[go: up one dir, main page]

JP3724902B2 - Vertical engine intake manifold - Google Patents

Vertical engine intake manifold Download PDF

Info

Publication number
JP3724902B2
JP3724902B2 JP34021796A JP34021796A JP3724902B2 JP 3724902 B2 JP3724902 B2 JP 3724902B2 JP 34021796 A JP34021796 A JP 34021796A JP 34021796 A JP34021796 A JP 34021796A JP 3724902 B2 JP3724902 B2 JP 3724902B2
Authority
JP
Japan
Prior art keywords
intake
cylinder
pipe
engine
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34021796A
Other languages
Japanese (ja)
Other versions
JPH10184469A (en
Inventor
和田  哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP34021796A priority Critical patent/JP3724902B2/en
Priority to CA002273261A priority patent/CA2273261C/en
Priority to PCT/JP1997/004700 priority patent/WO1998027331A1/en
Priority to EP97949160A priority patent/EP0957257B1/en
Priority to US09/308,674 priority patent/US6085713A/en
Publication of JPH10184469A publication Critical patent/JPH10184469A/en
Application granted granted Critical
Publication of JP3724902B2 publication Critical patent/JP3724902B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B61/00Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing
    • F02B61/04Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing for driving propellers
    • F02B61/045Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing for driving propellers for marine engines

Landscapes

  • Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、サージタンクと複数の吸気管とを備えてシリンダブロックの側面に沿って配置されるバーチカルエンジンの吸気マニホールドに関する。
【0002】
【従来の技術】
クランク軸を縦置きに配置した船外機の多気筒エンジンにおいて、各シリンダにそれぞれ接続される複数の吸気管と、これら吸気管の上流端に接続される吸気室とをシリンダブロックの側面に沿って配置したものが、特開平4−166496号公報により公知である。
【0003】
【発明が解決しようとする課題】
ところで上記特開平4−166496号公報に記載されたものは、各吸気管が一定の傾斜角度で平行に配置されているため、それら吸気管の管長を等しく設定することは容易である。しかしながら、エンジンルーム内におけるレイアウト上の問題から複数の吸気管を一定の傾斜角度で平行に配置することが難しく、やむを得ず上下方向に並列配置された各シリンダに向けてサージタンクから複数の吸気管を放射状に配置する場合がある。このようにすると、サージタンクからシリンダに向けて水平に配置された吸気管の管長は短くなるのに対し、サージタンクからシリンダに向けて傾斜して配置された吸気管の管長は長くなり、各吸気管の管長が不揃いになる。このように多気筒内燃機関において各吸気管の管長が不揃いになると、吸気系の脈動効果を有効に発揮させることが難しくなり、エンジン出力の増加に支障を来す問題がある。
【0004】
本発明は前述の事情に鑑みてなされたもので、サージタンクから異なる傾斜角度で延びる複数の吸気管を備えた、バーチカルエンジンの吸気マニホールドにおいて、前記複数の吸気管の管長を略一定にすることを目的とする。
【0005】
【課題を解決するための手段】
前記目的を達成するために、請求項1発明は、縦置きに配置したクランク軸の軸線方向に並列に配置された複数のシリンダを有するバーチカルエンジンのシリンダヘッドの取付面に取り付けられる吸気マニホールドであって、各シリンダに連なってシリンダブロックの側面に沿って延びる複数の吸気管と、これら吸気管の上流端が接続されるサージタンクとを一体に備えており、前記シリンダブロックの側面に直交する方向から見て各吸気管 がシリンダの軸線方向と成す角度がそれぞれ異なるものにおいて、前記複数の吸気管の上流端を上下に並べて配列すると共に、それら上流端とサージタンクとの上下に並んだ接続部の、前記取付面からの偏倚量を、前記シリンダの軸線方向と成す角度が小さい吸気管のものほど大きく設定したことを特徴とする。
【0006】
エンジンのシリンダヘッドの取付面に取り付けられる吸気マニホールドの複数の吸気管がシリンダの軸線方向と成す角度をそれぞれ異ならせると、前記角度の小さい吸気管は短くなり、前記角度の大きい吸気管は長くなるため、この吸気管長のばらつきによってエンジン出力が低下する。そこで、請求項1の発明の上記構成のように、吸気マニホールドが取り付けられるシリンダヘッドの取付面から測った、吸気マニホールドの吸気管の上流端とサージタンクとの接続部の偏倚量を、前記軸線方向と成す角度が小さい吸気管ものほど大きく設定すれば、前記偏倚量が大きい吸気管は長くなり、前記偏倚量が小さい吸気管は短くなるため、吸気管長のばらつきが補償されて各吸気管長が均一化される。
【0007】
【発明の実施の形態】
以下、図面に基づいて本発明の実施例を説明する。
【0008】
図1〜図7は本発明の一実施例を示すもので、図1は船外機の全体側面図、図2は図1の2−2線拡大断面図、図3は図2の3方向矢視図、図4は図3の4方向矢視図、図5は各吸気管の形状を示す図、図6は図3の6−6線断面図、図7は図3の要部拡大断面図である。
【0009】
図1に示すように、船外機Oは、エクステンションケース1の上部に結合されたマウントケース2を備えており、このマウントケース2の上面に水冷直列4気筒4サイクルエンジンEがクランク軸15を縦置きに支持される。マウントケース2には上面が開放したアンダーケース3が結合されており、このアンダーケース3の上部にエンジンカバー4が着脱自在に装着される。マウントケース2の外側を覆うように、アンダーケース3の下縁とエクステンションケース1の上端近傍の縁との間にアンダーカバー5が装着される。
【0010】
エンジンEはシリンダブロック6、クランクケース7、シリンダヘッド8、ヘッドカバー9、下部ベルトカバー10及び上部ベルトカバー11を備えており、シリンダブロック6及びクランクケース7の下面が前記マウントケース2の上面に支持される。シリンダブロック6に形成した4個のシリンダ12…にそれぞれピストン13…が摺動自在に嵌合しており、各ピストン13…がコネクティングロッド14…を介して鉛直方向に配置したクランク軸15に連接される。
【0011】
クランク軸15の下端にフライホイール16と共に連結された駆動軸17は、エクステンションケース1の内部を下方に延び、その下端はギヤケース18の内部に設けたベベルギヤ機構19を介して、後端にプロペラ20を有するプロペラ軸21に接続される。ベベルギヤ機構19の前部には、プロペラ軸21の回転方向を切り換えるべくシフトロッド22の下端が接続される。
【0012】
マウントケース2に設けたアッパーマウント23とエクステンションケース1に設けたロアマウント24間にスイベル軸25が固定されており、このスイベル軸25を回転自在に支持するスイベルケース26が、船尾Sに装着されたスターンブラケット27にチルト軸28を介して上下揺動可能に支持される。
【0013】
マウントケース2の下面にはオイルパン29と排気管30とが結合される。排気管30からエクステンションケース1の内部空間に排出された排気ガスは、ギヤケース18の内部空間及びプロペラ20のボス部の内部を通過して水中に排出される。
【0014】
図2から明らかなように、アンダーケース3及びエンジンカバー4により画成されたエンジンルーム36に収納されたエンジンEは、クランク軸15と平行に配置された2本の2次バランサー軸37,38と、1本のカム軸39とを備える。2次バランサー軸37,38はクランク軸15よりもシリンダヘッド8寄りのシリンダブロック6に支持され、またカム軸39はシリンダヘッド8とヘッドカバー9との合わせ面に支持される。
【0015】
クランク軸15の上端には、カム軸駆動プーリ40、2次バランサー軸駆動プーリ41、発電機駆動プーリ42及び冷却ファン43を一体化したプーリ組立体44が固定される。カム軸39の上端に固定したカム軸従動プーリ45と前記カム軸駆動プーリ40とが無端ベルト46により接続される。カム軸駆動プーリ40の直径はカム軸従動プーリ45の直径の2分の1に設定されており、従ってカム軸39はクランク軸15の2分の1の速度で回転する。ピン47で枢支されたアーム48の一端に設けられたテンションプーリ49が、スプリング50の弾発力で無端ベルト46の外面に押し付けられており、これにより無端ベルト46に所定の張力が与えられる。
【0016】
一方の2次バランサー軸37の近傍に設けた中間軸51及び他方の2次バランサー軸38にそれぞれ固定した一対の2次バランサー軸従動プーリ52,53と、前記2次バランサー軸駆動プーリ41とが無端ベルト54により接続される。ピン55で枢支されたアーム56の一端に設けられたテンションプーリ57が、スプリング58の弾発力で無端ベルト54の外面に押し付けられており、これにより無端ベルト54に所定の張力が与えられる。中間軸52と一方の2次バランサー軸37とは一対の同径のギヤ(図示せず)で接続されており、且つ2次バランサー軸駆動プーリ41の直径は各2次バランサー軸従動プーリ52,53の直径の2倍に設定されており、従って一対の2次バランサー軸37,38はクランク軸15の2倍の速度で相互に逆方向に回転する。
【0017】
クランクケース7の上面に2本のボルト59,59で固定したブラケット60に、2本のボルト61,61で発電機62が支持される。発電機62の回転軸63に固定した発電機従動プーリ64と前記発電機駆動プーリ42とが無端ベルト65で接続されており、クランク軸15により発電機62が駆動される。このように発電機62をエンジンEと別体に設けたことにより、発電機をクランク軸15に設けたフライホイールに組み込む場合に比べて、汎用の発電機62を使用することが可能となってコスト上有利であり、しかも発電機62の容量を容易に増加させることも可能である。
【0018】
船外機Oを吊り下げる際にチェーンブロックやクレーンのフックが係合するエンジンハンガー66が、カム軸39と他方の2次バランサー軸38との間に2本のボルト67,67により固定される。エンジンハンガー66の位置は、船外機Oの重心位置よりも僅かに後方に配置されており、エンジンハンガー66に吊り下げた船外機Oを下端が僅かに後方に跳ね上がった前のめり姿勢として船尾Sへの着脱が容易に行えるように考慮されている。
【0019】
カム軸39、2次バランサー軸37,38及び発電機62を駆動する3本のベルト46,54,65は、下部ベルトカバー10及び上部ベルトカバー11により画成されたベルト室68の内部に収納される。下部ベルトカバー10は発電機62の周囲を囲む開口部101 を備えるとともに、クランク軸15の右側の底壁に複数のスリット102 …を備えており、これら開口部101 及びスリット102 …を介してベルト室68内に空気が導入される。エンジンハンガー66の上端部は、上部ベルトカバー11を貫通して上方に突出する。
【0020】
図2〜図4を併せて参照すると明らかなように、エンジンカバー4の上部後面に左右一対のスリット状の空気取り入れ口41 ,41 が形成されており、この空気取り入れ口41 ,41 の下縁から前方に延びるガイド板75がエンジンカバー4の内面に固定される。従って、空気取り入れ口41 ,41 から吸入された空気はエンジンカバー4の上壁とガイド板75とに挟まれた空間を通って前方に流れ、ガイド板75の前縁からエンジンルーム36に流入する。ガイド板75の右側部には換気ダクト751 (図4参照)が形成されており、その換気ダクト751 の下端が上部ベルトカバー11の右側部に形成した開口111 に連通するとともに、その上端がエンジンカバー4の上部右側面に形成した開口42 に連通する。この換気ダクト751 により、下部ベルトカバー10及び下部ベルトカバー11により囲まれたベルト室68が外気と連通して換気が行われる。
【0021】
次に、図2〜図5に基づいてエンジンEの吸気系の構造を説明する。
【0022】
クランクケース7の前面に吸気サイレンサー76が3本のボルト77…で固定される。吸気サイレンサー76は箱状の本体部78と、この本体部78の左側面に結合されるダクト部79とから構成される。ダクト部79は、その下端に下向きに開口する吸気開口791 を備えるとともに、その上端に本体部78の内部空間に連通する連通孔792 を備える。吸気サイレンサー76の本体部78の右側面に配置されたスロットルボディ80は、可撓性を有する短い吸気ダクト35を介して前記本体部78に接続される。
【0023】
スロットルボディ80は、次に述べる吸気マニホールド85に接続固定される。エルボ81と、サージタンク82と、4本の吸気管83a,83b,83c,83dと、取付フランジ84とを一体に備えた吸気マニホールド85がエンジンEの右側面に沿うように配置される。エルボ81は、吸気の流れをクランクケース7の前面に沿う流れからクランクケース7の右側面に沿う流れへと略90°変えるものであり、可撓性を有するダクトであっても良いが、本実施例ではスロットルボディ80の支持固定のために前記サージタンク82、吸気管83a,83b,83c,83d及び取付フランジ84と一体になっている。
【0024】
吸気マニホールド85のエルボ81及びサージタンク82の接続部分は、サージタンク82の上端及び下端よりも上下方向に小さい寸法形状になっており、この部分でボルト861 ,861 ;862 ,862 と、ルーズ孔を有する2個のブラケット863 ,863 とによりクランクケース7の右側壁に固定され、更に取付フランジ84が複数本のボルト87…でシリンダヘッド8の右側面に形成された吸気マニホールド取付面81 に固定される。
【0025】
図3から明らかなように、上から1番目の第1吸気管83aは下部ベルトカバー10の下面に沿って略水平に延びているが、上から2番目〜4番目の第2〜第4吸気管83b〜83dは取付フランジ84からサージタンク82に向けて前上がりに傾斜して配置されており、その傾斜角度は第4吸気管83dが大きく、第3吸気管83cが中程度に大きく、第2吸気管83bが小さくなっている。このように吸気管83b,83c,83dを傾斜して配置することにより、後述する燃料噴射弁94…から噴射された燃料のうち吸気管83b,83c,83d内に残留した燃料を重力で速やかにシリンダ12…内に戻すことができるだけでなく、サージタンク82及び第4吸気管83dの下方にスペースを確保し、そのスペースに後述する高圧燃料供給手段を配置することができる。
【0026】
ところで、吸気管83a,83b,83c,83dの管長は吸気系の脈動効果によりエンジンEの出力に大きな影響を及ぼすものであるが、前述したように各吸気管83a,83b,83c,83dの傾斜角度を異ならせると、水平な第1吸気管83aの管長が最も短くなり、傾斜角度が大きい第4吸気管83dの管長が最も長くなってしまう。そこで、本実施例では4本の吸気管83a,83b,83c,83dの上流端を上下に配列すると 共に、それら上流端とサージタンク82との、上下に並んだ接続部の位置を、下流端の取付フランジ84が固定されるシリンダヘッド8の吸気マニホールド取付面81 に対して、図4及び図5に示すように偏倚させることにより前記管長のばらつきを補償している。具体的には、吸気マニホールド取付面81 からの第1吸気管83a〜第4吸気管83dの偏倚量Da〜Ddが、傾斜角度が小さいものほど大きくなるように、即ちDa>Db>Dc>Ddとなるように設定している。
【0027】
その結果、図5(A)に示す第1吸気管83aの管長は、水平に配置したことによる管長の減少分が、大きな偏倚量Daにより補償され、また図5(D)に示す第4吸気管83dの管長は、大きく傾斜して配置したことによる管長の増加分が、小さな偏倚量Ddにより補償され、4本の吸気管83a,83b,83c,83dの管長を略等しくすることができる。このようにして4本の吸気管83a〜83dの管長のばらつきをなくすことにより、エンジンEの出力低下を防止することができる。
【0028】
次に図2〜図4、図6及び図7に基づいてエンジンEの燃料供給系の構造を説明する。 ヘッドカバー9の後面にはプランジャポンプよりなる2個の低圧燃料ポンプ88,88が並列に設けられており、これら低圧燃料ポンプ88,88によって船内に設けた燃料タンク(図示せず)から燃料供給管L1 を介して吸引した燃料を、燃料供給管L2 を介してシリンダブロック6の右側面に設けたサブタンク89に供給する。図6から明らかなように、吸気ロッカーアーム101を支持する吸気ロッカーアーム軸102にポンプ駆動用ロッカーアーム103が同軸に支持されており、そのポンプ駆動用ロッカーアーム103の一端が前記カム軸39に設けたポンプカム104に当接するとともに、他端が各低圧燃料ポンプ88のプランジャ105に当接する。これにより、低圧燃料ポンプ88,88はカム軸39により駆動される。
【0029】
図3及び図7から明らかなように、前記サブタンク89は下側の本体部891 と上側のキャップ892 とに2分割されており、本体部891 が第4吸気管83dに形成した2個のボス部にそれぞれボルト106,106で固定されるともに、シリンダブロック6に2本のボルト107,107で固定される。サブタンク89の内部には、燃料液面を調整するフロート弁90と、電磁ポンプよりなる高圧燃料ポンプ91とが収納される。
【0030】
フロート弁90は、低圧ポンプ88,88から延びる前記燃料供給管L2 がサブタンク89に接続される部分に設けられた開閉弁108と、燃料液面に追従して昇降し、前記開閉弁108を開閉駆動するフロート109と、フロート109の昇降をガイドするガイド部材110とから構成される。フロート弁90は、燃料液面が低下すると開閉弁108が開弁して低圧ポンプ88,88からの燃料をサブタンク89内に導入し、燃料液面が上昇すると開閉弁108が閉弁して低圧ポンプ88,88からの燃料の受入れを遮断する。高圧ポンプ91は縦置きに配置されており、サブタンク89の底壁に沿うように配置されたストレーナ111から吸入した燃料を、サブタンク89の前部にバンド112で固定した高圧フィルター92に燃料供給管L3 を介して圧送する。
【0031】
吸気マニホールド85の取付フランジ84には、燃料レール93が複数本のボルト113…で固定されるとともに、4個のシリンダ12…に対応する4個の燃料噴射弁94…が固定されており、高圧フィルター92から燃料供給管L4 を介して燃料レール93の下端に供給された燃料が4個の燃料噴射弁94…に配分される。燃料レール93の上端に設けられた余剰燃料返送手段としてのレギュレータ95は燃料噴射弁94…に供給される燃料の圧力を調整するとともに、余剰の燃料を燃料戻し配管L5 を介してサブタンク89に還流させる。レギュレータ95の設定圧力を調整すべく、レギュレータ95とサージタンク82とが負圧配管L6 を介して接続される。
【0032】
前記サブタンク89、高圧燃料ポンプ91、高圧フィルター92、燃料レール93及びレギュレータ95は高圧燃料供給手段96を構成する。図2から明らかなように、シリンダブロック6の右側面に沿って吸気マニホールド85及び高圧燃料供給手段96が配置され、シリンダブロック6の左側面に沿って電装ボックス97が配置される。このように吸気マニホールド85及び高圧燃料供給手段96と、電装ボックス97とをシリンダ軸線の左右に振り分けて配置することにより、エンジンルーム36の内部空間を有効利用して船外機Oをコンパクト化することができる。尚、図3及び図4における符号98は、カートリッジ型オイルフィルターである。
【0033】
而して、エンジンEを組み立てる際に、吸気マニホールド85に予め高圧燃料供給手段96を組み付けてサブアセンブリ化することにより組付工数を減少させて作業性を高めることができる。即ち、取付フランジ84に燃料噴射弁94…を取り付けた吸気マニホールド85の第3吸気管83c及び第4吸気管83dに、内部にフロート弁90及び高圧燃料ポンプ91を組み込んだサブタンク89を2本のボルト106,106で固定し、更にサブタンク89に高圧フィルター92をバンド112を用いて固定する。また4個の燃料噴射弁94…を接続する燃料レール93をボルト113…で吸気マニホールド85の取付フランジ84に固定するとともに、この燃料レール93にレギュレータ95を固定する。
【0034】
そして燃料供給管L2 の一端をサブタンク89のフロート弁90に接続し、サブタンク89の高圧燃料ポンプ91と高圧フィルター82とを燃料供給管L3 で接続し、高圧フィルター82と燃料レール93の下端とを燃料供給管L4 で接続し、レギュータ95とサブタンク89とを燃料戻し配管L5 で接続し、更にレギュレータ95とサージタンク82とを負圧配管L6 で接続する。而して、吸気マニホールド85に高圧燃料供給手段96を組み付けたものを予めサブアセンブリとして組み立てておけば、吸気マニホールド85を複数本のボルト87…でシリンダヘッド8に固定するとともに、サブタンク89を2本のボルト107,107でシリンダブロック6に固定した後、燃料供給管L2 の他端を低圧燃料ポンプ88,88に接続するだけで組み付けを完了することができる。このように、吸気マニホールド85に高圧燃料供給手段96を予め組み付けてサブアセンブリ化することにより組付工数を大幅に削減することができる。
【0035】
以上、本発明の実施例を詳述したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。
【0036】
例えば、実施例では船外機OのエンジンEを例示したが、本発明は船外機O以外のエンジンに対しても適用することが可能である。
【0037】
【発明の効果】
以上のように、請求項1に記載された発明によれば、バーチカルエンジンのシリンダヘッドの取付面に取り付けられる吸気マニホールドにおいて、複数の吸気管の上流端を上下に並べて配列すると共に、それら上流端とサージタンクとの上下に並んだ接続部の、シリンダヘッド取付面からの偏倚量を、シリンダの軸線方向と成す角度が小さい吸気管のものほど大きく設定したので、シリンダブロックの側面に直交する方向から見て各吸気管がシリンダの軸線方向と成す角度が異なるために生じる吸気管の長さの差を補償し、全ての吸気管の長さを略等長にしてエンジン出力の低下を防止することができる。
【図面の簡単な説明】
【図1】 船外機の全体側面図
【図2】 図1の2−2線拡大断面図
【図3】 図2の3方向矢視図
【図4】 図3の4方向矢視図
【図5】 各吸気管の形状を示す図
【図6】 図3の6−6線断面図
【図7】 図3の要部拡大断面図
【符号の説明】
6 シリンダブロック
8 シリンダヘッド
1 吸気マニホールド取付面(取付面)
12 シリンダ
15 クランク軸
82 サージタンク
83a〜83d 吸気管
85 吸気マニホールド
Da〜Dd 偏倚量
E エンジン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an intake manifold of a vertical engine that includes a surge tank and a plurality of intake pipes and is disposed along a side surface of a cylinder block.
[0002]
[Prior art]
In an outboard multi-cylinder engine with a crankshaft arranged vertically, a plurality of intake pipes connected to each cylinder and an intake chamber connected to the upstream end of these intake pipes along the side of the cylinder block This is known from Japanese Patent Laid-Open No. 4-166396.
[0003]
[Problems to be solved by the invention]
By the way, in what is described in the above-mentioned Japanese Patent Application Laid-Open No. 4-166396, since the intake pipes are arranged in parallel at a constant inclination angle, it is easy to set the pipe lengths of the intake pipes equal. However, due to layout problems in the engine room, it is difficult to arrange a plurality of intake pipes in parallel at a fixed inclination angle, and it is unavoidable that a plurality of intake pipes are forced from the surge tank toward each cylinder arranged in parallel in the vertical direction. May be arranged radially. In this way, the length of the intake pipe arranged horizontally from the surge tank to the cylinder becomes shorter, whereas the length of the intake pipe arranged inclined from the surge tank to the cylinder becomes longer. The pipe length of the intake pipe becomes uneven. As described above, when the lengths of the intake pipes are not uniform in a multi-cylinder internal combustion engine, it becomes difficult to effectively exhibit the pulsation effect of the intake system, which causes a problem of increasing the engine output.
[0004]
The present invention has been made in view of the above circumstances, and in an intake manifold of a vertical engine provided with a plurality of intake pipes extending at different inclination angles from a surge tank, the pipe lengths of the plurality of intake pipes are made substantially constant. With the goal.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, an invention of claim 1 is an intake manifold attached to a mounting surface of a cylinder head of a vertical engine having a plurality of cylinders arranged in parallel in the axial direction of a crankshaft arranged vertically. In addition, a plurality of intake pipes connected to each cylinder and extending along the side surface of the cylinder block, and a surge tank to which an upstream end of the intake pipe is connected are integrally provided, and are orthogonal to the side surface of the cylinder block. When the intake pipes have different angles with respect to the cylinder axis direction when viewed from the direction, the upstream ends of the plurality of intake pipes are arranged side by side, and the upstream ends and the surge tanks are connected side by side. The amount of deviation of the portion from the mounting surface is set to be larger for the intake pipe having a smaller angle formed with the axial direction of the cylinder. And butterflies.
[0006]
If the angle formed by the plurality of intake pipes of the intake manifold attached to the mounting surface of the cylinder head of the engine is different from the axial direction of the cylinder, the intake pipe with the smaller angle becomes shorter and the intake pipe with the larger angle becomes longer. Therefore, the engine output decreases due to the variation in the intake pipe length. Therefore, as in the above-described configuration of the invention of claim 1, the amount of deviation of the connection portion between the upstream end of the intake pipe of the intake manifold and the surge tank, measured from the mounting surface of the cylinder head to which the intake manifold is attached, If the intake pipe having a smaller angle with the direction is set to a larger value, the intake pipe with the larger deviation becomes longer and the intake pipe with the smaller deviation becomes shorter. It is made uniform.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0008]
1 to 7 show an embodiment of the present invention. FIG. 1 is an overall side view of an outboard motor, FIG. 2 is an enlarged sectional view taken along line 2-2 of FIG. 1, and FIG. 4 is a view taken in the direction of the arrow 4 in FIG. 3, FIG. 5 is a view showing the shape of each intake pipe, FIG. 6 is a sectional view taken along line 6-6 in FIG. 3, and FIG. It is sectional drawing.
[0009]
As shown in FIG. 1, the outboard motor O includes a mount case 2 coupled to the upper portion of the extension case 1. A water-cooled in-line four-cylinder four-cycle engine E has a crankshaft 15 on the upper surface of the mount case 2. Supported vertically. An undercase 3 having an open upper surface is coupled to the mount case 2, and an engine cover 4 is detachably attached to the upper portion of the undercase 3. An under cover 5 is mounted between the lower edge of the under case 3 and the edge near the upper end of the extension case 1 so as to cover the outside of the mount case 2.
[0010]
The engine E includes a cylinder block 6, a crankcase 7, a cylinder head 8, a head cover 9, a lower belt cover 10 and an upper belt cover 11, and the lower surfaces of the cylinder block 6 and the crankcase 7 are supported on the upper surface of the mount case 2. Is done. Pistons 13 are slidably fitted to four cylinders 12 formed in the cylinder block 6, and each piston 13 is connected to a crankshaft 15 arranged in a vertical direction via a connecting rod 14. Is done.
[0011]
A drive shaft 17 connected to the lower end of the crankshaft 15 together with the flywheel 16 extends downward in the extension case 1, and the lower end thereof is connected to a propeller 20 at the rear end via a bevel gear mechanism 19 provided in the gear case 18. Is connected to the propeller shaft 21. A lower end of the shift rod 22 is connected to the front portion of the bevel gear mechanism 19 so as to switch the rotation direction of the propeller shaft 21.
[0012]
A swivel shaft 25 is fixed between an upper mount 23 provided on the mount case 2 and a lower mount 24 provided on the extension case 1, and a swivel case 26 that rotatably supports the swivel shaft 25 is mounted on the stern S. Further, the stern bracket 27 is supported through a tilt shaft 28 so as to be swingable up and down.
[0013]
An oil pan 29 and an exhaust pipe 30 are coupled to the lower surface of the mount case 2. The exhaust gas discharged from the exhaust pipe 30 to the internal space of the extension case 1 passes through the internal space of the gear case 18 and the inside of the boss portion of the propeller 20 and is discharged into the water.
[0014]
As apparent from FIG. 2, the engine E housed in the engine room 36 defined by the undercase 3 and the engine cover 4 has two secondary balancer shafts 37 and 38 arranged in parallel with the crankshaft 15. And one camshaft 39. The secondary balancer shafts 37 and 38 are supported by the cylinder block 6 closer to the cylinder head 8 than the crankshaft 15, and the cam shaft 39 is supported by the mating surface between the cylinder head 8 and the head cover 9.
[0015]
A pulley assembly 44 in which a cam shaft driving pulley 40, a secondary balancer shaft driving pulley 41, a generator driving pulley 42 and a cooling fan 43 are integrated is fixed to the upper end of the crankshaft 15. A cam shaft driven pulley 45 fixed to the upper end of the cam shaft 39 and the cam shaft driving pulley 40 are connected by an endless belt 46. The diameter of the camshaft drive pulley 40 is set to one half of the diameter of the camshaft driven pulley 45, so that the camshaft 39 rotates at a speed half that of the crankshaft 15. A tension pulley 49 provided at one end of an arm 48 pivotally supported by a pin 47 is pressed against the outer surface of the endless belt 46 by the elastic force of the spring 50, whereby a predetermined tension is applied to the endless belt 46. .
[0016]
A pair of secondary balancer shaft driven pulleys 52, 53 fixed to an intermediate shaft 51 and the other secondary balancer shaft 38 provided in the vicinity of one secondary balancer shaft 37, and the secondary balancer shaft drive pulley 41, respectively. Connected by an endless belt 54. A tension pulley 57 provided at one end of an arm 56 pivotally supported by a pin 55 is pressed against the outer surface of the endless belt 54 by the elastic force of a spring 58, whereby a predetermined tension is applied to the endless belt 54. . The intermediate shaft 52 and one of the secondary balancer shafts 37 are connected by a pair of gears (not shown) having the same diameter, and the diameter of the secondary balancer shaft driving pulley 41 is set to each secondary balancer shaft driven pulley 52, Therefore, the pair of secondary balancer shafts 37 and 38 rotate in opposite directions at a speed twice that of the crankshaft 15.
[0017]
A generator 62 is supported by two bolts 61 and 61 on a bracket 60 fixed to the upper surface of the crankcase 7 by two bolts 59 and 59. A generator driven pulley 64 fixed to the rotating shaft 63 of the generator 62 and the generator driving pulley 42 are connected by an endless belt 65, and the generator 62 is driven by the crankshaft 15. By providing the generator 62 separately from the engine E in this way, it is possible to use a general-purpose generator 62 as compared with the case where the generator is incorporated in a flywheel provided on the crankshaft 15. This is advantageous in terms of cost, and the capacity of the generator 62 can be easily increased.
[0018]
An engine hanger 66 to which a chain block or a crane hook engages when the outboard motor O is suspended is fixed between the cam shaft 39 and the other secondary balancer shaft 38 by two bolts 67 and 67. . The position of the engine hanger 66 is located slightly behind the center of gravity of the outboard motor O, and the stern S is defined as a forward posture in which the lower end of the outboard motor O suspended from the engine hanger 66 is slightly lifted rearward. It is considered so that it can be easily attached and detached.
[0019]
The three belts 46, 54, 65 that drive the cam shaft 39, the secondary balancer shafts 37, 38 and the generator 62 are accommodated in a belt chamber 68 defined by the lower belt cover 10 and the upper belt cover 11. Is done. The lower belt cover 10 includes an opening 10 1 surrounding the generator 62 and a plurality of slits 10 2 on the right bottom wall of the crankshaft 15. The opening 10 1 and the slit 10 2 . The air is introduced into the belt chamber 68 through. The upper end portion of the engine hanger 66 penetrates the upper belt cover 11 and protrudes upward.
[0020]
As is apparent when referring to FIGS. 2 to 4, a pair of left and right slit-like air intake ports 4 1 , 4 1 are formed on the upper rear surface of the engine cover 4, and these air intake ports 4 1 , 4 are formed. A guide plate 75 extending forward from the lower edge of 1 is fixed to the inner surface of the engine cover 4. Accordingly, the air sucked from the air intake ports 4 1 , 4 1 flows forward through the space sandwiched between the upper wall of the engine cover 4 and the guide plate 75, and enters the engine room 36 from the front edge of the guide plate 75. Inflow. A ventilation duct 75 1 (see FIG. 4) is formed on the right side of the guide plate 75, and the lower end of the ventilation duct 75 1 communicates with an opening 11 1 formed on the right side of the upper belt cover 11, and upper end communicates with the opening 4 2 formed on the upper right side of the engine cover 4. The ventilation duct 75 1, ventilation is performed belt chamber 68 surrounded by the lower belt cover 10 and lower belt cover 11 is communicated with the outside air.
[0021]
Next, the structure of the intake system of the engine E will be described with reference to FIGS.
[0022]
An intake silencer 76 is fixed to the front surface of the crankcase 7 with three bolts 77. The intake silencer 76 includes a box-shaped main body 78 and a duct portion 79 coupled to the left side surface of the main body 78. The duct portion 79 includes an intake opening 79 1 that opens downward at the lower end thereof, and a communication hole 79 2 that communicates with the internal space of the main body portion 78 at the upper end thereof. A throttle body 80 disposed on the right side surface of the main body 78 of the intake silencer 76 is connected to the main body 78 via a short intake duct 35 having flexibility.
[0023]
The throttle body 80 is connected and fixed to an intake manifold 85 described below. An intake manifold 85 integrally including an elbow 81, a surge tank 82, four intake pipes 83a, 83b, 83c, 83d, and a mounting flange 84 is arranged along the right side surface of the engine E. The elbow 81 changes the flow of the intake air from the flow along the front surface of the crankcase 7 to the flow along the right side surface of the crankcase 7 and may be a flexible duct. In the embodiment, the surge tank 82, the intake pipes 83a, 83b, 83c, 83d and the mounting flange 84 are integrated to support and fix the throttle body 80.
[0024]
The connecting portion between the elbow 81 and the surge tank 82 of the intake manifold 85 has a dimension that is smaller in the vertical direction than the upper and lower ends of the surge tank 82, and bolts 86 1 , 86 1 ; 86 2 , 86 2 at these portions. And two brackets 86 3 , 86 3 having loose holes and fixed to the right side wall of the crankcase 7, and a mounting flange 84 is formed on the right side surface of the cylinder head 8 with a plurality of bolts 87. Fixed to the manifold mounting surface 8 1 .
[0025]
As apparent from FIG. 3, the first intake pipe 83a that is first from the top extends substantially horizontally along the lower surface of the lower belt cover 10, but the second to fourth second to fourth intakes from the top. The pipes 83b to 83d are disposed so as to incline forward from the mounting flange 84 toward the surge tank 82. The inclination angle of the fourth intake pipe 83d is large, the third intake pipe 83c is moderately large, 2 The intake pipe 83b is small. Thus, by arranging the intake pipes 83b, 83c, 83d in an inclined manner, the fuel remaining in the intake pipes 83b, 83c, 83d out of the fuel injected from the fuel injection valves 94, which will be described later, can be quickly brought about by gravity. In addition to being able to return to the inside of the cylinders 12..., A space can be secured below the surge tank 82 and the fourth intake pipe 83d, and a high-pressure fuel supply means (to be described later) can be disposed in the space.
[0026]
By the way, the pipe lengths of the intake pipes 83a, 83b, 83c, and 83d greatly affect the output of the engine E due to the pulsation effect of the intake system, but as described above, the inclination of the intake pipes 83a, 83b, 83c, and 83d. If the angles are different, the horizontal first intake pipe 83a has the shortest pipe length, and the fourth intake pipe 83d having the large inclination angle has the longest pipe length. Therefore, the four intake pipes 83a in this embodiment, 83 b, 83c, both when arranged upstream end of 83d up and down with them the upstream end and the surge tank 82, the position of the aligned upper and lower connecting portion, a downstream end against the intake manifold mounting surface 8 1 of the cylinder head 8 that mounting flange 84 is fixed, to compensate the variations in the tube length by biasing as shown in FIGS. Specifically, as bias amount Da~Dd of the first intake pipe 83a~ fourth intake pipe 83d from the intake manifold mounting surface 8 1, the larger ones inclination angle is small, that Da>Db>Dc> It is set to be Dd.
[0027]
As a result, the pipe length of the first intake pipe 83a shown in FIG. 5 (A) is compensated for the decrease in the pipe length due to the horizontal arrangement by the large deviation amount Da, and the fourth intake air shown in FIG. 5 (D). The pipe length of the pipe 83d is compensated for by the small deviation amount Dd due to the fact that the pipe length is greatly inclined, and the pipe lengths of the four intake pipes 83a, 83b, 83c, 83d can be made substantially equal. In this way, it is possible to prevent a decrease in the output of the engine E by eliminating variations in the pipe lengths of the four intake pipes 83a to 83d.
[0028]
Next, the structure of the fuel supply system of the engine E will be described with reference to FIGS. 2 to 4, 6 and 7. Two low-pressure fuel pumps 88, 88 each comprising a plunger pump are provided in parallel on the rear surface of the head cover 9, and a fuel supply pipe is connected from a fuel tank (not shown) provided in the ship by these low-pressure fuel pumps 88, 88. The fuel sucked through L 1 is supplied to a sub tank 89 provided on the right side surface of the cylinder block 6 through a fuel supply pipe L 2 . As apparent from FIG. 6, a pump drive rocker arm 103 is coaxially supported on the intake rocker arm shaft 102 that supports the intake rocker arm 101, and one end of the pump drive rocker arm 103 is connected to the cam shaft 39. While being in contact with the provided pump cam 104, the other end is in contact with the plunger 105 of each low-pressure fuel pump 88. Accordingly, the low pressure fuel pumps 88 and 88 are driven by the cam shaft 39.
[0029]
3 and As is apparent from FIG. 7, the sub-tank 89 is divided into a main body portion 89 1 and the upper cap 89 2 in the lower, 2 the body portion 89 1 is formed in the fourth intake pipe 83d The bolts 106 and 106 are respectively fixed to the boss portions, and are fixed to the cylinder block 6 with two bolts 107 and 107. Inside the sub tank 89 are housed a float valve 90 for adjusting the fuel level and a high pressure fuel pump 91 comprising an electromagnetic pump.
[0030]
The float valve 90 includes an on-off valve 108 provided at a portion where the fuel supply pipe L 2 extending from the low-pressure pumps 88, 88 is connected to the sub-tank 89, and an up-and-down valve following the fuel liquid level. The float 109 is configured to be opened and closed, and a guide member 110 that guides the lifting and lowering of the float 109. The float valve 90 opens the on-off valve 108 when the fuel level drops and introduces fuel from the low-pressure pumps 88 and 88 into the sub-tank 89. When the fuel level rises, the on-off valve 108 closes and the low-pressure valve 90 opens. The fuel from the pumps 88, 88 is cut off. The high-pressure pump 91 is arranged vertically, and a fuel supply pipe is connected to a high-pressure filter 92 in which fuel sucked from a strainer 111 arranged along the bottom wall of the sub-tank 89 is fixed to the front portion of the sub-tank 89 with a band 112. Pump through L 3 .
[0031]
A fuel rail 93 is fixed to the mounting flange 84 of the intake manifold 85 by a plurality of bolts 113 and four fuel injection valves 94 corresponding to the four cylinders 12 are fixed to a high pressure. The fuel supplied from the filter 92 to the lower end of the fuel rail 93 via the fuel supply pipe L 4 is distributed to the four fuel injection valves 94. A regulator 95 as surplus fuel return means provided at the upper end of the fuel rail 93 adjusts the pressure of the fuel supplied to the fuel injection valves 94... And the surplus fuel is supplied to the sub tank 89 via the fuel return pipe L 5. Reflux. To adjust the set pressure of the regulator 95, the regulator 95 and the surge tank 82 is connected through a negative pressure pipe L 6.
[0032]
The sub tank 89, the high pressure fuel pump 91, the high pressure filter 92, the fuel rail 93 and the regulator 95 constitute a high pressure fuel supply means 96. As apparent from FIG. 2, the intake manifold 85 and the high-pressure fuel supply means 96 are arranged along the right side surface of the cylinder block 6, and the electrical box 97 is arranged along the left side surface of the cylinder block 6. Thus, the outboard motor O is made compact by effectively utilizing the internal space of the engine room 36 by arranging the intake manifold 85, the high-pressure fuel supply means 96, and the electrical equipment box 97 separately on the left and right sides of the cylinder axis. be able to. In FIG. 3 and FIG. 4, reference numeral 98 denotes a cartridge type oil filter.
[0033]
Thus, when the engine E is assembled, the high pressure fuel supply means 96 is assembled in advance into the intake manifold 85 to form a subassembly, thereby reducing the number of assembling steps and improving workability. That is, two sub-tanks 89 each incorporating a float valve 90 and a high-pressure fuel pump 91 are provided in the third intake pipe 83c and the fourth intake pipe 83d of the intake manifold 85 in which the fuel injection valves 94 are attached to the attachment flange 84. The high pressure filter 92 is fixed to the sub tank 89 using the band 112. Further, the fuel rail 93 connecting the four fuel injection valves 94 is fixed to the mounting flange 84 of the intake manifold 85 with bolts 113 and the regulator 95 is fixed to the fuel rail 93.
[0034]
One end of the fuel supply pipe L 2 is connected to the float valve 90 of the sub tank 89, the high pressure fuel pump 91 of the sub tank 89 and the high pressure filter 82 are connected by the fuel supply pipe L 3 , and the lower ends of the high pressure filter 82 and the fuel rail 93 are connected. Are connected by a fuel supply pipe L 4 , the regulator 95 and the sub tank 89 are connected by a fuel return pipe L 5 , and the regulator 95 and the surge tank 82 are further connected by a negative pressure pipe L 6 . Thus, if the high pressure fuel supply means 96 assembled to the intake manifold 85 is assembled in advance as a subassembly, the intake manifold 85 is fixed to the cylinder head 8 with a plurality of bolts 87. after fixing to the cylinder block 6 in of bolts 107, 107, the other end of the fuel supply pipe L 2 can be completed assembly by simply connecting to the low-pressure fuel pump 88. In this way, the assembly man-hour can be significantly reduced by pre-assembling the high-pressure fuel supply means 96 to the intake manifold 85 to form a subassembly.
[0035]
As mentioned above, although the Example of this invention was explained in full detail, this invention can perform a various design change in the range which does not deviate from the summary.
[0036]
For example, in the embodiment, the engine E of the outboard motor O is exemplified, but the present invention can be applied to engines other than the outboard motor O.
[0037]
【The invention's effect】
As described above, according to the first aspect of the present invention, in the intake manifold attached to the mounting surface of the cylinder head of the vertical engine, the upstream ends of the plurality of intake pipes are arranged side by side, and the upstream ends thereof are arranged. In the direction perpendicular to the side of the cylinder block, the amount of deviation from the cylinder head mounting surface of the connection part aligned vertically with the surge tank is set larger for the intake pipe whose angle with the cylinder axis direction is smaller. To compensate for the difference in the length of the intake pipes caused by the difference between the angles of the intake pipes and the cylinder axis direction, and make the lengths of all intake pipes approximately the same length to prevent a decrease in engine output. be able to.
[Brief description of the drawings]
1 is an overall side view of an outboard motor. FIG. 2 is an enlarged sectional view taken along line 2-2 in FIG. 1. FIG. 3 is a view taken in the direction of arrow 3 in FIG. 5 is a view showing the shape of each intake pipe. FIG. 6 is a cross-sectional view taken along line 6-6 in FIG. 3. FIG. 7 is an enlarged cross-sectional view of the main part in FIG.
6 Cylinder block 8 Cylinder head 8 1 Intake manifold mounting surface (mounting surface)
12 Cylinder 15 Crankshaft 82 Surge tank 83a-83d Intake pipe 85 Intake manifold Da-Dd Deviation E Engine

Claims (1)

縦置きに配置したクランク軸(15)の軸線方向に並列に配置された複数のシリンダ(12)を有するバーチカルエンジン(E)のシリンダヘッド(8)の取付面(81 )に取り付けられる吸気マニホールド(85)であって、
各シリンダ(12)に連なってシリンダブロック(6)の側面に沿って延びる複数の吸気管(83a〜83d)と、これら吸気管(83a〜83d)の上流端が接続されるサージタンク(82)とを一体に備えており、前記シリンダブロック(6)の側面に直交する方向から見て各吸気管(83a〜83d)がシリンダ(12)の軸線方向と成す角度がそれぞれ異なるものにおいて、
前記複数の吸気管(83a〜83d)の上流端を上下に並べて配列すると共に、それら上流端とサージタンク(82)との上下に並んだ接続部の前記取付面(81 )からの偏倚量(Da〜Dd)を、前記シリンダ(12)の軸線方向と成す角度が小さい吸気管(83a〜83d)のものほど大きく設定したことを特徴とする、バーチカルエンジンの吸気マニホールド。
Crankshaft disposed in vertically (15) a plurality of cylinder intake manifold mounted to a mounting surface (8 1) of the cylinder head (8) of the vertical engine (E) having a (12) axially disposed in parallel (85)
A plurality of intake pipes (83a to 83d) connected to each cylinder (12) and extending along the side surface of the cylinder block (6), and a surge tank (82) to which the upstream ends of these intake pipes (83a to 83d) are connected DOO includes integrally, in the intake pipes as viewed from a direction perpendicular to the side surface of the cylinder block (6) (83a to 83d) is made different, each angle formed by the axial direction of the cylinder (12),
With arranging the upstream end arranged above and below the plurality of intake pipes (83a to 83d), the connecting portion aligned vertically with their upstream ends and the surge tank (82), deviation from the mounting surface (8 1) An intake manifold for a vertical engine, characterized in that the amount (Da to Dd) is set to be larger for the intake pipe (83a to 83d) having a smaller angle with the axial direction of the cylinder (12).
JP34021796A 1996-12-19 1996-12-19 Vertical engine intake manifold Expired - Lifetime JP3724902B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP34021796A JP3724902B2 (en) 1996-12-19 1996-12-19 Vertical engine intake manifold
CA002273261A CA2273261C (en) 1996-12-19 1997-12-19 Intake manifold in engine
PCT/JP1997/004700 WO1998027331A1 (en) 1996-12-19 1997-12-19 Intake manifold for engines
EP97949160A EP0957257B1 (en) 1996-12-19 1997-12-19 Intake manifold for engines
US09/308,674 US6085713A (en) 1996-12-19 1997-12-19 Intake manifold for engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34021796A JP3724902B2 (en) 1996-12-19 1996-12-19 Vertical engine intake manifold

Publications (2)

Publication Number Publication Date
JPH10184469A JPH10184469A (en) 1998-07-14
JP3724902B2 true JP3724902B2 (en) 2005-12-07

Family

ID=18334823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34021796A Expired - Lifetime JP3724902B2 (en) 1996-12-19 1996-12-19 Vertical engine intake manifold

Country Status (1)

Country Link
JP (1) JP3724902B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3348709B2 (en) 1999-11-24 2002-11-20 日本電気株式会社 Printed circuit board design support apparatus and control program recording medium
WO2007113987A1 (en) 2006-03-31 2007-10-11 Honda Motor Co., Ltd. Internal combustion engine with intake muffler
JP2007321641A (en) * 2006-05-31 2007-12-13 Honda Motor Co Ltd Intake manifold of outboard engine
US7461623B2 (en) 2006-05-31 2008-12-09 Honda Motor Co., Ltd. Outboard engine unit

Also Published As

Publication number Publication date
JPH10184469A (en) 1998-07-14

Similar Documents

Publication Publication Date Title
JP3897197B2 (en) Blow-by gas reduction structure for outboard engine
US5596962A (en) Intake silencer in vertical type engine
JP3724902B2 (en) Vertical engine intake manifold
JP4107455B2 (en) Multi-cylinder engine for outboard motor
JP3853892B2 (en) Fuel supply structure for multi-cylinder engine for outboard motor
JP3871751B2 (en) Air vent structure of sub tank in outboard motor
JP3784508B2 (en) Air vent device for auxiliary fuel tank in power unit
JP2000310118A (en) Silencer device for outboard motor
JP2001115851A (en) Outboard motor
US6585547B2 (en) Outboard motor
JP3741808B2 (en) Engine hanger device for outboard motor
US6085713A (en) Intake manifold for engines
JP2601719B2 (en) V-type engine air supply system
JPH10184470A (en) Intake manifold for vertical engine
JP3881736B2 (en) Outboard motor
EP0957249A1 (en) Outboard motor
JP3205669B2 (en) Fuel supply system for multi-cylinder engine
JPH10184798A (en) Balancer shaft supporting structure in engine
JP4162105B2 (en) Outboard motor
JP3214785B2 (en) Fuel supply system for vertical multi-cylinder engine
US6234133B1 (en) Balancer shaft support structure in engine and engine hanger device in outboard engine
JP4114758B2 (en) Multi-cylinder 4-cycle engine
JPH10184378A (en) Outboard motor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050920

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080930

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7