[go: up one dir, main page]

JP3686861B2 - Circuit board and electronic device using the same - Google Patents

Circuit board and electronic device using the same Download PDF

Info

Publication number
JP3686861B2
JP3686861B2 JP2001343511A JP2001343511A JP3686861B2 JP 3686861 B2 JP3686861 B2 JP 3686861B2 JP 2001343511 A JP2001343511 A JP 2001343511A JP 2001343511 A JP2001343511 A JP 2001343511A JP 3686861 B2 JP3686861 B2 JP 3686861B2
Authority
JP
Japan
Prior art keywords
circuit board
land
solder
lead
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001343511A
Other languages
Japanese (ja)
Other versions
JP2002237674A (en
Inventor
直美 石塚
英一 河野
元治 鈴木
佐藤  明弘
洋 松岡
昭一 松本
政史 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Platforms Ltd
NEC Corp
Original Assignee
NEC Corp
NEC AccessTechnica Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, NEC AccessTechnica Ltd filed Critical NEC Corp
Priority to JP2001343511A priority Critical patent/JP3686861B2/en
Priority to PCT/JP2001/010312 priority patent/WO2002047449A1/en
Priority to CNB018200664A priority patent/CN100346679C/en
Priority to TW90129517A priority patent/TW511403B/en
Publication of JP2002237674A publication Critical patent/JP2002237674A/en
Application granted granted Critical
Publication of JP3686861B2 publication Critical patent/JP3686861B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3447Lead-in-hole components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09818Shape or layout details not covered by a single group of H05K2201/09009 - H05K2201/09809
    • H05K2201/099Coating over pads, e.g. solder resist partly over pads
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3452Solder masks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof
    • H05K3/3463Solder compositions in relation to features of the printed circuit board or the mounting process

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、回路基板及びそれを用いた電子機器に関し、特に、無鉛はんだを用いて挿入型電子部品を実装する場合の回路基板及びそれを用いた電子機器に関する。
【0002】
【従来の技術】
従来の回路基板の構造を図13乃至図16を用いて詳細に説明する。図13は、回路基板に電子部品が実装された、はんだ付け部の斜視図であり、図14は、図13のb−b'の断面図である。
【0003】
図14に示すように、従来の回路基板11は、紙基材及びガラス基材、ポリエステル繊維基材などに、エポキシ樹脂、フェノール樹脂などをしみこませた絶縁性シート上に、銅箔を加圧加熱処理して貼り付けた銅張積層基板を形成した後、該基板の所望の箇所に貫通孔を形成し、貫通孔の側面に触媒付与後無電解銅メッキにより下地メッキを行い、その上に電解銅メッキして導電体を形成し、この導電体と銅張積層基板表面の銅膜とを接合し、スルーホール4を形成する。その後、銅張積層基板表面の銅からなる導電膜をエッチングすることによりランド2を形成する。
【0004】
そして最後に、はんだ付けを行うランド2以外の部分に、錫鉛はんだ12が付かないようにソルダーレジスト5を印刷塗布後、感光することによって回路基板11を形成する。このとき、ソルダーレジスト5は、リード3を実装するランド2以外の回路7を保護する役割を担っている。
【0005】
ここで、回路基板11におけるソルダーレジスト5は、図13に示すように、ランド2の面積よりも大きくなるように印刷し、ソルダーレジスト5がランド2に被らないように形成されている。これは、現在、電子機器はんだ接合に最も多く使われている錫鉛共晶はんだ(Sn63wt%、残りPb)を用いた、はんだ付けでは、ランド2にソルダーレジスト5が被ると、錫鉛はんだ12のフィレット12a形成を阻害するためである。
【0006】
又、近年の高密度実装化に伴い、ランド2に関しても、最低限の接合強度が確保出来る範囲で、出来るだけ小さく形成されている。そして、このような従来の回路基板11を用いて製造される電子機器は、錫鉛共晶はんだが異物質の接合により生じる熱膨張のミスマッチを応力緩和する役割を果たしていたため、信頼性上特に問題とはならなかった。
【0007】
【発明が解決しようとする課題】
しかしながら、近年、鉛による環境汚染が環境意識の高まりにより問題となり、鉛を含まない無鉛はんだへの転換が進んでいる。この無鉛はんだは、錫を主成分とし、銀、銅、亜鉛、ビスマス、インジウム、アンチモン、ニッケル、ゲルマニウムなどからなっており、現在、電子機器はんだ接合に最も多く使われている錫鉛共晶はんだ(Sn63wt%、残りPb、以下Pb−63Snと記載)に比べ、金属の引張り強度、クリープ強度が強く、また伸びが少ないという金属特性を持っている。このため、はんだ付け部においては鉛はんだより応力緩和が起こりにくく、また、溶融温度も錫鉛共晶はんだが183℃であるのに比べ、無鉛はんだは190℃〜230℃と高くなっている。
【0008】
現在のおもな無鉛はんだとしては、錫亜鉛系はんだ(錫亜鉛の共晶組成であるSn−9.0wt%Znを中心に、亜鉛の量を変えたり、他の元素を添加して特性を改善したものを総称して錫亜鉛系はんだという。代表例は、Sn−8.0Zn−3.0Bi)や、錫銅系はんだ(錫銅の共晶組成であるSn−0.7wt%Cuを中心に、銅の量を変えたり、他の元素を添加して特性を改善したものを総称して錫銅系はんだという。代表例は、Sn−0.7Cu−0.3Ag)や錫銀系はんだ(錫銀の共晶組成であるSn−3.5wt%Agを中心に、銀の量を変えたり、他の元素を添加して特性を改善したものを総称して錫銀系はんだという。代表例は、Sn−3.0Ag−0.5Cu、Sn−3.5Ag−0.75Cu)等がある。
【0009】
上記錫亜鉛系はんだは、溶融点が190℃前後と低いという長所を持ってはいるが、酸化しやすいために不活性雰囲気又は真空中ではんだを行うことが必要となり、作業性が悪いという問題がある。
【0010】
また、錫銅系はんだや錫銀系はんだは、酸化に対する問題は少ないが、錫銅系はんだは、溶融温度が約230℃と高く、ランドはく離が生じやすいと言う欠点を持っている。
【0011】
更に、錫銀系はんだは、溶融点は約220℃と錫銅系はんだより低く、Bi(ビスマス)を添加することで溶融点を205℃程度にまで下げることが出来る。溶融点はビスマスの添加量を増やすことで下がるが、ビスマスの添加量を増やすとフィレットはく離が生じるという欠点を持っている。
【0012】
一方、回路基板の主材料であるエポキシ系材料のガラス転移温度は125〜140℃であり、錫鉛はんだの場合よりも凝固収縮温度の差が広がり、無鉛はんだの接合部に掛かる応力が大きくなる。このような無鉛はんだの金属特性から、従来の回路基板11を用い無鉛はんだ6で挿入実装を行うと、錫鉛はんだ12ではほとんど発生しなかったランドはく離が多発することが明らかとなった。
【0013】
ランドはく離の発生例について図を用いて詳しく説明する。図15は、ランドはく離の発生状態を模式的に示す断面図である。また、図16は、検証実験において確認されたランドはく離の発生を示す図であり、図15のB部(左右反転)の断面写真である。
【0014】
図15に示すように、従来の回路基板11を用いて無鉛はんだ6のはんだ付けを行うと、ランド2と回路基板11の間がはく離し、ランド2が浮き上がった状態となる。このとき、ランド2に接続されている回路7は、一緒に持ち上げられて引っ張られることによって過度のストレスを受ける。この状態で、熱ストレスを繰り返し受けると、図16の断面写真に見られるように、回路7は容易に断線に至る。
【0015】
このように、ランドはく離は電子機器の信頼性を著しく低下させる。また、このようにランドはく離が発生する従来の回路基板11用いて電子機器の製造を行うことは、電子機器の信頼性を著しく低下させるという問題点がある。
【0016】
本発明は、上記問題点に鑑みてなされたものであって、その主な目的は、無鉛はんだを用いてもランドはく離が生じることのない、高信頼性の回路基板を提供することにある。
【0017】
また、本発明の他の目的は、上記回路基板を用いて、高信頼性の電子機器を提供することにある。
【0018】
【課題を解決するための手段】
上記目的を達成するため、本発明は、少なくとも表面と裏面とに回路配線を有する回路基板であって、電子部品の導電部材が挿入される貫通孔を有し、該貫通孔には導電膜が被覆されてなるランドを備え、前記導電部材と前記ランドとが無鉛はんだを用いて実装され、かつ前記ランド上に前記無鉛はんだのフィレットが形成される回路基板において、前記ランド外周端部の少なくとも一部を覆うように形成されたソルダーレジストを有し、前記ソルダーレジストの少なくとも一部の領域について前記フィレットの半径が前記ソルダーレジストの開口半径以下であるように形成されているものである。
【0019】
本発明においては、前記ソルダーレジストが、前記ランド外周端部の内、前記回路基板に形成される回路と接続される側の端部を覆うように形成されていることが望ましい。また、前記ソルダーレジストが、前記ランド外周端部の内、前記回路基板に形成される回路に接続される側と対向する側の端部を覆うように形成されていることが望ましい。ランドの形状としては、例えば、円形、長円形、多角形、十字形又は星形の変形等を挙げることができる。また、前記ランドと前記回路基板に形成される回路との接続部に、サブランドを形成することが望ましい。また、前記無鉛はんだは、錫亜鉛系はんだ、錫銀系はんだ、又は、錫銅系はんだ等を挙げることができる。
【0020】
また本発明は、少なくとも表面と裏面とに回路配線を有する回路基板であって、電子部品の導電部材が挿入される貫通孔を有し、該貫通孔には導電膜が被覆されてなるランドを備え、前記導電部材と前記ランドとが無鉛はんだを用いて実装され、かつ前記ランド上にフィレットが形成される回路基板において、
前記回路基板の、ガラス転移温度をTg、基板厚み方向のガラス転移温度より小さい温度での線膨張係数をα1、基板厚み方向のガラス転移温度以上での線膨張係数をα2とし、前記無鉛はんだの溶融点をTm、常温をTsとしたときに次式で求められる前記回路基板の基板膨張率Lが、
L={α1(Tg−Ts)+α2(Tm−Tg)}/1042.56 ・・・(1)
なる関係を満たすことを特徴とする回路基板である。前記無鉛はんだは、錫亜鉛系はんだ、錫銀系はんだ、又は、錫銅系はんだであることが望ましい。
【0021】
本発明の電子機器は、上記構成の回路基板に、電子部品が無鉛はんだで挿入実装されているものである。
【0022】
本発明は、表面と裏面とに回路配線を有する回路基板であって、電子部品の導電部材が挿入される貫通孔を有し、該貫通孔には導電膜が被覆されてなる(スルーホールメッキが施された)ランドを備えた回路基板、すなわち、両面基板や多層基板等に適用される。
【0023】
なお、無鉛はんだには、性質が変わらない程度に不純物として鉛を含む場合も含まれるものとする。
【0024】
このように本発明による回路基板は、図1に示すように、回路基板1の表面にエッチング法など(ランド形成方法は問わない)で形成されたランド2が形成されている。このランド2の中心部に電子部品のリード(導電部材となる)3を挿入実装するための貫通孔を形成し、貫通孔の表面にめっきを施して回路基板1の表面のランド2と接合し、スルーホール4を形成し、最後にはんだ付けを行うランド2以外部分に無鉛はんだ6が付かないように、ソルダーレジスト5を印刷塗布後、感光することによって形成される。
【0025】
この時、図2に示すように、ランド端部2aの全周または一部にソルダーレジスト5を被せるようにし、フィレットの半径がソルダーレジスト開口半径以下であるようにすることにより、無鉛はんだ6がランド端部2aまで濡れ広がることを防止し、はんだフィレット6aがランド端部2aまで形成されることを防止することができる。
【0026】
そして、はんだフィレット6aがランド端部2aよりも内側に形成されることにより、無鉛はんだ6が収縮する時のはんだフィレット6aに沿った斜め上方向への張力と、はんだフィレット形成角との関係により発生する、回路基板1の熱収縮に反発する力が、最も回路基板との密着が弱いランド端部2aではなく、回路基板1との密着がより高いランドの内側に掛かるようになるため、ランド2を剥がれにくくすることができる。また、ランド端部2aが無鉛はんだ6によって固定されないため、ランド2が回路基板1の熱膨張収縮により追従しやすくなるという効果がある。
【0027】
尚、上記式(1)を満たすような回路基板を用いることにより、溶融温度が高いことによる熱膨張係数のミスマッチの影響を受けやすい無鉛はんだ6を用いて製造する場合においても、回路7の断線を引き起こすランドはく離を抑制することが出来る。そして、これにより、無鉛はんだ6を用いた場合でも十分に信頼性の高い電子機器を製造することが出来るという効果がある。
【0028】
【発明の実施の形態】
本発明に係る回路基板の好ましい実施の形態について、以下に図面を参照して詳述する。
【0029】
[実施形態1]
まず、本発明の第1の実施形態に係る回路基板について、図1、図2及び図8乃至図10を参照して説明する。図1は、本発明の回路基板に電子部品が実装された状態の斜視図で、図2は図1のa−a'の断面図である。また、図8乃至図10は、本実施形態の効果を説明するための図である。なお、回路基板の製造方法は従来技術と同様であるので説明を省略する。
【0030】
図1及び図2に示すように、本実施形態は、ランド端部2aにソルダーレジスト5を被せ、フィレット6aの半径がソルダーレジスト5の開口半径以下であるようにした。
【0031】
上記構成により、はんだフィレット6aがランド端部2aよりも内側に形成され、無鉛はんだ6が収縮する時のはんだフィレット6aに沿った斜め上方向への張力と、はんだフィレット形成角との関係により発生する、回路基板1の熱収縮に反発する力が最も回路基板との密着が弱いランド端部2aではなく、回路基板1との密着がより高いランド2の内側に掛かるようになるため、ランド2を剥がれにくくすることができる。また、ランド端部2aが無鉛はんだ6によって固定されないため、ランド2が回路基板1の熱膨張収縮により追従しやすくなる。これにより、無鉛はんだ6にて多発するランドはく離を抑制することが可能となる。
【0032】
次に、本実施形態の回路基板1を用いて、電子機器を製造した場合の効果について検証を行った。このときの結果(表1)を用いて具体的に解説する。
【0033】
【表1】

Figure 0003686861
従来の回路基板11と本実施形態の回路基板1とに対して、無鉛はんだ(Sn−3.0Ag−0.5Cu)を全く同じ条件ではんだ付けを行った。その後、繰り返し熱応力サイクル試験(−40℃(30分)⇔25℃(5分)⇔125℃(30分)、サンプル数10枚、16カ所/枚)を行い、断線に至るまでのサイクル数を比較した。なお、断線の判定はランド間を短絡したパターンに電子部品を実装し、電気抵抗の測定を行い、電気抵抗が無限大になった時点で断線と判定した。
【0034】
この検証の結果、従来の鉛はんだ用の回路基板11では200サイクルから断線が確認され、その後も断線箇所が増加しているが、本実施の形態の回路基板1は、500サイクルまで全く断線は確認されなかった。
【0035】
図8に、表1中に※印(200サイクル断線箇所(図15のC部))で示す回路基板11の断面写真を示す。図8に示すように、ランド2は回路基板11より大きく浮き上がって、それにつながる回路7も大きく持ち上げられている。更に、矢印D部の拡大を示す図9から分かるように、ランド端部2aと回路7の境目部分が大きく変形し、断線に至っていることが確認できる。つまり、ランドはく離が発生することによって、回路7の断線が発生し、電子機器の信頼性が著しく低下することがわかる。
【0036】
次に、同様の条件で検証実験した本実施の形態の回路基板1の断面写真(図2のA部)を図10に示す。図10から分かるように、本実施の形態の回路基板1では、ランド2には特に異常は認められず、本実施の形態の構成がランドはく離に対して効果があることが確認された。
【0037】
このように、繰り返し熱応力をサイクルで与えた場合の断線に至るまでのサイクル数を比較すると、ランドはく離が多発する従来の回路基板11は、本実施の形態の回路基板1に比べ、明らかに断線に至る寿命が早いことが分かる。また、本実施の形態の回路基板1及びこの回路基板1を用いて製造された電子機器は、無鉛はんだにて多発するランドはく離の発生を抑制することができ、高信頼性の電子機器を製造することが可能となる。
【0038】
ランド2とソルダーレジスト5との重なりは、その下限は基本的にソルダーレジスト5がランド端部2aを覆うように、ソルダーレジスト開口範囲がランド径よりも小さければよいが、ランド2とソルダーレジスト5との重なり部分の幅が0.01mm以上であることが望ましく、0.02mm以上である方が更に望ましい。その理由は、重なり幅の下限は露光時目合わせ時のマージンと応力との関係で決まり、フィレット形成による応力のみを考慮する場合は、0.01mm以上の重なりであることがランド剥離が生じないようにするために好ましいが、更に露光時の目合わせ精度を考慮すると、0.02mm以上の重なりが合った方が製造不良を生じにくいからである。
【0039】
一方、重なり幅の上限は、フィレットが形成でき、ソルダーレジスト開口範囲がスルーホール径よりも大きくなるような範囲で決定される。
【0040】
[実施形態2]
次に、本発明の第2の実施の形態に係る回路基板について、図3を参照して説明する。図3は、連続して隣り合った長円形ランド8に列単位でソルダーレジスト5を被せた場合の一例を示す平面図である。
【0041】
図3では、連続して配置された複数の長円形ランド8の長手方向の中央部を横断する短冊状のソルダーレジスト5を配している。個々の長円形ランド8では、長手方向の中央部付近の短手方向のランド端部8aにはソルダーレジスト5が被っていないが、より無鉛はんだ6の熱収縮の影響を受けやすく、回路7が接続される長手方向のランド端部8bとそれに相対する部分にのみソルダーレジストを被せ、他の部分はソルダーレジストを形成していない。
【0042】
上記構成によって無鉛はんだ6が長円形ランド8の長手方向のランド端部8bまで濡れ広がることを防止することができ、前記した第1の実施の形態とほぼ同じ目的が達成される。この第2の実施の形態は、特に電子部品のリードのピッチが狭く、ピッチ間にソルダーレジストを印刷しにくい場合に有効である。
【0043】
[実施形態3]
次に、本発明の第3の実施に形態に係る回路基板について、図4を参照して説明する。
【0044】
図4に示すように、ランド形状が第1の実施の形態に示すような円形の場合でも、円形のランド2の回路7が形成される側のランド端部と、それに相対するランド端部にのみソルダーレジスト5を被せることにより、回路7が回路基板1から浮き上がることを防止し、第1の実施の形態と同様の効果が得られる。
【0045】
また、円形のランド2の回路7が形成される側のランド端部のみソルダーレジスト5を被せても回路7が回路基板1から浮き上がることを防止することができ、第1の実施の形態と同様の効果が得られる。さらに、円形のランド2の回路7が形成される側のランド端部と相対するランド端部にのみソルダーレジスト5を被せても、ランド端部でのランドはく離の発生を抑制することができる。
【0046】
[実施形態4]
次に、本発明の第4の実施の形態に係る回路基板について、図5乃至図7を参照して説明する。図5は星形の異形ランド9と丸形のソルダーレジスト5の開口を組み合わせた一例を示す平面図であり、図6(a)、(b)は、サブランド10を設けた構成を示す平面図であり、図7(a)、(b)は、十字形の異形ランドと丸形のソルダーレジスト5の開口を組み合わせ、及び八角形の異形ランドと丸形のソルダーレジスト5の開口を組み合わせた例を示す平面図である。
【0047】
いずれのランド形状、ソルダーレジスト5開口形状の組み合わせにおいても、異形ランド9の端部9aにソルダーレジスト5を被せることにより、無鉛はんだが異形ランド端部9aまで濡れ広がることを防止することができ、本発明の目的が達成される。
【0048】
更に、上記実施の形態において、ランド2と回路7との接合部にサブランド10を設ける場合についても同様である。そのための例を図6(a)、(b)に示す。図6(a)、(b)に示すように、サブランド10がある場合も、電子部品のリード3を挿入実装するランド2の中心とソルダーレジスト5開口部の中心が合うようにソルダーレジスト5を被せることにより、本発明の目的が達成されるだけでなく、サブランド10によりランド2と回路7の接続がより強固になるという効果が得られる。なお、サブランド10の形状は半円型(図6(a))、ティアドロップ型(図6(b))等が考えられるが、いずれの形状でも良いことは明らかである。
【0049】
[実施形態5]
次に、本発明の第5の実施の形態に係る回路基板について、図11を参照して説明する。第5の実施の形態は、ガラス転移温度が高い絶縁基板を用いるものである。なお、下記の線膨張係数は、基板の厚み方向の線膨張係数を示すものとして説明する。
【0050】
従来のエポキシ樹脂製の絶縁基板(ガラス転移温度125〜140℃、ガラス転移温度より小さい温度での線膨張係数(α1)50〜70ppm、ガラス転移温度以上での線膨張係数(α2)200〜350ppm)を用いた回路基板に電子部品を錫銀系の無鉛はんだ(Sn−3.0Ag−0.5Cu)を250℃/5秒/大気中ではんだ付を行った。
【0051】
これに対し、低熱膨張・高ガラス転移基板として、ハロゲン元素を除去したエポキシ樹脂からなる日立化成製のMCL−RO−67G(ガラス転移温度150℃、ガラス転移温度より小さい温度での線膨張係数(α1)38ppm、ガラス転移温度以上での線膨張係数(α2)185ppm、以下、150℃、38ppm、185ppmと略す)の基板を用いた回路基板に電子部品を錫銀系の無鉛はんだ(Sn−3.0Ag−0.5Cu)を250℃/5秒/大気中ではんだ付を行った(図11)。
【0052】
これら2種類の回路基板に繰り返し熱応力サイクル試験(−40℃(30分)⇔25℃(5分)⇔125℃(30分)、サンプル数10枚、16カ所/枚)500サイクルを行い、信頼性を確認した。その結果、従来のエポキシ樹脂製の基板を用いた回路基板ではランドはく離が発生するが、一方、低熱膨張・高ガラス転移基板として用いた、日立化成製のMCL−RO−67G(150℃、38ppm、185ppm)の回路基板では、図11に示すようにランドはく離は生じない。
【0053】
以上の結果から、ガラス転移温度が所定の値以上で、尚かつ、ガラス転移温度以上の線膨張係数が所定の値以下であればランドはく離が生じないことがわかる。
【0054】
更に、鉛フリーはんだを、はんだ付けする時に回路基板のガラス転移温度Tgと、基板厚み方向のガラス転移温度より小さい温度での線膨張係数α1及び、ガラス転移温度以上での線膨張係数α2、はんだの溶融点Tmの関係を明らかにするために行った実験データを具体的に示す。
【0055】
下式(2)は、回路基板のガラス転移温度Tgと、基板厚み方向のガラス転移温度より小さい温度での線膨張係数α1及び、ガラス転移温度以上での線膨張係数α2、はんだの溶融点Tm、常温Ts(通常25℃)をパラメーターとして算出した、基板膨張率Lを示す。
【0056】
式(2)に示す基板膨張率Lは、はんだ付けを行った回路基板を冷却していく過程において、はんだが溶融状態から溶融点を通過して凝固を開始した後、はんだ接合部が常温に戻るまでの回路基板の熱膨張変化率を示したものである。
{α1(Tg−Ts)+α2(Tm−Tg)}/104=L …式(2)
L:基板膨張率(%)
Tg:ガラス転移温度(℃)
α1:ガラス転移温度より小さい温度での線膨張係数(ppm)
α2:ガラス転移温度以上での線膨張係数(ppm)
Tm:はんだの溶融点(冷却時は凝固開始点に相当)(℃)
Ts:常温(はんだ接合部が常態に戻る温度)(℃)
本発明者らは、式(2)で求められる熱膨張率Lが所定の熱膨張率L1以下であれば、ランド剥離を生じないことを見出した。
【0057】
式(1)を用いて、5種類の回路基板(実施例1〜3、比較例1,2)をSn−Ag−Cuはんだで、はんだ付けした場合の基板膨張率Lの計算例を表2に示す。なお、実施例2の基板は、前述の日立化成製のMCL−RO−67Gと同一である。
【0058】
【表2】
Figure 0003686861
表2では、Tsは25℃、TmはSn−Ag−Cu鉛フリーはんだに相当する220℃として計算を行っている。
【0059】
表2の計算結果を基に、基板膨張率Lと、実験データより得られた、ランド剥離の発生率とグラフ化したものが、図12である。図12より明らかなように、基板の膨張率Lが2.56%以下の回路基板では、ランド剥離が発生していないことがわかる。すなわち、L1=2.56%として熱膨張率Lがこれ以下の回路基板を選べばランド剥離は発生しない。
【0060】
これより、例えば、 溶融点Tmが220℃のSn−Ag−Cuはんだをはんだ付けする場合は、ガラス転移温度Tgが141℃以上、かつ、ガラス転移温度以上の線膨張係数α2が264ppm以下の実施例1〜3の基板の場合、ガラス転移温度と線膨張係数から算出される基板膨張率Lが2.56%以下であれば、ランドはく離を制することができる。
【0061】
これらの結果を基に、式(2)を整理し直したのが、式(3)である。なお、式(3)は常温を25℃とした場合である。
【0062】
L={α1(Tg−25)+α2(Tm−Tg)}/104≦2.56 …式(3)
L:基板膨張率(%)
Tg:ガラス転移温度(℃)
α1:ガラス転移温度より小さい温度での線膨張係数(ppm)
α2:ガラス転移温度以上での線膨張係数(ppm)
Tm:はんだの溶融点(冷却時は凝固開始点に相当)(℃)
【0063】
式(3)を用いることによって、回路基板のガラス転移温度Tg、線膨張係数(α1、α2)、はんだの溶融点Tmがわかれば、ランドはく離の発生を予測することが可能である。
【0064】
更に、式(3)を用いることによって、ランドはく離抑制の効果のある回路基板の選択が容易になり、ランドはく離の発生を抑制することができる。
【0065】
なお、はんだの種類が変わった場合でもTmを置き換えることによって同様の計算が可能であり、溶融点が低いはんだを用いる程、基板膨張率Lが2.56以下になる回路基板の種類が多くなる。
【0066】
例えば、Sn−Ag−Cuはんだではランドはく離が多発する、従来のエポキシ樹脂製の絶縁基板(ガラス転移温度125〜140℃、ガラス転移温度より小さい温度での線膨張係数(α1)50〜70ppm、ガラス転移温度以上での線膨張係数(α2)200〜350ppm)の基板膨張率Lを、従来のSn-37Pbはんだ(溶融点:183℃)で計算すると、約1.9%となるため、式(3)を満たし、従来のはんだ付けにおいては、ランドはく離は発生しなかったと考えられる。
【0067】
上記回路基板を用いて電子機器を製造することにより、繰り返しの熱応力サイクルに強い、高寿命かつ信頼性の高い電子機器を製造することが出来る。このような電子機器としては、例えば、プリンタ、ファクシミリ、LCDモニタ、パーソナルコンピュータ、大型コンピュータ(サーバー、スーパーコンピュータを含む)、交換機、伝送機器、基地局装置等がある。
【0068】
なお、本発明は上記各実施の形態に限定されず、本発明の技術思想の範囲内において、各実施の形態は適宜変更され得ることは明らかである。
【0069】
【発明の効果】
以上説明したように、本発明によれば、無鉛はんだがランド端部まで濡れ広がることを防止し、フィレットがランド端部まで形成されることを防止することができる。そして、フィレットがランド端部よりも内側に形成されることにより、ランド端部に生じる無鉛はんだの熱膨張収縮の応力を抑えることができ、回路基板の熱膨張収縮により追従しやすくなることにより、無鉛はんだにて多発するランドはく離を抑制できる回路基板を提供することができる。
【0070】
また、この回路基板を用いて製造された電子機器は、繰り返しの熱応力サイクルにおいても従来の回路基板を使用した電子機器に比べ非常に高寿命であることが確認された。これにより、無鉛はんだを用いた場合でも、十分に信頼性の高い電子機器を製造することが出来る。
【0071】
更に式(1)を用いることによって、ランドはく離抑制の効果のある回路基板の選択が容易になり、ランドはく離の発生を抑制することができる。
【図面の簡単な説明】
【図1】本発明の回路基板の第1の実施の形態を示す斜視図である。
【図2】本発明の回路基板の第1の実施の形態を示す断面図である。
【図3】本発明の第2の実施の形態を示す平面図である。
【図4】本発明の第3の実施の形態を示す平面図である。
【図5】本発明の第4の実施の形態を示す平面図である。
【図6】本発明の第4の実施の形態の他の構造を示す平面図である。
【図7】本発明の第4の実施の形態の他の構造を示す平面図である。
【図8】表1の実験データに基づく、従来の構成例の製造不良発生を示す断面写真である。
【図9】図8の部分拡大図である。
【図10】表1の実験データに基づく、本発明の第1の実施の形態の効果を示す断面写真である。
【図11】本発明の第5の実施の形態のランド剥離不良の発生率を示す図である。
【図12】表2の計算結果と実験データに基づくランドはく離の発生率の関係を示す図である。
【図13】従来の回路基板の構成例を示す斜視図である。
【図14】従来の回路基板の構成例を示す断面図である。
【図15】従来の回路基板の構成例を用いた場合の製造不良発生を示す断面図である。
【図16】従来の構成例を用いた場合の製造不良発生を示す断面写真である。
【符号の説明】
1 回路基板
2 ランド
2a ランド端部
3 リード
4 スルーホール
5 ソルダーレジスト
6 無鉛はんだ
6a はんだフィレット(無鉛はんだ)
7 回路
8 長円型ランド
8a 短手方向のランド端部
8b 長手方向のランド端部
9 異形ランド
9a 異形ランド端部
10 サブランド
11 回路基板
12 錫鉛はんだ
12a はんだフィレット(錫鉛はんだ)[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a circuit board.And electronic equipment using the sameIn particular, circuit boards for mounting insertion-type electronic components using lead-free solderAnd electronic equipment using the sameAbout.
[0002]
[Prior art]
The structure of a conventional circuit board will be described in detail with reference to FIGS. FIG. 13 is a perspective view of a soldering portion where an electronic component is mounted on a circuit board, and FIG. 14 is a cross-sectional view taken along line bb ′ of FIG.
[0003]
As shown in FIG. 14, the conventional circuit board 11 pressurizes copper foil on an insulating sheet in which an epoxy resin, a phenol resin or the like is impregnated into a paper base material, a glass base material, a polyester fiber base material, or the like. After forming the copper-clad laminated substrate pasted by heat treatment, through holes are formed at desired locations on the substrate, and after applying the catalyst on the side surfaces of the through holes, base plating is performed by electroless copper plating. A conductor is formed by electrolytic copper plating, and the conductor and the copper film on the surface of the copper-clad laminate are joined to form a through hole 4. Then, the land 2 is formed by etching the conductive film made of copper on the surface of the copper-clad laminate.
[0004]
Finally, a solder resist 5 is printed and applied to portions other than the lands 2 to be soldered so that the tin-lead solder 12 does not adhere, and then the circuit board 11 is formed by exposure. At this time, the solder resist 5 plays a role of protecting the circuits 7 other than the lands 2 on which the leads 3 are mounted.
[0005]
Here, as shown in FIG. 13, the solder resist 5 on the circuit board 11 is printed so as to be larger than the area of the land 2, so that the solder resist 5 does not cover the land 2. This is because tin lead eutectic solder (Sn63 wt%, remaining Pb), which is most often used for soldering electronic devices at present, is used in soldering when the land 2 is covered with the solder resist 5. This is to inhibit the formation of fillet 12a.
[0006]
Further, with the recent high density mounting, the land 2 is also formed as small as possible within a range where a minimum bonding strength can be secured. And since the electronic device manufactured using such a conventional circuit board 11 played the role which relieve | moderated the mismatch of the thermal expansion which a tin lead eutectic solder produces by joining of a different substance, especially on reliability. It didn't matter.
[0007]
[Problems to be solved by the invention]
However, in recent years, environmental pollution due to lead has become a problem due to an increase in environmental awareness, and a shift to lead-free solder containing no lead is progressing. This lead-free solder is mainly composed of tin and is composed of silver, copper, zinc, bismuth, indium, antimony, nickel, germanium, etc., and is currently the most commonly used tin lead eutectic solder for electronic device solder joints Compared to (Sn63 wt%, remaining Pb, hereinafter referred to as Pb-63Sn), it has a metal characteristic that the tensile strength and creep strength of the metal are strong and the elongation is small. For this reason, stress relaxation is less likely to occur in the soldered part than lead solder, and the melting temperature of the lead-free solder is 190 ° C. to 230 ° C. higher than that of the tin lead eutectic solder of 183 ° C.
[0008]
Currently, the main lead-free solders are tin-zinc-based solders (mainly Sn-9.0wt% Zn, which is a eutectic composition of tin-zinc), and the amount of zinc can be changed or other elements added to improve the characteristics. The improved products are collectively referred to as tin-zinc-based solder, and typical examples include Sn-8.0Zn-3.0Bi) and tin-copper-based solder (tin-copper eutectic composition Sn-0.7wt% Cu). At the center is a tin-copper-based solder which is a generic name for which the characteristics are improved by changing the amount of copper or adding other elements, typical examples are Sn-0.7Cu-0.3Ag) and tin-silver based solder Solder (Sin-silver-based solder is generally referred to as Sn-3.5 wt% Ag, which is a eutectic composition of tin silver), which is characterized by changing the amount of silver or adding other elements to improve characteristics. Typical examples include Sn-3.0Ag-0.5Cu and Sn-3.5Ag-0.75Cu).
[0009]
The tin-zinc-based solder has the advantage that its melting point is as low as around 190 ° C, but it is easy to oxidize, so it is necessary to solder in an inert atmosphere or vacuum, and the workability is poor There is.
[0010]
Tin-copper solder and tin-silver solder have few problems with oxidation, but tin-copper solder has a drawback that it has a melting temperature as high as about 230 ° C. and is easily peeled off.
[0011]
Furthermore, tin-silver solder has a melting point of about 220 ° C., which is lower than that of tin-copper solder, and the melting point can be lowered to about 205 ° C. by adding Bi (bismuth). Although the melting point is lowered by increasing the amount of bismuth added, there is a disadvantage that fillet peeling occurs when the amount of bismuth added is increased.
[0012]
On the other hand, the glass transition temperature of the epoxy-based material, which is the main material of the circuit board, is 125 to 140 ° C., the difference in solidification shrinkage temperature is wider than that of tin-lead solder, and the stress applied to the lead-free solder joint is increased. . From the metal characteristics of the lead-free solder, it has been clarified that when the conventional circuit board 11 is used and the lead-free solder 6 is used for insertion mounting, land peeling that hardly occurs in the tin-lead solder 12 occurs frequently.
[0013]
An example of the occurrence of land peeling will be described in detail with reference to the drawings. FIG. 15 is a cross-sectional view schematically showing a land peeling occurrence state. FIG. 16 is a diagram showing the occurrence of land separation confirmed in the verification experiment, and is a cross-sectional photograph of a portion B (left-right inverted) in FIG.
[0014]
As shown in FIG. 15, when the lead-free solder 6 is soldered using the conventional circuit board 11, the land 2 and the circuit board 11 are separated from each other, and the land 2 is lifted. At this time, the circuit 7 connected to the land 2 is excessively stressed by being lifted and pulled together. In this state, when the thermal stress is repeatedly received, the circuit 7 easily breaks as seen in the cross-sectional photograph of FIG.
[0015]
As described above, land peeling significantly reduces the reliability of electronic equipment. In addition, manufacturing an electronic device using the conventional circuit board 11 in which land peeling occurs in this way has a problem that the reliability of the electronic device is remarkably lowered.
[0016]
  The present invention has been made in view of the above problems, and its main purpose is to use lead-free solder.Land peelingIt is an object of the present invention to provide a highly reliable circuit board in which no occurrence occurs.
[0017]
Another object of the present invention is to provide a highly reliable electronic device using the circuit board.
[0018]
[Means for Solving the Problems]
  In order to achieve the above object, the present invention provides:at leastA circuit board having circuit wiring on a front surface and a back surface, the circuit board having a through hole into which a conductive member of an electronic component is inserted, and the through hole having a land covered with a conductive film, A circuit board in which the land is mounted using lead-free solder and the lead-free solder fillet is formed on the land has a solder resist formed so as to cover at least a part of the outer peripheral end of the land. Then, the radius of the fillet is formed so that the radius of the fillet is equal to or smaller than the opening radius of the solder resist in at least a part of the solder resist.
[0019]
In the present invention, it is preferable that the solder resist is formed so as to cover an end portion on the side connected to a circuit formed on the circuit board, of the outer peripheral end portions of the land. Further, it is desirable that the solder resist is formed so as to cover an end of the land outer peripheral end that is opposite to a side connected to a circuit formed on the circuit board. Examples of the shape of the land include a circular shape, an oval shape, a polygonal shape, a cross shape, and a star shape. In addition, it is desirable to form a sub-brand at a connection portion between the land and a circuit formed on the circuit board. Examples of the lead-free solder include tin zinc solder, tin silver solder, tin copper solder, and the like.
[0020]
  The present invention also providesat leastA circuit board having circuit wiring on a front surface and a back surface, the circuit board having a through hole into which a conductive member of an electronic component is inserted, and the through hole having a land covered with a conductive film, The land is mounted using lead-free solder, and a fillet is formed on the land.Circuit boardIn
  The circuit board has a glass transition temperature Tg, a coefficient of linear expansion at a temperature lower than the glass transition temperature in the substrate thickness direction, α1, a coefficient of linear expansion above the glass transition temperature in the substrate thickness direction, α2, and the lead-free solder When the melting point is Tm and the room temperature is Ts, the circuit boardThe substrate expansion coefficient L is
  L = {α1 (Tg−Ts) + α2 (Tm−Tg)} / 10Four2.56    ... (1)
  RelationshipIt is a circuit board characterized by satisfying.The lead-free solder is preferably a tin zinc solder, a tin silver solder, or a tin copper solder.
[0021]
The electronic device of the present invention is such that an electronic component is inserted and mounted with lead-free solder on the circuit board having the above-described configuration.
[0022]
The present invention is a circuit board having circuit wiring on the front surface and the back surface, and has a through hole into which a conductive member of an electronic component is inserted, and the through hole is covered with a conductive film (through hole plating). Applied to a circuit board having lands), that is, a double-sided board, a multilayer board, and the like.
[0023]
The lead-free solder includes a case where lead is contained as an impurity to the extent that the property does not change.
[0024]
As described above, the circuit board according to the present invention has the land 2 formed on the surface of the circuit board 1 by an etching method or the like (regardless of the land formation method) as shown in FIG. A through hole for inserting and mounting the lead (conductive member) 3 of the electronic component is formed at the center of the land 2, and the surface of the through hole is plated and joined to the land 2 on the surface of the circuit board 1. The through hole 4 is formed, and the solder resist 5 is printed and applied and exposed to light so that the lead-free solder 6 is not attached to the portion other than the land 2 to be soldered last.
[0025]
At this time, as shown in FIG. 2, the lead-free solder 6 is formed by covering the entire circumference or a part of the land end portion 2a with the solder resist 5 so that the radius of the fillet is equal to or smaller than the solder resist opening radius. It is possible to prevent wetting and spreading to the land end portion 2a and to prevent the solder fillet 6a from being formed to the land end portion 2a.
[0026]
Then, the solder fillet 6a is formed on the inner side of the land end portion 2a, and therefore, the relationship between the tension in the diagonally upward direction along the solder fillet 6a when the lead-free solder 6 contracts and the solder fillet forming angle. The force that repels the thermal contraction of the circuit board 1 is applied not to the land end portion 2a that has the weakest contact with the circuit board but to the inside of the land that has higher contact with the circuit board 1. 2 can be made difficult to peel off. Further, since the land end portion 2 a is not fixed by the lead-free solder 6, there is an effect that the land 2 can easily follow the thermal expansion / contraction of the circuit board 1.
[0027]
Even if the circuit board satisfying the above formula (1) is used and the lead-free solder 6 is easily affected by the thermal expansion coefficient mismatch due to the high melting temperature, the circuit 7 is disconnected. Can prevent the peeling of land. As a result, there is an effect that a sufficiently reliable electronic device can be manufactured even when the lead-free solder 6 is used.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
Preferred embodiments of a circuit board according to the present invention will be described below in detail with reference to the drawings.
[0029]
[Embodiment 1]
First, a circuit board according to a first embodiment of the present invention will be described with reference to FIG. 1, FIG. 2, and FIGS. FIG. 1 is a perspective view of an electronic component mounted on a circuit board of the present invention, and FIG. 2 is a cross-sectional view taken along the line aa ′ of FIG. 8 to 10 are diagrams for explaining the effect of the present embodiment. Since the circuit board manufacturing method is the same as that of the prior art, description thereof is omitted.
[0030]
As shown in FIGS. 1 and 2, in this embodiment, the land edge 2 a is covered with the solder resist 5 so that the radius of the fillet 6 a is equal to or smaller than the opening radius of the solder resist 5.
[0031]
With the above configuration, the solder fillet 6a is formed on the inner side of the land end portion 2a, and is generated due to the relationship between the diagonally upward tension along the solder fillet 6a when the lead-free solder 6 contracts and the solder fillet forming angle. Since the force repelling thermal contraction of the circuit board 1 is applied not to the land end portion 2a having the weakest contact with the circuit board but to the inside of the land 2 having the higher contact with the circuit board 1, the land 2 Can be made difficult to peel off. Further, since the land end portion 2 a is not fixed by the lead-free solder 6, the land 2 is easily followed by thermal expansion and contraction of the circuit board 1. As a result, it is possible to suppress land separation that frequently occurs in the lead-free solder 6.
[0032]
Next, it verified about the effect at the time of manufacturing an electronic device using the circuit board 1 of this embodiment. This will be explained in detail using the results (Table 1).
[0033]
[Table 1]
Figure 0003686861
Lead-free solder (Sn-3.0Ag-0.5Cu) was soldered to the conventional circuit board 11 and the circuit board 1 of the present embodiment under exactly the same conditions. After that, a repeated thermal stress cycle test (−40 ° C. (30 minutes) ⇔ 25 ° C. (5 minutes) ⇔ 125 ° C. (30 minutes), 10 samples, 16 locations / sheet) is performed, and the number of cycles until disconnection occurs. Compared. The disconnection was determined by mounting an electronic component in a pattern in which the lands were short-circuited, measuring the electrical resistance, and determining that the disconnection occurred when the electrical resistance became infinite.
[0034]
As a result of this verification, in the conventional circuit board 11 for lead solder, disconnection was confirmed from 200 cycles, and the number of disconnections increased thereafter, but the circuit board 1 of the present embodiment is completely disconnected up to 500 cycles. It was not confirmed.
[0035]
FIG. 8 shows a cross-sectional photograph of the circuit board 11 indicated by an asterisk (200 cycle disconnection point (part C in FIG. 15)) in Table 1. As shown in FIG. 8, the land 2 is lifted larger than the circuit board 11, and the circuit 7 connected thereto is also lifted greatly. Further, as can be seen from FIG. 9 showing the enlargement of the arrow D portion, it can be confirmed that the boundary portion between the land end portion 2a and the circuit 7 is greatly deformed and has been broken. That is, it can be understood that the occurrence of land peeling causes the circuit 7 to be disconnected, and the reliability of the electronic device is significantly reduced.
[0036]
Next, FIG. 10 shows a cross-sectional photograph (part A of FIG. 2) of the circuit board 1 of the present embodiment, which was subjected to a verification experiment under the same conditions. As can be seen from FIG. 10, in the circuit board 1 of the present embodiment, no abnormalities were observed in the lands 2, and it was confirmed that the configuration of the present embodiment was effective for the separation of the lands.
[0037]
As described above, when the number of cycles up to the disconnection when repeated thermal stress is given in cycles, the conventional circuit board 11 in which land peeling frequently occurs is clearly compared with the circuit board 1 of the present embodiment. It can be seen that the life to break is fast. In addition, the circuit board 1 of the present embodiment and the electronic device manufactured using the circuit board 1 can suppress the occurrence of land flaking frequently caused by lead-free solder, and manufacture a highly reliable electronic device. It becomes possible to do.
[0038]
