[go: up one dir, main page]

JP3695029B2 - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP3695029B2
JP3695029B2 JP00426697A JP426697A JP3695029B2 JP 3695029 B2 JP3695029 B2 JP 3695029B2 JP 00426697 A JP00426697 A JP 00426697A JP 426697 A JP426697 A JP 426697A JP 3695029 B2 JP3695029 B2 JP 3695029B2
Authority
JP
Japan
Prior art keywords
film
layer
base
silicon
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00426697A
Other languages
English (en)
Other versions
JPH10112507A (ja
Inventor
孝行 五味
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP00426697A priority Critical patent/JP3695029B2/ja
Priority to NL1006758A priority patent/NL1006758C2/nl
Priority to US08/909,813 priority patent/US5858850A/en
Priority to KR1019970038520A priority patent/KR19980018636A/ko
Publication of JPH10112507A publication Critical patent/JPH10112507A/ja
Application granted granted Critical
Publication of JP3695029B2 publication Critical patent/JP3695029B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/60Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D10/00 or H10D18/00, e.g. integration of BJTs
    • H10D84/611Combinations of BJTs and one or more of diodes, resistors or capacitors
    • H10D84/613Combinations of vertical BJTs and one or more of diodes, resistors or capacitors
    • H10D84/615Combinations of vertical BJTs and one or more of resistors or capacitors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D10/00Bipolar junction transistors [BJT]
    • H10D10/01Manufacture or treatment
    • H10D10/021Manufacture or treatment of heterojunction BJTs [HBT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D10/00Bipolar junction transistors [BJT]
    • H10D10/80Heterojunction BJTs

Landscapes

  • Bipolar Transistors (AREA)
  • Bipolar Integrated Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置の製造方法に関するものである。
【0002】
【従来の技術】
バイポーラトランジスタの最高遮断周波数(以下fTmax と記す)をより高速にするために、バンドギャップを狭くできる材料としてシリコンゲルマニウム(Si1-X GeX )混晶をベースに採用した、シリコン系ナローベース型ヘテロ接合バイポーラトランジスタが提案され、fTmax ≧100GHzが報告されている。用途としては、マルチメディア時代の到来でその市場の将来性が注目されている情報通信分野が考えられている。
近年、シリコンゲルマニウム薄膜の形成に選択成長を利用したシリコン系ナローベース型ヘテロ接合バイポーラトランジスタの提案があり、実用段階にある。
【0003】
次に、開示されているシリコン系ナローベース型ヘテロ接合バイポーラトランジスタの断面を図32の概略構成図によって説明する。
【0004】
図32に示すように、半導体基板201には、フィールド酸化膜202によって分離された領域にN+ 型の埋め込み層203が形成されている。この埋め込み層203上にはN- 型のコレクタ層204が形成され、このコレクタ層204上および上記埋め込み層203上の一部に開口部205,206を設けた酸化シリコン膜207が半導体基板201上に形成されている。埋め込み層203に通じる開口部206にはN+ 型のコレクタ電極208が形成されている。コレクタ層204に通じる開口部205にはこのコレクタ層204に接合するシリコンゲルマニウム混晶からなるP型のベース層209が形成されている。
【0005】
さらにベース層209にはN+ 型ポリシリコンからなるベース取り出し電極210が接続され、その上部には酸化シリコン膜211が形成されている。そしてベース層210上には開口部212が設けられ、その開口部212の側壁には酸化シリコン膜213と窒化シリコン膜214とからなるサイドウォール215が形成されている。さらに開口部212内にはサイドウォール215を介してN+ 型のエミッタ層216形成されている。そしてエミッタ層216は上記ベース層209に接合されている。
【0006】
上記シリコン系ナローベース型ヘテロ接合バイポーラトランジスタの製造方法を、図33によって説明する。
図33では、トランジスタのエミッタ/ベース形成部分の製造工程を中心に示す。また上記図32によって説明した構成部品と同様のものには同一符号を付す。
【0007】
図33の(1)に示すように、半導体基板(図示省略)に形成したN+型の埋め込み層203上にN-型のコレクタ層204を形成し、それを覆う状態に酸化シリコン膜207、ベース取り出し電極層221、酸化シリコン膜211および窒化シリコン膜222を順次形成する。その後コレクタ層204上の窒化シリコン膜222、酸化シリコン膜211およびベース取り出し電極層221に開口部212を形成し、その開口部212の側壁に窒化シリコン膜のサイドウォール223を形成する。その後窒化シリコン膜222およびサイドウォール223をエチングマスクにして酸化シリコン膜207をエッチングし、コレクタ層204を底部に露出させるもので上記開口部212よりも大きい径を有する開口部205を形成する。
【0008】
次いで図33の(2)に示すように、上記開口部205内にP型のベース層209をシリコンゲルマニウム混晶の選択エピタキシャル成長によって形成する。続いて窒化シリコン膜222および窒化シリコン膜のサイドウォール223〔前記図33の(1)参照〕を除去する。
【0009】
その後図33の(3)に示すように、ベース層209上の開口部212の側壁に酸化シリコン膜213と窒化シリコン膜214からなるサイドウォール215を形成した後、N+ 型ポリシリコンからなるエミッタ層216を形成する。
このように、選択成長を利用したシリコン系ナローベース型ヘテロ接合バイポーラトランジスタの製造方法では、窒化シリコン膜を多用している。
【0010】
また、上記高速バイポーラトランジスタには、エミッタ電極およびベース電極に多結晶シリコン薄膜を利用した、いわゆるダブルポリシリコンエミッタ/ベースセルフアライン構造が採用されていることが多い。セルフアライン技術によりエミッタ/ベース間距離が縮小され、寄生トランジスタ部分が削減される、絶縁膜サイドウォール技術の採用により露光限界以下のエミッタ長が実現できる等の利点があるためである。このような構造にシリコンゲルマニウム(Si1-X GeX )薄膜でベース層を形成したヘテロ接合バイポーラトランジスタの提案が、特公平6−66325号公報に開示されている。上記特公平6−66325号公報に開示されているバイポーラトランジスタには、窒化シリコン膜が多用されていることが示されている。
【0011】
【発明が解決しようとする課題】
上記にようなナローベース型ヘテロ接合バイポーラトランジスタを用いてICを作る場合、バイポーラトランジスタだけではなく、抵抗、容量、インダクタ等の受動素子も必要になる。しかしながら、それらの抵抗、容量、インダクタ等の受動素子とシリコンゲルマニウム混晶からなるベース層を用いたナローベース型ヘテロ接合バイポーラトランジスタとを同一基板に形成した構造や製造方法に関する開示は見当たらない。
もし、ナローベース型ヘテロ接合バイポーラトランジスタと同一基板にMIS容量を形成する場合には、このバイポーラトランジスタのプロセスとは別のプロセスによってMIS容量を形成する必要があった。
【0012】
【課題を解決するための手段】
本発明は、上記課題を解決するためになされた半導体装置の製造方法であり、同一基板にバイポーラトランジスタと容量とを形成する半導体装置の製造方法である。
【0013】
すなわち、半導体基板上にベース層を選択的にエピタキシャル成長して形成するバイポーラトランジスタと、この半導体基板上に誘電体膜を成膜して形成するMIS容量とを形成する半導体装置の製造方法において、ベース層に接続するベース電極とこのベース層上に形成するエミッタ層とを分離するサイドウォールを形成する際に、このサイドウォールを構成する膜と同一層の膜で上記誘電体膜を形成する製造方法である。
また上記製造方法において、エミッタ層を構成する膜と同一層の膜でMIS容量の上部電極を形成する、またはベース電極を構成する膜と同一層の膜でMIS容量の下部電極を形成するという製造方法である。
【0014】
上記半導体装置の製造方法では、ベース電極とエミッタ層とを分離するためのサイドウォールを形成する際に、サイドウォールを構成する膜と同一層の膜でMIS容量の誘電体膜を形成することから、従来技術のように別工程で容量の誘電体膜を成膜する必要がない。
また上記製造方法において、エミッタ層を構成する膜と同一層の膜でMIS容量の上部電極を形成することから、別工程で容量の上部電極を形成する必要がない。またはベース電極を構成する膜と同一層の膜でMIS容量の下部電極を形成することから、別工程で容量の下部電極を形成する必要がない。
【0015】
【発明の実施の形態】
本発明の第1実施形態の要部を、図1の製造工程図によって説明する。
図では、一例として、ナローベース型ヘテロ接合バイポーラトランジスタの工程にしたがって、MIS(Metal Insulator semiconductor )容量を形成する製造工程の要部を示す。
【0016】
図1の(1)に示すように、シリコン基板11のバイポーラトランジスタの形成予定領域にN+ 型埋め込み拡散層12を形成した後、上記シリコン基板11上にN型のエピタキシャル層13(以下エピタキシャル層13という)を形成する。このようにして半導体基板10が構成される。そしてN型エピタキシャル層13はバイポーラトランジスタの形成予定領域においてN型コレクタ層16となる。そしてバイポーラトランジスタの形成予定領域とMIS容量の形成予定領域とを分離する素子分離酸化膜14を上記エピタキシャル層13に形成し、各素子分離酸化膜14の下部にP+ 型素子分離拡散層15を形成する。さらにバイポーラトランジスタの形成予定領域のエピタキシャル層13にN+ 型プラグ拡散層17を形成すると同時に容量の形成予定領域のエピタキシャル層13にMIS容量の下部電極となるN+ 型拡散層51を形成する。
その後上記シリコン基板11上に第1酸化シリコン膜31を形成する。
【0017】
そしてバイポーラトランジスタの形成予定領域の第1酸化シリコン膜31上にベース電極18を形成する。さらに第1酸化シリコン膜31上にベース電極18を覆う第2酸化シリコン膜32を形成する。次いでN型コレクタ層16上の第2酸化シリコン膜32およびベース電極18にエミッタ開口部33を形成し、このエミッタ開口部33の下部の第1酸化シリコン膜31に、N型コレクタ層16に通じるもので上記エミッタ開口部33よりも径が大きいベース開口部34を形成する。
その後、上記ベース開口部34内に例えばP型のシリコンゲルマニウム(Si1-X GeX )混晶を選択的にエピタキシャル成長させて、上記N型コレクタ層16に接合するP型のベース層19を形成する。
【0018】
次に上記エミッタ開口部33の内壁ととともに上記第2酸化シリコン膜32上に、サイドウォールを形成するための第3酸化シリコン膜35を形成する。
次いでリソグラフィー技術とエッチング技術とによって、容量の形成予定領域におけるシリコン体基板11上の第3,第2,第1酸化シリコン膜35,32,31を除去して容量開口部36を形成する。
【0019】
次いで上記エミッタ開口部33および容量開口部36の各内壁ととともに上記第3酸化シリコン膜35上に、サイドウォールを形成するための窒化シリコン膜37と多結晶シリコン膜38とを順に積層する。
そしてリソグラフィー技術によって、容量の形成予定領域における多結晶シリコン膜38上、すなわち上記容量開口部36上を覆う状態にレジストパターン39を形成する。
その後上記レジストパターン39をエッチングマスクにして上記多結晶シリコン膜38と窒化シリコン膜37と第3酸化シリコン膜35とを異方性エッチングする。
【0020】
その結果図1の(2)に示すように、エミッタ開口部33の側壁には、第3酸化シリコン膜35と窒化シリコン膜37と多結晶シリコン膜38とからなるサイドウォール20が形成され、容量開口部36には窒化シリコン膜37からなる容量の誘電体膜52が形成される。そしてこの誘電体膜52上にはパターニングされた多結晶シリコン膜38が載る。
上記サイドウォール20は、上記ベース層19に接続するベース電極18とこのベース層19上にその後の工程で形成されるエミッタ層とを分離する。
その後上記レジストパターン39を除去する。
なお(2)の図面ではレジストパターン39を除去した状態を示した。
【0021】
そして図1の(3)に示すように、ベース層19上のエミッタ開口部33にN+ 型多結晶シリコン膜からなるエミッタ層21を形成するとともに、このエミッタ層21を形成したN+ 型多結晶シリコン膜と同一層の膜で、容量の形成予定領域にパターニングした多結晶シリコン膜38上に上部電極53を形成する。
このようにして、ナローベース型ヘテロ接合のNPNバイポーラトランジスタ1を構成するN型コレクタ層16とP型のベース層19とN+ 型のエミッタ層21とが形成されるとともに、同一のシリコン基板11にMIS容量2を構成する下部電極となるN+ 型拡散層51と誘電体膜52と上部電極53とが形成される。
【0022】
上記半導体装置の製造方法では、ベース電極18とエミッタ層21とを分離するサイドウォール20を形成する際に、このサイドウォール20を構成する窒化シリコン膜37と同一層の膜でMIS容量2の誘電体膜52を形成することから、別工程でMIS容量の誘電体膜を成膜する必要がない。
またエミッタ層21を構成する膜と同一層の膜でMIS容量2の上部電極53を形成することから、別工程でMIS容量の上部電極を構成する膜を成膜する必要がない。
したがって、上記製造方法では、NPNバイポーラトランジスタ1の形成プロセスに、主要工程として容量開口部36を形成する際の1回のリソグラフィー工程と1回のエッチング工程、および窒化シリコン膜37をパターニングして誘電体膜52を形成する際の1回のリソグラフィー工程を付加するだけで、同一シリコン基板11にナローベース型ヘテロ接合バイポーラトランジスタ構成のNPNバイポーラトランジスタ1とともにMIS容量2が形成される。
【0023】
次いで上記第1実施形態の詳細を、図2〜図11の製造工程図によって説明する。
図2〜図11では、同一基板上のNPNバイポーラトランジスタとMIS容量とを形成する一例を示す。また上記図1で説明したのと同様の構成部品には同一符号を付す。さらに図2〜図11の()内の番号は通し番号で示す。
【0024】
図2の(1)に示すように、熱酸化法によって、半導体基板となるP型<100>シリコン基板(以下シリコン基板という)11に酸化シリコン膜71を例えば300nmの厚さに形成する。そしてリソグラフィー技術によりバイポーラトランジスタのN+ 型埋め込み層を形成する領域上に開口を設けたレジスト膜(図示省略)を形成した後、そのレジスト膜をエッチングマスクに用いて、上記酸化シリコン膜71に窓72を開口するエッチングを行う。次いで上記レジスト膜を除去した後、上記酸化シリコン膜71をマスクにして酸化アンチモン(Sb2 3 )を固体拡散源としたアンチモンの気相拡散(拡散温度を1200℃程度に設定する)を行う。その結果、上記シリコン基板11中にN+ 型埋め込み層12を形成する。このN+ 型埋め込み層12は、シート抵抗ρs を例えば20Ω/□〜50Ω/□に設定し、拡散深さxj を例えば1μm〜2μm程度に設定する。
【0025】
その後、上記酸化シリコン膜71をエッチングによって除去する。
そして図2の(2)に示すように、エピタキシャル成長法によって、上記シリコン基板11上の全面にN型エピタキシャル層13(以下エピタキシャル層13という)を、例えば抵抗率が0.3Ωcm〜5Ωcm、厚さが0.7μm〜2μm程度になるように形成する。
このようにして半導体基板10を構成する。
なお、上記エピタキシャル成長時には、上記N+ 型埋め込み層12はエピタキシャル層13の下層に拡散する。
【0026】
次いで図3の(3)に示すように、上記エピタキシャル層13上に、局所酸化法〔例えば、LOCOS(Local Oxidation of Silicon)法〕のバッファー層となる酸化シリコン膜73を例えば20nm〜50nmの厚さに形成する。さらに減圧下における化学的気相成長(以下LP−CVDという)法によって、上記酸化シリコン膜73上にLOCOS法のマスクとなる窒化シリコン膜74を例えば50nm〜100nmの厚さに形成する。上記酸化シリコン膜73および窒化シリコン膜74の各膜厚は、LOCOS酸化で発生するバーズビークの長さ、LOCOS法に伴う応力や欠陥発生の制御性で決定される。
【0027】
続いて図3の(4)に示すように、リソグラフィー技術によって、窒化シリコン膜74上にレジスト膜75を形成し、LOCOS法による素子分離酸化膜を形成する領域上のレジスト膜75に窓76を開口する。続いてレジスト膜75をエッチングマスクに用いて上記窒化シリコン膜74、酸化シリコン膜73およびエピタキシャル層13をエッチングする。上記エピタキシャル層13のエッチング量は、LOCOS法により素子分離酸化膜を形成した後に表面が平坦になるように、形成しようとする素子分離酸化膜厚のおよそ1/2とするのが好ましい。
したがって、上記レジスト膜75はバイポーラトランジスタの形成予定領域上とMIS容量の形成予定領域上とに形成されることになる。
【0028】
その後、上記レジスト膜75を除去する。
そして図4の(5)に示すように、LOCOS法を1000℃〜1050℃にて2時間〜6時間のスチーム酸化によって行い、エピタキシャル層13に素子分離酸化膜14を形成する。この素子分離酸化膜14の膜厚は、例えば0.4μm〜1.5μmの範囲で上記エピタキシャル層13をエッチングした深さのおよそ2倍となる厚さにする。
次いで上記窒化シリコン膜74〔前記図3の(4)を参照〕を熱リン酸を用いたウエットエッチングによって除去する。
【0029】
次いで図4の(6)に示すように、リソグラフィー技術によって、レジスト膜77を形成し、N+ 型プラグ拡散層を形成する領域上およびMIS容量を形成する領域上のレジスト膜77に窓78,79を開口する。このレジスト膜77をイオン注入マスクに用いて、NPNバイポーラトランジスタのコレクタ取り出し領域となるN+ 型プラグ拡散層とMIS容量の下部電極となるN+ 型拡散層とを形成するためにリンイオン(P+ )をイオン注入する。このイオン注入条件としては、例えば、加速エネルギーを40keV〜100keV、ドーズ量を1×1015個/cm2 〜1×1016個/cm2 に設定する。
【0030】
その後、上記レジスト膜77を除去する。
続いて図5の(7)に示すように、CVD法によって、平坦化のための酸化シリコン膜80を例えば100nm〜600nmの厚さに形成する。その後、900℃〜1000℃程度にて30分間程度のアニーリングを行う。この結果、NPNトランジスタのコレクタ取り出し領域となるN+ 型プラグ拡散層17とMIS容量の下部電極部となるN+ 型拡散層51とが形成される。
次いでLOCOS法によって発生したバーズヘッドの平坦化のために、レジストを塗布してレジスト膜81を形成する。
その後、一般的な反応性イオンエッチング(以下RIEという)によりレジスト膜81、酸化シリコン膜80等をエッチバックして表面の平坦化を行う。
【0031】
次いで図5の(8)に示すように、900℃の酸化法によって、エピタキシャル層13の表面に10nm〜30nm程度の厚さの酸化シリコン膜82を形成する。
【0032】
その後、図6の(9)に示すように、リソグラフィー技術によって、レジスト膜83を形成し、素子分離拡散層を形成する領域上のレジスト膜83に窓84を開口する。このレジスト膜83をイオン注入マスクに用いて素子分離酸化膜14の下部のエピタキシャル層13にP+ 型素子分離拡散層15を形成するためにホウ素イオン(B+ )をイオン注入する。このイオン注入条件としては、例えば、加速エネルギーを200keV〜500keV、ドーズ量を1×1013個/cm2 〜1×1014個/cm2 に設定する。
【0033】
その後、上記レジスト膜83を除去する。
次いで図6の(10)に示すように、CVD法によって、エピタキシャル層13上側の全面に第1酸化シリコン膜31を例えば50nm〜300nmの厚さに形成する。さらにCVD法によって、上記第1酸化シリコン膜31上に多結晶シリコン膜41を例えば200nm〜300nmの厚さに形成する。その後、イオン注入法によって、上記多結晶シリコン膜41の全面に二フッ化ホウ素(BF2 )をイオン注入する。このイオン注入条件としては、例えば、加速エネルギーを20keV〜100keV、ドーズ量を1×1014個/cm2 〜1×1016個/cm2 に設定する。
【0034】
次いで図7の(11)に示すように、リソグラフィー技術によって、ベース電極を形成するのに必要な領域上にレジスト膜85を形成する。このレジスト膜85をエッチングマスクに用いたRIEによって上記多結晶シリコン膜41をパターニングし、ベース電極を形成するのに必要な領域上に上記多結晶シリコン膜41を残す。
【0035】
その後、上記レジスト膜85を除去する。
続いて図7の(12)に示すように、CVD法によって、上記パターニングした多結晶シリコン膜41を覆う状態に、上記第1酸化シリコン膜31上に第2酸化シリコン膜32を形成する。さらにCVD法によって上記第2酸化シリコン膜32上に窒化シリコン膜86を形成する。
次いでリソグラフィー技術によって、上記窒化シリコン膜86上にレジスト膜87を形成し、ベース領域(真性ベース領域)を形成する領域上のレジスト膜87に窓88を開口する。
【0036】
上記レジスト膜87をマスクにして窒化シリコン膜86、第2酸化シリコン膜32、多結晶シリコン膜41をエッチングし、図8の(13)に示すように、エミッタ開口部33を形成する。
その後、上記レジスト膜87〔前記図7の(12)を参照〕を除去する。
続いてCVD法によって、窒化シリコン膜を形成した後、その窒化シリコン膜をエッチバックして、上記エミッタ開口部33の側壁に窒化シリコンサイドウォール42を形成する。
これによって、エミッタ開口部33の底部を除く上面は窒化シリコン膜86と窒化シリコンサイドウォール42とによって覆われる。
【0037】
図8の(14)に示すように、窒化シリコン膜86および窒化シリコンサイドウォール42をマスクに用い、フッ酸によるエッチングによって、第1酸化シリコン膜31をエッチングする。そのとき、オーバエッチングによって第1酸化シリコン膜31にサイドエッチングを行い、上記エミッタ開口部33よりも径が大きなベース開口部34を形成する。
なお、このエッチングでは、多結晶シリコン膜41もエッチングマスクになる。
そして上記エッチングによって多結晶シリコン膜41からなるベース電極18が形成される。
【0038】
次いで図9の(15)に示すように、洗浄を行って表面を清浄化する。続いてUHV−CVD法またはLP−CVD法のような選択エピタキシャル技術によって、上記ベース開口部34のN型コレクタ層16上にP型のシリコンゲルマニウム混晶からなるベース層19を形成する。その後窒化シリコン膜86および窒化シリコンサイドウォール42〔前記図8の(14)を参照〕を熱リン酸によるエッチングによって除去する。
【0039】
図9の(16)に示すように、CVD法によって、エミッタ開口部33の側壁、ベース層19上および第2酸化シリコン膜32上に、第3酸化シリコン膜35を例えば50nm〜200nmの厚さに形成する。そしてリソグラフィー技術によって、レジスト膜89を形成し、MIS容量が形成される領域上のレジスト膜89に窓90を形成する。
【0040】
続いて上記レジスト膜89をエッチングマスクに用いて、第3,第2,第1酸化シリコン膜35,32,31をエッチングする。その結果、図10の(17)に示すように、第3,第2,第1酸化シリコン膜35,32,31に容量開口部36を形成する。
次いで上記レジスト膜89〔前記図9の(16)を参照〕を除去する。
【0041】
そしてCVD法によって、窒化シリコン膜37を例えば10nm〜200nmの厚さに形成し、さらにCVD法によって多結晶シリコン膜38を例えば50nm〜200nmの厚さに形成する。これらは、バイポーラトランジスタのエミッタ/ベースを分離するためのサイドウォールを形成するためのものであるとともにMIS容量の誘電体膜となる。
なお、上記多結晶シリコン膜38は不純物を含んでいなくとも良いが、必要があればN型の不純物をドーピングする。そのドーピング方法としては、上記CVD時にいわゆるin situで行うか、または多結晶シリコン膜38を成膜後にn型の不純物をイオン注入して行う。
【0042】
続いてリソグラフィー技術によって、MIS容量の形成予定領域上おける多結晶シリコン膜38上、すなわち上記容量開口部36上にレジストパターン39を形成する。
その後上記レジストパターン39をエッチングマスクに用いて、多結晶シリコン膜38、窒化シリコン膜37および第3酸化シリコン膜35を異方性エッチングする。
【0043】
その結果図10の(18)に示すように、エミッタ開口部33の側壁には、第3酸化シリコン膜35と窒化シリコン膜37と多結晶シリコン膜38とからなるサイドウォール20が形成され、容量開口部36には窒化シリコン膜37からなる容量の誘電体膜52が形成される。そしてこの誘電体膜52上にはパターニングされた多結晶シリコン膜38が載る。
上記サイドウォール20は、上記ベース層19に接続するベース電極18とこのベース層19上にその後の工程で形成するエミッタ層とを分離する。
その後上記レジストパターン39〔前記図10の(17)を参照〕を除去する。
【0044】
続いて図11の(19)に示すように、CVD法によって、NPNトランジスタのエミッタ電極およびMIS容量の上部電極となるもので高濃度にN型不純物を含んだ多結晶シリコン膜を形成する。その後、700℃〜1000℃の温度でエミッタアニーリングを行う。このアニーリングでは、エミッタ領域の拡散と同時に容量の形成予定領域における多結晶シリコン膜中の不純物がその下層の多結晶シリコン膜38にも拡散する。そしてリソグラフィー技術によって、エミッタ電極の形成予定領域上およびMIS容量の上部電極の形成予定領域上にレジスト膜(図示省略)を形成する。続いて、このレジスト膜をマスクに用いて上記多結晶シリコン膜をエッチングし、上記多結晶シリコン膜からなるエミッタ層21および上部電極53を形成する。
その後、上記レジスト膜(図示省略)を除去する。
【0045】
次いでリソグラフィー技術によって、レジスト膜91を形成し、バイポーラトランジスタのベースおよびコレクタの各電極が形成される領域上のレジスト膜91に窓92,93を開口するとともに、図示はしないがMIS容量の下部電極が形成される領域上のレジスト膜91にも窓を開口する。
【0046】
そして上記レジスト膜91をマスクに用いて第2,第1酸化シリコン膜32,31をエッチングし、図11の(20)に示すように、第2酸化シリコン膜32にベース電極18に通じるベース電極開口部45を形成するとともに第2,第1酸化シリコン膜32,31にN+ 型プラグ拡散層17に通じるコレクタ電極開口部46を形成する。また、図示はしないが、MIS容量の下部電極層となるN+ 型拡散層51に通じる下部電極開口部を形成する。
その後、上記レジスト膜91〔前記図11の(19)を参照〕を除去する。
【0047】
その後スパッタリングによって、バリアメタルおよびアルミニウム系金属を成膜した後、通常のリソグラフィー技術とエッチング技術とによってバリアメタルおよびアルミニウム系金属をパターニングする。その結果、ベース電極18に接続するベース金属電極22をベース電極開口部45に形成し、エミッタ層21上にエミッタ金属電極23を形成し、N+ 型プラグ拡散層17に接続するコレクタ金属電極24をコレクタ電極開口部46に形成する。それとともにMIS容量の上部電極53上に上部金属電極54を形成する。また、図示はしないが、MIS容量の下部電極層となるN+ 型拡散層51に接続する金属電極を上記下部電極開口部に形成する。
【0048】
その後、上記リソグラフィー技術で形成したレジスト膜を除去後、図示はしないが、既知の多層配線の工程を行う。
上記のようにして、同一のシリコン基板11に、ナローベース型ヘテロ接合バイポーラトランジスタ構成のNPNバイポーラトランジスタ1とともにMIS容量2が形成される。
【0049】
上記図2〜図11によって説明した製造方法では、N+ 型プラグ拡散層17と同時のイオン注入により下部電極となるN+ 型拡散層51が形成される。また、NPNバイポーラトランジスタ1のサイドウォール20を構成する窒化シリコン膜37で誘電体膜52が形成される。さらに、エミッタ層21と同一層の多結晶シリコン膜で上部電極53が形成される。
【0050】
したがって、NPNバイポーラトランジスタ1のプロセスに2回のリソグラフィー工程と1回のエッチング工程、具体的には容量開口部36を形成するためのリソグラフィー工程とエッチング工程、および誘電体膜52をパターニングするためのリソグラフィー工程を付加するだけで、シリコンゲルマニウム混晶からなるベース層19を有するナローベース型ヘテロ接合のNPNバイポーラトランジスタ1とともにMIS容量2を同一シリコン基板11に形成することが可能になる。
よって、高性能なバイポーラトランジスタLSIが実現されることになる。
【0051】
ここで上記第1実施形態で説明した製造方法の比較例として、ダブルポリシリコン構造のNPNバイポーラトランジスタの製造プロセスを用いてMIS容量を形成する製造方法を、図12〜図15によって以下に説明する。
図12〜図15では、前記図2〜図11によって説明した構成部品と同様の構成部品には同一符号を付す。
【0052】
前記図2の(1)〜図6の(9)によって説明した工程と同様の工程を行って、図12の(1)に示すように、シリコン基板11にN+ 型埋め込み層12を形成し、このシリコン基板11上にN型のエピタキシャル層13を形成する。そしてエピタキシャル層13に素子分離酸化膜14を形成し、その下部にイオン注入によりP+ 型素子分離拡散層15を形成する。またバイポーラトランジスタの形成予定領域のエピタキシャル層13をN型コレクタ層16とし、容量の形成予定領域の上記エピタキシャル層13にN+ 型拡散層51を形成する。このN+ 型拡散層51はバイポーラトランジスタの形成予定領域のエピタキシャル層13に形成されるN+ 型プラグ拡散層17と同時に形成する。
【0053】
次いで図12の(2)に示すように、エピタキシャル層13上に第1酸化シリコン膜31を形成する。その後リソグラフィー技術とエッチングによって、容量の形成予定領域上に容量開口部36を形成する。次いでこの容量開口部36内を含む第1酸化シリコン膜31上に窒化シリコン膜を成膜し、続いてリソグラフィー技術とエッチングによって、上記窒化シリコン膜をパターニングし、容量開口部36にMIS容量の誘電体膜52を形成する。
【0054】
さらに図13の(3)に示すように、リソグラフィー技術とエッチングとによって、上記N型コレクタ層16上の第1酸化シリコン膜31にベース開口部34を形成する。その後、リソグラフィー技術で形成したレジストマスクを除去する。続いてCVD法によってベース開口部34の内部および上記第1酸化シリコン膜31上に上記誘電体膜52を覆う多結晶シリコン膜111を形成する。その後多結晶シリコン膜111の全面にP型不純物であるホウ素イオンまたは二フッ化ホウ素イオンをイオン注入する。
【0055】
次いで図13の(4)に示すように、リソグラフィー技術とエッチングとによって、上記多結晶シリコン膜111をパターニングして、ベース開口部34からN型コレクタ層16に接合する多結晶シリコンパターン112を形成する。それとともに上記誘電体膜52上に上部電極53を形成する。その後、リソグラフィー技術で形成したレジストマスクを除去する。
CVD法によって、上記多結晶シリコンパターン112および上部電極53を覆う第2酸化シリコン膜32を形成する。
【0056】
そして図14の(5)に示すように、リソグラフィー技術とエッチングとによって、上記第2酸化シリコン膜32および多結晶シリコンパターン112をエッチングし、N型コレクタ層16上のベース開口部34の内側上にエミッタ開口部33を形成する。これによって、上記多結晶シリコンパターン112からなるベース電極18が形成される。
次いでイオン注入法によって上記エミッタ開口部33よりホウ素イオンまたは二フッ化ホウ素イオンを注入する。さらに活性化アニーリングを行って、ベース層113を形成するとともに、このベース層113と上記ベース電極18に接続するグラフトベース114を形成する。
【0057】
次いで図14の(6)に示すように、CVD法によって、上記第2酸化シリコン膜32上にエミッタ開口部33を埋め込むサイドウォール用酸化シリコン膜を形成した後、そのサイドウォール用酸化シリコン膜をエッチバックして、上記エミッタ開口部33の側壁にサイドウォール20を形成する。
【0058】
その後図15の(7)に示すように、CVD法によって、NPNトランジスタのエミッタ電極となるもので高濃度にN型不純物を含んだ多結晶シリコン膜を形成する。続いて700℃〜1100℃の温度でエミッタアニーリングを行う。このアニーリングによって、上記多結晶シリコン膜中の不純物がその下層のベース層113の表層に拡散してエミッタ層115を形成する。
次いでリソグラフィー技術によって、エミッタ電極の形成予定領域上にレジスト膜(図示省略)を形成する。そしてこのレジスト膜をエッチングマスクに用いて、上記多結晶シリコン膜をエッチングし、多結晶シリコン膜からなるエミッタ電極116を形成する。
その後、上記レジスト膜(図示省略)を除去する。
【0059】
次いでリソグラフィー技術およびエッチング技術を用いて、第2,第1酸化シリコン膜32,31をエッチングし、第2酸化シリコン膜32にベース電極18に通じるベース電極開口部45を形成し、第2,第1酸化シリコン膜32,31にN+ 型プラグ拡散層17に通じるコレクタ電極開口部46を形成する。それとともに上部電極53上に上部電極開口部55を形成する。
その後、上記エッチングのマスクに用いたレジスト膜(図示省略)を除去する。
【0060】
次いでスパッタリングによって、バリアメタルおよびアルミニウム系金属を成膜した後、通常のリソグラフィー技術とエッチング技術とによってバリアメタルおよびアルミニウム系金属をパターニングする。その結果、ベース電極18に接続するベース金属電極22をベース電極開口部45に形成し、エミッタ電極116上にエミッタ金属電極23を形成し、N+ 型プラグ拡散層17に接続するコレクタ金属電極24をコレクタ電極開口部46に形成する。それとともにMIS容量の上部電極53に接続する上部金属電極54を上部電極開口部55に形成する。
このようにして、同一シリコン基板11にNPNバイポーラトランジスタ101とMIS容量102とを形成する。
【0061】
上記比較例の製造方法では、MIS容量102の誘電体膜52を形成するのに、第1酸化シリコン膜31に容量開口部36を形成するためのリソグラフィー工程とエッチング工程、誘電体膜52を形成するための成膜工程、誘電体膜52をパターニングするためのリソグラフィー工程とエッチング工程が、バイポーラトランジスタプロセスに対して追加する必要がある。すなわち、2回のリソグラフィー工程と1回の成膜工程と2回のエッチング工程の追加が必要になる。
【0062】
したがって、上記図2〜図11によって説明した本発明の製造方法の方が、ダブルポリシリコン構造のバイポーラトランジスタの製造プロセスを用いて同一シリコン基板11にMIS容量102を形成する製造方法よりも追加プロセスが少ない。
よって本発明の製造方法では、シリコンゲルマニウム混晶をベース層19として高性能ナローベース型ヘテロ接合のNPNバイポーラトランジスタ1とともにMIS容量2を同一シリコン基板11上に形成した高性能LSIを、最低限の工程追加で実現することが可能になる。
【0063】
次に本発明の第2実施形態の一例を、図16〜図19の製造工程図によって説明する。
図では、前記第1実施形態と同様に一例として、ナローベース型ヘテロ接合バイポーラトランジスタの工程にしたがって、MIS容量を形成する製造工程を示す。
なお、前記第1実施形態で説明したのと同様のプロセスは簡略に説明する。したがって、そのプロセスの詳細に関しては前記第1実施形態の説明を参照していただきたい。
【0064】
前記図2の(1),(2)および図3の(3)によって説明したのと同様にして、図16の(1)に示すように、シリコン基板11のバイポーラトランジスタの形成予定領域にN+ 型埋め込み層12を形成する。さらにエピタキシャル成長法によって、シリコン基板11上の全面にN型のエピタキシャル層13を形成する。このようにして、半導体基板10を構成する。
なお、上記エピタキシャル成長時には、上記N+ 型埋め込み層12はエピタキシャル層13の下層に拡散する。
次いでLOCOS法のバッファー層となる酸化シリコン膜73を形成し、さらにLP−CVD法によって、LOCOS法のマスクとなる窒化シリコン膜74を形成する。
【0065】
続いて図16の(2)に示すように、リソグラフィー技術によって、バイポーラトランジスタの形成予定領域における窒化シリコン膜74上にレジスト膜121を形成する。続いてレジスト膜121をエッチングマスクに用いて上記窒化シリコン膜74、酸化シリコン膜73およびエピタキシャル層13をエッチングする。上記エピタキシャル層13のエッチング量は、LOCOS法により素子分離酸化膜を形成した後に表面が平坦になるように、素子分離酸化膜厚のおよそ1/2とするのが好ましい。
【0066】
その後、上記レジスト膜121を除去する。
そして図17の(3)に示すように、LOCOS法を1000℃〜1050℃にて2時間〜6時間のスチーム酸化によって行い、エピタキシャル層13に素子分離酸化膜14を形成する。この素子分離酸化膜14の膜厚は、例えば0.4μm〜1.5μmの範囲で上記エピタキシャル層13をエッチングした深さのおよそ2倍となる厚さにする。
次いで上記窒化シリコン膜74〔前記図16の(2)を参照〕を熱リン酸を用いたウエットエッチングによって除去する。
したがって、素子分離酸化膜14はMIS容量の形成予定領域にも形成されることになる。
【0067】
次いで図17の(4)に示すように、リソグラフィー技術によって、レジスト膜77を形成し、N+ 型プラグ拡散層を形成する領域上のレジスト膜77に窓78を開口する。このレジスト膜77をイオン注入マスクに用いて、NPNバイポーラトランジスタのコレクタ取り出し領域となるN+ 型プラグ拡散層を形成するためにリンイオン(P+ )をイオン注入する。このイオン注入条件は前記4の(6)によって説明したのと同様である。
【0068】
その後、上記レジスト膜77を除去する。
続いて前記図5の(7)〜図6の(10)によって説明したのと同様にして、図18の(5)に示すように、平坦化のための酸化シリコン膜(図示省略)を形成した後、アニーリングを行って、NPNトランジスタのコレクタ取り出し領域となるN+ 型プラグ拡散層17を形成する。
次いで上記酸化シリコン膜(図示省略)上にレジスト膜(図示省略)を形成した後、このレジスト膜、酸化シリコン膜等をエッチバックして、LOCOS法によって発生したバーズヘッドを平坦化する。
【0069】
次いで900℃の酸化法によって、エピタキシャル層13の表面に10nm〜30nm程度の厚さの酸化シリコン膜(図示省略)を形成する。
さらに選択的にP型不純物(例えばホウ素イオン)をイオン注入することで、素子分離酸化膜14の下部のエピタキシャル層13にP+ 型素子分離拡散層15を形成する。
【0070】
次いでCVD法によって、エピタキシャル層13上側の全面に第1酸化シリコン膜31を例えば50nm〜300nmの厚さに形成する。さらにCVD法によって、上記第1酸化シリコン膜31上に多結晶シリコン膜41を例えば200nm〜300nmの厚さに形成する。その後、イオン注入法によって、上記多結晶シリコン膜41の全面に二フッ化ホウ素(BF2 )をイオン注入する。このイオン注入条件としては、例えば、加速エネルギーを20keV〜100keV、ドーズ量を1×1014個/cm2 〜1×1016個/cm2 に設定する。
【0071】
次いで図18の(6)に示すように、リソグラフィー技術によって、ベース電極を形成するのに必要な領域上およびMIS容量の形成予定領域上にレジスト膜85を形成する。このレジスト膜85をエッチングマスクに用いたRIEによって上記多結晶シリコン膜41をパターニングし、ベース電極を形成するのに必要な領域上に上記多結晶シリコン膜41を残すとともに、MIS容量の形成予定領域に下部電極56を形成する。
【0072】
その後、上記レジスト膜85を除去する。
続いて図19の(7)に示すように、CVD法によって、上記パターニングした多結晶シリコン膜41および下部電極56を覆う状態に、上記第1酸化シリコン膜31上に第2酸化シリコン膜32を形成する。さらにCVD法によって上記第2酸化シリコン膜32上に窒化シリコン膜86を形成する。
次いでリソグラフィー技術によって、上記窒化シリコン膜86上にレジスト膜87を形成し、ベース領域(真性ベース領域)を形成する領域上のレジスト膜87に窓88を開口する。
【0073】
以下、前記図8(13)〜図11の(20)で説明した工程と同様の工程を行えばよい。
その結果、図19の(8)に示すように、窒化シリコン膜86〔前記図19の(7)参照〕、第2酸化シリコン膜32、多結晶シリコン膜41にエミッタ開口部33を形成する。そして多結晶シリコン膜41からなるベース電極18を形成する。その後、上記レジスト膜87〔前記図19の(7)参照〕を除去する。
続いて上記エミッタ開口部33の側壁に窒化シリコンサイドウォール(図示省略)を形成する。この窒化シリコンサイドウォールと上記窒化シリコン膜とをマスクに用いて、第1酸化シリコン膜31をフッ酸によりエッチングする。そのときのオーバエッチングによって第1酸化シリコン膜31にサイドエッチングを行い、上記エミッタ開口部33よりも大きな径を有するベース開口部34を形成する。
なお、このエッチングでは上記多結晶シリコン膜41もエッチングマスクになる。
そして上記エッチングによって多結晶シリコン膜41からなるベース電極18が形成される。
次いでベース開口部34のN型コレクタ層16上にP型のシリコンゲルマニウム混晶からなるベース層19を形成する。
【0074】
その後エミッタ開口部33側壁、ベース層19上および第2酸化シリコン膜32上に、第3酸化シリコン膜35を形成する。そして第3,第2酸化シリコン膜35,32の上記下部電極56上に容量開口部36を形成する。
次いで窒化シリコン膜37を形成し、さらに多結晶シリコン膜38を形成する。
続いてエミッタ開口部33の側壁に多結晶シリコン膜38、窒化シリコン膜37および第3酸化シリコン膜35からなるサイドウォール20を形成するとともに、容量開口部36に窒化シリコン膜37からなる容量の誘電体膜52を形成する。そしてこの誘電体膜52上にはパターニングされた多結晶シリコン膜38が載る。
【0075】
その後エミッタ開口部33に多結晶シリコン膜からなるN+ 型のエミッタ層21を形成するとともに容量の形成予定領域にこのエミッタ層21と同一層の多結晶シリコン膜で上部電極53を形成する。
次いで第2,第1酸化シリコン膜32,31をエッチングし、第2酸化シリコン膜32にベース電極18に通じるベース電極開口部45を形成するとともに第2,第1酸化シリコン膜32,31にN+ 型プラグ拡散層17に通じるコレクタ電極開口部46を形成する。
【0076】
その後バリアメタルおよびアルミニウム系金属を成膜した後、それらをパターニングして、ベース電極18に接続するベース金属電極22をベース電極開口部45に形成し、エミッタ層21上にエミッタ金属電極23を形成し、N+ 型プラグ拡散層17に接続するコレクタ金属電極24をコレクタ電極開口部46に形成する。それとともにMIS容量の上部電極53上に上部金属電極54を形成する。
上記のようにして、同一のシリコン基板11に、ナローベース型ヘテロ接合バイポーラトランジスタ構成のNPNバイポーラトランジスタ3とともにMIS容量4を形成する。
【0077】
上記第2実施形態の製造方法では、ベース層19に接続するベース電極18とベース層19上に形成するエミッタ層21とを分離するサイドウォール20を形成する際に、このサイドウォール20を構成する窒化シリコン膜37と同一層の膜で上記誘電体膜52を形成することから、従来技術のように別工程で容量の誘電体膜を成膜する必要がない。
また上記製造方法においては、ベース電極18を構成する多結晶シリコン膜41と同一層の膜でMIS容量4の下部電極56を形成することから、別工程で容量の下部電極を形成する必要がない。またエミッタ層21を構成する多結晶シリコン膜と同一層の膜でMIS容量4の上部電極53を形成することから、別工程で容量の上部電極を形成する必要がない。
【0078】
そのため、上記各工程によって、NPNバイポーラトランジスタ3のプロセスに2回のリソグラフィー工程と1回のエッチング工程、具体的には容量開口部36を形成するためのリソグラフィー工程とエッチング工程および誘電体膜52をパターニングするためのリソグラフィー工程を付加するだけで、シリコンゲルマニウム混晶からなるベース層19を有するナローベース型ヘテロ接合のNPNバイポーラトランジスタ3とともにMIS容量4を同一シリコン基板11に形成することが可能になる。
よって、上記NPNバイポーラトランジスタ3とMIS容量4とからなる高性能LSIを、最低限の工程追加で実現することが可能になる。
【0079】
次に、本発明の半導体装置の製造方法に係わる第3実施形態の一例を、図20〜図25の製造工程図によって説明する。
そして図20〜図25では、上記図2〜図11で説明した構成部品と同様のものには同一符号を付す。
【0080】
まず、前記図2の(1)〜図6の(9)によって説明した工程と同様の工程を行って、図20の(1)に示すように、シリコン基板11にN+ 型埋め込み層12を形成し、このシリコン基板11上にN型のエピタキシャル層13を形成する。続いてエピタキシャル層13に素子分離酸化膜14を形成する。そしてバイポーラトランジスタの形成予定領域のエピタキシャル層13をN型コレクタ層16とする。次にイオン注入によって、バイポーラトランジスタの形成予定領域のエピタキシャル層13にN+ 型埋め込み層12に接続するN+ 型プラグ拡散層17を形成するとともに、MIS容量の形成予定領域の上記エピタキシャル層13にN+ 型拡散層51を形成する。さらにイオン注入により、素子分離酸化膜14の下部にP+ 型素子分離拡散層15を形成する。
なお、エピタキシャル層13の表面には、前記図5の(8)によって説明した酸化シリコン膜82が形成されているがここでの図示は省略する。
【0081】
次いで図20の(2)に示すように、エピタキシャル層13上に第1酸化シリコン膜31を例えば50nm〜300nmの厚さに形成する。続いてリソグラフィー技術とエッチング(例えばRIE)とによって、上記N型コレクタ層16上の第1酸化シリコン膜31にベース開口部34を形成する。その後、リソグラフィー技術で形成したレジストマスクを除去する。次いでCVD法によってベース開口部34の内部および上記第1酸化シリコン膜31上に多結晶シリコン膜41を例えば100nm〜300nmの厚さに形成する。続いて多結晶シリコン膜41の全面にP型不純物である例えば二フッ化ホウ素イオンをイオン注入する。このイオン注入条件としては、例えば、加速エネルギーを20keV〜100keV、ドーズ量を1×1014個/cm2 〜1×1016個/cm2 に設定する。
【0082】
さらに図21の(3)に示すように、リソグラフィー技術によって、ベース電極を形成するのに必要な領域上にレジスト膜85を形成する。このレジスト膜85をエッチングマスクに用いたRIEによって上記多結晶シリコン膜41をパターニングし、ベース電極を形成するのに必要な領域上に上記多結晶シリコン膜41を残す。
【0083】
次いで図21の(4)に示すように、CVD法によって、上記パターニングした多結晶シリコン膜41を覆う状態に、上記第1酸化シリコン膜31上に第2酸化シリコン膜32を形成する。さらにCVD法によって上記第2酸化シリコン膜32上に窒化シリコン膜86を形成する。
次いでリソグラフィー技術によって、上記窒化シリコン膜86上にレジスト膜87を形成し、ベース領域(真性ベース領域)を形成する領域上のレジスト膜87に窓88を開口する。続いて上記レジスト膜87をマスクにして窒化シリコン膜86、第2酸化シリコン膜32、多結晶シリコン膜41をエッチング(例えばRIEによる)して開口部131を形成する。以降、上記多結晶シリコン膜41をベース電極18という。
【0084】
その後、上記レジスト膜87〔前記図21の(4)を参照〕を除去する。次いで図22の(5)に示すように、上記開口部131の底部におけるN型コレクタ層16の表面に薄い酸化膜132を例えば酸化によって10nm〜30nmの厚さに形成する。ここでは図示を省略するが、このとき上記ベース電極18の露出面も酸化される。続いてイオン注入法によって、上記開口部131よりN型コレクタ層16の上層にリンクベース層を形成するためのP型の不純物をイオン注入する。このイオン注入条件としては、P型の不純物に二フッ化ホウ素イオン(BF2 + )を用い、打ち込みエネルギーを10keV〜40keV程度に設定し、ドーズ量を1×1012個/cm2 〜1×1014個/cm2 程度に設定した。
なお、次図以降、上記薄い酸化膜132の図示は拡大図を除いて省略する。
次いで、リソグラフィー技術によって、上記窒化シリコン膜86上にレジスト膜89を形成し、MIS容量が形成される領域上のレジスト膜89に窓90を形成する。
【0085】
続いて上記レジスト膜89をエッチングマスクに用いて、窒化シリコン膜86、第2,第1酸化シリコン膜32,31をエッチングする。その結果、図22の(6)に示すように、窒化シリコン膜86、第2,第1酸化シリコン膜32,31に容量開口部36を形成する。
次いで上記レジスト膜89〔前記図22の(5)を参照〕を除去する。
【0086】
次にCVD法によって、窒化シリコン膜37を例えば10nm〜200nmの厚さに形成し、さらにCVD法によって酸化シリコン膜133を形成する。
その後アニーリングを行って、上記イオン注入した不純物を拡散させて、開口部131の底部におけるN型コレクタ層16の上層にリンクベース層61を形成する。それとともに、上記ベース電極18からの不純物拡散によってP+ 型のグラフトベース層62を上記リンクベース層61に接続する状態に形成する。
【0087】
続いてリソグラフィー技術によって、MIS容量の形成予定領域上おける酸化シリコン膜133上、すなわち上記容量開口部36上にレジストパターン39を形成する。
その後上記レジストパターン39をエッチングマスクに用いて、酸化シリコン膜133と窒化シリコン膜37とを異方性エッチングする。
【0088】
その結果図23の(7)に示すように、開口部131の側壁には、酸化シリコン膜133、窒化シリコン膜37、薄い酸化膜132〔図22の(5)参照〕とからなるサイドウォール20が形成され、容量開口部36には窒化シリコン膜37からなる容量の誘電体膜52が形成される。そしてこの誘電体膜52上にはパターニングされた酸化シリコン膜133が載っている。
上記サイドウォール20は、上記ベース電極18とその後の工程で形成するエミッタ層とを分離する。
その後、上記レジストパターン39〔前記図22の(6)を参照〕を除去する。
【0089】
次に図23の(8)および図24の(9)のバイポーラトランジスタの拡大図に示すように、上記サイドウォール20、上記窒化シリコン膜86、誘電体膜52等をマスクにして真性ベース層を形成する領域となる部分の上記リンクベース層61をエッチング(例えば等方性エッチング)により除去する。したがって、サイドウォール20の下部側にいわゆるアンダーカットが形成される。なお、エッチング量はリンクベース層61の全域または一部とする。また等方性エッチング技術としては、例えば過酸化水素水とアンモニアの水溶液との混合液を熱した、いわゆるSC−1ボイル液を用いたエッチングによる。または等方的なプラズマエッチングによる。
【0090】
その後フッ酸によるウェットエッチングによって、上記サイドウォール20の酸化膜133(2点鎖線で示す部分)をエッチング除去する。このとき、上記サイドウォール20の下部における薄い酸化膜132もベース電極18方向にエッチングする。そのため、窒化シリコン膜37からなるサイドウォール20は開口部131内においてひさし状に張り出した状態に形成される。また上記ウエットエッチングでは、容量形成領域上の酸化シリコン膜133(2点鎖線で示す部分)もエッチングされて除去される。
【0091】
そして図24の(10)および図25の(11)の第1バイポーラトランジスタの拡大図に示すように、超高真空化学的気相成長(UHV−CVD)法、減圧CVD法等による選択エピタキシャル技術によって、上記リンクベース層61および上記サイドウォール20の下部における薄い酸化膜132をエッチングした部分における上記N型コレクタ層16上にシリコンゲルマニウム(Si1-X GeX )混晶からなる真性ベース層63を形成する。このとき、上記フッ酸によるエッチングを行ってサイドウォール20の下部における薄い酸化膜132の一部分を除去していることから、上記真性ベース層63はベース電極18側に入り込む状態に形成される。
【0092】
続いて図25の(12)に示すように、CVD法によって、NPNトランジスタのエミッタ電極およびMIS容量の上部電極となるもので高濃度にN型不純物を含んだ多結晶シリコン膜を形成する。その後、700℃〜1000℃の温度でエミッタアニーリングを行う。このアニーリングでは、多結晶シリコン膜から上記真性ベース層63の上層に高濃度にN型不純物を拡散させてエミッタ層64を形成する。
そしてリソグラフィー技術によって、エミッタ電極の形成予定領域上およびMIS容量の上部電極の形成予定領域上にレジストマスク(図示省略)を形成する。続いて、このレジスト膜をマスクに用いて上記多結晶シリコン膜をエッチングし、上記エミッタ層64に接続するエミッタ電極65および上記誘電体膜52上に上部電極53を形成する。
その後、リソグラフィー技術で形成したレジストマスクを除去する。
【0093】
そして図26の(13)に示すように、リソグラフィー技術によって、レジスト膜134を窒化シリコン膜86側の全面に形成した後、ベース電極18上およびN+ 型プラグ拡散層17上のレジスト膜134に窓135,136を形成する。そしてこのレジスト膜134をマスクに用いて窒化シリコン膜86、第2,第1酸化シリコン膜32,31等をエッチングし、窒化シリコン膜86と第2酸化シリコン膜32とにベース電極18に通じるベース電極開口部45を形成し、窒化シリコン膜86および第2,第1酸化シリコン膜32,31にN+ 型プラグ拡散層17に通じるコレクタ電極開口部46を形成する。
その後、上記レジスト膜134を除去する。
【0094】
次いで図26の(14)に示すように、スパッタリングによって、バリアメタルおよびアルミニウム系金属を成膜した後、通常のリソグラフィー技術とエッチング技術とによってバリアメタルおよびアルミニウム系金属をパターニングする。その結果、ベース電極開口部45を通してベース電極18に接続するベース金属電極22を形成し、エミッタ電極65上にエミッタ金属電極23を形成し、コレクタ電極開口部46を通してN+ 型プラグ拡散層17に接続するコレクタ金属電極24を形成する。それとともにMIS容量の上部電極53に接続する上部金属電極54を形成する。
このようにして、同一シリコン基板11にNPNバイポーラトランジスタ5とMIS容量6とを形成する。
【0095】
上記第3実施形態の製造方法では、N+ 型プラグ拡散層17と同時のイオン注入により下部電極となるN+ 型拡散層51が形成される。また、NPNバイポーラトランジスタ5のサイドウォール20を構成する窒化シリコン膜37でMIS容量6の誘電体膜52が形成される。さらに、エミッタ電極65と同一層の多結晶シリコン膜で上部電極53が形成される。
【0096】
したがって、NPNバイポーラトランジスタ5のプロセスに2回のリソグラフィー工程と1回のエッチング工程、具体的には容量開口部36を形成するためのリソグラフィー工程とエッチング工程、および誘電体膜52をパターニングするためのリソグラフィー工程を付加するだけで、シリコンゲルマニウム混晶からなる真性ベース層63を有するナローベース型ヘテロ接合のNPNバイポーラトランジスタ5とともにMIS容量6を同一シリコン基板11に形成することが可能になる。
よって、上記NPNバイポーラトランジスタ5とMIS容量6とからなる高性能LSIを、最低限の工程追加で実現することが可能になる。
【0097】
次に本発明の半導体装置の製造方法に係わる第4実施形態の一例を、図27〜図30の製造工程図によって説明する。
そして図27〜図31では、上記図2〜図26で説明した構成部品と同様のものには同一符号を付す。
【0098】
まず、前記図16の(1)〜図17の(4)によって説明した工程と同様の工程を行って、図27の(1)に示すように、シリコン基板11にのバイポーラトランジスタの形成予定領域N+ 型埋め込み層12を形成し、さらにエピタキシャル成長法によって、このシリコン基板11上にN型のエピタキシャル層13を形成する。その際、上記N+ 型埋め込み層12はエピタキシャル層13の下層に拡散する。そしてエピタキシャル層13に素子分離酸化膜14を形成する。この素子分離酸化膜14はMIS容量の形成予定領域にも形成される。そしてバイポーラトランジスタの形成予定領域のエピタキシャル層13をN型コレクタ層16とする。
なお、エピタキシャル層13の表面には、前記図5の(8)によって説明した酸化シリコン膜82が形成されているがここでの図示は省略する。
【0099】
次いでイオン注入によって、バイポーラトランジスタの形成予定領域のエピタキシャル層13にN+ 型埋め込み層12に接続するN+ 型プラグ拡散層17を形成する。次いでイオン注入により、素子分離酸化膜14の下部にP+ 型素子分離拡散層15を形成する。
【0100】
次いで図27の(2)に示すように、CVD法によって、N型エピタキシャル層13上側の全面に第1酸化シリコン膜31を例えば50nm〜300nmの厚さに形成する。続いてリソグラフィー技術とエッチングとによって、上記N型コレクタ層16上の第1酸化シリコン膜31にベース開口部34を形成する。その後、リソグラフィー技術で形成したレジストマスクを除去する。そしてCVD法によってベース開口部34の内部および上記第1酸化シリコン膜31上に多結晶シリコン膜41を例えば100nm〜300nmの厚さに形成する。その後多結晶シリコン膜41の全面にP型不純物である例えば二フッ化ホウ素イオンをイオン注入する。このイオン注入条件としては、例えば、加速エネルギーを20keV〜100keV、ドーズ量を1×1014個/cm2 〜1×1016個/cm2 に設定する。
【0101】
さらに図28の(3)に示すように、リソグラフィー技術によって、ベース電極を形成するのに必要な領域上およびMIS容量を形成するのに必要な領域上にレジスト膜85を形成する。このレジスト膜85をエッチングマスクに用いたRIEによって上記多結晶シリコン膜41をパターニングし、ベース電極を形成するのに必要な領域上に上記多結晶シリコン膜41を残すとともに、MIS容量の形成予定領域に残して多結晶シリコン膜41で下部電極56を形成する。
【0102】
その後、上記レジスト膜85を除去する。
次いで図28の(4)に示すように、CVD法によって、上記パターニングした多結晶シリコン膜41および下部電極56を覆う状態に、上記第1酸化シリコン膜31上に第2酸化シリコン膜32を形成する。さらにCVD法によって上記第2酸化シリコン膜32上に窒化シリコン膜86を形成する。
次いでリソグラフィー技術によって、上記窒化シリコン膜86上にレジスト膜87を形成し、ベース領域(真性ベース領域)を形成する領域上のレジスト膜87に窓88を開口する。続いて上記レジスト膜87をマスクにして窒化シリコン膜86、第2酸化シリコン膜32、多結晶シリコン膜41をエッチングして開口部131を形成する。以降、上記多結晶シリコン膜41をベース電極18という。
【0103】
その後上記レジスト膜87〔前記図28の(4)を参照〕を除去する。次いで図29の(5)に示すように、上記開口部131の底部におけるN型コレクタ層16の表面に薄い酸化膜132を例えば酸化によって10nm〜30nmの厚さに形成する。このとき、上記ベース電極18の露出面も酸化される。続いて、イオン注入法によって、上記開口部131よりN型コレクタ層16の上層にリンクベース層を形成するためのP型の不純物をイオン注入する。このイオン注入条件としては、P型の不純物に二フッ化ホウ素イオン(BF2 + )を用い、打ち込みエネルギーを10keV〜40keV程度に設定し、ドーズ量を1×1012個/cm2 〜1×1014個/cm2 程度に設定した。
なお、次図以降、上記薄い酸化膜132の図示は拡大図を除いて省略する。
次いで、リソグラフィー技術によって、上記窒化シリコン膜86上にレジスト膜89を形成し、MIS容量が形成される領域上のレジスト膜89に窓90を形成する。
【0104】
続いて上記レジスト膜89をエッチングマスクに用いて、窒化シリコン膜86、第2,第1酸化シリコン膜32,31をエッチングする。その結果、図29の(6)に示すように、窒化シリコン膜86、第2酸化シリコン膜32に容量開口部36を形成する。
次いで上記レジスト膜89〔前記図29の(5)を参照〕を除去する。
【0105】
そしてCVD法によって、窒化シリコン膜37を例えば10nm〜200nmの厚さに形成し、さらにCVD法によって酸化シリコン膜133を形成する。
その後アニーリングを行って、上記イオン注入した不純物を拡散させて、開口部131の底部におけるN型コレクタ層16の上層にリンクベース層61を形成する。それとともに、上記ベース電極18からの不純物拡散によってP+ 型のグラフトベース層62を上記リンクベース層61に接続する状態に形成する。
【0106】
続いてリソグラフィー技術によって、MIS容量の形成予定領域上おける酸化シリコン膜133上、すなわち上記容量開口部36上にレジストパターン39を形成する。
その後上記レジストパターン39をエッチングマスクに用いて、酸化シリコン膜133と窒化シリコン膜37とを異方性エッチングする。
【0107】
以下、前記図23(7)〜図27の(14)で説明した工程と同様の工程を行う。
その結果、図30の(7)に示すように、開口部131の側壁には、酸化シリコン膜133、窒化シリコン膜37、薄い酸化膜132〔図29の(5)参照〕からなるサイドウォール20を形成し、容量開口部36には窒化シリコン膜37からなる容量の誘電体膜52を形成する。そしてこの誘電体膜52上にはパターニングされた酸化シリコン膜133が残る。
その後、上記レジストパターン39〔前記図22の(6)を参照〕を除去する。
【0108】
次いで図31の(8)および図31の(9)のバイポーラトランジスタ部分の拡大図に示すように、上記サイドウォール20、上記窒化シリコン膜86等をマスクにして真性ベース層を形成する領域となる部分の上記リンクベース層61をエッチング(例えば等方性エッチング)により除去する。したがって、サイドウォール20の下部側にいわゆるアンダーカットが形成される。
さらにフッ酸によるウェットエッチングによって、上記サイドウォール20の酸化シリコン膜133(図示省略)をエッチング除去する。このとき、上記サイドウォール20の下部における薄い酸化膜132もベース電極18方向にエッチングする。そのため、窒化シリコン膜37からなるサイドウォール20は開口部131内にひさし状に張り出した状態に形成される。また上記ウエットエッチングでは、容量形成領域上の酸化シリコン膜133(図示省略)も同エッチングにより除去される。
【0109】
そして選択エピタキシャル技術によって、上記リンクベース層61および上記サイドウォール20の下部における薄い酸化膜132をエッチングした部分における上記N型コレクタ層16上にシリコンゲルマニウム(Si1-X GeX )混晶からなる真性ベース層63を形成する。このとき、上記フッ酸によるエッチングを行ってサイドウォール20の下部における薄い酸化膜132の一部分を除去していることから、上記真性ベース層63はベース電極18側に入り込む状態に形成される。
【0110】
続いてCVD法によって、NPNトランジスタのエミッタ電極およびMIS容量の上部電極となるもので高濃度にN型不純物を含んだ多結晶シリコン膜を形成する。その後、700℃〜1000℃の温度でエミッタアニーリングを行う。このアニーリングでは、多結晶シリコン膜から上記真性ベース層の上層に高濃度にN型不純物を拡散させてエミッタ層64を形成する。
そしてリソグラフィー技術によって、エミッタ電極の形成予定領域上およびMIS容量の上部電極の形成予定領域上にレジストマスク(図示省略)を形成する。続いて、このレジスト膜をマスクに用いて上記多結晶シリコン膜をエッチングし、上記エミッタ層64に接続するエミッタ電極65および上記誘電体膜52上に上部電極53を形成する。
その後、リソグラフィー技術で形成したレジストマスクを除去する。
【0111】
さらにリソグラフィー技術およびエッチングによって、窒化シリコン膜86と第2酸化シリコン膜32とにベース電極18に通じるベース電極開口部45を形成し、窒化シリコン膜86および第2,第1酸化シリコン膜32,31にN+ 型プラグ拡散層17に通じるコレクタ電極開口部46を形成する。
その後、リソグラフィー技術で形成したレジストマスク(図示省略)を除去する。
【0112】
次いでスパッタリングによって、バリアメタルおよびアルミニウム系金属を成膜した後、通常のリソグラフィー技術とエッチング技術とによってバリアメタルおよびアルミニウム系金属をパターニングする。その結果、ベース電極開口部45を通してベース電極18に接続するベース金属電極22を形成し、エミッタ電極65上にエミッタ金属電極23を形成し、コレクタ電極開口部46を通してN+ 型プラグ拡散層17に接続するコレクタ金属電極24を形成する。それとともにMIS容量の上部電極53に接続する上部金属電極54を形成する。
このようにして、同一シリコン基板11にNPNバイポーラトランジスタ7とMIS容量8とを形成する。
【0113】
上記第4実施形態の製造方法では、多結晶シリコン膜41でベース電極18と同時に下部電極56が形成される。また、NPNバイポーラトランジスタ7のサイドウォール20を構成する窒化シリコン膜37でMIS容量8の誘電体膜52が形成される。さらに、エミッタ電極65と同一層の多結晶シリコン膜で上部電極53が形成される。
【0114】
したがって、NPNバイポーラトランジスタ1のプロセスに2回のリソグラフィー工程と1回のエッチング工程、具体的には容量開口部36を形成するためのリソグラフィー工程とエッチング工程、および誘電体膜52をパターニングするためのリソグラフィー工程を付加するだけで、シリコンゲルマニウム混晶からなる真性ベース層63を有するナローベース型ヘテロ接合のNPNバイポーラトランジスタ7とともにMIS容量8を同一シリコン基板11に形成することが可能になる。
よって、上記NPNバイポーラトランジスタ7とMIS容量8とからなる高性能LSIを、最低限の工程追加で実現することが可能になる。
【0115】
【発明の効果】
以上、説明したように本発明によれば、ベース層に接続するベース電極と該ベース層上に形成するエミッタ層とを分離するサイドウォールを形成する際に、このサイドウォールを構成する膜と同一層の膜でMIS容量の誘電体膜を形成するので、従来技術のように別工程で容量の誘電体膜を成膜する必要がない。
また、エミッタ層を構成する膜と同一層の膜でMIS容量の上部電極を形成するので、別工程で容量の上部電極を形成する必要がない。またはベース電極を構成する膜と同一層の膜でMIS容量の下部電極を形成するので、別工程で容量の下部電極を形成する必要がない。
よって、バイポーラトランジスタの工程を共用して最小限の工程増加で同一基板にMIS容量の形成が可能になる。
それにより、マルチメディア時代に対応した高性能LSIを安価に供給することが可能になる。
【図面の簡単な説明】
【図1】本発明の第1実施形態の主要工程に係わる製造工程図である。
【図2】第1実施形態の詳細を説明する製造工程図(その1)である。
【図3】第1実施形態の詳細を説明する製造工程図(その2)である。
【図4】第1実施形態の詳細を説明する製造工程図(その3)である。
【図5】第1実施形態の詳細を説明する製造工程図(その4)である。
【図6】第1実施形態の詳細を説明する製造工程図(その5)である。
【図7】第1実施形態の詳細を説明する製造工程図(その6)である。
【図8】第1実施形態の詳細を説明する製造工程図(その7)である。
【図9】第1実施形態の詳細を説明する製造工程図(その8)である。
【図10】第1実施形態の詳細を説明する製造工程図(その9)である。
【図11】第1実施形態の詳細を説明する製造工程図(その10)である。
【図12】比較例を説明する製造工程図(その1)である。
【図13】比較例を説明する製造工程図(その2)である。
【図14】比較例を説明する製造工程図(その3)である。
【図15】比較例を説明する製造工程図(その4)である。
【図16】第2実施形態を説明する製造工程図(その1)である。
【図17】第2実施形態を説明する製造工程図(その2)である。
【図18】第2実施形態を説明する製造工程図(その3)である。
【図19】第2実施形態を説明する製造工程図(その4)である。
【図20】第3実施形態を説明する製造工程図(その1)である。
【図21】第3実施形態を説明する製造工程図(その2)である。
【図22】第3実施形態を説明する製造工程図(その3)である。
【図23】第3実施形態を説明する製造工程図(その4)である。
【図24】第3実施形態を説明する製造工程図(その5)である。
【図25】第3実施形態を説明する製造工程図(その6)である。
【図26】第3実施形態を説明する製造工程図(その7)である。
【図27】第4実施形態を説明する製造工程図(その1)である。
【図28】第4実施形態を説明する製造工程図(その2)である。
【図29】第4実施形態を説明する製造工程図(その3)である。
【図30】第4実施形態を説明する製造工程図(その4)である。
【図31】第4実施形態を説明する製造工程図(その5)である。
【図32】従来のヘテロ接合バイポーラトランジスタの概略構成図である。
【図33】従来のヘテロ接合バイポーラトランジスタの製造工程図である。
【符号の説明】
1 NPNバイポーラトランジスタ 2 MIS容量
10 半導体基板 18 ベース電極 19 ベース層
20 サイドウォール 21 エミッタ層 52 誘電体膜

Claims (8)

  1. 半導体基板上にベース層を選択的にエピタキシャル成長して形成するバイポーラトランジスタと、
    前記半導体基板上に誘電体膜を成膜して形成するMIS容量と
    を形成する半導体装置の製造方法において、
    前記ベース層に接続するベース電極と該ベース層上に形成するエミッタ層とを分離するサイドウォールを形成する際に、
    前記サイドウォールを構成する膜と同一層の膜で前記誘電体膜を形成する
    ことを特徴とする半導体装置の製造方法。
  2. 請求項1記載の半導体装置の製造方法において、
    前記エミッタ層を構成する膜と同一層の膜で前記MIS容量の上部電極を形成する
    ことを特徴とする半導体装置の製造方法。
  3. 請求項1記載の半導体装置の製造方法において、
    前記ベース電極を構成する膜と同一層の膜で前記MIS容量の下部電極を形成する
    ことを特徴とする半導体装置の製造方法。
  4. 請求項2記載の半導体装置の製造方法において、
    前記ベース電極を構成する膜と同一層の膜で前記MIS容量の下部電極を形成する
    ことを特徴とする半導体装置の製造方法。
  5. 請求項1記載の半導体装置の製造方法において、
    前記バイポーラトランジスタは、ベース層をシリコンゲルマニウム混晶で形成してなるナローベース型ヘテロ接合バイポーラトランジスタである
    ことを特徴とする半導体装置の製造方法。
  6. 請求項2記載の半導体装置の製造方法において、
    前記バイポーラトランジスタは、ベース層をシリコンゲルマニウム混晶で形成してなるナローベース型ヘテロ接合バイポーラトランジスタである
    ことを特徴とする半導体装置の製造方法。
  7. 請求項3記載の半導体装置の製造方法において、
    前記バイポーラトランジスタは、ベース層をシリコンゲルマニウム混晶で形成してなるナローベース型ヘテロ接合バイポーラトランジスタである
    ことを特徴とする半導体装置の製造方法。
  8. 請求項4記載の半導体装置の製造方法において、
    前記バイポーラトランジスタは、ベース層をシリコンゲルマニウム混晶で形成してなるナローベース型ヘテロ接合バイポーラトランジスタである
    ことを特徴とする半導体装置の製造方法。
JP00426697A 1996-08-14 1997-01-14 半導体装置の製造方法 Expired - Fee Related JP3695029B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP00426697A JP3695029B2 (ja) 1996-08-14 1997-01-14 半導体装置の製造方法
NL1006758A NL1006758C2 (nl) 1996-08-14 1997-08-11 Werkwijze voor fabricage van een halfgeleiderinrichting.
US08/909,813 US5858850A (en) 1996-08-14 1997-08-12 Process of fabricating integrated heterojunction bipolar device and MIS capacitor
KR1019970038520A KR19980018636A (ko) 1996-08-14 1997-08-13 반도체 장치 제조 공정

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP21443796 1996-08-14
JP8-214437 1996-08-14
JP00426697A JP3695029B2 (ja) 1996-08-14 1997-01-14 半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JPH10112507A JPH10112507A (ja) 1998-04-28
JP3695029B2 true JP3695029B2 (ja) 2005-09-14

Family

ID=26338012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00426697A Expired - Fee Related JP3695029B2 (ja) 1996-08-14 1997-01-14 半導体装置の製造方法

Country Status (4)

Country Link
US (1) US5858850A (ja)
JP (1) JP3695029B2 (ja)
KR (1) KR19980018636A (ja)
NL (1) NL1006758C2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002539609A (ja) * 1999-03-10 2002-11-19 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ バイポーラトランジスタとコンデンサとを有する半導体装置を製造する方法
FR2792775B1 (fr) * 1999-04-20 2001-11-23 France Telecom Dispositif de circuit integre comprenant une inductance a haut coefficient de qualite
TW557569B (en) * 2000-01-24 2003-10-11 Sony Corp Semiconductor device and manufacturing method thereof
JP2001217317A (ja) * 2000-02-07 2001-08-10 Sony Corp 半導体装置およびその製造方法
JP2003031674A (ja) * 2001-07-12 2003-01-31 Sony Corp 半導体装置及びその製造方法
GB0126895D0 (en) * 2001-11-08 2002-01-02 Denselight Semiconductors Pte Fabrication of a heterojunction bipolar transistor with intergrated mim capaci or
US7521733B2 (en) * 2002-05-14 2009-04-21 Infineon Technologies Ag Method for manufacturing an integrated circuit and integrated circuit with a bipolar transistor and a hetero bipolar transistor
JP2010245318A (ja) * 2009-04-07 2010-10-28 Sanyo Electric Co Ltd 半導体装置及びその製造方法
DK2663379T3 (en) 2011-01-11 2018-04-16 Amazon Filters Spolka Z Ograniczona Odpowiedzialnoscia Process for making pleated filters

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0330431A (ja) * 1989-06-28 1991-02-08 Fujitsu Ltd バイポーラ半導体装置およびその製造方法
JP2940306B2 (ja) * 1992-06-24 1999-08-25 松下電器産業株式会社 ヘテロ接合バイポーラトランジスタ集積回路装置およびその製造方法
JP2762851B2 (ja) * 1992-07-27 1998-06-04 日本電気株式会社 半導体装置の製造方法
US5407841A (en) * 1992-10-30 1995-04-18 Hughes Aircraft Company CBiCMOS fabrication method using sacrificial gate poly
KR940018967A (ko) * 1993-01-30 1994-08-19 오가 노리오 반도체장치 및 그 제조방법
JPH08172139A (ja) * 1994-12-19 1996-07-02 Sony Corp 半導体装置製造方法
FR2757683B1 (fr) * 1996-12-20 1999-03-05 Sgs Thomson Microelectronics Transistor bipolaire et capacite

Also Published As

Publication number Publication date
KR19980018636A (ko) 1998-06-05
US5858850A (en) 1999-01-12
NL1006758C2 (nl) 2000-10-10
JPH10112507A (ja) 1998-04-28
NL1006758A1 (nl) 1998-02-20

Similar Documents

Publication Publication Date Title
US6436781B2 (en) High speed and low parasitic capacitance semiconductor device and method for fabricating the same
JP4262433B2 (ja) 半導体装置の製造方法
JP3695029B2 (ja) 半導体装置の製造方法
JPH04330730A (ja) 半導体装置及びその製造方法
JP3646387B2 (ja) バイポーラトランジスタ
JP3409618B2 (ja) 半導体装置の製造方法
JP3968500B2 (ja) 半導体装置及びその製造方法
JP3456864B2 (ja) 半導体装置及びその製造方法
JPH08274201A (ja) 半導体集積回路装置およびその製造方法
JPH10340965A (ja) 半導体装置およびその製造方法
JPH07273288A (ja) 半導体装置の製造方法
JP2680358B2 (ja) 半導体素子の製造方法
JP3332079B2 (ja) 半導体装置及びその製造方法
JP2500427B2 (ja) バイポ―ラ型半導体装置の製造方法
JP3166729B2 (ja) 半導体装置の製造方法
JP3219191B2 (ja) 半導体装置の製造方法
JP2842075B2 (ja) 半導体装置の製造方法
JP2812282B2 (ja) 半導体装置の製造方法
JP4752784B2 (ja) 半導体装置及びその製造方法
JPH1065015A (ja) 半導体装置およびその製造方法
JPH0897223A (ja) バイポーラトランジスタ及びその製造方法
JPH09162192A (ja) 半導体装置およびその製造方法
JP2008027964A (ja) 半導体装置の製造方法
JP2004071940A (ja) 半導体装置及びその製造方法
JP2004087703A (ja) 半導体集積回路装置の製造方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080708

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees