[go: up one dir, main page]

JP3695604B2 - Deodorant - Google Patents

Deodorant Download PDF

Info

Publication number
JP3695604B2
JP3695604B2 JP07525996A JP7525996A JP3695604B2 JP 3695604 B2 JP3695604 B2 JP 3695604B2 JP 07525996 A JP07525996 A JP 07525996A JP 7525996 A JP7525996 A JP 7525996A JP 3695604 B2 JP3695604 B2 JP 3695604B2
Authority
JP
Japan
Prior art keywords
fiber
hardly soluble
fine particles
soluble metal
deodorizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07525996A
Other languages
Japanese (ja)
Other versions
JPH09241967A (en
Inventor
葉子 山本
良祐 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Exlan Co Ltd
Original Assignee
Japan Exlan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Exlan Co Ltd filed Critical Japan Exlan Co Ltd
Priority to JP07525996A priority Critical patent/JP3695604B2/en
Priority to US08/761,700 priority patent/US5897673A/en
Priority to TW085115625A priority patent/TW334482B/en
Priority to DE69633817T priority patent/DE69633817T2/en
Priority to EP96309445A priority patent/EP0783048B1/en
Priority to KR1019960074319A priority patent/KR100443183B1/en
Publication of JPH09241967A publication Critical patent/JPH09241967A/en
Application granted granted Critical
Publication of JP3695604B2 publication Critical patent/JP3695604B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、優れた消臭性能を有する消臭に関する。
【0002】
【従来の技術】
近年、生活様式の変化、居住環境の高密度化や機密性の高まり等により、悪臭が問題とされ、臭いの除去に対する要求が高まってきている。
【0003】
従来の消臭繊維としては活性炭繊維、消臭物質を繊維表面に後加工により付着固定させたもの、または練り混んだもの等が知られている。しかし、活性炭繊維は黒色である上に基本的に物性の低いものであるためその用途は限られたものであり、消臭物質を後加工により付着させたものは基本的に大きな消臭性能が得られない、練り混んだものは消臭物質の粒子径が大きいと繊維の物性を著しく損なう場合があるといった問題点を有していた。そのため練り混みタイプでは、消臭物質の粒子径が小さいことが好ましく、同時に、消臭性能の点からも表面積を大きくする意味で粒子径はできるだけ小さいことが望まれる。しかし、練り混み式では粒子の微粒化に限界があり、消臭性能を十分に生かしきれないといった問題点を有していた。
【0004】
【発明が解決しようとする課題】
本発明の目的は、アンモニア等の窒素系化合物及び硫化水素等の硫黄系化合物に対し優れた消臭性能を有し、上述のようなこれまでの技術に見られた問題点を解決する消臭を提供することである。
【0005】
【課題を解決するための手段】
本発明は、イオン交換またはイオン配位可能な極性基を有し、かつ架橋構造を有する繊維中に、粒径が1μm未満の金属および/または難溶性金属塩の微粒子を含有してなる消臭材に関するものである。
【0006】
かかる消臭を得るための製造方法としては、次の方法が例示される
1.イオン交換またはイオン配位可能な極性基を含有する架橋繊維中の極性基に金属イオンをイオン交換またはイオン配位した後、還元反応により、架橋繊維中に金属微粒子を析出せしめる方法。
2.イオン交換またはイオン配位可能な極性基を含有する架橋繊維中の極性基に金属イオンまたは金属イオンと結合して難溶性金属塩を析出し得るイオンをイオン交換またはイオン配位し、次に難溶性金属塩を析出沈殿させることのできる化合物により難溶性金属塩微粒子を架橋繊維中に析出せしめる方法。
3.イオン交換またはイオン配位可能な極性基を含有する架橋繊維中の極性基に金属イオンまたは金属イオンと結合して難溶性金属塩を析出し得るイオンをイオン交換またはイオン配位し、次に難溶性金属塩を析出沈殿させることのできる化合物により難溶性金属塩微粒子を架橋繊維中に析出せしめ、続いて還元反応を行い、架橋繊維中に金属および/または難溶性金属塩の微粒子を析出せしめる方法。
【0007】
【発明の実施の形態】
以下本発明を詳細に説明する。本発明に用いる架橋繊維に含有される極性基としては、アニオンあるいはカチオンのイオンをイオン交換またはイオン配位することが可能な極性基であれば特に限定はなく例えば、アニオンのイオン交換基としては、1級アミノ基、2級アミノ基、3級アミノ基、4級アミノ基、カチオンのイオン交換基としては、リン酸基、リン酸エステル基、カルボキシル基、スルホン酸基、硫酸エステル基、イオン配位基としては、カルボニル基、水酸基、メルカプト基、エーテル基、エステル基、スルホニル基、シアノ基などがあげられる。中でも1級アミノ基、2級アミノ基、3級アミノ基、4級アミノ基、リン酸基、カルボキシル基、スルホン酸基、シアノ基を用いた場合良好な結果が得られ、特に金属イオンと錯体あるいは塩を形成し易いカルボキシル基が優れている。
【0008】
なお含有される極性基の量としては、含有させるべき金属および/または難溶性金属塩の微粒子の量に応じて適宜選択することができるが、骨格を形成するポリマー部分を差し引いた量となるため、32mmol/g以下となる。ある程度の繊維物性が必要となる場合は16mmol/g以下であることが好ましい。一方金属および/または難溶性金属塩の微粒子の消臭性能は微粒子であるが故に極微量でも発揮され得るため、0.01mmol/g以上の極性基があれば十分である。また架橋繊維中への極性基の導入方法についても特に制限はなく、極性基を有したモノマーを、骨格ポリマーの作成(重合)段階で使用することによる導入、あるいは骨格ポリマー形成後あるいはさらに繊維に形成後の、化学的、物理的な変性による極性基の導入などの方法を用いることができる。
【0009】
本発明に用いられるマトリックスとなるポリマーの基本骨格としては、架橋構造を有している限りにおいては、天然ポリマー、半合成ポリマー及び合成ポリマーのいずれであってもよく特に制限はない。具体的なポリマーとしては、例えばポリエチレン、ポリプロピレン、塩化ビニル、ABS樹脂、ナイロン、ポリエステル、ポリ塩化ビニリデン、ポリアミド、ポリスチレン、ポリアセタール、ポリカーボネイト、アクリル樹脂、フッ素樹脂、ポリウレタンエラストマー、ポリエステルエラストマー、メラミン樹脂、ユリア樹脂、4フッ化エチレン樹脂、不飽和ポリエステル樹脂、エポキシ樹脂、ウレタン樹脂及びフェノール樹脂等のプラスチック;ナイロン、ポリエチレン、レーヨン、アセテート、アクリル、ポリビニルアルコール、ポリプロピレン、キュプラ、トリアセテート、ビニリデン等の繊維;天然ゴム及びシリコーンゴム、SBR(スチレン・ブタジエン・ゴム)、CR(クロロプレンゴム)、EPM(エチレン・プロピレンゴム)FPM(フッ素ゴム)、NBR(ニトリルゴム)、CSM(クロルスルホン化ポリエチレンゴム)、BR(ブタジエンゴム)、IR(合成天然ゴム)、IIR(ブチルゴム)、ウレタンゴム及びアクリルゴム等の合成ゴム等があげられる。
【0010】
中でも金属および/または難溶性金属塩の微粒子を合成する際に伴う物理的、化学的変化に耐えることができる様な特性、即ち耐熱性、耐薬品性の点より炭素−炭素結合に基ずく基本骨格を有したポリマー、例えばビニル系ポリマーが好ましく、特にイオン交換またはイオン配位可能な極性基を容易に導入することのできるポリマー、具体的には、ポリスチレン系あるいはポリアクリロニトリル系の重合体を用いることにより良好な結果を得ることができる。
【0011】
本発明の繊維を構成する基本骨格ポリマーにおける架橋の構造としては、金属および/または難溶性金属塩の微粒子を含有せしめる工程において該ポリマーが物理的、化学的に変性をうけない限りにおいては特に限定はなく、共有結合による架橋、イオン架橋、ポリマー分子間相互作用または結晶構造による架橋等いずれの構造のものでもよい。また、架橋を導入する方法についても、特に限定はないが、繊維を形成する必要があるため、繊維に成形後行う必要がある。
【0012】
なお、ポリアクリロニトリル系重合体を用い、架橋構造としてヒドラジンによる架橋構造を導入したものは、繊維物性が良好で、金属および/または難溶性金属塩の微粒子の含有量を高めることができ、耐熱性に優れ、コスト的にも良好な結果を得ることができる。特に、窒素含有量の増加が1.0〜15.0重量%であるヒドラジン架橋による場合さらに好ましい結果を得ることができる。なお、窒素含有量の増加とは原料アクリル系繊維の窒素含有量とヒドラジン架橋アクリル系繊維の窒素含有量との差をいう。
【0013】
また、ポリマーマトリックス骨格中の架橋構造の割合である架橋度についても、ポリマーマトリックス骨格の形状が金属および/または難溶性金属塩の微粒子生成に伴う物理的、化学的反応においても保持できる限りにおいては特に制限はない。
【0014】
本発明における微粒子である金属および/または難溶性金属塩としては、還元反応により金属を析出するもの或いは溶解度積定数が10-5以下の水難溶性の塩であり、消臭性を有するものであれば特に限定はないが、具体的には、Cu,Fe,Ni,Zn,Ag,Ti,Co,Al,Cr,Pb,Sn,In,Zr,Mo,Mn,Cd,Bi,Mgの群から選ばれた1種以上の金属および/またはこれらの酸化物、水酸化物、塩化物、臭化物、ヨウ化物、炭酸塩、リン酸塩、塩素酸塩、臭素酸塩、沃素酸塩、硫酸塩、亜硫酸塩、チオ硫酸塩、チオシアン酸塩、ピロリン酸塩、ポリリン酸塩、珪酸塩、アルミン酸塩、タングステン酸塩、バナジン酸塩、モリブデン酸塩、アンチモン酸塩、安息香酸塩、ジカルボン酸塩の群から選ばれた1種以上を用いることが好ましい。なお、これらの金属のうち2種類以上を同時に用いることにより合金の微粒子とすることは本発明の範囲をなんら逸脱するものではない。なお含有される金属および/または難溶性金属塩の量としては、任意に設定することができ特に限定はない。
【0015】
本発明における金属および/または難溶性金属塩の微粒子の大きさは任意に選択できるものであり特に限定はないが、消臭性能、特に消臭速度の点から、できるだけ小さな粒子のほうが表面積が大きくなるため好ましく、1.0μm以下のサブミクロンオーダー以下のものが適切である。
【0016】
本発明における金属および/または難溶性金属塩の微粒子の形状としては、特に限定はなく、球状、針状、紡錘状、棒状、円柱状、多面体状、多針状等あらゆる形状をとることができる。また、架橋繊維中への分散の状態としても、特に限定はない。特に、本発明は容易に繊維全体にわたり完全均一に分散担持することができることに特徴がある。ただ、表面と中心部に濃度差をもうける、ドメイン構造とする等の方法も採ることができ、この様な方法においても本発明をなんら逸脱するものではない。
【0017】
本発明における金属および/または難溶性金属塩の微粒子を含有する繊維の形態としては、任意に選択されるものであり特に制限はないが、機能発現能を向上させるため単位重量あたりの表面積を大きくし、繊維内部の金属および/または難溶性金属塩も有効に利用するという意味から、多孔質体である繊維の場合が良好な結果を得ることができる。特に、1.0μm以下の細孔径を有し、かつその細孔が連結し、さらに繊維表面に連通してなる多孔質繊維よりなる場合特に好ましい。この場合細孔径が1.0μmを超えるようなものであると、繊維自体の物性が低下するとともに、表面積が減少し好ましい結果とならない。
【0018】
本発明の製造方法における還元反応方法としては、金属イオンを金属に還元できる方法であれば特に限定はない。例えば、金属イオンに電子を与える化合物である、水素化ホウ素ナトリウム、ヒドラジン、ホルマリン、アルデヒド基を含む化合物、硫酸ヒドラジン、青酸およびその塩、次亜硫酸およびその塩、チオ硫酸塩、過酸化水素、ロッシェル塩、ブドウ糖、アルコール基を含む化合物、次亜リン酸とその塩等の還元剤を用い溶液中で還元させる方法、また、水素、一酸化炭素、硫化水素などの還元性雰囲気中での熱処理による方法、光照射による方法、あるいはこれらを組み合わせた方法などをあげることができる。
【0019】
なお、溶液中での還元反応を行う際、 反応系中へ水酸化ナトリウム、水酸化アンモニウム等の塩基性化合物、無機酸、有機酸等のpH調整剤、クエン酸ナトリウム、酢酸ナトリウム等のオキシカルボン酸系統のものあるいはホウ素、炭酸等の無機酸、有機酸、無機酸のアルカリ塩等の緩衝剤、硫化物、フッ化物等の促進剤、塩化物、硫化物、硝化物等の安定剤、界面活性剤等の改良剤等を加えることは本発明をなんら逸脱するものではない。また還元性雰囲気中での熱処理による方法の際、不活性ガスとして窒素、アルゴン、ヘリウム等を併用することについても同様である。
【0020】
本発明の製造方法において、金属イオンと結合して難溶性金属塩を析出しうるイオンまたは化合物としては特に限定はなく、例えば水酸化物イオン、塩素、臭素、ヨウ素、炭酸、リン酸、塩素酸、臭素酸、ヨウ素酸、硫酸、亜硫酸、チオ硫酸、チオシアン酸、ピロリン酸、ポリリン酸、珪酸、アルミン酸、タングステン酸、バナジン酸、モリブデン酸、アンチモン酸、安息香酸、ジカルボン酸等を用いることができる。金属イオンを先に繊維中の極性基にイオン交換または配位した場合はこれらの化合物により難溶性金属塩を架橋繊維中に析出させ、これらのイオンを先に繊維中の極性基にイオン交換またはイオン配位した場合は、目的とする難溶性金属塩の金属イオンを含み目的の難溶性金属塩を析出せしめ得る金属化合物により難溶性金属塩を架橋繊維中に析出させる。
【0021】
なお、それぞれの悪臭成分に対する金属微粒子と難溶性金属塩微粒子の消臭能力の優劣が異なる場合は、金属および難溶性金属塩の双方を析出させることが好ましい。例えば、窒素系化合物に対しては難溶性金属塩が、硫黄系化合物に対しては金属が優れた吸着能力を有する場合には、双方を担持することにより、より幅広い消臭性能が得られる。ここで、金属および難溶性金属塩を架橋繊維中に析出させる方法における、難溶性金属塩微粒子の析出方法、及び難溶性金属塩の一部を金属に還元する方法については、前述の難溶性金属塩の析出方法、及び金属への還元方法と同様である。
【0022】
【実施例】
以下実施例により本発明を具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、実施例中の部及び百分率は、断りのない限り重量基準で示す。
【0023】
なお、消臭率、繊維内の細孔径、繊維の空孔率は以下の方法により求めた。
【0024】
(1)消臭率(%)
乾燥した供試繊維2gを20℃、相対湿度65%で調温調湿した後、テドラーバッグに入れて密閉、空気を抜く。ここに20℃、相対湿度65%の空気を1Lt入れ、続いて悪臭成分ガスを30ppmとなるよう注入する。これを前記条件下に放置し、2時間後のテドラーバッグ内悪臭成分ガス濃度を検知管により測定する(Appm)。この結果から次式により消臭率を算出した。なお、消臭率測定はすべて大気圧下(1atm)で行った。
(消臭率(%))=(30−A)/30 ×100
【0025】
(2)細孔径(μm)
島津ーマイクロメリティックス ポアサイザー 9310形 を使用して、繊維内の細孔径を測定した。
【0026】
(3)空孔率(cm3 /g)
繊維を80℃真空乾燥機で5時間乾燥し、dry重量B(g)を求める。続いて20℃の純水中に30分間浸漬した後2分間遠心脱水し、wet重量C(g)を求め、次式によって空孔率を算出した。
(空孔率(cm3 /g))=(C−B)/B
【0027】
実施例 1
アクリロニトリル90%及びアクリル酸メチル10%からなるアクリロニトリル系重合体(30℃ジメチルホルムアミド中での極限粘度〔η〕=1.2)10部を48%のロダンソーダ水溶液90部に溶解した紡糸原液を、常法に従って紡糸、延伸(全延伸倍率;10倍)した後、乾球/湿球=120℃/60℃の雰囲気下で乾燥(工程収縮率14%)して単繊維直径38μmの原料繊維Iaを得た。
【0028】
原料繊維Iaを、10%ヒドラジン水溶液中に添加し120℃で3時間ヒドラジン架橋反応を行った。得られた架橋繊維は水洗、脱水後、さらに10%苛性ソーダ水溶液に添加し、100℃、1時間で加水分解反応を実施した。洗浄、脱水、乾燥後得られた原料繊維Ibは、窒素増加量1.7%であり、カルボキシル基量は、1.3mmol/gであった。
【0029】
原料繊維Ibを、5%硝酸銀水溶液中に添加し80℃、30分間イオン交換反応をした後、洗浄、脱水、乾燥後、銀イオン交換処理繊維Icを得、次に180℃で30分間熱処理を実施した。その結果、平均粒子径0.02μmの銀微粒子を1.6%含有した本発明の金属微粒子含有繊維を得ることができた。なお、平均粒子径は走査型顕微鏡により繊維の表面または内部を観察し算出したものであり、金属含有量は繊維を濃厚な硝酸、硫酸、過塩素酸溶液で湿式分解後、原子吸光法により測定したものである。
【0030】
実施例 2
銀イオン交換処理繊維Icを、5%苛性ソーダ水溶液に添加、50℃で20分間処理した。その結果、1.7%の酸化銀微粒子を含有した本発明の難溶性金属塩微粒子含有繊維IIdを得た。
【0031】
実施例 3
原料繊維Iaを、10%ヒドラジン水溶液中に添加し100℃で3時間ヒドラジン架橋反応を行った。得られた架橋繊維は水洗、脱水後、さらに50%N,N−ジメチル−1,3−ジアミノプロパン水溶液に添加し、105℃、5時間でアミノ化処理を行った。洗浄、脱水、乾燥後得られた原料繊維 IIIbの3級アミノ基量は2.1mmol/gであった。
【0032】
原料繊維 IIIbを5%チオシアン酸ナトリウム水溶液に添加し80℃、30分間イオン交換反応した後、洗浄、脱水し、続いて5%硝酸銀水溶液中に添加し80℃、30分間処理した。その結果、2.1%のチオシアン酸銀微粒子を含有した本発明の難溶性金属塩微粒子含有繊維を得た。
【0033】
実施例 4
難溶性金属塩微粒子含有繊維IIdを1%ヒドラジン水溶液に浸漬し、30℃で10分間還元処理した。その結果、0.6%の銀微粒子および1.3%の酸化銀微粒子を含有した本発明の金属および難溶性金属塩の微粒子を含有する繊維を得ることができた。なお、酸化銀と銀の定量は、酸化銀をアンモニア水に溶解することにより分離して行った。
【0034】
実施例 5
銀イオン交換処理繊維Icを10%ヒドラジン水溶液に浸漬し、50℃で20分間還元処理したこと以外は、実施例1と同様な方法により本発明の金属微粒子含有繊維を得た。
【0035】
実施例 6
アクリロニトリル/アクリル酸メチル/メタリル酸スルホン酸ソーダ=95/4.7/0.3の組成で作製したアクリロニトリル系重合体を用い、48%ロダン酸ソーダ水溶液に溶解して紡糸原液を作製した。次に5℃の12%ロダン酸ソーダ水溶液中へ紡出、次いで水洗、10倍延伸を施し、得られた未乾燥繊維を130℃×10分間の条件でスチームを用いて湿熱処理を行い、さらに100℃で20分間乾燥することにより平均細孔径0.04μmの多孔質原料繊維VIaを得た。次にこの繊維を実施例1と同様な方法により本発明の金属微粒子含有繊維に変換せしめた。
【0036】
実施例 7
ジメチルホルムアミド60部を容器中でかきまぜながらグリセリン17.5部と混合した、次にアクリロニトリル93.6%、アクリル酸メチル5.7%およびメタリルスルホン酸ナトリウム0.7%からなるアクリロニトリル共重合体22.5部をかきまぜながら添加し、そしてかきまぜを80℃で1時間続けた。次に濾過後、その溶液を496ホールの紡糸口金を通して常法により乾式紡糸した。紡糸ダクトの温度は180℃であり、固体含量22.5%およびグリセリン含量17.5%を有する溶液の粘度は85落下球秒であつた。次にそのトウを沸騰水中で1:3.6の比率で延伸し、僅かに張力をかけた状態で沸騰水中で3分間洗浄した。次いで、許容収縮率10%、温度100℃でスクリーンドラム乾燥器中において乾燥し、平均細孔径0.17μmの多孔質原料繊維を得た。次にこの繊維を実施例1と同様な方法により本発明の金属微粒子含有繊維に変換せしめた。
【0037】
実施例 8
原料繊維Iaを実施例1と同様な方法によりヒドラジン架橋した後、洗浄、脱水、乾燥を行い、加水分解処理をすることなくニトリル基の残存した原料繊維を得た。次に、得られた繊維を実施例1と同様な方法により、銀イオン交換し、銀微粒子を析出させることにより本発明の金属微粒子含有繊維に変換せしめた。
【0038】
実施例 9
実施例1の紡糸において、ノズル径のより小さなものを用い単繊維直径17μmの原料繊維を得たこと以外は実施例1と同様にして本発明の金属微粒子含有繊維を得た。
【0039】
比較例 1
平均粒子径4.6μmの銀粒子を紡糸原液に添加する以外は実施例1の紡糸までと同様にして、比較例としての銀粒子含有繊維を得た。得られた繊維は1.8%の銀粒子を含有するものであった。
【0040】
比較例 2
平均粒子径4.6μmの銀粒子を紡糸原液に添加(添加量は比較例1と同量)し、ノズルに実施例9と同じものを用いたこと以外は実施例1と同様にして原料繊維を得ようとしたが、延伸において糸切れが発生し、繊維は得られなかった。
【0041】
実施例1から9および比較例1、2により得られた繊維の消臭性能、特性等を表1にまとめる。なお、実施例の比較については、いずれも消臭能力が高く前述の消臭率測定方法では差がつきにくいため、検体重量を0.5gとし同様の測定を行った結果を併記した。また、カルボキシル基量と3級アミノ基量は電位差測定法により求め、ニトリル基量は標準物質と対比させ、赤外吸収強度により求めた。
【0042】
【表1】

Figure 0003695604
【0043】
表1に示す通り、本発明の実施例1から9は、優れた消臭性能を有しており、かつ、紡績以降の後加工が可能な繊維物性、単繊維強度、伸度、結節強度を兼ね備える繊維であることがわかる。また、実施例6および7の多孔質の繊維中に金属微粒子が含有されてなるものは、繊維内部の金属微粒子まで悪臭成分が到達しやすいために、さらに優れた消臭性能を有する繊維であった。これに対して比較例1は消臭物質の粒子径が大きく表面積が小さいために、消臭性能が発揮されず、ほとんど消臭能力を示さないものであった。なお、比較例2については繊維が得られなかったため、評価を行えなかった。
【0044】
実施例10〜15
実施例10から12は、表2に示すとおり金属微粒子の金属種類を変えたことと、還元剤を変えたこと以外は実施例6と同様な方法により、本発明の金属微粒子含有繊維を得た。更に、実施例13から15は、多孔質原料繊維VIaに、表2に示すとおり難溶性金属塩の金属の種類、および難溶性金属塩を析出させるための化合物を変えたこと以外は実施例2と同様の処理を行うことによって、本発明の難溶性金属塩微粒子含有繊維を得た。得られた繊維の消臭性能、特性等を表2にあわせてまとめる。
【0045】
【表2】
Figure 0003695604
【0046】
表2でも示される通り、本発明の実施例10から15は、各種の金属または難溶性金属塩の微粒子が多孔質体の繊維中に含有されており、優れた消臭性能と、紡績以降の後加工が可能な繊維物性、単繊維強度、伸度、結節強度を兼ね備える繊維であることがわかる。
【0047】
【発明の効果】
本発明の消臭は繊維中に金属および/または難溶性金属塩の微粒子を含有することにより、優れた消臭性能と紡績以降の後加工が可能な繊維物性を兼ね備える繊維である。
【0048】
そのうえ、金属および難溶性金属塩が共存している場合にはより幅広い消臭性能を備えることが可能である。例えば悪臭成分として、硫化水素とアンモニアが共存するような場合で酸性の硫化水素消臭に重点を置くような場合は、難溶性金属塩を酸化銀のような塩基性の塩とすれば硫化水素に対して優れた消臭性能が得られ、同時に銀金属を担持させることにより、アルカリ性のアンモニア消臭性能をもカバーすることが可能となるのである。また、かかる本発明の繊維は大別すれば3つの製造方法によって製造される。即ち原料繊維の化学的性質や目的とする製品の性能に応じて、各種の製造方法を使用し得るのである。
【0049】
そして該繊維の優れた加工性を利用して、不織布、織物、編物、紙、あるいは基材への植毛など様々な形態に加工できるため、消臭が求められる様々な用途分野に広く用いられる。例えば排水処理フィルター等の水浄化エレメント、エアコンフィルター、空気清浄機フィルター、クリーンルーム用エアーフィルター、除湿機用フィルター、業務用ガス処理フィルター等の空調機器用エレメントの他、下着、靴下等衣料品全般、布団、枕、シーツ、毛布、クッション等の寝装寝具、カーテン、カーペット、マット、壁紙、ぬいぐるみ、造花、造木等のインテリア用品、マスク、失禁ショーツ、濡れティッシュ等の衛生材料、車のシート、内装等の車内用品、トイレカバー、トイレマット、ペット用トイレ等のトイレ用品、冷蔵庫、ごみ箱の内張り等の台所用品、その他、靴の中敷き、スリッパ、手袋、タオル、雑巾、ゴム手袋の内張り、長靴の内張り、貼付材、生ゴミ処理装置等が挙げられる。
【0050】
該繊維は、他の繊維等と混紡または混合して使用することにより、上記のような分野でより有効に用いられる。例えば、布団等の中綿や不織布として使用する場合にはポリエステル等の他繊維と混紡して使用することにより、バルキー性等の性能が付与される。また、酸性ガス吸収材等の他の吸収材と混合して用いることにより、より広範囲のものを対象とした吸収材が得られる。このように、他の機能を付与する目的で、また、該繊維の混率を下げる目的で、この他種々のものと組み合わせて使用することが可能である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a deodorizing material having excellent deodorizing performance.
[0002]
[Prior art]
In recent years, bad odor has been a problem due to changes in lifestyle, higher density of living environment, and increased confidentiality, and there has been an increasing demand for odor removal.
[0003]
Known deodorant fibers include activated carbon fibers, those obtained by attaching and fixing a deodorizing substance to the fiber surface by post-processing, or those kneaded. However, the activated carbon fiber is black and basically has low physical properties, so its use is limited, and those with deodorizing substances attached by post-processing basically have large deodorizing performance. Those that cannot be obtained or kneaded have a problem that the physical properties of the fiber may be remarkably impaired if the particle size of the deodorant substance is large. Therefore, in the kneading type, it is preferable that the particle size of the deodorizing substance is small, and at the same time, it is desirable that the particle size is as small as possible in terms of increasing the surface area from the viewpoint of deodorizing performance. However, the kneading method has a problem that there is a limit to atomization of particles and the deodorizing performance cannot be fully utilized.
[0004]
[Problems to be solved by the invention]
The object of the present invention is to provide an excellent deodorizing performance for nitrogen-based compounds such as ammonia and sulfur-based compounds such as hydrogen sulfide, and to solve the above-mentioned problems found in the prior art. Is to provide materials .
[0005]
[Means for Solving the Problems]
The present invention relates to a deodorant comprising fine particles of a metal having a particle size of less than 1 μm and / or a hardly soluble metal salt in a fiber having a polar group capable of ion exchange or ion coordination and having a crosslinked structure. It relates to materials.
[0006]
The following method is illustrated as a manufacturing method for obtaining this deodorant material .
1. A method in which metal ions are ion-exchanged or ion-coordinated to a polar group in a crosslinked fiber containing a polar group capable of ion exchange or ion coordination, and then metal fine particles are precipitated in the crosslinked fiber by a reduction reaction.
2. Ion exchange or ion coordination of a metal ion or an ion capable of binding a metal ion to a polar group in a crosslinked fiber containing a polar group capable of ion exchange or ion coordination to precipitate a hardly soluble metal salt, and then difficult A method of depositing hardly soluble metal salt fine particles in a crosslinked fiber with a compound capable of precipitating and precipitating a soluble metal salt.
3. Ion exchange or ion coordination of a metal ion or an ion capable of binding a metal ion to a polar group in a crosslinked fiber containing a polar group capable of ion exchange or ion coordination to precipitate a hardly soluble metal salt, and then difficult Method of precipitating fine particles of metal and / or poorly soluble metal salt in the crosslinked fiber by precipitating the hardly soluble metal salt fine particles in the crosslinked fiber with a compound capable of precipitating and precipitating the soluble metal salt .
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below. The polar group contained in the crosslinked fiber used in the present invention is not particularly limited as long as it is a polar group capable of ion-exchange or ion-coordinating anion or cation ion. Primary amino group, secondary amino group, tertiary amino group, quaternary amino group, and cation ion-exchange group include phosphoric acid group, phosphoric ester group, carboxyl group, sulfonic acid group, sulfuric ester group, ion Examples of the coordinating group include a carbonyl group, a hydroxyl group, a mercapto group, an ether group, an ester group, a sulfonyl group, and a cyano group. Among them, good results are obtained when primary amino groups, secondary amino groups, tertiary amino groups, quaternary amino groups, phosphoric acid groups, carboxyl groups, sulfonic acid groups, and cyano groups are used, especially metal ions and complexes. Or the carboxyl group which is easy to form a salt is excellent.
[0008]
The amount of the polar group to be contained can be appropriately selected according to the amount of the metal to be contained and / or the fine particles of the hardly soluble metal salt, but is an amount obtained by subtracting the polymer portion forming the skeleton. 32 mmol / g or less. When a certain amount of fiber physical properties is required, it is preferably 16 mmol / g or less. On the other hand, since the deodorizing performance of fine particles of metal and / or hardly soluble metal salt is fine particles and can be exhibited even in a very small amount, it is sufficient to have a polar group of 0.01 mmol / g or more. There is no particular limitation on the method for introducing the polar group into the crosslinked fiber. Introduction by using a monomer having a polar group in the preparation (polymerization) stage of the backbone polymer, or after the formation of the backbone polymer or further to the fiber A method such as introduction of a polar group by chemical or physical modification after formation can be used.
[0009]
As long as it has a crosslinked structure, the basic skeleton of the polymer used as the matrix used in the present invention may be any of natural polymer, semi-synthetic polymer and synthetic polymer, and is not particularly limited. Specific polymers include, for example, polyethylene, polypropylene, vinyl chloride, ABS resin, nylon, polyester, polyvinylidene chloride, polyamide, polystyrene, polyacetal, polycarbonate, acrylic resin, fluororesin, polyurethane elastomer, polyester elastomer, melamine resin, urea. Plastics such as resin, tetrafluoroethylene resin, unsaturated polyester resin, epoxy resin, urethane resin and phenol resin; fibers such as nylon, polyethylene, rayon, acetate, acrylic, polyvinyl alcohol, polypropylene, cupra, triacetate, vinylidene; natural Rubber and silicone rubber, SBR (styrene butadiene rubber), CR (chloroprene rubber), EPM (ethylene propylene rubber) FPM (fluoro rubber), NBR (nitrile rubber), CSM (chlorosulfonated polyethylene rubber), BR (butadiene rubber), IR (synthetic natural rubber), IIR (butyl rubber), synthetic rubber such as urethane rubber and acrylic rubber, etc. can give.
[0010]
Above all, the characteristics based on the carbon-carbon bond from the standpoint of the characteristics that can withstand physical and chemical changes associated with the synthesis of fine particles of metals and / or sparingly soluble metal salts, that is, heat resistance and chemical resistance. A polymer having a skeleton, for example, a vinyl polymer is preferable, and a polymer in which a polar group capable of ion exchange or ion coordination can be easily introduced, specifically, a polystyrene-based or polyacrylonitrile-based polymer is used. As a result, good results can be obtained.
[0011]
The structure of crosslinking in the basic skeleton polymer constituting the fiber of the present invention is not particularly limited as long as the polymer is not physically or chemically modified in the step of incorporating fine particles of metal and / or hardly soluble metal salt. However, it may have any structure such as cross-linking by covalent bond, ionic cross-linking, interaction between polymer molecules or cross-linking by crystal structure. Also, the method for introducing the crosslinking is not particularly limited, but it is necessary to form the fiber after forming it because it is necessary to form the fiber.
[0012]
A polyacrylonitrile-based polymer with a crosslinked structure of hydrazine as a crosslinked structure has good fiber properties, can increase the content of fine particles of metal and / or hardly soluble metal salt, and has high heat resistance. Excellent results in terms of cost. In particular, a more preferable result can be obtained when the increase in nitrogen content is from 1.0 to 15.0% by weight with hydrazine crosslinking. The increase in nitrogen content refers to the difference between the nitrogen content of the raw acrylic fiber and the nitrogen content of the hydrazine crosslinked acrylic fiber.
[0013]
In addition, as for the degree of crosslinking, which is the ratio of the crosslinked structure in the polymer matrix skeleton, as long as the shape of the polymer matrix skeleton can be maintained even in physical and chemical reactions associated with the formation of fine particles of metal and / or hardly soluble metal salts. There is no particular limitation.
[0014]
The metal and / or hardly soluble metal salt which is a fine particle in the present invention is one that precipitates a metal by a reduction reaction or is a poorly water soluble salt having a solubility product constant of 10 −5 or less and has deodorizing properties. Although there is no particular limitation, specifically, from the group of Cu, Fe, Ni, Zn, Ag, Ti, Co, Al, Cr, Pb, Sn, In, Zr, Mo, Mn, Cd, Bi, and Mg. One or more selected metals and / or their oxides, hydroxides, chlorides, bromides, iodides, carbonates, phosphates, chlorates, bromates, iodides, sulfates, Of sulfite, thiosulfate, thiocyanate, pyrophosphate, polyphosphate, silicate, aluminate, tungstate, vanadate, molybdate, antimonate, benzoate, dicarboxylate One or more selected from the group It is preferably used. It should be noted that the use of two or more of these metals at the same time to form alloy fine particles does not depart from the scope of the present invention. The amount of the metal and / or hardly soluble metal salt to be contained can be arbitrarily set and is not particularly limited.
[0015]
The size of the fine particles of the metal and / or hardly soluble metal salt in the present invention can be arbitrarily selected and is not particularly limited. However, from the viewpoint of deodorization performance, particularly deodorization speed, the smallest particles have a larger surface area. Therefore, a submicron order of 1.0 μm or less is suitable.
[0016]
The shape of the fine particles of the metal and / or hardly soluble metal salt in the present invention is not particularly limited, and can be any shape such as a spherical shape, a needle shape, a spindle shape, a rod shape, a columnar shape, a polyhedral shape, and a multi-needle shape. . Moreover, there is no limitation in particular also as the state of dispersion | distribution in a crosslinked fiber. In particular, the present invention is characterized in that it can be easily and uniformly dispersed and supported over the entire fiber. However, it is possible to adopt a method such as making a concentration difference between the surface and the central portion, or making a domain structure, and such a method does not depart from the present invention.
[0017]
The form of the fiber containing fine particles of the metal and / or hardly soluble metal salt in the present invention is arbitrarily selected and is not particularly limited, but the surface area per unit weight is increased in order to improve the function development ability. In the sense that the metal inside the fiber and / or the hardly soluble metal salt is also effectively used, good results can be obtained in the case of a fiber that is a porous body. In particular, it is particularly preferable when it is made of a porous fiber having a pore diameter of 1.0 μm or less and connected to the fiber surface. In this case, if the pore diameter exceeds 1.0 μm, the physical properties of the fiber itself are lowered, and the surface area is reduced, which is not a preferable result.
[0018]
The reduction reaction method in the production method of the present invention is not particularly limited as long as a metal ion can be reduced to a metal. For example, sodium borohydride, hydrazine, formalin, compounds containing aldehyde groups, hydrazine sulfate, hydrocyanic acid and its salts, hyposulfite and its salts, thiosulfate, hydrogen peroxide, Rochelle Salt, glucose, compounds containing alcohol groups, methods of reducing in solution using reducing agents such as hypophosphorous acid and its salts, and heat treatment in reducing atmospheres such as hydrogen, carbon monoxide and hydrogen sulfide Examples thereof include a method, a method using light irradiation, and a combination of these methods.
[0019]
When performing a reduction reaction in a solution, a basic compound such as sodium hydroxide or ammonium hydroxide, a pH adjuster such as an inorganic acid or an organic acid, an oxycarboxylic acid such as sodium citrate or sodium acetate is introduced into the reaction system. Buffers such as those of acid series or inorganic acids such as boron and carbonic acid, organic acids and alkali salts of inorganic acids, accelerators such as sulfides and fluorides, stabilizers such as chlorides, sulfides and nitrides, interfaces Adding an improving agent such as an activator does not depart from the present invention. The same applies to the use of nitrogen, argon, helium or the like as an inert gas in the method of heat treatment in a reducing atmosphere.
[0020]
In the production method of the present invention, there are no particular limitations on the ions or compounds that can be combined with metal ions to precipitate a hardly soluble metal salt. For example, hydroxide ions, chlorine, bromine, iodine, carbonic acid, phosphoric acid, chloric acid , Bromic acid, iodic acid, sulfuric acid, sulfuric acid, thiosulfuric acid, thiocyanic acid, pyrophosphoric acid, polyphosphoric acid, silicic acid, aluminate, tungstic acid, vanadic acid, molybdic acid, antimonic acid, benzoic acid, dicarboxylic acid, etc. it can. When metal ions are ion-exchanged or coordinated with polar groups in the fiber first, these compounds cause the poorly soluble metal salt to precipitate in the crosslinked fiber, and these ions are first ion-exchanged or converted into polar groups in the fiber. In the case of ion coordination, the hardly soluble metal salt is precipitated in the crosslinked fiber by a metal compound that contains the metal ion of the target hardly soluble metal salt and can precipitate the target hardly soluble metal salt.
[0021]
In addition, when the superiority or inferiority of the deodorizing ability of the metal fine particles and the hardly soluble metal salt fine particles for each offensive odor component is different, it is preferable to deposit both the metal and the hardly soluble metal salt. For example, when a poorly soluble metal salt with respect to a nitrogen-based compound and a metal with an excellent adsorption capability with respect to a sulfur-based compound, a broader deodorizing performance can be obtained by supporting both. Here, regarding the method for depositing the hardly soluble metal salt fine particles in the method for precipitating the metal and the hardly soluble metal salt in the crosslinked fiber, and the method for reducing a part of the hardly soluble metal salt to the metal, the aforementioned hardly soluble metal is used. This is the same as the salt precipitation method and the metal reduction method.
[0022]
【Example】
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the following examples. In addition, unless otherwise indicated, the part and percentage in an Example are shown on a weight basis.
[0023]
The deodorization rate, the pore size in the fiber, and the fiber porosity were determined by the following methods.
[0024]
(1) Deodorization rate (%)
2 g of the dried test fiber is conditioned at 20 ° C. and a relative humidity of 65%, and then placed in a Tedlar bag, sealed and vented. Here, 1 Lt of air at 20 ° C. and 65% relative humidity is introduced, and then malodorous component gas is injected to 30 ppm. This is left under the above conditions, and the malodorous component gas concentration in the Tedlar bag after 2 hours is measured with a detector tube (Appm). From this result, the deodorization rate was calculated by the following formula. In addition, all deodorization rate measurements were performed under atmospheric pressure (1 atm).
(Deodorization rate (%)) = (30−A) / 30 × 100
[0025]
(2) Pore diameter (μm)
The pore size in the fiber was measured using Shimadzu-Micromeritics Pore Sizer Model 9310.
[0026]
(3) Porosity (cm 3 / g)
The fiber is dried at 80 ° C. in a vacuum dryer for 5 hours to determine the dry weight B (g). Subsequently, it was immersed in pure water at 20 ° C. for 30 minutes and then centrifuged for 2 minutes to obtain a wet weight C (g), and the porosity was calculated by the following formula.
(Porosity (cm 3 / g)) = (C−B) / B
[0027]
Example 1
A spinning stock solution prepared by dissolving 10 parts of an acrylonitrile polymer (intrinsic viscosity [η] = 1.2 in 30 ° C. dimethylformamide) consisting of 90% acrylonitrile and 10% methyl acrylate in 90 parts of a 48% aqueous rhodium soda solution, Spinning and drawing (total draw ratio: 10 times) according to a conventional method, followed by drying in an atmosphere of dry bulb / wet bulb = 120 ° C./60° C. (process shrinkage 14%), raw fiber Ia having a single fiber diameter of 38 μm Got.
[0028]
The raw fiber Ia was added to a 10% hydrazine aqueous solution and subjected to a hydrazine crosslinking reaction at 120 ° C. for 3 hours. The obtained crosslinked fiber was washed with water, dehydrated, added to a 10% aqueous sodium hydroxide solution, and subjected to a hydrolysis reaction at 100 ° C. for 1 hour. The raw material fiber Ib obtained after washing, dehydration and drying had an increase in nitrogen of 1.7% and an amount of carboxyl group of 1.3 mmol / g.
[0029]
The raw material fiber Ib is added to a 5% silver nitrate aqueous solution and subjected to an ion exchange reaction at 80 ° C. for 30 minutes. After washing, dehydration and drying, a silver ion exchange treated fiber Ic is obtained, followed by heat treatment at 180 ° C. for 30 minutes. Carried out. As a result, the metal fine particle-containing fiber of the present invention containing 1.6% of silver fine particles having an average particle diameter of 0.02 μm could be obtained. The average particle size is calculated by observing the surface or the inside of the fiber with a scanning microscope, and the metal content is measured by an atomic absorption method after wet-decomposing the fiber with a concentrated nitric acid, sulfuric acid or perchloric acid solution. It is a thing.
[0030]
Example 2
Silver ion exchange treated fiber Ic was added to 5% aqueous sodium hydroxide solution and treated at 50 ° C. for 20 minutes. As a result, the hardly soluble metal salt fine particle-containing fiber IId of the present invention containing 1.7% of silver oxide fine particles was obtained.
[0031]
Example 3
The raw fiber Ia was added to a 10% hydrazine aqueous solution and subjected to a hydrazine crosslinking reaction at 100 ° C. for 3 hours. The obtained crosslinked fiber was washed with water, dehydrated, further added to a 50% N, N-dimethyl-1,3-diaminopropane aqueous solution, and aminated at 105 ° C. for 5 hours. The amount of tertiary amino group of the raw fiber IIIb obtained after washing, dehydration and drying was 2.1 mmol / g.
[0032]
The raw material fiber IIIb was added to a 5% sodium thiocyanate aqueous solution and subjected to an ion exchange reaction at 80 ° C. for 30 minutes, then washed and dehydrated, and subsequently added to a 5% silver nitrate aqueous solution and treated at 80 ° C. for 30 minutes. As a result, a fiber containing finely soluble metal salt fine particles of the present invention containing 2.1% of silver thiocyanate fine particles was obtained.
[0033]
Example 4
The hardly soluble metal salt fine particle-containing fiber IId was immersed in a 1% hydrazine aqueous solution and subjected to reduction treatment at 30 ° C. for 10 minutes. As a result, a fiber containing fine particles of the metal of the present invention and a hardly soluble metal salt containing 0.6% of silver fine particles and 1.3% of silver oxide fine particles could be obtained. Silver oxide and silver were quantitatively analyzed by dissolving silver oxide in aqueous ammonia.
[0034]
Example 5
A metal fine particle-containing fiber of the present invention was obtained in the same manner as in Example 1 except that the silver ion exchange treated fiber Ic was immersed in a 10% hydrazine aqueous solution and reduced at 50 ° C. for 20 minutes.
[0035]
Example 6
Using an acrylonitrile polymer prepared with a composition of acrylonitrile / methyl acrylate / sodium methallylate = 95 / 4.7 / 0.3, a spinning dope was prepared by dissolving in a 48% sodium rhodanate aqueous solution. Next, it was spun into a 12% sodium rhodanate aqueous solution at 5 ° C., then washed with water and stretched 10 times, and the obtained undried fiber was subjected to wet heat treatment using steam at 130 ° C. for 10 minutes, By drying at 100 ° C. for 20 minutes, porous raw fiber VIa having an average pore diameter of 0.04 μm was obtained. Next, this fiber was converted into the metal fine particle-containing fiber of the present invention by the same method as in Example 1.
[0036]
Example 7
60 parts of dimethylformamide are mixed with 17.5 parts of glycerin while stirring in a container, and then an acrylonitrile copolymer consisting of 93.6% acrylonitrile, 5.7% methyl acrylate and 0.7% sodium methallylsulfonate. 22.5 parts were added with stirring and stirring was continued for 1 hour at 80 ° C. After filtration, the solution was dry-spun by a conventional method through a 496-hole spinneret. The temperature of the spinning duct was 180 ° C., and the viscosity of the solution having a solids content of 22.5% and a glycerin content of 17.5% was 85 falling ball seconds. The tow was then stretched in boiling water at a ratio of 1: 3.6 and washed in boiling water for 3 minutes under slight tension. Subsequently, it was dried in a screen drum dryer at an allowable shrinkage of 10% and a temperature of 100 ° C. to obtain porous raw material fibers having an average pore diameter of 0.17 μm. Next, this fiber was converted into the metal fine particle-containing fiber of the present invention by the same method as in Example 1.
[0037]
Example 8
After the raw fiber Ia was hydrazine-crosslinked by the same method as in Example 1, washing, dehydration, and drying were performed to obtain a raw fiber having a remaining nitrile group without hydrolysis. Next, the obtained fiber was converted into the metal fine particle-containing fiber of the present invention by silver ion exchange and precipitation of silver fine particles by the same method as in Example 1.
[0038]
Example 9
In the spinning of Example 1, a metal fine particle-containing fiber of the present invention was obtained in the same manner as in Example 1 except that a raw material fiber having a single fiber diameter of 17 μm was obtained using a smaller nozzle diameter.
[0039]
Comparative Example 1
A silver particle-containing fiber as a comparative example was obtained in the same manner as in Example 1 except that silver particles having an average particle size of 4.6 μm were added to the spinning dope. The resulting fiber contained 1.8% silver particles.
[0040]
Comparative Example 2
Raw material fibers were the same as in Example 1 except that silver particles having an average particle size of 4.6 μm were added to the spinning dope (the amount added was the same as in Comparative Example 1), and the same nozzle as in Example 9 was used. However, yarn breakage occurred during stretching, and no fiber was obtained.
[0041]
Table 1 summarizes the deodorizing performance and characteristics of the fibers obtained in Examples 1 to 9 and Comparative Examples 1 and 2. In addition, about the comparison of an Example, since all have the deodorizing ability and it is hard to make a difference in the above-mentioned deodorization rate measuring method, the result of having performed the same measurement by setting the sample weight to 0.5 g is described together. The amount of carboxyl groups and the amount of tertiary amino groups were determined by potentiometric measurement, and the amount of nitrile groups was determined by comparing with a standard substance and by infrared absorption intensity.
[0042]
[Table 1]
Figure 0003695604
[0043]
As shown in Table 1, Examples 1 to 9 of the present invention have excellent deodorizing performance and fiber properties, single fiber strength, elongation, and knot strength that can be post-processed after spinning. It turns out that it is the fiber which combines. Further, the porous fibers of Examples 6 and 7 containing metal fine particles are fibers having further excellent deodorizing performance because malodorous components easily reach the metal fine particles inside the fibers. It was. On the other hand, in Comparative Example 1, since the particle size of the deodorizing substance was large and the surface area was small, the deodorizing performance was not exhibited and the deodorizing ability was hardly exhibited. Note that Comparative Example 2 could not be evaluated because no fiber was obtained.
[0044]
Examples 10-15
In Examples 10 to 12, the metal fine particle-containing fibers of the present invention were obtained in the same manner as in Example 6 except that the metal type of the metal fine particles was changed as shown in Table 2 and the reducing agent was changed. . Further, Examples 13 to 15 are the same as those in Example 2 except that the kind of the hardly soluble metal salt and the compound for precipitating the hardly soluble metal salt were changed to the porous raw fiber VIa as shown in Table 2. By performing the same treatment as in Example 1, the fiber containing the hardly soluble metal salt fine particles of the present invention was obtained. Table 2 summarizes the deodorizing performance and properties of the obtained fibers.
[0045]
[Table 2]
Figure 0003695604
[0046]
As shown in Table 2, Examples 10 to 15 of the present invention contain fine particles of various metals or hardly soluble metal salts in the fiber of the porous body, and have excellent deodorizing performance and after spinning. It can be seen that the fiber has post-processing fiber properties, single fiber strength, elongation, and knot strength.
[0047]
【The invention's effect】
The deodorizing material of the present invention is a fiber having excellent deodorizing performance and fiber physical properties capable of post-processing after spinning by containing fine particles of metal and / or hardly soluble metal salt in the fiber.
[0048]
In addition, when a metal and a hardly soluble metal salt coexist, it is possible to provide a wider range of deodorizing performance. For example, in the case where hydrogen sulfide and ammonia coexist as malodorous components and the emphasis is placed on acidic hydrogen sulfide deodorization, hydrogen sulfide can be obtained by using a slightly soluble metal salt as a basic salt such as silver oxide. As a result, it is possible to cover alkaline ammonia deodorizing performance by supporting silver metal at the same time. Such fibers of the present invention can be roughly classified by three production methods. That is, various production methods can be used depending on the chemical properties of the raw fiber and the performance of the target product.
[0049]
And since it can process into various forms, such as a nonwoven fabric, a textile fabric, a knitted fabric, paper, or the flocking to a base material, using the outstanding processability of this fiber, it is widely used for the various use field by which deodorizing is calculated | required. For example, water purification elements such as wastewater treatment filters, air conditioner filters, air purifier filters, air filters for clean rooms, filters for dehumidifiers, elements for air conditioners such as industrial gas treatment filters, as well as general clothing items such as underwear and socks, Bedding, pillows, sheets, blankets, cushions, bedding, curtains, carpets, mats, wallpaper, stuffed animals, artificial flowers, artificial wood, etc., sanitary materials such as masks, incontinence shorts, wet tissues, car seats, Interior items such as interior items, toilet covers, toilet mats, toilet items such as pet toilets, kitchen items such as refrigerators, trash can linings, etc. Shoes insoles, slippers, gloves, towels, towels, rubber gloves lining, boots Lining, sticking material, garbage disposal device, and the like.
[0050]
The fibers can be used more effectively in the above fields by being blended or mixed with other fibers. For example, when used as a batting such as a futon or a non-woven fabric, performance such as bulkiness is imparted by blending with other fibers such as polyester. In addition, by using a mixture with another absorbent such as an acid gas absorbent, an absorbent for a wider range can be obtained. As described above, it can be used in combination with various other objects for the purpose of imparting other functions and for the purpose of reducing the mixing ratio of the fibers.

Claims (5)

イオン交換またはイオン配位可能な極性基を有し、かつ架橋構造を有する繊維中に、粒径が1μm未満の金属および/または難溶性金属塩の微粒子を含有してなることを特徴とする消臭材。A fiber having a polar group capable of ion exchange or ion coordination and having a crosslinked structure containing fine particles of a metal having a particle size of less than 1 μm and / or a hardly soluble metal salt. Odor material. 金属および/または難溶性金属塩の微粒子が、Cu,Fe,Ni,Zn,Ag,Ti,Co,Al,Cr,Pb,Sn,In,Zr,Mo,Mn,Cd,Bi,Mgの群から選ばれた1種以上の金属および/またはこれらの酸化物、水酸化物、塩化物、臭化物、ヨウ化物、炭酸塩、リン酸塩、塩素酸塩、臭素酸塩、ヨウ素酸塩、硫酸塩、亜硫酸塩、チオ硫酸塩、チオシアン酸塩、ピロリン酸塩、ポリリン酸塩、珪酸塩、アルミン酸塩、タングステン酸塩、バナジン酸塩、モリブデン酸塩、アンチモン酸塩、安息香酸塩、ジカルボン酸塩の群から選ばれた1種以上の難溶性金属塩であることを特徴とする請求項1記載の消臭Fine particles of metal and / or hardly soluble metal salt are from the group of Cu, Fe, Ni, Zn, Ag, Ti, Co, Al, Cr, Pb, Sn, In, Zr, Mo, Mn, Cd, Bi, Mg. One or more selected metals and / or their oxides, hydroxides, chlorides, bromides, iodides, carbonates, phosphates, chlorates, bromates, iodates, sulfates, Of sulfite, thiosulfate, thiocyanate, pyrophosphate, polyphosphate, silicate, aluminate, tungstate, vanadate, molybdate, antimonate, benzoate, dicarboxylate The deodorizing material according to claim 1, wherein the deodorizing material is one or more hardly soluble metal salts selected from the group. 金属および/または難溶性金属塩の微粒子を含有する繊維が、1.0μm以下の細孔径を有してなる多孔質体であり、かつその細孔が連結し、さらに繊維表面に連通してなる多孔性繊維よりなることを特徴とする請求項1または2に記載の消臭A fiber containing fine particles of a metal and / or a hardly soluble metal salt is a porous body having a pore diameter of 1.0 μm or less, and the pores are connected and further communicated with the fiber surface. The deodorant material according to claim 1 or 2, comprising porous fibers. 金属および/または難溶性金属塩の微粒子を含有する繊維が、ヒドラジン架橋による架橋アクリロニトリル系重合体であり、かつ残存ニトリル基の0.1重量%以上がカルボキシル基に変換されてなることを特徴とする請求項1から3のいずれかに記載の消臭The fiber containing fine particles of metal and / or hardly soluble metal salt is a crosslinked acrylonitrile-based polymer by hydrazine crosslinking, and 0.1% by weight or more of the remaining nitrile groups are converted to carboxyl groups. The deodorizing material according to any one of claims 1 to 3. 硫化水素、アンモニアのいずれかに対する消臭性が、下記の消臭試験において消臭率60%以上である請求項1から4のいずれかに記載の消臭
消臭試験;テドラーバッグに検体2gと硫化水素、アンモニアのいずれかの悪臭成分30ppmを含有する空気1Ltをいれて密閉し、2時間後のテドラーバッグ内の悪臭成分濃度を検知管で測定する。
消臭率(%)=(初期濃度−2時間後濃度)/初期濃度×100とする。
The deodorizing material according to any one of claims 1 to 4, wherein the deodorizing property with respect to either hydrogen sulfide or ammonia is a deodorizing rate of 60% or more in the following deodorizing test.
Deodorization test: 2 g of specimen and 1 Lt of air containing 30 ppm of malodorous component of either hydrogen sulfide or ammonia are sealed in a Tedlar bag, and the concentration of malodorous component in the Tedlar bag after 2 hours is measured with a detector tube.
Deodorization rate (%) = (initial concentration−concentration after 2 hours) / initial concentration × 100.
JP07525996A 1995-12-29 1996-03-04 Deodorant Expired - Lifetime JP3695604B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP07525996A JP3695604B2 (en) 1996-03-04 1996-03-04 Deodorant
US08/761,700 US5897673A (en) 1995-12-29 1996-12-06 Fine metallic particles-containing fibers and method for producing the same
TW085115625A TW334482B (en) 1996-03-04 1996-12-18 Fine metallic particles-containing fibers and method for producing the same
DE69633817T DE69633817T2 (en) 1995-12-29 1996-12-23 Process for producing fibers containing fine metal particles
EP96309445A EP0783048B1 (en) 1995-12-29 1996-12-23 Method for producing fine metallic particles-containing fibers
KR1019960074319A KR100443183B1 (en) 1995-12-29 1996-12-28 Metallic Particle-containing Fiber and Manufacturing Method Thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07525996A JP3695604B2 (en) 1996-03-04 1996-03-04 Deodorant

Publications (2)

Publication Number Publication Date
JPH09241967A JPH09241967A (en) 1997-09-16
JP3695604B2 true JP3695604B2 (en) 2005-09-14

Family

ID=13571053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07525996A Expired - Lifetime JP3695604B2 (en) 1995-12-29 1996-03-04 Deodorant

Country Status (2)

Country Link
JP (1) JP3695604B2 (en)
TW (1) TW334482B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI623658B (en) * 2016-01-08 2018-05-11 財團法人工業技術研究院 Composite fabrics
US10519595B2 (en) 2017-12-29 2019-12-31 Industrial Technology Research Institute Composite textile

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100368426B1 (en) * 2000-04-24 2003-01-24 정창수 Sterilizing textiles permeated with silver ions and its manufacturing method
KR20070005658A (en) * 2004-03-02 2007-01-10 닛폰 에쿠스란 고교 가부시키가이샤 Antiviral fibers, and methods of making the fibers, and fiber products using the fibers
JP4830406B2 (en) * 2005-08-31 2011-12-07 日本エクスラン工業株式会社 Conductive fiber
JP4873907B2 (en) * 2005-09-05 2012-02-08 東洋紡績株式会社 Allergen-inactivated fiber, method for producing the fiber, and fiber product using the fiber
TWI451165B (en) * 2006-05-25 2014-09-01 Au Optronics Corp Backlight module and flat lamp thereof
JP4973469B2 (en) * 2007-11-30 2012-07-11 岩崎電気株式会社 Method and apparatus for detecting reactive oxygen species
JP2013204205A (en) * 2012-03-29 2013-10-07 Daiwabo Holdings Co Ltd Deodorant regenerated cellulosic fiber, method for producing the same, and fiber structure
JP6101429B2 (en) * 2012-03-29 2017-03-22 ダイワボウホールディングス株式会社 Multifunctional regenerated cellulose fiber, fiber structure containing the same, and production method thereof
JP6103288B2 (en) * 2012-10-03 2017-03-29 日本エクスラン工業株式会社 PHOTOCATALYST-CONTAINING FIBER AND FIBER STRUCTURE CONTAINING THE FIBER
TWI555890B (en) * 2013-12-18 2016-11-01 財團法人工業技術研究院 Yarns having infrared absorbing ability and textiles containing the yarns
CN110573673B (en) * 2017-02-14 2022-12-06 日本制纸株式会社 Composition comprising a metal oxide and a metal oxide
CN110804856B (en) * 2019-10-21 2021-11-16 南通大学 Acrylic fabric for photocatalytic degradation of reactive dye and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56148965A (en) * 1980-04-17 1981-11-18 Mitsubishi Rayon Co Durable sterilizable fiber
JPS63214261A (en) * 1987-03-04 1988-09-06 旭化成株式会社 Deodorizing polymer and its production
JP2535060B2 (en) * 1988-08-17 1996-09-18 旭化成工業株式会社 Deodorant fiber
JPH03124811A (en) * 1989-10-05 1991-05-28 Asahi Chem Ind Co Ltd Porous deodorant acrylic synthetic fiber and its production
JPH04185764A (en) * 1990-11-17 1992-07-02 Toyobo Co Ltd Deodorant fiber and its production
JPH06272174A (en) * 1993-03-16 1994-09-27 Toray Ind Inc Deodorizing acrylonitrile synthetic fiber and its production
JPH07150470A (en) * 1993-11-30 1995-06-13 Japan Exlan Co Ltd Porous acrylonitrile fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI623658B (en) * 2016-01-08 2018-05-11 財團法人工業技術研究院 Composite fabrics
US10519595B2 (en) 2017-12-29 2019-12-31 Industrial Technology Research Institute Composite textile

Also Published As

Publication number Publication date
JPH09241967A (en) 1997-09-16
TW334482B (en) 1998-06-21

Similar Documents

Publication Publication Date Title
KR100443183B1 (en) Metallic Particle-containing Fiber and Manufacturing Method Thereof
JP3695604B2 (en) Deodorant
JP2818929B2 (en) Deodorant, deodorant fiber, method for producing the same, and deodorized processed body
JPWO2010074311A1 (en) Deodorant fiber products
Jhinjer et al. Nanosized ZIF-8 based odor adsorbing and antimicrobial finish for polyester fabrics
JP6101429B2 (en) Multifunctional regenerated cellulose fiber, fiber structure containing the same, and production method thereof
JPH10165489A (en) Deodorant and deodorant fiber
JP3271692B2 (en) Acid / basic gas absorbing fiber and its structure
JPH09241970A (en) Metal fine particle-containing fiber and its production
JP2001098412A (en) Deodorant rayon fiber and method for producing the same
WO2019058674A1 (en) Complex for decomposing and removing substance
JPH0268117A (en) Deodorizing air filter
JP2002066315A (en) Adsorbing materials for harmful substances, methods for desorbing harmful substances, and methods for quantifying endocrine disruptors
JP2013204205A (en) Deodorant regenerated cellulosic fiber, method for producing the same, and fiber structure
US6482514B1 (en) Deodorant rayon fibers and method for producing the same
JP3235092B2 (en) Basic gas absorbing fiber and method for producing the same
JP7635725B2 (en) Composite oxide particles, deodorants, laundry compositions, detergent compositions, textile products, and resin molded products
JP3979545B2 (en) Functional fiber and production method thereof
WO1997034040A1 (en) Deororizing fiber, process for preparing the same, and deodorizing fiber product
JP4560787B2 (en) Deodorant fiber structure
CN114753062B (en) A kind of recyclable hand towel and preparation method thereof
JPH10245778A (en) Alkaline gas absorbing textile product
JPH0291209A (en) Synthetic fiber with deodorizing properties
JPH09176917A (en) Deodorizing antibacterial acrylic synthetic fiber and its production
WO2006038452A1 (en) Functional fiber having photocatalyst activity and fiber structure containing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050610

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050623

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080708

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130708

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130708

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130708

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term