The lower limit of the overlap between the land 2 and the solder resist 5 is basically that the solder resist opening range is smaller than the land diameter so that the solder resist 5 covers the land end 2a. The width of the overlapping portion is preferably 0.01 mm or more, and more preferably 0.02 mm or more. The reason for this is that the lower limit of the overlap width is determined by the relationship between the margin at the time of exposure and the stress, and when considering only the stress due to fillet formation, the overlap of 0.01 mm or more does not cause land separation. Although it is preferable for the purpose of the above, considering the alignment accuracy at the time of exposure, it is more difficult to produce a manufacturing defect when the overlap is 0.02 mm or more.
[0039]
On the other hand, the upper limit of the overlapping width is determined in such a range that fillets can be formed and the solder resist opening range is larger than the through-hole diameter.
[0040]
[Embodiment 2]
Next, a circuit board according to a second embodiment of the present invention will be described with reference to FIG. FIG. 3 is a plan view showing an example of a case where the solder resists 5 are covered in units of columns on the adjacent elliptical lands 8.
[0041]
In FIG. 3, strip-shaped solder resists 5 that cross the central portion in the longitudinal direction of a plurality of oval lands 8 arranged continuously are arranged. In each oval land 8, the solder resist 5 is not covered on the land end 8 a in the short direction near the center in the longitudinal direction. However, the circuit 7 is more susceptible to the thermal contraction of the lead-free solder 6. Only the land end 8b in the longitudinal direction to be connected and the portion corresponding to the land end 8b are covered with the solder resist, and the other portions do not form the solder resist.
[0042]
With the above configuration, the lead-free solder 6 can be prevented from spreading to the land end portion 8b in the longitudinal direction of the oval land 8, and substantially the same object as that of the first embodiment described above is achieved. This second embodiment is particularly effective when the lead pitch of the electronic component is narrow and it is difficult to print the solder resist between the pitches.
[0043]
[Embodiment 3]
Next, a circuit board according to a third embodiment of the present invention will be described with reference to FIG.
[0044]
As shown in FIG. 4, even when the land shape is circular as shown in the first embodiment, the land end on the side where the circuit 7 of the circular land 2 is formed and the land end opposite to the land 7 are formed. By covering only the solder resist 5, the circuit 7 is prevented from being lifted from the circuit board 1, and the same effect as in the first embodiment can be obtained.
[0045]
Further, even if the solder resist 5 is covered only on the land end portion on the side where the circuit 7 of the circular land 2 is formed, it is possible to prevent the circuit 7 from being lifted from the circuit board 1, as in the first embodiment. The effect is obtained. Furthermore, even if the solder resist 5 is covered only on the land end portion facing the land end portion on the side where the circuit 7 of the circular land 2 is formed, the occurrence of land peeling at the land end portion can be suppressed.
[0046]
[Embodiment 4]
Next, a circuit board according to a fourth embodiment of the present invention will be described with reference to FIGS. FIG. 5 is a plan view showing an example in which the star-shaped deformed land 9 and the opening of the round solder resist 5 are combined. FIGS. 6 (a) and 6 (b) are plan views showing the configuration in which the sub-land 10 is provided. FIGS. 7A and 7B are a combination of a cross-shaped deformed land and a round solder resist 5 opening, and an octagonal deformed land and a round solder resist 5 opening combined. It is a top view which shows an example.
[0047]
In any combination of land shape and solder resist 5 opening shape, it is possible to prevent the lead-free solder from spreading to the deformed land end portion 9a by covering the end portion 9a of the deformed land 9 with the solder resist 5, The object of the present invention is achieved.
[0048]
Further, in the above embodiment, the same applies to the case where the sub-land 10 is provided at the junction between the land 2 and the circuit 7. Examples for this are shown in FIGS. 6 (a) and 6 (b). As shown in FIGS. 6A and 6B, even in the case of the sub-brand 10, there is provided the solder resist 5 so that the center of the land 2 into which the lead 3 of the electronic component is inserted and mounted is aligned with the center of the solder resist 5 opening. In addition to achieving the object of the present invention, it is possible to obtain an effect that the connection between the land 2 and the circuit 7 becomes stronger by the sub-land 10. The shape of the sub-brand 10 may be a semicircular shape (FIG. 6A), a teardrop type (FIG. 6B), or the like, but it is clear that any shape may be used.
[0049]
[Embodiment 5]
Next, a circuit board according to a fifth embodiment of the present invention will be described with reference to FIG. In the fifth embodiment, an insulating substrate having a high glass transition temperature is used. In addition, the following linear expansion coefficient demonstrates as what shows the linear expansion coefficient of the thickness direction of a board | substrate.
[0050]
Conventional insulating substrate made of epoxy resin (glass transition temperature 125-140 ° C., linear expansion coefficient (α1) 50-70 ppm at temperature lower than glass transition temperature, linear expansion coefficient (α2) 200-350 ppm above glass transition temperature ) Was soldered to a silver-based lead-free solder (Sn-3.0Ag-0.5Cu) at 250 ° C./5 seconds / in the atmosphere.
[0051]
On the other hand, as a low thermal expansion / high glass transition substrate, Hitachi Chemical's MCL-RO-67G (glass transition temperature 150 ° C., linear expansion coefficient at a temperature lower than the glass transition temperature) made of epoxy resin from which halogen elements have been removed ( α1) Tin-silver-based lead-free solder (Sn-3) on a circuit board using a substrate of 38 ppm and a linear expansion coefficient (α2) of 185 ppm above the glass transition temperature (hereinafter abbreviated as 150 ° C., 38 ppm, 185 ppm). 0.0 Ag-0.5 Cu) was soldered at 250 ° C./5 seconds / air (FIG. 11).
[0052]
These two types of circuit boards are subjected to repeated thermal stress cycle tests (−40 ° C. (30 minutes) ⇔25 ° C. (5 minutes) ⇔125 ° C. (30 minutes), 10 samples, 16 locations / sheet) 500 cycles, The reliability was confirmed. As a result, land peeling occurs in a circuit board using a conventional epoxy resin substrate, but on the other hand, MCL-RO-67G (150 ° C., 38 ppm, manufactured by Hitachi Chemical Co., Ltd.) used as a low thermal expansion / high glass transition substrate. , 185 ppm), the land separation does not occur as shown in FIG.
[0053]
From the above results, it can be seen that if the glass transition temperature is equal to or higher than a predetermined value and the linear expansion coefficient equal to or higher than the glass transition temperature is equal to or lower than the predetermined value, no land separation occurs.
[0054]
Furthermore, when soldering lead-free solder, the glass transition temperature Tg of the circuit board, the linear expansion coefficient α1 at a temperature lower than the glass transition temperature in the substrate thickness direction, the linear expansion coefficient α2 above the glass transition temperature, solder The experimental data conducted in order to clarify the relationship of the melting point Tm are specifically shown.
[0055]
The following equation (2) represents the glass transition temperature Tg of the circuit board, the linear expansion coefficient α1 at a temperature lower than the glass transition temperature in the substrate thickness direction, the linear expansion coefficient α2 above the glass transition temperature, and the melting point Tm of the solder. The substrate expansion coefficient L calculated using normal temperature Ts (usually 25 ° C.) as a parameter is shown.
[0056]
In the process of cooling the circuit board that has been soldered, the board expansion coefficient L shown in Equation (2) indicates that after the solder starts to solidify from the molten state through the melting point, the solder joint becomes room temperature. It shows the rate of thermal expansion change of the circuit board until it returns.
{Α1 (Tg−Ts) + α2 (Tm−Tg)} / 10Four= L Equation (2)
L: Substrate expansion rate (%)
Tg: Glass transition temperature (° C)
α1: Linear expansion coefficient (ppm) at a temperature lower than the glass transition temperature
α2: Linear expansion coefficient (ppm) above the glass transition temperature
Tm: Melting point of solder (corresponding to the solidification start point during cooling) (° C)
Ts: normal temperature (temperature at which the solder joint returns to normal) (° C)
The present inventors have found that land peeling does not occur when the thermal expansion coefficient L obtained by the equation (2) is not more than a predetermined thermal expansion coefficient L1.
[0057]
Table 2 shows a calculation example of the substrate expansion coefficient L when soldering five types of circuit boards (Examples 1 to 3 and Comparative Examples 1 and 2) with Sn-Ag-Cu solder using Expression (1). Shown in In addition, the board | substrate of Example 2 is the same as the MCL-RO-67G made from the Hitachi Chemical mentioned above.
[0058]
[Table 2]
Figure 0003686861
In Table 2, Ts is calculated as 25 ° C., and Tm is calculated as 220 ° C. corresponding to Sn—Ag—Cu lead-free solder.
[0059]
Based on the calculation result of Table 2, FIG. 12 shows a graph of the substrate expansion rate L and the land peeling occurrence rate obtained from the experimental data. As is clear from FIG. 12, it is understood that no land peeling occurs in the circuit board having the expansion coefficient L of the board of 2.56% or less. That is, if L1 = 2.56% and a circuit board having a thermal expansion coefficient L or less is selected, land peeling does not occur.
[0060]
Thus, for example, when soldering Sn-Ag-Cu solder having a melting point Tm of 220 ° C., the glass transition temperature Tg is 141 ° C. or higher, and the linear expansion coefficient α2 above the glass transition temperature is 264 ppm or lower. In the case of the substrates of Examples 1 to 3, land separation can be controlled if the substrate expansion coefficient L calculated from the glass transition temperature and the linear expansion coefficient is 2.56% or less.
[0061]
Based on these results, the formula (2) is rearranged into the formula (3). In addition, Formula (3) is a case where normal temperature is 25 degreeC.
[0062]
L = {α1 (Tg−25) + α2 (Tm−Tg)} / 10Four≦ 2.56 Formula (3)
L: Substrate expansion rate (%)
Tg: Glass transition temperature (° C)
α1: Linear expansion coefficient (ppm) at a temperature lower than the glass transition temperature
α2: Linear expansion coefficient (ppm) above the glass transition temperature
Tm: Melting point of solder (corresponding to the solidification start point during cooling) (° C)
[0063]
By using equation (3), if the glass transition temperature Tg, the linear expansion coefficients (α1, α2), and the melting point Tm of the solder are known, it is possible to predict the occurrence of land separation.
[0064]
Furthermore, by using the expression (3), it becomes easy to select a circuit board having an effect of suppressing land peeling, and the occurrence of land peeling can be suppressed.
[0065]
Even if the type of solder changes, the same calculation can be performed by replacing Tm. As the solder having a lower melting point is used, the types of circuit boards whose board expansion coefficient L is 2.56 or less increase. .
[0066]
For example, in an Sn-Ag-Cu solder, land peeling frequently occurs, an insulating substrate made of a conventional epoxy resin (glass transition temperature 125 to 140 ° C., linear expansion coefficient (α1) 50 to 70 ppm at a temperature lower than the glass transition temperature, When the substrate expansion coefficient L of the linear expansion coefficient (α2) 200 to 350 ppm) above the glass transition temperature is calculated with a conventional Sn-37Pb solder (melting point: 183 ° C.), it is about 1.9%. It is considered that land peeling did not occur in the conventional soldering satisfying (3).
[0067]
By manufacturing an electronic device using the circuit board, it is possible to manufacture a highly durable electronic device that is resistant to repeated thermal stress cycles. Examples of such electronic devices include printers, facsimiles, LCD monitors, personal computers, large computers (including servers and supercomputers), exchanges, transmission devices, base station devices, and the like.
[0068]
Note that the present invention is not limited to the above-described embodiments, and it is obvious that the embodiments can be appropriately changed within the scope of the technical idea of the present invention.
[0069]
【The invention's effect】
As described above, according to the present invention, lead-free solder can be prevented from spreading to the end of the land, and the fillet can be prevented from being formed to the end of the land. And, by forming the fillet on the inner side of the land end portion, it is possible to suppress the stress of thermal expansion / shrinkage of lead-free solder generated at the land end portion, and to easily follow the thermal expansion / shrinkage of the circuit board, It is possible to provide a circuit board capable of suppressing land peeling frequently generated by lead-free solder.
[0070]
Moreover, it was confirmed that an electronic device manufactured using this circuit board has a very long life even in repeated thermal stress cycles as compared with an electronic apparatus using a conventional circuit board. Thereby, even when lead-free solder is used, a sufficiently reliable electronic device can be manufactured.
[0071]
Further, by using the expression (1), it becomes easy to select a circuit board having an effect of suppressing land peeling, and the occurrence of land peeling can be suppressed.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a first embodiment of a circuit board of the present invention.
FIG. 2 is a cross-sectional view showing a first embodiment of a circuit board of the present invention.
FIG. 3 is a plan view showing a second embodiment of the present invention.
FIG. 4 is a plan view showing a third embodiment of the present invention.
FIG. 5 is a plan view showing a fourth embodiment of the present invention.
FIG. 6 is a plan view showing another structure of the fourth embodiment of the present invention.
FIG. 7 is a plan view showing another structure of the fourth embodiment of the present invention.
8 is a cross-sectional photograph showing the occurrence of manufacturing defects in a conventional configuration example based on the experimental data in Table 1. FIG.
9 is a partially enlarged view of FIG.
10 is a cross-sectional photograph showing the effect of the first embodiment of the present invention based on the experimental data in Table 1. FIG.
FIG. 11 is a diagram showing the incidence rate of land peeling failure according to the fifth embodiment of the present invention.
12 is a graph showing the relationship between the calculation result of Table 2 and the rate of occurrence of land separation based on experimental data. FIG.
FIG. 13 is a perspective view showing a configuration example of a conventional circuit board.
FIG. 14 is a cross-sectional view showing a configuration example of a conventional circuit board.
FIG. 15 is a cross-sectional view showing the occurrence of manufacturing defects when a configuration example of a conventional circuit board is used.
FIG. 16 is a cross-sectional photograph showing a production failure when a conventional configuration example is used.
[Explanation of symbols]
1 Circuit board
2 Land
2a Land edge
3 Lead
4 Through hole
5 Solder resist
6 Lead-free solder
6a Solder fillet (lead-free solder)
7 Circuit
8 Oval land
8a Land edge in the short direction
8b Land edge in the longitudinal direction
9 Variant Land
9a End of irregular land
10 Suburb
11 Circuit board
12 Tin-lead solder
12a Solder fillet (tin-lead solder)

Claims (8)

少なくとも表面と裏面とに回路配線を有する回路基板であって、電子部品の導電部材が挿入される貫通孔を有し、該貫通孔には導電膜が被覆されてなるランドを備え、前記導電部材と前記ランドとが無鉛はんだを用いて実装され、かつ前記ランド上に前記無鉛はんだのフィレットが形成される回路基板において、
前記ランド外周端部の少なくとも一部を覆うように形成されたソルダーレジストを有し、前記ソルダーレジストの少なくとも一部の領域について前記フィレットの半径が前記ソルダーレジストの開口半径以下であることを特徴とする回路基板。
A circuit board having circuit wiring on at least a front surface and a back surface, the circuit board having a through hole into which a conductive member of an electronic component is inserted, the land having a conductive film covered in the through hole, the conductive member And the land are mounted using lead-free solder, and the lead-free solder fillet is formed on the land,
It has a solder resist formed so as to cover at least a part of the outer peripheral edge of the land, and the radius of the fillet is less than or equal to the opening radius of the solder resist for at least a part of the solder resist. Circuit board to do.
前記ソルダーレジストが、前記ランド外周端部の内、前記回路基板に形成される回路と接続される側の端部を覆うように形成されていることを特徴とする請求項1に記載の回路基板。  2. The circuit board according to claim 1, wherein the solder resist is formed so as to cover an end of the land outer peripheral end that is connected to a circuit formed on the circuit board. 3. . 前記ソルダーレジストが、前記ランド外周端部の内、前記回路基板に形成される回路に接続される側と対向する側の端部を覆うように形成されていることを特徴とする請求項1又は請求項2に記載の回路基板。  The solder resist is formed so as to cover an end of the land outer peripheral end that is opposed to a side connected to a circuit formed on the circuit board. The circuit board according to claim 2. 前記ソルダーレジストが、複数の長円形ランドの長手方向のランド端部と、それに相対する側の端部とを覆うように形成されていることを特徴とする請求項1又は請求項3に記載の回路基板。The said solder resist is formed so that the land edge part of the longitudinal direction of several oval land and the edge part on the side which opposes it may be formed. Circuit board. 前記ランドの形状が、円形、長円形、多角形、十字形又は星形の変形のいずれかであることを特徴とする請求項1乃至3のいずれか1項に記載の回路基板。  4. The circuit board according to claim 1, wherein the land has a circular shape, an oval shape, a polygonal shape, a cross shape, or a star shape. 5. 前記ランドと前記回路基板に形成される回路との接続部に、サブランドを形成したことを特徴とする請求項1乃至のいずれか1項に記載の回路基板。The circuit board according to any one of claims 1 to 5, characterized in that the connecting portion of the circuit formed on the circuit board and the lands, to form a sub brand. 電子部品が無鉛はんだで挿入実装された請求項1乃至6のいずれか1項に記載の回路基板を用いたことを特徴とする電子機器。  An electronic device using the circuit board according to claim 1, wherein the electronic component is inserted and mounted with lead-free solder. 少なくとも表面と裏面とに回路配線を有する回路基板であって、電子部品の導電部材が挿入される貫通孔を有し、該貫通孔には導電膜が被覆されてなるランドを備え、前記導電部材と前記ランドとが無鉛はんだを用いて実装され、かつ前記ランド上にフィレットが形成される回路基板において、
前記回路基板の、ガラス転移温度をTg、基板厚み方向のガラス転移温度より小さい温度での線膨張係数をα1、基板厚み方向のガラス転移温度以上での線膨張係数をα2とし、前記無鉛はんだの溶融点をTm、常温をTsとしたときに次式で求められる前記回路基板の基板膨張率Lが、
L={α1(Tg−Ts)+α2(Tm−Tg)}/1042.56
なる関係を満たすことを特徴とする回路基板。
A circuit board having circuit wiring on at least a front surface and a back surface, the circuit board having a through hole into which a conductive member of an electronic component is inserted, the land having a conductive film covered in the through hole, the conductive member And a circuit board in which the land is mounted using lead-free solder and a fillet is formed on the land.
The circuit board has a glass transition temperature Tg, a coefficient of linear expansion at a temperature lower than the glass transition temperature in the substrate thickness direction, α1, a coefficient of linear expansion at a temperature higher than the glass transition temperature in the substrate thickness direction, α2, and the lead-free solder When the melting point is Tm and the room temperature is Ts, the board expansion coefficient L of the circuit board obtained by the following formula is:
L = {α1 (Tg−Ts) + α2 (Tm−Tg)} / 10 42.56
A circuit board characterized by satisfying the following relationship .
JP2001343511A 2000-12-08 2001-11-08 Circuit board and electronic device using the same Expired - Fee Related JP3686861B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001343511A JP3686861B2 (en) 2000-12-08 2001-11-08 Circuit board and electronic device using the same
PCT/JP2001/010312 WO2002047449A1 (en) 2000-12-08 2001-11-27 Circuit board, electronic equipment using the circuit board, and method of sorting circuit board
CNB018200664A CN100346679C (en) 2000-12-08 2001-11-27 Circuit board, electronic equipment using the circuit board and method of sorting circuit board
TW90129517A TW511403B (en) 2000-12-08 2001-11-29 Circuit board and electronic equipment using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-374174 2000-12-08
JP2000374174 2000-12-08
JP2001343511A JP3686861B2 (en) 2000-12-08 2001-11-08 Circuit board and electronic device using the same

Publications (2)

Publication Number Publication Date
JP2002237674A JP2002237674A (en) 2002-08-23
JP3686861B2 true JP3686861B2 (en) 2005-08-24

Family

ID=26605493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001343511A Expired - Fee Related JP3686861B2 (en) 2000-12-08 2001-11-08 Circuit board and electronic device using the same

Country Status (4)

Country Link
JP (1) JP3686861B2 (en)
CN (1) CN100346679C (en)
TW (1) TW511403B (en)
WO (1) WO2002047449A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246734A (en) * 2001-02-19 2002-08-30 Sony Corp Substrate and electronic equipment having substrate
CN100362640C (en) * 2004-06-04 2008-01-16 英业达股份有限公司 Method for preventing short circuit of semiconductor component pin welding
JP4841865B2 (en) * 2005-06-01 2011-12-21 株式会社バッファロー Printed circuit board
JP2007266510A (en) * 2006-03-29 2007-10-11 Sanyo Electric Co Ltd Printed wiring board and electric apparatus

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5544367Y2 (en) * 1976-11-04 1980-10-17
JPH028080U (en) * 1988-06-27 1990-01-18
JPH0494591A (en) * 1990-08-10 1992-03-26 Cmk Corp Method for manufacturing printed wiring board with through holes
JPH05343602A (en) * 1992-06-11 1993-12-24 Hitachi Ltd High density mounted semiconductor device and semiconductor module using the same
JPH08181424A (en) * 1994-12-26 1996-07-12 Sony Corp Printed board and its soldering method
JP3440786B2 (en) * 1997-11-10 2003-08-25 松下電器産業株式会社 Printed wiring board
JPH11145607A (en) * 1997-11-11 1999-05-28 Murata Mach Ltd Method of forming soldered resist film on printed circuit board and printed circuit board manufactured there by
JPH11251728A (en) * 1998-02-27 1999-09-17 Fuji Photo Film Co Ltd Printed board and method for coating cream solder
JP2000332401A (en) * 1999-05-18 2000-11-30 Tamura Seisakusho Co Ltd Method of cooling soldered product, soldered product cooling apparatus and soldering apparatus

Also Published As

Publication number Publication date
CN1480014A (en) 2004-03-03
CN100346679C (en) 2007-10-31
TW511403B (en) 2002-11-21
JP2002237674A (en) 2002-08-23
WO2002047449A1 (en) 2002-06-13

Similar Documents

Publication Publication Date Title
JP4554873B2 (en) Wiring board, electronic device, electronic component mounting method and manufacturing method
JP4923336B2 (en) Circuit board and electronic device using the circuit board
JP4328485B2 (en) Circuit board and electronic equipment
JP2004179615A (en) Solder connection structure and method for solder-connecting electronic part
JP4479848B2 (en) Circuit board
JP4181759B2 (en) Electronic component mounting method and mounting structure manufacturing method
JP3726046B2 (en) Circuit board and electronic device using the same
JP3686861B2 (en) Circuit board and electronic device using the same
JP4143280B2 (en) Mounting structure, method for manufacturing mounting structure, mask for printing, and printing method
JP2005044990A (en) Land, manufacturing method, and mounting method for multilayer printed wiring board
JPWO2005072032A1 (en) Circuit board, circuit board mounting structure, and circuit board mounting method
JP4527617B2 (en) Circuit board and electronic device using the same
JP4735538B2 (en) Electronics
JP4747644B2 (en) Electronic component and its mounting structure
KR101172174B1 (en) The printed circuit board and the method for manufacturing the same
KR101154626B1 (en) The printed circuit board and the method for manufacturing the same
JP2009076727A (en) Printed wiring board, electronic equipment using the same, and manufacturing method thereof
JP2008066741A (en) Electronic equipment and method of packaging electronic component
JP2005268680A (en) Discharge lamp lighting device
JP2020119969A (en) Printed wiring board, and printed circuit device and method of manufacturing the same
JP2005311394A (en) Mounting structure and manufacturing method therefor, mask for printing, and printing method
JP2003086916A (en) Lead structure for electronic component
JP2003318527A (en) Insertion electronic component, its soldering method, and electronic equipment using it
JP2014053543A (en) Chip component mounting substrate and manufacturing method therefor

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050606

R150 Certificate of patent or registration of utility model

Ref document number: 3686861

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080610

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130610

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees