として含む
触媒の存在下で、低級炭化水素を芳香族化反応させるの
で、該反応に付して高付加価値製品であるベンゼン、ト
ルエン、キシレン及びナフタレン等の芳香族炭化水素及
び水素を効率的に製造することができる。また、この反
応を一酸化炭素又は二酸化炭素の共存下に行うことによ
り、低級炭化水素の反応転化率を向上させることがで
き、さらにベンゼン等の芳香族化合物及び水素の生成速
度の低下を効果的に抑制することができ、長時間に亘っ
て安定した触媒能を得ることができる。
From the above results, according to the present invention, a lower hydrocarbon is subjected to an aromatization reaction in the presence of a catalyst containing at least rhenium or a compound thereof as a catalyst material. An aromatic hydrocarbon such as benzene, toluene, xylene, and naphthalene, which is a value-added product, and hydrogen can be efficiently produced. In addition, by performing this reaction in the coexistence of carbon monoxide or carbon dioxide, it is possible to improve the reaction conversion of lower hydrocarbons, and to effectively reduce the rate of production of aromatic compounds such as benzene and hydrogen and hydrogen. , And a stable catalytic ability can be obtained over a long period of time.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01J 29/85 B01J 29/85 Z C07C 2/84 C07C 2/84 15/04 15/04 15/24 15/24 // C07B 61/00 300 C07B 61/00 300 (72)発明者 市川 勝 北海道札幌市西区八軒3条西4丁目4−22 −22 (72)発明者 大西 隆一郎 北海道札幌市白石区北郷2条7丁目3−13 Fターム(参考) 4G069 AA03 AA08 BA07B BA15A BC17A BC17B BC35A BC35B BC38A BC58A BC59A BC60A BC64A BC64B BC66A BC66B BC67A BC67B CB66 DA06 EA01Y EC03Y EC04Y EC11Y EC12Y FA02 FB14 ZA08B ZA12B ZA13B ZA32B ZA41B ZD06 ZE09 4H006 AA02 AC28 BA07 BA08 BA09 BA14 BA16 BA19 BA20 BA30 BA32 BA55 BA56 BA71 BC34 4H039 CA41 CH10 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) B01J 29/85 B01J 29/85 Z C07C 2/84 C07C 2/84 15/04 15/04 15/24 15 / 24 // C07B 61/00 300 C07B 61/00 300 (72) Inventor Masaru Ichikawa 4-4-2-22 Hachigen 3-Jo Nishi, Nishi-ku, Sapporo, Hokkaido (72) Ryuichiro Onishi, Kitago, Shiroishi-ku, Sapporo, Hokkaido Article 7-3-13 F term (reference) 4G069 AA03 AA08 BA07B BA15A BC17A BC17B BC35A BC35B BC38A BC58A BC59A BC60A BC64A BC64B BC66A BC66B BC67A BC67B CB66 DA06 EA01Y EC03Y EC04Y EC11Y EC12Y ZB12A ZB12A BA07 BA08 BA09 BA14 BA16 BA19 BA20 BA30 BA32 BA55 BA56 BA71 BC34 4H039 CA41 CH10

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 レニウムまたはその化合物で構成される
群から選択される一種以上の触媒材料と、該触媒材料を
担持するメタロシリケートとを有することを特徴とする
低級炭化水素の芳香族化合物化触媒
1. A catalyst for converting a lower hydrocarbon into an aromatic compound, comprising: at least one catalyst material selected from the group consisting of rhenium or a compound thereof; and a metallosilicate supporting the catalyst material.
【請求項2】 前記触媒材料として、亜鉛、Ga、C
o、鉄またはそれらの化合物で構成される群から選択さ
れる1種以上を含むことを特徴とする請求項1記載の低
級炭化水素の芳香族化合物化触媒
2. The catalyst material includes zinc, Ga, C
2. The catalyst for converting a lower hydrocarbon into an aromatic compound according to claim 1, wherein the catalyst comprises at least one selected from the group consisting of o, iron and compounds thereof.
【請求項3】 前記触媒材料として、クロム、タングス
テン、モリブデンまたはそれらの化合物で構成される群
から選択される1種以上を含むことを特徴とする請求項
1または2に記載の低級炭化水素を原料とする低級炭化
水素の芳香族化合物化触媒
3. The lower hydrocarbon according to claim 1, wherein the catalyst material contains at least one selected from the group consisting of chromium, tungsten, molybdenum, and a compound thereof. Catalyst for aromatic compound conversion of lower hydrocarbons as raw material
【請求項4】 前記触媒材料として、希土類金属または
その化合物で構成される群から選択される1種以上を含
むことを特徴とする請求項1〜3のいずれかに記載の低
級炭化水素の芳香族化合物化触媒
4. The fragrance of a lower hydrocarbon according to claim 1, wherein the catalyst material contains at least one selected from the group consisting of rare earth metals or compounds thereof. Group compound catalyst
【請求項5】 前記メタロシリケートが多孔質体である
ことを特徴とする請求項1〜4のいずれかに記載の低級
炭化水素の芳香族化合物化触媒
5. The catalyst for converting a lower hydrocarbon into an aromatic compound according to claim 1, wherein the metallosilicate is a porous material.
【請求項6】 請求項1〜5のいずれかに記載の触媒の
存在下で、メタン等の低級炭化水素を反応させて芳香族
炭化物を主成分とする芳香族化合物と水素とを製造する
ことを特徴とする低級炭化水素を原料とする芳香族化合
物及び水素の製造方法
6. A method for producing hydrogen from an aromatic compound mainly composed of an aromatic carbide by reacting a lower hydrocarbon such as methane in the presence of the catalyst according to claim 1. For producing aromatic compounds and hydrogen using lower hydrocarbons as raw materials
【請求項7】 前記反応を一酸化炭素及び/又は二酸化
炭素の共存下に行うことを特徴とする請求項6記載の低
級炭化水素を原料とする芳香族化合物及び水素の製造方
7. The method for producing aromatic compounds and hydrogen from lower hydrocarbons according to claim 6, wherein the reaction is carried out in the presence of carbon monoxide and / or carbon dioxide.
【請求項8】 前記一酸化炭素及び/又は二酸化炭素の
添加量が、反応に供給する全原料ガスにおける容量%と
して0.01〜30%の範囲であることを特徴とする請
求項7記載の低級炭化水素を原料とする芳香族化合物及
び水素の製造方法
8. The method according to claim 7, wherein the addition amount of the carbon monoxide and / or carbon dioxide is in the range of 0.01 to 30% as a volume percentage in the total raw material gas supplied to the reaction. Method for producing aromatic compounds and hydrogen from lower hydrocarbons
JP2000160615A 2000-05-30 2000-05-30 Catalyst for converting lower hydrocarbon into aromatic compound and method for producing aromatic compound and hydrogen from lower hydrocarbon as raw material Pending JP2001334151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000160615A JP2001334151A (en) 2000-05-30 2000-05-30 Catalyst for converting lower hydrocarbon into aromatic compound and method for producing aromatic compound and hydrogen from lower hydrocarbon as raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000160615A JP2001334151A (en) 2000-05-30 2000-05-30 Catalyst for converting lower hydrocarbon into aromatic compound and method for producing aromatic compound and hydrogen from lower hydrocarbon as raw material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010152001A Division JP5283665B2 (en) 2010-07-02 2010-07-02 Lower hydrocarbon aromatic compound catalyst, aromatic compound using lower hydrocarbon as raw material, and method for producing hydrogen

Publications (1)

Publication Number Publication Date
JP2001334151A true JP2001334151A (en) 2001-12-04

Family

ID=18664779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000160615A Pending JP2001334151A (en) 2000-05-30 2000-05-30 Catalyst for converting lower hydrocarbon into aromatic compound and method for producing aromatic compound and hydrogen from lower hydrocarbon as raw material

Country Status (1)

Country Link
JP (1) JP2001334151A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005089436A (en) * 2003-09-18 2005-04-07 Electric Power Dev Co Ltd Method for producing hybrid of aromatic compound
JP2006016353A (en) * 2004-07-02 2006-01-19 Taisei Corp Method for producing aromatic compound and hydrogen from lower hydrocarbon
WO2006085558A1 (en) * 2005-02-10 2006-08-17 Masaru Ichikawa Process for production of aromatic hydrocarbon
WO2006087971A1 (en) * 2005-02-18 2006-08-24 Mitsubishi Chemical Corporation Process for production of aromatic compound and process for production of hydrogenated aromatic compound
JP2007099748A (en) * 2005-02-18 2007-04-19 Mitsubishi Chemicals Corp Method for producing aromatic compound and method for producing hydrogenated aromatic compound
JP2008525448A (en) * 2004-12-22 2008-07-17 エクソンモービル・ケミカル・パテンツ・インク Production of alkylated aromatic hydrocarbons from methane.
WO2009020045A1 (en) 2007-08-03 2009-02-12 Mitsui Chemicals, Inc. Process for production of aromatic hydrocarbons
JP2009538908A (en) * 2006-05-31 2009-11-12 エクソンモービル・ケミカル・パテンツ・インク Identification of aromatic hydrocarbons produced from methane by isotope analysis
RU2400464C2 (en) * 2005-02-18 2010-09-27 Мицубиси Кемикал Корпорейшн Method for synthesis of aromatic compounds and method for synthesis of hydrogenated aromatic compounds
WO2011118279A1 (en) * 2010-03-23 2011-09-29 株式会社明電舎 Method of manufacture for aromatic compound
JP2015063560A (en) * 2014-12-25 2015-04-09 株式会社明電舎 Method for producing aromatic hydrocarbon
WO2018164193A1 (en) * 2017-03-08 2018-09-13 三菱ケミカル株式会社 Hydrogenation catalyst for carbonyl compound and alcohol production method
CN113121297A (en) * 2020-01-15 2021-07-16 中国石油天然气股份有限公司 Method for producing aromatic hydrocarbon by using methanol
WO2025065781A1 (en) * 2023-09-26 2025-04-03 中国科学院大连化学物理研究所 Method for preparing aromatic hydrocarbons by means of coupling conversion of co and polyolefin

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62190131A (en) * 1985-12-23 1987-08-20 ザ ブリテイツシユ ピトロ−リアム カンパニ− ピ−エルシ− Manufacture of aromatic compound from hydrocarbon supply rawmaterial
JPS6438033A (en) * 1987-06-08 1989-02-08 Standard Oil Co Ohio Catalyst for converting ethane to liquid aromatic hydrocarbon
JPH10272366A (en) * 1997-03-19 1998-10-13 Osaka Sekiyu Kagaku Kk Aromatizing catalyst for lower hydrocarbon, and production of aromatic compound using the catalyst
JPH1160514A (en) * 1997-08-21 1999-03-02 Osaka Sekiyu Kagaku Kk Production of aromatic compound using lower hydrocarbon as raw material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62190131A (en) * 1985-12-23 1987-08-20 ザ ブリテイツシユ ピトロ−リアム カンパニ− ピ−エルシ− Manufacture of aromatic compound from hydrocarbon supply rawmaterial
JPS6438033A (en) * 1987-06-08 1989-02-08 Standard Oil Co Ohio Catalyst for converting ethane to liquid aromatic hydrocarbon
JPH10272366A (en) * 1997-03-19 1998-10-13 Osaka Sekiyu Kagaku Kk Aromatizing catalyst for lower hydrocarbon, and production of aromatic compound using the catalyst
JPH1160514A (en) * 1997-08-21 1999-03-02 Osaka Sekiyu Kagaku Kk Production of aromatic compound using lower hydrocarbon as raw material

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005089436A (en) * 2003-09-18 2005-04-07 Electric Power Dev Co Ltd Method for producing hybrid of aromatic compound
JP2006016353A (en) * 2004-07-02 2006-01-19 Taisei Corp Method for producing aromatic compound and hydrogen from lower hydrocarbon
JP2008525448A (en) * 2004-12-22 2008-07-17 エクソンモービル・ケミカル・パテンツ・インク Production of alkylated aromatic hydrocarbons from methane.
WO2006085558A1 (en) * 2005-02-10 2006-08-17 Masaru Ichikawa Process for production of aromatic hydrocarbon
JP2006249065A (en) * 2005-02-10 2006-09-21 Masaru Ichikawa Method for producing aromatic hydrocarbon
WO2006087971A1 (en) * 2005-02-18 2006-08-24 Mitsubishi Chemical Corporation Process for production of aromatic compound and process for production of hydrogenated aromatic compound
JP2007099748A (en) * 2005-02-18 2007-04-19 Mitsubishi Chemicals Corp Method for producing aromatic compound and method for producing hydrogenated aromatic compound
RU2400464C2 (en) * 2005-02-18 2010-09-27 Мицубиси Кемикал Корпорейшн Method for synthesis of aromatic compounds and method for synthesis of hydrogenated aromatic compounds
JP2009538908A (en) * 2006-05-31 2009-11-12 エクソンモービル・ケミカル・パテンツ・インク Identification of aromatic hydrocarbons produced from methane by isotope analysis
WO2009020045A1 (en) 2007-08-03 2009-02-12 Mitsui Chemicals, Inc. Process for production of aromatic hydrocarbons
WO2011118279A1 (en) * 2010-03-23 2011-09-29 株式会社明電舎 Method of manufacture for aromatic compound
JP2011195535A (en) * 2010-03-23 2011-10-06 Meidensha Corp Method for producing aromatic compound
CN102811983A (en) * 2010-03-23 2012-12-05 株式会社明电舍 Method of manufacture for aromatic compound
JP2015063560A (en) * 2014-12-25 2015-04-09 株式会社明電舎 Method for producing aromatic hydrocarbon
WO2018164193A1 (en) * 2017-03-08 2018-09-13 三菱ケミカル株式会社 Hydrogenation catalyst for carbonyl compound and alcohol production method
CN110382452A (en) * 2017-03-08 2019-10-25 三菱化学株式会社 Catalyst for hydrogenation of carbonyl compound and method for producing alcohol
JPWO2018164193A1 (en) * 2017-03-08 2020-01-09 三菱ケミカル株式会社 Catalyst for hydrogenating carbonyl compound and method for producing alcohol
US11014862B2 (en) 2017-03-08 2021-05-25 Mitsubishi Chemical Corporation Catalyst for hydrogenation of carbonyl compound and alcohol production method
US11352309B2 (en) 2017-03-08 2022-06-07 Mitsubishi Chemical Corporation Catalyst for hydrogenation of carbonyl compound and alcohol production method
JP7111093B2 (en) 2017-03-08 2022-08-02 三菱ケミカル株式会社 Carbonyl compound hydrogenation catalyst and alcohol production method
CN110382452B (en) * 2017-03-08 2022-11-15 三菱化学株式会社 Catalyst for hydrogenation of carbonyl compound and method for producing alcohol
CN113121297A (en) * 2020-01-15 2021-07-16 中国石油天然气股份有限公司 Method for producing aromatic hydrocarbon by using methanol
WO2025065781A1 (en) * 2023-09-26 2025-04-03 中国科学院大连化学物理研究所 Method for preparing aromatic hydrocarbons by means of coupling conversion of co and polyolefin

Similar Documents

Publication Publication Date Title
JP3745885B2 (en) Method for producing aromatic compound using methane as raw material
JP4828680B2 (en) Method and catalyst for converting low carbon number aliphatic hydrocarbons to higher carbon number hydrocarbons
JP3755955B2 (en) Lower hydrocarbon aromatization catalyst and method for producing aromatic compound using the catalyst
AU2009235497B2 (en) Method for the dehydroaromatisation of mixtures containing methane by regenerating the corresponding catalysts that are devoid of precious metal
US8097763B2 (en) Process for production of aromatic compound
JP2001334151A (en) Catalyst for converting lower hydrocarbon into aromatic compound and method for producing aromatic compound and hydrogen from lower hydrocarbon as raw material
JP2014508632A (en) Process for producing light olefin using ZSM-5 catalyst
JP2011116707A (en) Method for producing lower hydrocarbon and aromatic compound and production catalyst
JP5535201B2 (en) Process for producing benzene, toluene (and naphthalene) from C1-C4 alkanes by simultaneous metering of hydrogen in separate locations
JP2010209057A (en) Method for producing aromatic hydrocarbon
JP3755968B2 (en) Lower hydrocarbon aromatization catalyst and process for producing aromatic compounds using the catalyst
JP2008266244A (en) Process for producing aromatic hydrocarbons
Aboul-Gheit et al. Effect of combining the metals of group VI supported on H-ZSM-5 zeolite as catalysts for non-oxidative conversion of natural gas to petrochemicals
WO2012002269A1 (en) Method for producing aromatic hydrocarbon
JP2001334152A (en) Catalyst for converting lower hydrocarbon into aromatic compound and method for producing aromatic compound and hydrogen from lower hydrocarbon as raw material
JP5283666B2 (en) Lower hydrocarbon aromatic compound catalyst, aromatic compound using lower hydrocarbon as raw material, and method for producing hydrogen
JP5283665B2 (en) Lower hydrocarbon aromatic compound catalyst, aromatic compound using lower hydrocarbon as raw material, and method for producing hydrogen
JP2008266245A (en) Process for producing aromatic hydrocarbons
US10450247B2 (en) Method of producing hydrocarbons from methane
WO2010092850A1 (en) Method for producing aromatic hydrocarbon
WO2011118279A1 (en) Method of manufacture for aromatic compound
JP4790356B2 (en) Lower hydrocarbon reforming catalyst
JP3171877B2 (en) Process for producing liquid hydrocarbon mixtures from ethane
JP5151951B2 (en) Lower hydrocarbon aromatization catalyst and method for producing the catalyst
JP2006043686A (en) Aromatization catalyst for lower hydrocarbon and method for producing aromatic hydrocarbon and hydrogen from lower hydrocarbon using it

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100702

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100726

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100820