[go: up one dir, main page]

JP3700396B2 - Steel continuous casting equipment - Google Patents

Steel continuous casting equipment Download PDF

Info

Publication number
JP3700396B2
JP3700396B2 JP16886298A JP16886298A JP3700396B2 JP 3700396 B2 JP3700396 B2 JP 3700396B2 JP 16886298 A JP16886298 A JP 16886298A JP 16886298 A JP16886298 A JP 16886298A JP 3700396 B2 JP3700396 B2 JP 3700396B2
Authority
JP
Japan
Prior art keywords
magnetic field
mold
molten steel
flow
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16886298A
Other languages
Japanese (ja)
Other versions
JP2000000648A (en
Inventor
宏一 戸澤
浩志 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP16886298A priority Critical patent/JP3700396B2/en
Publication of JP2000000648A publication Critical patent/JP2000000648A/en
Application granted granted Critical
Publication of JP3700396B2 publication Critical patent/JP3700396B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鋼の連続鋳造装置に関し、特に、磁場による溶鋼流動制御を行う鋼の連続鋳造装置に関する。
【0002】
【従来の技術】
鋼の連続鋳造においては、湯面におけるモールドパウダの巻き込み防止や、介在物、気泡の侵入による製品欠陥(UT欠陥、ブリスター、ふくれ、スリバー)防止、介在物や気泡の凝固シェルへの付着防止、凝固シェルの均一成長促進、不均一凝固による割れ防止、あるいは凝固組織の改善等々のために、磁場による溶鋼流動の制御(ブレーキや撹拌)が行われている。
【0003】
過大な溶鋼流動を抑制するための電磁ブレーキ技術として、例えば特開昭57−17356 号公報には、スラブ連鋳機の鋳型に電磁石を設置し、浸漬ノズルからの溶鋼吐出噴流に対してそれに垂直な方向の磁界を付与し、もって溶鋼中に誘導される電流と磁界との相互作用によって生ずるローレンツ力で溶鋼流動を制動し、前記吐出噴流が溶鋼プール中に深く侵入するのを抑制し、それによってモールドパウダの巻き込みを防止するとともに溶鋼中に持ち込まれた介在物の浮上を促進するという手法が提案されている。
【0004】
また、上記手法をさらに発展させ、鋳造速度や鋳片幅、浸漬ノズルの形状、メニスカスの位置などの操業条件を変更した場合にも有効な方法として、特開平2−284750号公報に、鋳型全幅にわたる静磁場を浸漬ノズルの吐出口の上部および下部に印加する方法が提案されている。
また、溶鋼流れの淀みを防止するための電磁撹拌の例としては、パウダへの熱供給不足を解消し介在物が初期凝固シェルに捕捉されるのを防止するために、メニスカス部に低周波移動磁界を作用させて溶鋼に流れを与える方法が特開平2−37946 号公報に提案されている。
【0005】
また、中炭素鋼の凝固シェル表面の縦割れ防止のために、電磁撹拌装置によりメニスカス近傍領域で凝固シェルの内周面に沿って溶鋼を40〜120cm/s の速度で流動させる方法が特開平1−228645号公報に提案されている。
さらに、電磁ブレーキと電磁撹拌を組み合わせた例として、浸漬ノズルからの吐出流に静磁場を印加し溶鋼吐出流速を低減して大形介在物の浮上を促進し、その下流では電磁撹拌装置により溶鋼を水平方向に攪拌し小形介在物が凝固シェルに捕捉されるのを防止する方法(特開昭61−193755号公報)、鋳型内で0.1m/sから0.4m/sの溶鋼流速が得られるように電磁撹拌を行うとともに、メニスカスの下方1.5mから連鋳機の垂直部までの間の場所に鋳片幅方向に均一な静磁界を作用させ、鋳片表層、内層部への介在物の集積を抑制して清浄性の優れた鋳片を製造する方法(特開平5−23803 号公報)、およびメニスカス位置にて低周波移動磁界を作用させてメニスカス流速を与えるとともに、浸漬ノズル吐出口の上下に幅方向に均一な静磁場を作用させて、注入した溶鋼の流動を抑止しながら鋳造することにより、鋳片の表面欠陥、内部欠陥を低減する方法(特開平5−154620号公報)が知られている。
【0006】
また、同一の鉄心に複数のコイルを巻き付け、コイルに直流や、3相交流を切り替えて流すことにより鋳型内に移動磁場を印加したり、静磁場を印加する方法(特開平9−262650号公報、特開平9−262651号公報)が知られている。
【0007】
【発明が解決しようとする課題】
連続鋳造に残されている課題は、生産性向上のためにさらにスループットや鋳造速度を大きくすることである。しかし、スループットや鋳造速度を大きくすると、浸漬ノズルからの溶鋼の吐出流速が大きくなり、メニスカス近傍の流速が大きくなってパウダの巻き込みが起こり、介在物等が連鋳機深部へ侵入してしまう。従って吐出流からの上向き流および下向き流ともに減衰させ、かつメニスカス部等の凝固シェル前面では適度な流れを与えることにより、介在物が凝固シェルに捕捉されるのを防止する必要がある。また、連鋳機の種類によっては極端に広い幅の鋳片を低速で鋳造せざるを得ない場合もあり、この場合には流れの淀みを防止するために鋳型の上部側、下部側の両方ともに適度な流れを与える必要がある。
【0008】
しかしながら、特開平2−37946 号公報に開示の、メニスカス部に低周波移動磁界を作用させて溶鋼に流れを与える方法では、吐出下降流を減衰させることはできず、浸漬ノズルより持ち込まれた介在物や一旦巻き込まれたパウダの連鋳機内部への侵入を防止することは不可能である。また、極広幅鋳片の低速鋳造に適用すると溶鋼の流れが強くなりすぎてパウダが巻き込まれる結果となり一旦巻き込まれたパウダが連鋳機内部へ侵入する。
【0009】
また、特開平2−284750号公報に開示の、鋳型全幅にわたる静磁場を浸漬ノズルの吐出口の上部および下部に印加する方法によっても、高速で鋳造する場合に、介在物の侵入を防止しようとして磁場を強くすると、メニスカス部で流れが弱くなりすぎ、淀みが発生して介在物が凝固シェルに捕捉される。
特開昭61−193755号公報に開示の、吐出流を包囲する位置に静磁場を、その下流に移動磁場を組合せ印加する方法でも、吐出流を制動しようとして静磁場を強くすると吐出流が反射して上昇流が強くなり、メニスカス近傍の流速が大きくなってパウダの巻き込みが起こる現象は防止できない。
【0010】
特開平5−23803 号公報に開示の、鋳型内に移動磁場を、鋳型下方に幅方向に均一な静磁場を印加する方法でも、高速で鋳造する場合にはパウダの巻き込みを防止できず、介在物が垂直部の流れの淀み部で凝固シェルに捕捉されることがある。
特開平5−154620号公報に開示の、メニスカス部に移動磁界を、ノズル吐出口の上下に幅方向に均一な静磁場を組合せ印加する方法でも、下部の静磁場を通過した介在物の凝固シェルへの付着には効果がない。
【0011】
特開平9−262650号公報および特開平9−262651号公報に開示の、電流の種類を直流や3相交流などに切り替えて1対の電磁力によって鋳型内に移動磁場を印加したり静磁場を印加する方法でも、ある場所で制動か攪拌のいずれか一方しか実施できない。
これらの溶鋼流動制御方法の問題点は、ある場所で流れの制動もしくは撹拌を行おうとするときに、いずれか一方しか実施できないことにある。
【0012】
特開平5−154620号公報に開示の方法でいえば、メニスカス部に移動磁界を、ノズル吐出口の上下に幅方向に均一な静磁場を組合せ印加することはできても、全く同一の場所において流れの撹拌と制動とを両方とも達成することはできない。この方法でもある程度までメニスカスでの流動を適正範囲に収めることが可能ではあるが、本来は鋳型の幅方向、鋳造方向の位置だけでなく、厚み方向の位置でも適正な流動範囲が存在するはずであるから、例えば、湯面近傍部において、初期凝固シェル前面では適度な流動を与えて介在物の付着を防止し、内部のモールドパウダと接している部分では流れを制動してパウダの巻き込みを防止するといった流動制御が理想である。
【0013】
本発明は、この理想に近い溶鋼流動制御を実現しようとするもので、その目的は、溶鋼プール内のいかなる場所であってもその場所に応じた適正な流動を確保でき、もってモールドパウダの巻き込み、および介在物・気泡の凝固シェルへの付着を有効に防止できる鋼の連続鋳造装置を提供することにある。
【0014】
【課題を解決するための手段】
本発明によれば、鋼の連続鋳造方法において、連続鋳造機ストランド内の未凝固溶鋼に、強度および/または方向が時間により変動しかつその時間平均値が0でない磁界を印加することができる。
前記変動の周波数は0.5Hz 〜10Hzであることが好ましい。
【0015】
前記磁界の時間平均値および該平均値を中心とする変動幅は、鋳造条件に応じてそれぞれ独立に変更されることが好ましい。
前記磁界の時間平均値および該平均値を中心とする変動幅は、幅方向および/または鋳込方向の位置に応じてそれぞれ独立に変更されることが好ましい。
前記磁界が印加される場所としては、主として鋳型内、もしくは主として鋳型下部、もしくは主として湯面近傍部及び鋳型下部、またはこれらのうちの二つ以上の組合せが考えられる
【0016】
前記磁界が印加される場所は、実質的に鋳片全幅にわたることが好ましい。
発明は、鋼の連続鋳造装置において、直流電流を通電する電磁ブレーキコイルと交流電流を通電する低周波電磁撹拌コイルとを個別に備え、これらコイルを同じ鉄心に巻き付けてなる磁場発生装置を少なくとも1つ有することを特徴とする鋼の連続鋳造装置である。
【0017】
前記磁場発生装置は、鋳型の湯面近傍部および鋳型下部に装着するものとする
なお、本発明において、「磁場」と「磁界」とは同義であり、「鋳型内」とは、メニスカス位置から該メニスカス位置を起点として鋳込方向に沿って計られる距離(鋳込距離と称する)1mの位置までの範囲、「鋳型下部」とは鋳込距離1mの位置から5mの位置までの範囲、「湯面近傍部」とは、メニスカス位置から鋳込み方向に0.2 m程度までの範囲である。
【0018】
【発明の実施の形態】
一般に電磁力「ベクトルf(以下、単にfと記す)」は、電流密度「ベクトルJ(以下、単にJと記す)」および磁束密度「ベクトルB(以下、単にBと記す)」により、次の式
f=J×B (1)
で表される。ここに「×」は外積である(以下同じ)。また、電流密度Jは、電気伝導度σ、および、電界の強さ「ベクトルE(以下、単にEと記す)」、溶鋼流速「ベクトルv(以下、単にvと記す)」により、次の式
J=σ(E+v×B) (2)〔Ohm の法則〕
で表される。磁場の時間変化がある場合、電界の強さEは、時間t、電気ポテンシャルφおよびベクトルポテンシャル「ベクトルA(以下、単にAと記す)」により、次の式
E=−∇φ−∂A/∂t (3)〔Faraday の法則〕
で表される。ここに「∇」はナブラであり(以下同じ)、ベクトルポテンシャルAは、次の式
B=∇×A (4)
を満たす。
【0019】
式(1) に式(2),式(3) を代入すると、電磁力fは、次の式
f=σ〔−∇φ×B+v×B×B−(∂A/∂t)×B〕 (5)
で表される。
式(5) 右辺第2項が制動力を、同第3項が撹拌力を表している。なお、同第1項は戻り電流による力を表している。
【0020】
本発明の装置によれば、時間により強度(大きさ、強さ)および/または方向(向き)が変化し、かつその時間平均値が0でない磁界を溶鋼に印加することができるから、速い流れには磁場の直流成分(直流磁界;式(5) 右辺第2項)がブレーキとして作用し、遅い流れには磁場の交流移動成分(交流移動磁界;式(5) 右辺第3項)がスターラとして作用する。
【0021】
また、交流移動磁界の周波数を0.5Hz 〜10Hzとすると、表皮効果による磁力の浸透深さを変化させて、所望の場所での溶鋼流動を自在に制御することができる。すなわち、一つには周波数が高いほど表面近傍に撹拌力を付与することができるが、10Hzを超えると磁力が凝固シェルや鋳型銅板までにしか及ばず溶鋼を十分に撹拌できないため周波数の上限を10Hzとした。また一つには、周波数が低いほど溶鋼内部まで磁力を波及させることができるが、0.5Hz 未満では実効ある撹拌力が得られないことから周波数の下限を0.5Hz とした。この周波数範囲はいわゆる低周波域に属する。なお、より好ましい周波数範囲は1Hz〜5Hzである。
【0022】
このように交流移動磁界の作用は溶鋼表面(凝固シェル前面)に近いところほど強く、遠いところ(内部)ほど弱い。一方、直流磁界の方は表面、内部の別に関わりなく作用するため、式(5) より、凝固シェル前面では撹拌の効果を大きく、内部ではブレーキの効果を大きくすることができる。
さらに、本発明の装置によれば、磁界(変動磁界)の強さの時間平均値および該平均値回りの変動幅を、鋳造条件(鋼種、鋳片幅、鋳造速度等)や幅方向位置、鋳込方向位置に応じてそれぞれ独立に変更することにより、制動力や撹拌力を各条件・各位置毎に最適と目される値に一致させることが可能であり、各条件・各位置で所望の溶鋼流動を付与することができる。
【0023】
本発明の磁場発生装置では、直流電流を通電する電磁ブレーキコイルと交流電流を通電する低周波電磁撹拌コイルとをそれぞれ別個に備え、これらコイルを共通の鉄心に巻いてあるから、この共通の鉄心から時間変動する磁場を発生させ得るようになり、同一の位置において電磁ブレーキと電磁撹拌とを自在に運用できるようになる。
また、変動磁界の印加場所(i )主として鋳型内、(ii)主として鋳型下部、(iii )主として湯面近傍部および鋳型下部、のいずれか又はこれらのうちの二つ以上の組合せが考えられ(i )では主に鋳片表層における介在物や気泡の付着と鋳片表面割れとを防止でき、(ii)では主に鋳片内部への介在物や気泡の侵入と鋳片内層への介在物や気泡の付着とを防止できるが(iii )では主に湯面でのモールドパウダ巻き込みと初期凝固シェルへの介在物や気泡の付着とに加え鋳片内部への介在物や気泡の侵入と鋳片内層への介在物や気泡の付着とを防止できるという効果を奏するので、本発明では磁場発生装置を鋳型の湯面近傍部及び鋳型下部に装着するものとする。
【0024】
また、変動磁界の印加場所を実質的に鋳片全幅とすることにより、幅方向のどの位置でも上記効果が得られる。勿論、鋳片幅方向に磁界の強度分布を設け得るようにすることで、幅方向の各位置でその位置に対応した所望の溶鋼流動が得られる
【0025】
図1は、本発明に係る磁場発生装置の一例を示す立体図である。同図には鋳型の1長辺分に対応する部分を示した。図示のように、電磁ブレーキコイル1および低周波電磁撹拌コイル2が共通の鉄心3に巻かれている。鉄心3には幅方向位置毎に低周波電磁撹拌コイル2を設け得るようにコイル通し用の抜き孔4が開けられている。なお添字「A 」は個体区別のために付した。
【0026】
図2は、図1の磁場発生装置を鋳型に装着した状態を示す側断面図である。同図において、5は鋳型長辺(鋳型長辺銅板)、6は浸漬ノズル、7は凝固シェル(鋳片凝固シェル)、8は溶鋼、9は吐出口(ノズル吐出口)、10は鋳型短辺(鋳型短辺銅板)、11はメニスカス(湯面)であり、図1と同一または相当部分には同じ符号を付し説明を省略する。図示のように、この磁場発生装置は鋳込み方向位置に関する磁界印加場所を湯面近傍部および鋳型下部の二段として二段磁界印加を行うものである。この状態で、電磁ブレーキコイル1,1A の電流値を個別に変えることにより上段と下段とで独立に磁界の強さの時間平均値を変更することができ、また、低周波電磁撹拌コイル2,2A の電流値を変えることにより上段と下段とで独立に磁界の強さの時間変動幅を変更することができる。
【0027】
図3、図4は、それぞれ、ストランド内溶鋼への磁界印加場所を鋳込方向に一段設ける場合に好適な磁場発生装置の参考例を示す平断面図である。これらの図において、図2と同一または相当部分には同じ符号を付し説明を省略する。いずれの例でも、直流専用の電磁ブレーキコイル1(添字「B 」〜「E 」は個体区別のために付した)および交流専用の低周波電磁撹拌コイル2を共通の鉄心3に巻いてあり、この段の幅方向、厚み方向のどの位置にある溶鋼8に対しても、直流磁界と交流移動磁界とを重畳させ、その位置に応じた強さに調整して印加することができる。
【0028】
図5は、本発明の装置を用いた方法(c)と従来法(従来電磁ブレーキ法(a),従来電磁撹拌法(b))とによる発生磁界を比較して示す波形図である。同図の縦軸は磁束密度のx方向成分(鋳型短辺に平行な方向の成分)Bx 、横軸は鋳型幅方向位置(鋳型長辺に平行にとった座標軸上の位置)を表す。幅方向に均一な静磁場を印加する従来電磁ブレーキ法では、(a)の通りBx の同時刻値が幅方向で一定で時間変化もない特性をもつ直流磁界のみが発生するから、この印加場所では制動力のみが作用し、撹拌力は発生しない。一方、従来電磁撹拌法では、(b)の通りBx の同時刻値が幅方向に正弦波形を描きこの波形が時間とともに幅方向に移動する特性をもつ交流移動磁界のみが発生するから、この印加場所では撹拌は十分でも制動が不十分となる。これら従来法に対し、本発明の装置を用いた方法では、(c)の通り直流磁界と交流移動磁界とが重畳して発生するから、同じ印加場所で状況に応じて制動と撹拌とがどちらも十分となるように自在に磁界を調整することができる。
【0029】
【実施例】
垂直曲げ型の連続鋳造機により、吐出口径70mmの逆Y型二孔浸漬ノズルを使用して鋳造速度1.8m/minおよび2.5m/minにて幅1500mm、厚み220mm の低炭素アルミキルド鋼鋳片を鋳造する際に、図1に例示した本発明の磁場発生装置を、図2の配置で鋳型に設置し、鋳造中、電磁ブレーキコイル1による磁場強度(静磁場磁力)を1000〜5000ガウスの範囲で変更し、かつ低周波電磁撹拌コイル2により湯面近傍部の溶鋼流速(メニスカス流速)を10〜80cm/sの範囲で変更して実施例とした。
【0030】
鋳造後のスラブを熱間圧延し、さらに冷間圧延して厚み1.0mm ×幅1500mmに仕上げた冷延コイルについて、内部欠陥発生率及び表面欠陥発生率を磁粉探傷検査及び目視検査により調査した。
また、図2の磁場発生装置に代えて、図6に示すように、湯面近傍部には低周波電磁撹拌コイル2を、鋳型下部には電磁ブレーキコイル1を鉄心3に巻いた静磁場発生器を独立に設置し、鋳造中、電磁ブレーキコイル1による磁場強度(静磁場磁力)を1000〜5000ガウスの範囲で変更し、かつ低周波電磁撹拌コイル2によりメニスカス流速を10〜80cm/sの範囲で変更した比較例1と、図7に示すように、湯面近傍部に低周波電磁撹拌コイル2を設置するのみとし、低周波電磁撹拌コイル2によりメニスカス流速を0〜80cm/sの範囲で変更した比較例2について、実施例と同様の調査を行った。
【0031】
これらの調査結果を表1に示す。なお、表1の欠陥発生率は比較例2No.1との相対比で表示した。表1より、湯面近傍部にて溶鋼を電磁撹拌するだけの比較例2よりも、これに加えて鋳型下部にて溶鋼を電磁制動した比較例1のほうが、内部、表面とも欠陥発生率が低かった。この比較例1に比べ、湯面近傍部及び鋳型下部の各場所にて電磁撹拌と電磁制動を重複させた実施例では、同じメニスカス流速ではあっても、湯面(内部)での流速が制動されてパウダの巻き込みが減少するため、内部欠陥、表面欠陥ともにさらに一段と低減した。
【0032】
【表1】

Figure 0003700396
【0033】
【発明の効果】
かくして、本発明によれば、直流電流を通電する電磁ブレーキコイルと交流電流を通電する低周波電磁撹拌コイルとを個別に備え、これらコイルを同じ鉄心に巻き付けてなる磁場発生装置を鋳型の湯面近傍部および鋳型下部に装着したものを用いて、時間により強度および/または方向が変化し、かつその時間平均値が0でない磁界を連続鋳造機ストランド内の未凝固溶鋼に印加することで、所望の溶鋼流動が得られ、表面欠陥、内部欠陥が両方とも効果的に低減するという効果を奏し、また、従来のように電磁ブレーキ用と電磁撹拌用に別々の装置を備える必要もなく、設備簡素化、コスト低減の効果もある。
【0034】
また、鋳造速度が変化する鍋交換時等の鋳片長手方向部分(品質が低下しがちな非定常部)に対して、印加磁場を自在に調整して定常部と同様の流動状態に維持することができるようになるから、当該非定常部の品質低下をも防止することが可能となる。
【図面の簡単な説明】
【図1】 本発明に係る磁場発生装置の一例を示す立体図である。
【図2】 図1の磁場発生装置を鋳型に装着した状態を示す側断面図である。
【図3】 ストランド内溶鋼への磁界印加場所を鋳込方向に一段設ける場合に好適な磁場発生装置の参考例を示す平断面図である。
【図4】 ストランド内溶鋼への磁界印加場所を鋳込方向に一段設ける場合に好適な磁場発生装置の参考例を示す平断面図である。
【図5】 本発明の装置を用いた方法(c)と従来法(従来電磁ブレーキ法(a),従来電磁撹拌法(b))とによる発生磁界を比較して示す波形図である。
【図6】 比較例1の磁場発生装置を鋳型に装着した状態を示す側断面図である。
【図7】 比較例2の磁場発生装置を鋳型に装着した状態を示す側断面図である。
【符号の説明】
1 電磁ブレーキコイル
2 低周波電磁撹拌コイル
3 鉄心
4 抜き孔
5 鋳型長辺(鋳型長辺銅板)
6 浸漬ノズル
7 凝固シェル(鋳片凝固シェル)
8 溶鋼
9 吐出口(ノズル吐出口)
10 鋳型短辺(鋳型短辺銅板)
11 メニスカス(湯面)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a continuous casting ZoSo location of the steel, in particular, it relates to a continuous casting ZoSo location steels performing molten steel flow control by the magnetic field.
[0002]
[Prior art]
In continuous casting of steel, prevention of entrainment of mold powder on the molten metal surface, prevention of product defects (UT defects, blisters, blisters, slivers) due to the inclusion of inclusions and bubbles, prevention of inclusions and bubbles from adhering to the solidified shell, In order to promote uniform growth of the solidified shell, to prevent cracking due to non-uniform solidification, to improve the solidified structure, etc., the molten steel flow is controlled (braking and stirring) by a magnetic field.
[0003]
As an electromagnetic brake technology for suppressing excessive molten steel flow, for example, in Japanese Patent Application Laid-Open No. 57-17356, an electromagnet is installed in a mold of a slab continuous caster and perpendicular to the molten steel discharge jet from the immersion nozzle. A magnetic field in a certain direction, and thus the flow of the molten steel is braked by the Lorentz force generated by the interaction between the current induced in the molten steel and the magnetic field, and the discharge jet is prevented from penetrating deeply into the molten steel pool. Thus, there has been proposed a technique for preventing the inclusion of the mold powder and promoting the floating of inclusions brought into the molten steel.
[0004]
Further, as a method that is effective even when the above-described method is further developed and the operation conditions such as casting speed, slab width, immersion nozzle shape, meniscus position, etc. are changed, Japanese Patent Application Laid-Open No. 2-284750 discloses the full width of the mold. A method is proposed in which a static magnetic field is applied to the upper and lower portions of the discharge port of the immersion nozzle.
In addition, as an example of electromagnetic stirring to prevent stagnation of molten steel flow, in order to eliminate insufficient heat supply to the powder and prevent inclusions from being trapped in the initial solidification shell, low frequency movement to the meniscus part JP-A-2-37946 proposes a method of applying a magnetic field to apply a flow to molten steel.
[0005]
Further, in order to prevent vertical cracks on the solidified shell surface of medium carbon steel, there is a method in which molten steel is flowed at a speed of 40 to 120 cm / s along the inner peripheral surface of the solidified shell in the region near the meniscus by an electromagnetic stirrer. This is proposed in Japanese Patent Publication No. 1-2228645.
Furthermore, as an example of combining electromagnetic braking and electromagnetic stirring, a static magnetic field is applied to the discharge flow from the immersion nozzle to reduce the molten steel discharge flow rate and promote the floating of large inclusions. In which the small inclusions are prevented from being trapped by the solidified shell (Japanese Patent Laid-Open No. 61-193755), and a molten steel flow rate of 0.1 m / s to 0.4 m / s is obtained in the mold. In this way, a uniform static magnetic field is applied in the width direction of the slab at a position between 1.5m below the meniscus and the vertical part of the continuous casting machine, and inclusions on the slab surface and inner layers A method of manufacturing a slab excellent in cleanliness by suppressing accumulation (JP-A-5-23803) and a meniscus flow rate by applying a low-frequency moving magnetic field at the meniscus position, Apply a uniform static magnetic field in the width direction up and down, By casting while suppressing the flow of the off to the molten steel, surface defects of the slab, a method of reducing internal defects (JP-A-5-154620) are known.
[0006]
Also, a method of applying a moving magnetic field in a mold by applying a plurality of coils around the same iron core and switching the direct current or three-phase alternating current through the coils, or applying a static magnetic field (Japanese Patent Laid-Open No. 9-262650) JP, 9-262651, A).
[0007]
[Problems to be solved by the invention]
The problem remaining in continuous casting is to further increase throughput and casting speed in order to improve productivity. However, when the throughput and casting speed are increased, the discharge flow rate of molten steel from the immersion nozzle increases, the flow velocity near the meniscus increases, and powder entrainment occurs, and inclusions and the like enter the deep part of the continuous casting machine. Therefore, it is necessary to prevent the inclusions from being trapped by the solidified shell by attenuating both the upward and downward flows from the discharge flow and giving an appropriate flow in front of the solidified shell such as the meniscus portion. In addition, depending on the type of continuous casting machine, there is a case where it is necessary to cast a slab of extremely wide width at a low speed. In this case, in order to prevent stagnation of the flow, both the upper side and the lower side of the mold are required. Both need to give a moderate flow.
[0008]
However, in the method disclosed in JP-A-2-37946, which applies a low-frequency moving magnetic field to the meniscus portion to give a flow to the molten steel, the discharge downward flow cannot be attenuated, and the interposition brought in from the immersion nozzle It is impossible to prevent the intrusion of objects and powder once entrained into the continuous casting machine. Moreover, when it is applied to low-speed casting of an extremely wide cast slab, the flow of molten steel becomes too strong, and as a result, the powder is entrained, and the once entrained powder enters the continuous casting machine.
[0009]
In addition, in the method disclosed in JP-A-2-284750, a method of applying a static magnetic field over the entire width of the mold to the upper and lower portions of the discharge port of the immersion nozzle is intended to prevent intrusion of inclusions when casting at high speed. When the magnetic field is increased, the flow becomes too weak at the meniscus portion, stagnation occurs, and inclusions are captured by the solidified shell.
Even in the method disclosed in Japanese Patent Application Laid-Open No. 61-193755, in which a static magnetic field is applied to a position surrounding the discharge flow and a moving magnetic field is applied downstream thereof, the discharge flow is reflected when the static magnetic field is strengthened to brake the discharge flow. As a result, the upward flow becomes stronger, the flow velocity in the vicinity of the meniscus becomes larger, and the phenomenon of powder entrainment cannot be prevented.
[0010]
Even in the method disclosed in JP-A-5-23803, in which a moving magnetic field is applied in the mold and a uniform static magnetic field is applied in the width direction below the mold, the entrainment of powder cannot be prevented when casting at high speed. Objects may be trapped in the solidified shell at the stagnation of the vertical flow.
In the method disclosed in Japanese Patent Laid-Open No. 5-154620, a moving magnetic field is applied to the meniscus portion, and a uniform static magnetic field is applied in the width direction above and below the nozzle discharge port. There is no effect on adhesion.
[0011]
As disclosed in JP-A-9-262650 and JP-A-9-262651, the type of current is switched to direct current or three-phase alternating current, and a moving magnetic field is applied to the mold by a pair of electromagnetic forces, or a static magnetic field is applied. Even with the method of applying, only one of braking and stirring can be performed at a certain place.
The problem with these molten steel flow control methods is that only one of them can be implemented when attempting to brake or agitate the flow at a certain location.
[0012]
According to the method disclosed in Japanese Patent Application Laid-Open No. 5-154620, a moving magnetic field can be applied to the meniscus portion, and a uniform static magnetic field can be applied in the width direction above and below the nozzle outlet, but in exactly the same place. Both flow agitation and braking cannot be achieved. Even with this method, it is possible to keep the flow at the meniscus within a proper range, but originally there should be a proper flow range not only at the position in the mold width direction and casting direction but also at the position in the thickness direction. Therefore, for example, in the vicinity of the molten metal surface, an appropriate flow is provided on the front surface of the initial solidified shell to prevent adhesion of inclusions, and the portion in contact with the mold powder inside is braked to prevent entrainment of the powder. The flow control is ideal.
[0013]
The present invention intends to realize the flow control of the molten steel close to the ideal, and the purpose thereof is to ensure an appropriate flow according to the location at any location in the molten steel pool, and the entrainment of the mold powder. , and to provide a continuous casting ZoSo location of steel can effectively prevent the adhesion of the solidified shell of inclusions-bubbles.
[0014]
[Means for Solving the Problems]
According to the present invention, in the continuous casting method of steel, the unsolidified molten steel continuous casting machine in a strand, Ru can strength and / or direction to apply a magnetic field variation and and its time average value is not zero with time .
The frequency of the fluctuation is preferably 0.5 Hz to 10 Hz.
[0015]
It is preferable that the time average value of the magnetic field and the fluctuation range around the average value are independently changed according to casting conditions.
It is preferable that the time average value of the magnetic field and the fluctuation range centered on the average value are independently changed according to the position in the width direction and / or the casting direction.
The place where the magnetic field is applied, mainly in the mold, or is considered primarily a mold bottom or predominantly melt surface vicinity and the mold bottom, or two or more combinations of these.
[0016]
The place where the magnetic field is applied preferably extends over the entire width of the slab.
The present invention is a continuous casting apparatus for steel, comprising an electromagnetic brake coil for energizing a direct current and a low-frequency electromagnetic agitation coil for energizing an alternating current, and at least a magnetic field generator comprising these coils wound around the same iron core. It is a continuous casting apparatus for steel characterized by having one.
[0017]
The magnetic field generating device shall be attached to the fine casting type bottom Oyo melt surface vicinity of the mold.
In the present invention, “magnetic field” and “magnetic field” are synonymous, and “inside mold” means a distance measured from the meniscus position along the casting direction from the meniscus position (referred to as casting distance). ) Range up to 1 m, “bottom part of mold” is the range from 1 m casting distance to 5 m, “near the molten metal surface” is the range from the meniscus position to about 0.2 m in the casting direction. is there.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
In general, an electromagnetic force “vector f (hereinafter simply referred to as“ f ”)” is expressed as follows by current density “vector J (hereinafter simply referred to as J)” and magnetic flux density “vector B (hereinafter simply referred to as“ B ”)”. Formula f = J × B (1)
It is represented by Here, “×” is an outer product (the same applies hereinafter). The current density J is expressed by the following equation according to the electric conductivity σ, the electric field strength “vector E (hereinafter simply referred to as E)”, and the molten steel flow velocity “vector v (hereinafter simply referred to as v)”. J = σ (E + v × B) (2) [Ohm's law]
It is represented by When there is a time change of the magnetic field, the electric field strength E is expressed by the following equation E = −∇φ−∂A / by time t, electric potential φ, and vector potential “vector A (hereinafter simply referred to as A)”. ∂t (3) [Faraday's Law]
It is represented by Here, “∇” is Nabula (the same applies hereinafter), and the vector potential A is expressed by the following equation B = ∇ × A (4)
Meet.
[0019]
Substituting Equations (2) and (3) into Equation (1), the electromagnetic force f is expressed by the following equation: f = σ [−∇φ × B + v × B × B− (∂A / ∂t) × B] (Five)
It is represented by
Formula (5) The second term on the right side represents the braking force, and the third term represents the stirring force. The first term represents the force due to the return current.
[0020]
According to the apparatus of the present invention, a magnetic field whose strength (magnitude, strength) and / or direction (direction) changes with time and whose time average value is not 0 can be applied to molten steel. The DC component of the magnetic field (DC magnetic field; equation (5), the second term on the right side) acts as a brake, and the alternating current component of the magnetic field (alternating current magnetic field; equation (5), the third term on the right side) is a stirrer for slow flow. Acts as
[0021]
Further, when the frequency of the AC moving magnetic field is set to 0.5 Hz to 10 Hz, the molten steel flow at a desired place can be freely controlled by changing the penetration depth of the magnetic force due to the skin effect. In other words, the higher the frequency, the more the stirring force can be applied to the vicinity of the surface, but if it exceeds 10 Hz, the magnetic force reaches only the solidified shell and the mold copper plate, and the molten steel cannot be sufficiently stirred, so the upper limit of the frequency is set. 10 Hz. For one thing, the lower the frequency, the more the magnetic force can be propagated to the inside of the molten steel. However, since an effective stirring force cannot be obtained below 0.5 Hz, the lower limit of the frequency is set to 0.5 Hz. This frequency range belongs to a so-called low frequency range. A more preferable frequency range is 1 Hz to 5 Hz.
[0022]
Thus, the action of the AC moving magnetic field is stronger as it is closer to the surface of the molten steel (front surface of the solidified shell) and weaker as it is farther (inside). On the other hand, since the DC magnetic field acts regardless of whether the surface or the interior, the effect of agitation can be increased on the front surface of the solidified shell and the effect of the brake can be increased internally on the basis of Equation (5).
Furthermore, according to the apparatus of the present invention , the time average value of the strength of the magnetic field (fluctuating magnetic field) and the fluctuation range around the average value are determined based on the casting conditions (steel type, slab width, casting speed, etc.), the position in the width direction, By independently changing according to the pouring direction position, it is possible to match the braking force and stirring force with the values that are considered optimal for each condition and each position. The molten steel flow can be imparted.
[0023]
In the magnetic field generator of the present invention, an electromagnetic brake coil for energizing a direct current and a low frequency electromagnetic stirring coil for energizing an alternating current are separately provided, and these coils are wound around a common iron core. Thus, a time-varying magnetic field can be generated, and electromagnetic braking and electromagnetic stirring can be freely operated at the same position.
Also, application location varying magnetic field is, (i) mainly within the mold, contemplated (ii) primarily mold bottom, (iii) predominantly melt surface vicinity and the mold bottom, one or two or more combinations of these It is, in (i) primarily prevents the deposition and the slab surface cracks of inclusions and bubbles in the cast slab surface, to penetrate the slab inner layer of inclusions and air bubbles into mainly slab interior in (ii) of but Ru prevents the adhesion of inclusions and bubbles, Ya inclusions into the cast slab interior in addition to the deposition of inclusions and air bubbles into mold powder entrainment and initial solidified shell in molten metal surface primarily in (iii) since addition to the advantage of the inclusions and bubbles adhering to intrusion and slab inner layer of the bubble can be prevented, the present invention is intended for mounting a magnetic field generating device to the melt surface vicinity and the mold bottom of the mold.
[0024]
Moreover, the said effect is acquired in any position of the width direction by making the application place of a fluctuation magnetic field into the slab full width substantially. Of course, by such may be provided the intensity distribution of the magnetic field in the slab width direction, the desired molten steel flow corresponding to the position at each position in the width direction can be obtained.
[0025]
FIG. 1 is a three-dimensional view showing an example of a magnetic field generator according to the present invention. The figure shows a portion corresponding to one long side of the mold. As illustrated, an electromagnetic brake coil 1 and a low-frequency electromagnetic stirring coil 2 are wound around a common iron core 3. The iron core 3 is provided with a through hole 4 for passing a coil so that the low frequency electromagnetic stirring coil 2 can be provided for each position in the width direction. The subscript “ A ” is added for individual distinction.
[0026]
FIG. 2 is a side sectional view showing a state where the magnetic field generator of FIG. 1 is mounted on a mold. In the same figure, 5 is a mold long side (mold long side copper plate), 6 is an immersion nozzle, 7 is a solidified shell (slab solidified shell), 8 is molten steel, 9 is a discharge port (nozzle discharge port), and 10 is a short mold. A side (molded short side copper plate), 11 is a meniscus (molten surface), and the same or corresponding parts as those in FIG. As illustrated, the magnetic field generating apparatus performs a two-stage magnetic field applied in a two-stage melt-surface vicinity and the mold lower magnetic field application location with respect to the direction position pouring. In this state, by changing the current values of the electromagnetic brake coils 1 and 1 A individually, the time average value of the magnetic field strength can be changed independently between the upper and lower stages, and the low-frequency electromagnetic stirring coil 2 By changing the current value of 2 A , the time fluctuation range of the magnetic field strength can be changed independently between the upper stage and the lower stage.
[0027]
3, 4, respectively, a plan sectional view showing a reference example of a suitable magnetic field generating device in the case of providing one step magnetic field application location into strands of molten steel in the casting direction. In these drawings, the same or corresponding parts as those in FIG. In either example, a DC-dedicated electromagnetic brake coil 1 (subscripts “ B ” to “ E ” are attached for individual identification) and an AC-dedicated low-frequency electromagnetic stirring coil 2 are wound around a common iron core 3. A DC magnetic field and an AC moving magnetic field can be superimposed on the molten steel 8 at any position in the width direction and the thickness direction of this step, and the strength can be adjusted and applied according to the position.
[0028]
5, how using the device of the present invention (c) the conventional method (conventional electromagnetic brake method (a), the conventional electromagnetic stirring method (b)) is a waveform diagram showing a comparison of the generated magnetic field due to the. In the figure, the vertical axis represents the x direction component (component in the direction parallel to the mold short side) Bx of the magnetic flux density, and the horizontal axis represents the mold width direction position (position on the coordinate axis parallel to the mold long side). In the conventional electromagnetic brake method in which a uniform static magnetic field is applied in the width direction, only the DC magnetic field having the characteristic that the same time value of Bx is constant in the width direction and does not change with time is generated as shown in FIG. Then, only the braking force acts, and no stirring force is generated. On the other hand, in the conventional electromagnetic stirring method, as shown in (b), the same time value of Bx draws a sine waveform in the width direction, and only an AC moving magnetic field having the characteristic that the waveform moves in the width direction with time is generated. Even if the agitation is sufficient in the place, the braking is insufficient. For these conventional methods, the way of using the device of the present invention, and the agitation and the braking depending on availability as DC from the magnetic field and the AC traveling magnetic field is generated by superposing the same application location (c) The magnetic field can be freely adjusted so that both are sufficient.
[0029]
【Example】
Using a vertical bending type continuous casting machine, a low-carbon aluminum killed steel slab with a width of 1500mm and a thickness of 220mm at a casting speed of 1.8m / min and 2.5m / min using an inverted Y-type two-hole immersion nozzle with a discharge diameter of 70mm When casting, the magnetic field generator of the present invention illustrated in FIG. 1 is installed on the mold in the arrangement of FIG. 2, and the magnetic field strength (static magnetic force) by the electromagnetic brake coil 1 is in the range of 1000 to 5000 gauss during casting. In addition, the low-frequency electromagnetic stirring coil 2 was used to change the molten steel flow velocity (meniscus flow velocity) in the vicinity of the molten metal surface in the range of 10 to 80 cm / s.
[0030]
The slabs after casting were hot-rolled and further cold-rolled to finish 1.0 mm in thickness and 1500 mm in width, and the internal defect occurrence rate and surface defect occurrence rate were examined by magnetic particle inspection and visual inspection.
Further, in place of the magnetic field generator of FIG. 2, as shown in FIG. 6, a static magnetic field is generated by winding a low frequency electromagnetic stirring coil 2 near the molten metal surface and an electromagnetic brake coil 1 wound around the iron core 3 below the mold. The magnetic field strength (static magnetic force) by the electromagnetic brake coil 1 is changed in the range of 1000 to 5000 gauss during casting, and the meniscus flow rate is 10 to 80 cm / s by the low frequency electromagnetic stirring coil 2 during casting. As shown in FIG. 7 and Comparative Example 1 changed in the range, only the low frequency electromagnetic stirring coil 2 is installed in the vicinity of the molten metal surface, and the meniscus flow rate is in the range of 0 to 80 cm / s by the low frequency electromagnetic stirring coil 2. The same investigation as in the example was performed on the comparative example 2 changed in step 1.
[0031]
Table 1 shows the results of these investigations. In addition, the defect occurrence rate of Table 1 was displayed by the relative ratio with Comparative Example 2 No.1. From Table 1, compared with Comparative Example 2 in which the molten steel is electromagnetically stirred in the vicinity of the molten metal surface, in addition to this, Comparative Example 1 in which the molten steel is electromagnetically braked at the lower part of the mold has a defect occurrence rate on both the inside and the surface. It was low. Compared with the comparative example 1, in the example in which electromagnetic stirring and electromagnetic braking are overlapped at each location near the molten metal surface and at the lower part of the mold, the flow velocity on the molten metal surface (inside) is braked even when the meniscus flow velocity is the same. Since the entrainment of powder is reduced, both internal defects and surface defects are further reduced.
[0032]
[Table 1]
Figure 0003700396
[0033]
【The invention's effect】
Thus, according to the present invention, an electromagnetic brake coil for energizing a direct current and a low-frequency electromagnetic agitation coil for energizing an alternating current are separately provided, and a magnetic field generator comprising these coils wound around the same iron core is provided as a mold surface. with those mounted near the part and the mold bottom, times the intensity and / or direction is changed, and by applying a magnetic field that time average value is not 0 in unsolidified molten steel in a continuous casting machine in a strand, the desired As a result, both surface defects and internal defects are effectively reduced, and it is not necessary to provide separate devices for electromagnetic brakes and electromagnetic agitation as in the past. There is also an effect of cost reduction.
[0034]
In addition, the applied magnetic field is freely adjusted and maintained in the same flow state as the stationary part for the slab longitudinal direction part (unsteady part where quality tends to deteriorate) such as when changing the pan where the casting speed changes. Therefore, it is possible to prevent the quality of the unsteady part from being deteriorated.
[Brief description of the drawings]
FIG. 1 is a three-dimensional view showing an example of a magnetic field generator according to the present invention.
FIG. 2 is a side sectional view showing a state where the magnetic field generator of FIG. 1 is mounted on a mold.
3 is a plan sectional view showing a reference example of a suitable magnetic field generation device when the magnetic field application location into molten steel in the strand provided one step in the casting direction.
4 is a plan sectional view showing a reference example of a suitable magnetic field generation device when the magnetic field application location into molten steel in the strand provided one step in the casting direction.
[5] how using the device of the present invention (c) the conventional method (conventional electromagnetic brake method (a), the conventional electromagnetic stirring method (b)) is a waveform diagram showing a comparison of the generated magnetic field due to the.
FIG. 6 is a side sectional view showing a state in which the magnetic field generator of Comparative Example 1 is mounted on a mold.
7 is a side sectional view showing a state in which the magnetic field generator of Comparative Example 2 is mounted on a mold. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electromagnetic brake coil 2 Low frequency electromagnetic stirring coil 3 Iron core 4 Hole 5 Mold long side (mold long side copper plate)
6 Immersion nozzle 7 Solidified shell (slab solidified shell)
8 Molten steel 9 Discharge port (nozzle discharge port)
10 Mold short side (mold short side copper plate)
11 Meniscus (water surface)

Claims (1)

連続鋳造機ストランド内の未凝固溶鋼に磁場を印加する磁場発生装置を備えた鋼の連続鋳造装置において、前記磁場発生装置が、直流電流を通電する電磁ブレーキコイルと、交流電流を通電する低周波電磁撹拌コイルと、これらが共通に巻かれた鉄心とを有し、鋳型の湯面近傍部および鋳型下部に装着されたものであることを特徴とする鋼の連続鋳造装置。In a continuous casting apparatus for steel having a magnetic field generator for applying a magnetic field to unsolidified molten steel in a continuous casting machine strand, the magnetic field generator includes an electromagnetic brake coil for energizing a direct current and a low frequency for energizing an alternating current. an electromagnetic stirring coil, the continuous casting apparatus of steel, characterized in that they possess a core wound on a common, those attached to the melt surface vicinity and the mold bottom of the mold.
JP16886298A 1998-06-16 1998-06-16 Steel continuous casting equipment Expired - Fee Related JP3700396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16886298A JP3700396B2 (en) 1998-06-16 1998-06-16 Steel continuous casting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16886298A JP3700396B2 (en) 1998-06-16 1998-06-16 Steel continuous casting equipment

Publications (2)

Publication Number Publication Date
JP2000000648A JP2000000648A (en) 2000-01-07
JP3700396B2 true JP3700396B2 (en) 2005-09-28

Family

ID=15875945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16886298A Expired - Fee Related JP3700396B2 (en) 1998-06-16 1998-06-16 Steel continuous casting equipment

Country Status (1)

Country Link
JP (1) JP3700396B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE516635C2 (en) * 2000-06-21 2002-02-05 Abb Ab Device for extrusion of metal material
TWI294308B (en) 2000-11-15 2008-03-11 Daicel Chem
JP4830240B2 (en) * 2001-09-06 2011-12-07 Jfeスチール株式会社 Method and apparatus for continuous casting of steel
SE523881C2 (en) * 2001-09-27 2004-05-25 Abb Ab Device and method of continuous casting
JP4848656B2 (en) * 2005-03-28 2011-12-28 Jfeスチール株式会社 Method and apparatus for continuous casting of steel
JP5023989B2 (en) * 2007-11-16 2012-09-12 住友金属工業株式会社 Electromagnetic coil device for both electromagnetic stirring and electromagnetic brake
JP5023990B2 (en) * 2007-11-16 2012-09-12 住友金属工業株式会社 Electromagnetic coil device for both electromagnetic stirring and electromagnetic brake
DE102014105870B4 (en) 2014-04-25 2024-10-10 Thyssenkrupp Ag Method and device for thin slab continuous casting
CN114734005B (en) * 2022-03-22 2024-01-26 安徽工业大学 Electromagnetic braking device and method for controlling molten steel flow in tundish

Also Published As

Publication number Publication date
JP2000000648A (en) 2000-01-07

Similar Documents

Publication Publication Date Title
JP4807462B2 (en) Steel continuous casting method
JP4569715B1 (en) Steel continuous casting method
CA2325808C (en) Method and apparatus for continuous casting of metals
JP3700396B2 (en) Steel continuous casting equipment
JPH10305353A (en) Continuous molding of steel
JP5929872B2 (en) Steel continuous casting method
JP3965545B2 (en) Steel continuous casting method and apparatus
JP3937651B2 (en) Steel continuous casting method and apparatus
KR20090073500A (en) Flow control method of molten steel in mold and manufacturing method of continuous casting cast
JPH05154623A (en) Molten Steel Flow Control Method in Mold
JP4591156B2 (en) Steel continuous casting method
JP3096878B2 (en) Continuous casting method for slabs with excellent surface and internal quality
JP2002028761A (en) Electromagnetic stirring method in mold for continuous casting
CN100372634C (en) Method and apparatus for continuous casting of metals
JP2000158108A (en) Continuous steel casting method
JP2002120052A (en) Apparatus and method for controlling molten steel flow in mold
JPH06304719A (en) Method for braking molten metal in continuous casting mold and electromagnetic stirrer that also serves as brake
JP5359653B2 (en) Steel continuous casting method
JPS61140355A (en) Electromagnetic stirrer for controlling molten steel flow in casting mold
JP4910357B2 (en) Steel continuous casting method
JPH10305358A (en) Continuous molding of steel
JPH0390255A (en) Continuous metal casting method
JP2002283017A (en) Steel continuous casting method and electromagnetic stirrer
JPH09155515A (en) Flow controller for molten metal
JPH10193057A (en) Method for continuously casting steel slag

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050704

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130722

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees