JP3654781B2 - 内燃機関の吸入空気量の計測装置 - Google Patents
内燃機関の吸入空気量の計測装置 Download PDFInfo
- Publication number
- JP3654781B2 JP3654781B2 JP34686798A JP34686798A JP3654781B2 JP 3654781 B2 JP3654781 B2 JP 3654781B2 JP 34686798 A JP34686798 A JP 34686798A JP 34686798 A JP34686798 A JP 34686798A JP 3654781 B2 JP3654781 B2 JP 3654781B2
- Authority
- JP
- Japan
- Prior art keywords
- value
- engine
- intake air
- air amount
- intake pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000002485 combustion reaction Methods 0.000 title claims description 37
- 238000000137 annealing Methods 0.000 claims description 65
- 238000000034 method Methods 0.000 claims description 48
- 238000009499 grossing Methods 0.000 claims description 40
- 238000001514 detection method Methods 0.000 claims description 31
- 230000001052 transient effect Effects 0.000 claims description 22
- 238000012937 correction Methods 0.000 claims description 12
- 230000001133 acceleration Effects 0.000 description 22
- 239000000446 fuel Substances 0.000 description 18
- WPNJAUFVNXKLIM-UHFFFAOYSA-N Moxonidine Chemical compound COC1=NC(C)=NC(Cl)=C1NC1=NCCN1 WPNJAUFVNXKLIM-UHFFFAOYSA-N 0.000 description 10
- 238000012545 processing Methods 0.000 description 9
- LLYXJBROWQDVMI-UHFFFAOYSA-N 2-chloro-4-nitrotoluene Chemical compound CC1=CC=C([N+]([O-])=O)C=C1Cl LLYXJBROWQDVMI-UHFFFAOYSA-N 0.000 description 7
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 230000004043 responsiveness Effects 0.000 description 5
- 239000007789 gas Substances 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 239000000498 cooling water Substances 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Landscapes
- Measuring Volume Flow (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Description
【発明の属する技術分野】
本発明は内燃機関の吸入空気量の計測装置に関し、特に、吸気通路に吸気管圧力を計測する圧力センサを備えた内燃機関において、検出された吸気管圧の検出値をなまし処理することによって、過渡応答性を犠牲にすることなく、安定した吸気管圧力を検出し、以て吸入空気量を計測することができる装置に関する。
【0002】
【従来の技術】
内燃機関の各気筒はポンプと同じ作用をしており、一般に、4サイクル機関では、吸気弁を開いて吸気管内の吸入空気(以後吸気という)を燃料と共に燃焼室内に吸い込む吸気行程、吸気弁と排気弁を閉じた状態で混合気を圧縮する圧縮行程、点火させて混合器を燃焼、膨張させる膨張行程、及び、排気弁を開いて燃焼ガスを排出する排出行程の4行程を行う。このような4サイクル機関において、シリンダに吸入される吸気量を計測するために、所定の気筒の前の吸入ポート等に吸気管圧力を検出する圧力センサを設け、この圧力センサの検出値によって吸気量を測定するものがある。
【0003】
このような機関では、圧力センサの検出値は、吸気行程で最低値となり、吸気弁が閉じている他の行程では大気圧と同等となるので、圧力センサの検出値に大きなうねり(リップル)が発生する。このため、正確な吸気管圧力は圧力センサの検出値のみからでは計測できない。
そこで、従来の内燃機関では、吸気通路に容量の大きなサージタンク等を設けて吸気管圧力のリップルを緩和させたり、機関の回転角を検出することで任意の行程の吸気管圧力を検出したり、或いは、吸気管圧力の検出値に大きななまし処理を行うことによって、正確な吸気管圧力を計測するようにしている。
【0004】
【発明が解決しようとする課題】
しかしながら、前述のようなサージタンクによって吸気管圧力のリップルを除去する方法では、サージタンクそのものの製造コストがかさむと共に、サージタンクを配置するための大きなスペースが必要となり、コスト、スペースの両面での課題が大きかった。また、機関の回転角の同期を検出して吸気管圧力のリップルを除去する場合にしても、4サイクル機関の場合、少なくとも720°CA分の回転角の検出が必要であるため、回転角の検出装置のコスト、加工コストが必要となるという問題点があった。更に、なまし処理におけるサンプル個数(以後なまし回数という)の大きななまし処理を行うことによって吸気管圧力のリップルを除去する方法では、機関の定常状態の安定性は確保できても、機関の過渡状態における応答が遅れるため、なまし処理の回数に制限があり、いずれか一方を犠牲にするか、或いは妥協点を探る作業が必要となり、必ずしも適切なリップル除去が行われなかった。
【0005】
そこで、本発明は、吸気量を吸気管圧力を検出して測定する内燃機関において、最小限度の機関の回転角の検出で、機関の過渡状態における応答性を犠牲にすることなく安定した吸気管圧力の検出を行い、ローコストで吸気量を正確に検出することができる内燃機関の吸入空気量の計測装置を提供することを目的としている。
【0006】
【課題を解決するための手段】
前記目的を達成する本発明の特徴は、以下に第1から第7の発明として示される。
第1の発明の構成上の特徴は、吸気通路に吸気管圧力を計測する圧力センサを備えた内燃機関の吸入空気量の計測装置において、1つの気筒のピストンの上死点を検出する上死点の検出手段と、前回の上死点の検出から今回の上死点の検出までの間の時間を計測する上死点間時間の計測手段と、上死点間時間を予め定められた分割数(以後分割回数という)で除算して、吸気管圧力の検出間隔を算出する吸気管圧力検出間隔の算出手段と、圧力センサによって検出した吸気管圧力、なまし回数、及び前回のなまし値に基づいて、上死点の検出毎、並びに算出された検出間隔毎に分割回数よりも1回少ない回数だけ、今回のなまし値を算出する吸気管圧力のなまし手段、及び、算出されたなまし値に基づいて現在の吸入空気量を算出する吸入空気量の算出手段とを備えることことにある。
【0007】
第2の発明の構成上の特徴は、第1の発明において、なまし回数が分割回数に等しくなっていることにある。
第3の発明の構成上の特徴は、第1の発明において、更に、機関の回転数の検出手段と、機関の回転数に応じたなまし回数の補正マップとを備え、吸気管圧力のなまし手段が、機関の回転数に応じて補正マップからなまし回数を読み出し、読み出したなまし回数によって今回のなまし値を計算することにある。
【0008】
第4の発明の構成上の特徴は、第1の発明において、更に、機関の負荷の検出手段と、機関の負荷に応じた前記なまし回数の補正マップとを備え、前記吸気管圧力のなまし手段が、機関の負荷に応じて前記補正マップからなまし回数を読み出し、読み出したなまし回数によって今回のなまし値を計算することにある。
第5の発明の構成上の特徴は、第1の発明において、更に、機関の回転数の検出手段と負荷の検出手段、及び、機関の回転数と負荷に応じたなまし回数の補正マップとを備え、吸気管圧力のなまし手段が、機関の回転数と負荷に応じて補正マップからなまし回数を読み出し、読み出したなまし回数によって今回のなまし値を計算することにある。
【0009】
第6の発明の構成上の特徴は、更に、検出間隔毎に検出された吸気管圧力を、検出順に少なくとも気筒の1行程が終了するまで記憶する記憶手段と、この記憶手段に記憶された吸気管圧力の検出値のうち、検出間隔が1行程異なる2つの検出値の大きさを比較する検出値の比較手段と、比較した検出値の差が所定値以上の時に、機関の過渡状態と判定する過渡状態の判定手段と、機関が過渡状態と判定された時に、吸気管圧力のなまし手段において使用されるなまし回数を小さくする方向に補正するなまし回数補正手段とを備えることを特徴としている。
【0010】
第7の発明の構成上の特徴は、第6の発明において、比較手段が記憶手段に記憶された吸気管圧力の検出値の比較を上死点毎に行うことを特徴としている。
第1の発明では、上死点から次の上死点までの間の時間が予め定められた分割回数で除算されて吸気管圧力の検出間隔が算出され、検出間隔毎に検出された吸気管圧力が所定のなまし回数で処理されてなまし値が算出され、このなまし値に基づいて現在の吸入空気量が算出される。
【0011】
第2の発明では、第1の発明のなまし回数が分割回数に等しくされる。
第3の発明では、第1の発明において、吸気管圧力のなまし値を算出するのに使用されるなまし値が機関の回転数に応じて補正される。
第4の発明では、第1の発明において、吸気管圧力のなまし値を算出するのに使用されるなまし値が機関の負荷に応じて補正される。
【0012】
第5の発明では、第1の発明において、吸気管圧力のなまし値を算出するのに使用されるなまし値が機関の回転数と負荷に応じて補正される。
第6の発明では、機関が過渡状態と判定された時に、吸気管圧力のなまし手段において使用されるなまし回数が小さくなる方向に補正される。
第7の発明では、機関の過渡状態の判定が同じ気筒の上死点毎に行われる。
【0013】
【発明の実施の形態】
以下添付図面を用いて本発明の実施形態を具体的な実施例に基づいて詳細に説明する。
図1には本発明の一実施例の制御装置を備えた電子制御燃料噴射式の多気筒内燃機関1が概略的に示されている。図1において、内燃機関1の吸気通路2には図示しないエアクリーナの下流側にスロットル弁3が設けられている。スロットル弁3は一般に、アクセルペダル14と連動してエンジンの燃焼室に吸入される吸気の量を調節する。スロットル弁3が電子制御スロットルの場合には、アクセルペダル14にアクセル踏込量センサ15が設けられる。このスロットル弁3は機関のアイドル運転時に閉弁し、機関負荷が大きい程その開度が大きくなるものである。スロットル弁3にはスロットル開度センサ4が内蔵されており、スロットル弁3の開度に比例した電圧が出力される。また、スロットル弁3には全閉を検出するアイドルスイッチ(図示せず)が設けられている。
【0014】
スロットル弁3の下流側の吸気通路2には吸気管内の圧力を検出する圧力センサ7が設けられている。内燃機関1への吸気量は、この圧力センサ7の検出値から算出される。また、吸気通路2には圧力センサ7の検出値を補正するための吸気温センサが設けられているが、ここでは説明を省略する。
また、圧力センサ7の下流側の吸気ポートには、各気筒毎に燃料供給系から加圧燃料を吸気ポートへ供給するための燃料噴射弁8が設けられている。この実施例では燃料噴射弁8は通電されると開弁して、図示しない燃料供給系からの加圧燃料を吸気ポートに供給する。スロットル開度センサ4の出力、圧力センサ7の出力、及び、図示しない吸気温センサの出力は、マイクロコンピュータを内蔵したECU(エンジン・コントロール・ユニット)10に入力される。
【0015】
燃料噴射弁8から噴射された燃料は吸気と混合され、吸気弁22の開弁時に燃焼室23内に入り、ピストン24に圧縮された状態で点火プラグ25によって点火されて燃焼し、燃焼後の排気ガスは排気弁26の開弁時にピストン24によって排気通路12に排出される。点火プラグ25は電流の断続装置であるイグナイタ16と昇圧装置である点火コイル17によってスパークし、点火プラグ25の点火時期はECU10からのイグナイタ16への信号によって決まる。
【0016】
一方、内燃機関1のシリンダブロックの冷却水通路9には、冷却水の温度を検出するための水温センサ11が設けられている。水温センサ11は冷却水の温度に応じたアナログ電圧の電気信号を発生する。排気通路12には、排気ガス中の3つの有害成分HC,CO,NOxを同時に浄化する三元触媒コンバータ(図示せず)が設けられており、この触媒コンバータの上流側の排気通路12には、空燃比センサの一種であるO2 センサ13が設けられている。O2 センサ13は排気ガス中の酸素成分濃度に応じて電気信号を発生する。これら水温センサ11及びO2 センサ13の出力はECU10に入力される。
【0017】
更に、このECU10には、アクセルペダル14に取り付けられたアクセル踏込量センサ15からのアクセル踏込量を示すアクセル開度信号や、機関1のクランクシャフトギヤ18に取り付けられたクランク角センサ19からの上死点信号TDCや所定角度毎の信号CAが入力される。機関回転数NEは、所定角度信号CAの間隔(時間)を計測することにより得られる。クランクシャフトギヤ18は図2(a) に示すように、クランクシャフト20の端部に設けられている。クランクシャフトギヤ18には信号歯21が設けられており、上死点の検出用に2枚の欠歯部28を備えた34歯となっている。クランク角センサ19は電磁ピックアップから構成することができ、10°毎のクランク回転信号を出力する。クランク角センサ19は欠歯部28の箇所の信号を検出することにより、正確な上死点を検出することができる。なお、信号歯21と欠歯部28は、クランクシャフトギヤ18に設けられる以外にも、図2(b) に示すようにクランクシャフトプーリ27に設けられることもある。
【0018】
なお、上死点のみを検出するのであれば、クランクシャフトギヤ18のかわりに円板を設け、上死点に対応する位置に切欠、あるいは突起を設けて、これを電磁ピックアップのようなセンサで検出すれば良い。
以上のような構成において、図示しないキースイッチがオンされると、ECU10が通電されてプログラムが起動し、各センサからの出力が取り込まれ、燃料噴射弁8、或いはその他のアクチュエータの制御が開始される。ECU10には、各種センサからのアナログ信号をディジタル信号に変換するA/D変換器が含まれ、各種センサからの入力ディジタル信号や各アクチュエータを駆動する信号が出入りする入出力インタフェース101、演算処理を行うCPU102、ROM103やRAM104等のメモリや、クロック105等が設けられており、これらはバス106で相互に接続されている。ECU10の構成については公知であるので、これ以上の説明を省略する。
【0019】
ここで、以上のように構成された本発明の内燃機関の吸入空気量の計測装置の動作を図3のタイムチャートを用いて説明する。
図3に示すように、4サイクル機関のある気筒に注目すると、その気筒では吸入、圧縮、膨張、排気の4行程が720°CA(クランク角)毎に繰り返されている。そして、図1で説明したピストン24は、吸入行程の最初と膨張行程の最初で上死点(TDC)に至るので、上死点間のクランク角は360°CAとなっている。
【0020】
前述のように、吸気ポートに設けられた圧力センサ7による吸気管圧力の検出値PMは、吸気弁22が開いている吸気行程で最低値となり、吸気弁22が閉じている他の行程では大気圧と同等となる。このため、図3に実線で示すように、圧力センサ7の検出値PM(生のPM)には大きなうねり(リップル)が発生している。
【0021】
本発明では、まず、この1つの気筒のピストン24の上死点から次の上死点までの360°CA時間T360(単位はμs)を計測する。例えば、図3の最初の上死点の時刻をZTDC(0) 、次の上死点の時刻をZTDC(1) とすると、時刻ZTDC(1) の時点で前回の上死点時刻ZTDC(0) と今回の上死点時刻ZTDC(1) の差を算出することにより、時刻ZTDC(0) と時刻ZTDC(1) の間の360°CA時間T360を計測することができる。
【0022】
時刻ZTDC(1) では計測した時間T360を、ピストン24が次に上死点に達するまでの360°CA時間に等しいと見なし、計測した上死点間の時間T360をあらかじめ定めた所定の分割回数Xで除算して吸気管圧力の検出間隔tを求める。図3にはこの分割回数Xが4である場合の例が記載されており、ピストン24が上死点から次の上死点に至るまでの間の時間が点線で示すように時間間隔tで4分割されている。但し、次回の360°CA時間が前回の360°CA時間に等しくない時には、上死点前の最後の検出時刻と次の上死点との間の時間が時間間隔tに等しくならないことになる。
【0023】
本発明では、ピストン24が上死点に達した時刻ZTDC(i) 、及び、この検出間隔t毎に所定のなまし回数Kで吸気管の検出圧力PMをなまし処理し、得られた移動平均値であるなまし値をECU10のRAM104に少なくとも1行程の間記憶すると共に、得られたなまし値に基づいて現在の吸入空気量Qを算出する。図3におけるPM1〜PM4やPM11〜PM14は、360°CA時間におけるなまし値の記憶値を示している。
【0024】
ここで、なまし値について説明する。例えば、時刻ZTDC(1) において検出した吸気管圧力をPM、なまし回数をK、前回の時刻ZTDC(0) におけるなまし値をPMWi-1 とすると、今回のなまし値PMWiは、式、
PMWi =PMWi-1 +(PMWi-1 −PM)÷K … ・
によって算出することができる。式・におけるなまし回数Kは分割回数Xに等しくすることができる。式・におけるなまし回数Kを分割回数Xに等しくすれば、分割した回数の間になましが収束する。
【0025】
なお、ここで言うなましが収束するとは、或る値Aが別の値Bに変化した時に、なまし処理後の値Cが別の値Bに等しくなるという意味である。例えば、なましが1/3であると、3回のなまし処理によってなまし値Cが変化後の値Bに収束することになる。
更に、本発明では、以上のような制御における機関のピストンの1行程隔たった位置におけるなまし値、例えば、上死点におけるなまし値を720°CA前の上死点におけるなまし値と比較することによって機関の加速状態と、減速状態の過渡状態を検出することができる。そして、この機関の過渡状態を検出した時には、過渡状態の時にはなまし回数を少なくすることによって過渡時の機関の応答性を良くすることができる。また、機関の運転状態が高回転時、或いは、高負荷時においても、なまし回数を少なくすることによって機関の応答性を良くすることができる。
【0026】
ここで、以上のように動作する本発明の内燃機関の吸入空気量の計測装置の制御例を図4〜図12に示すフローチャートを用いて説明する。
図4は本発明の内燃機関の吸入空気量の計測装置における第1の実施例の制御手順の一例を示すフローチャートである。この制御手順は、図1のクランク角センサ19がピストン24の上死点TDCを検出する毎に実行される。なお、以後の説明においては、ピストン24が上死点TDCに達した時刻をTDC時刻と記載する。
【0027】
ステップ401では、前回のTDC時刻ZTDC(i-1) と今回のTDC時刻ZTDC(i) とを読み込み、前回のTDC時刻ZTDC(i-1) から今回のTDC時刻ZTDC(i) までの時間T360を算出する。そして、続くステップ402において、今回のTDC時刻ZTDC(i) を前回のTDC時刻ZTDC(i-1) としてメモリに記憶しておく。次いで、ステップ403では、ステップ401で算出したTDC間の時間T360を、予め定められた所定の分割回数Xで除算し、吸気管圧力の記憶間隔tを算出する。
【0028】
このようにして吸気管圧力の記憶間隔tが算出されると、ステップ404において吸気管圧力を検出する圧力センサ7の検出値PMを読み込み、予め設定されたなまし回数Kを使用して吸気管圧力のなまし値PMWを算出する。このなまし回数Kは前述のように分割回数Xと同じ値とすることができる。そして、続くステップ405では、ステップ404て算出したなまし値PMWを用いてECU10が吸入空気量Qを算出する。この吸入空気量Qはこの後、機関1の空燃比制御に使用されるが、ここではその説明を省略する。
【0029】
吸入空気量Qが算出された後は、ステップ406において後述する分割回数カウンタCNT(i) の値をクリアすると共に、時間カウンタTIMEの値もクリアする。そして、次のステップ407で時間割込ルーチンの動作フラグZINTを1にして時間割込ルーチンをスタートさせてこのルーチンを終了する。
図5は図4のステップ407で設定されたフラグZINTによって動作する時間割込処理の手順を示すフローチャートである。この時間割込ルーチンは極短い所定間隔毎に実行される。
【0030】
ステップ501では時間割込ルーチンの動作フラグZINTが1か否かを判定し、ZINT=0の場合はこのルーチンを終了し、ZINT=1の場合はステップ502に進む。ステップ502では時間カウンタTIMEの値を1だけインクリメントしてステップ503に進む。ステップ503はステップ502でインクリメントされた時間カウンタTIMEの値がステップ403で算出された記憶間隔tになったか否かを判定するものである。時間カウンタTIMEの値が記憶間隔tになっていない場合はこのルーチンを終了し、時間カウンタTIMEの値が記憶間隔tに達した時はステップ504に進む。
【0031】
ステップ504は時間カウンタTIMEの値が記憶間隔tに達した回数を計測するものであり、このステップ504に来るたびに記憶回数カウンタCNT(i) の値が1ずつインクリメントされる。また、ステップ504に来るたびに時間カウンタTIMEの値がクリアされる。
続くステップ505とステップ506は、図4で説明したステップ404とステップ405と同じであり、ステップ505において吸気管圧力を検出する圧力センサ7の検出値PMを読み込み、予め設定されたなまし回数Kを使用して吸気管圧力のなまし値PMWを算出する。このなまし回数Kも分割回数Xである。そして、続くステップ506では、ステップ505で算出したなまし値PMWを用いてECU10吸入空気量Qを算出する。この吸入空気量Qもこの後、機関1の空燃比制御に使用されるが、ここではその説明を省略する。
【0032】
吸入空気量Qが算出された後は、ステップ507において記憶回数カウンタCNT(i) の値が分割回数Xで決まる最後の記憶回数X−1に達したか否かを判定し、CNT(i) <X−1の場合はこのままこのルーチンを終了する。一方、ステップ507において記憶回数カウンタCNT(i) の値が分割回数Xで決まる最後の記憶回数X−1に達した場合はステップ508に進み、時間割込ルーチンの動作フラグZINTの値をクリアしてこのルーチンを終了する。ステップ508の処理により、最後の記憶回数X−1から次のTDC時刻までは、この時間割込ルーチンはステップ501のみが実行されることになる。
【0033】
ところで、図3で説明した圧力センサ7による吸気管圧力の検出値PMは、機関1の回転数NEが増大したり、機関の負荷が増大した場合には、吸気行程におけるリップルが変化するので、機関の追従性を向上させるためになまし回数Kの値を小さくした方が良い。
そこで、本発明の第2の実施例では、第1の実施例のステップ404、或いはステップ505で使用するなまし回数Kの値を図6(a) に示すように、機関回転数NEの値に応じて変化させている。即ち、第2の実施例では、機関回転数NEが増大するほど、なまし回数Kの値を小さくするようにしている。
【0034】
また、本発明の第3の実施例では、第1の実施例のステップ404、或いはステップ505で使用するなまし回数Kの値を図6(b) に示すように、機関の負荷に応じて変化させている。この機関の負荷は、例えば、スロットル弁3の開度によって検出することができる。従って、第3の実施例では、スロットル弁開度が全開に近づくほど、なまし回数Kの値を小さくするようにしている。
【0035】
更に、本発明の第4の実施例では、第1の実施例のステップ404、或いはステップ505で使用するなまし回数Kの値を図7に示すように、機関の回転数NEとスロットル弁開度の両方に応じて変化させている。従って、第4の実施例では、機関回転数NEが大きくなるほど、或いは、スロットル弁開度が全開に近づくほど、なまし回数Kの値を小さくするようにしている。
【0036】
以上説明した実施例では、図3の各TDC時刻毎、即ち、360°CA毎に前回のTDC間時間T360の算出値に基づいて次のTDCまでの間の記憶間隔を設定していたが、この処理は、720°CA毎に実行することもできる。この場合の例を図8を用いて説明する。
図8は本発明の内燃機関の吸入空気量の計測装置における第5の実施例の制御手順の一例を示すフローチャートである。この制御手順は、図1のクランク角センサ19がピストン24の上死点TDCを検出する毎に実行される。
【0037】
ステップ801では、前回のTDC時刻T360をT360old としてメモリに記憶しておく。続くステップ801は第1の実施例のステップ401と同じであり、前回のTDC時刻ZTDC(i-1) から今回のTDC時刻ZTDC(i) までの時間T360を算出する。
続くステップ803、804、及びステップ811は、今回が720°CAか否かを判定するものである。初期設定において、吸気行程のTDC時刻の時はカウンタnの値が0にされている。従って、吸気行程のTDC時刻の時はステップ804に進み、ステップ804においてカウンタnの値が1にされる。従って、360°CA後にステップ803に進んできた時にはカウンタnの値が1であるので、ステップ811に進むことになる。ステップ811ではカウンタnの値を0にしてこのルーチンを終了する。よって、ステップ803からステップ804に進むのは720°CA毎である。
【0038】
ステップ804でカウンタnの値が1にされた後はステップ805に進む。ステップ805は第1の実施例のステップ402と同じであり、今回のTDC時刻ZTDC(i) を前回のTDC時刻ZTDC(i-1) としてメモリに記憶しておく。次いで、ステップ806では、ステップ801で記憶した前回のTDC間の時間T360old と今回のTDC間の時間T360とを加えることによって1行程の所要時間T720を算出し、これを予め定められた所定の分割回数Xで除算し、吸気管圧力の記憶間隔tを算出する。
【0039】
このようにして吸気管圧力の記憶間隔tが算出されると、ステップ807において吸気管圧力を検出する圧力センサ7の検出値PMを読み込み、予め設定されたなまし回数Kを使用して吸気管圧力のなまし値PMWを算出する。このなまし回数Kは前述のように分割回数Xと同じ値とすることができる。そして、続くステップ808では、ステップ807て算出したなまし値PMWを用いてECU10が吸入空気量Qを算出する。この吸入空気量Qはこの後、機関1の空燃比制御に使用されるが、ここではその説明を省略する。
【0040】
吸入空気量Qが算出された後は、ステップ809において分割回数カウンタCNT(i) の値をクリアすると共に、時間カウンタTIMEの値もクリアする。そして、次のステップ810で時間割込ルーチンの動作フラグZINTを1にして時間割込ルーチンをスタートさせてこのルーチンを終了する。
図8のステップ810で設定されたフラグZINTによって動作する時間割込ルーチンは、図5の処理と全く同じで良いのでここではその説明を省略する。
【0041】
図9は本発明の内燃機関の吸入空気量の計測装置における第6の実施例の制御手順の一例を示すフローチャートである。この制御手順は、図1のクランク角センサ19がピストン24の上死点TDCを検出する毎に実行される。
ステップ901では、前回のTDC時刻T360をT360old としてメモリに記憶しておく。続くステップ902は第1の実施例のステップ401と同じであり、前回のTDC時刻ZTDC(i-1) から今回のTDC時刻ZTDC(i) までの時間T360を算出する。
【0042】
続くステップ903は第1の実施例のステップ402と同じであり、今回のTDC時刻ZTDC(i) を前回のTDC時刻ZTDC(i-1) としてメモリに記憶しておく。次のステップ904はステップ403と同じであり、TDC間の時間T360を予め定められた所定の分割回数Xで除算し、吸気管圧力の記憶間隔tを算出する。
【0043】
このようにして吸気管圧力の記憶間隔tが算出されると、ステップ905において、前回算出したなまし値PMW360をメモリの番地MA(360)から読み出し、PMW720としてメモリの番地MA(720)に記憶すると共に、前回算出したなまし値PMWをメモリの番地MA(0)から読み出し、PMW360としてメモリの番地MA(360)に記憶する。この処理により、360°CA前のなまし値PMW360と、720°CA前のなまし値PMW720がメモリに保持されることになる。
【0044】
このようにしてなまし値PMW360となまし値PMW720がメモリに保持された後は、ステップ404と手順を行うステップ906において吸気管圧力を検出する圧力センサ7の検出値PMを読み込み、予め設定されたなまし回数Kを使用して吸気管圧力のなまし値PMWを算出する。このなまし回数Kは前述のように分割回数Xと同じ値とすることができる。そして、続くステップ907はステップ405と同じであり、ステップ906て算出したなまし値PMWを用いてECU10が吸入空気量Qを算出する。この吸入空気量Qはこの後、機関1の空燃比制御に使用されるが、ここではその説明を省略する。
【0045】
吸入空気量Qが算出された後は、ステップ908において、今回算出したなまし値PMWをメモリの番地MA(0)に記憶し、続くステップ909において分割回数カウンタCNT(i) の値をクリアすると共に、時間カウンタTIMEの値もクリアする。そして、次のステップ910では、後述する過渡状態の検出を行い、この後にステップ911において、時間割込ルーチンの動作フラグZINTを1にして時間割込ルーチンをスタートさせてこのルーチンを終了する。ステップ911で設定されたフラグZINTによって動作する時間割込ルーチンは図5と全く同じで良いので、ここではその説明を省略する。
【0046】
図10は図9のステップ910における過渡状態の検出の詳細な手順の一例を示すフローチャートである。
ステップ9101では、メモリの番地MA(720)から720°CA前のなまし値PMW720を読み出し、次いで、メモリの番地MA(0)から今回のなまし値PMWを読み出し、PMWからPMW720を減算して差分ΔPMWを算出する。この差分ΔPMWは1行程離れたピストン位置における吸気管圧力を比較したものであるので、機関が定常状態にある時にはほぼ同じか非常に近い値になるはずである。一方、機関が加速状態にある時には、今回の吸気管圧力PMWが1行程前の吸気管圧力PMW720よりも大きいはずであるから、ΔPMWが所定値以上の値となり、逆に、機関が減速状態にある時には、今回の吸気管圧力PMWが1行程前の吸気管圧力PMW720よりも小さいはずであるから、ΔPMWが所定値以下の値となる。
【0047】
そこで、ステップ9102では、差分ΔPMWが加速判定基準値Racc 以上か否かを判定し、ΔPMW≧Racc の時は機関が加速状態にあると判定してステップ9104に進む。一方、ステップ9102でΔPMW<Racc と判定した時はステップ9103に進み、差分ΔPMWが減速判定基準値−Rdec 以下か否かを判定する。そして、ΔPMW≦−Rdec の時は機関が減速状態にあると判定してステップ9104に進み、ΔPMW>−Rdec の時は機関が加速状態にも減速状態にもないと判定してステップ9105に進む。機関が加速状態、或いは減速状態と判定した時に進むステップ9104では、ステップ906で使用されるなまし回数Kの値をなまし基準値Kref から所定値Cだけ小さな値に設定する。また、機関が加速状態にも減速状態にもないと判定して進むステップ9105では、なまし回数Kをなまし基準値Kref (例えば前述の分割回数X)に設定する。
【0048】
このように、機関が加速状態、或いは減速状態と判定した時には、ステップ9104においてなまし値の値を小さくするので、なまし値の過渡状態に対応する応答性が向上する。
図10では機関の加速状態、或いは減速状態を1段階の加速判定基準値Racc 、或いは減速判定基準値−Rdec で判別し、加速状態、或いは減速状態の時になまし値を一定値Cだけ小さくしていたが、機関の加速状態、或いは減速状態は多段階で行い、加速の程度、或いは、減速の程度に応じて、なまし値から減算する値を可変するようにしても良い。
【0049】
図11は、加速状態を2段階の加速判定基準値Racc1とRacc2 (ただしRacc1<Racc2)で判定し、減速状態も2段階の減速判定基準値−Rdec1と−Rdecc2(ただし−Rdec1>−Rdec2) で判定する例を示すものである。
ステップ9201はステップ9101と同じであり、メモリの番地MA(720)から720°CA前のなまし値PMW720を読み出し、次いで、メモリの番地MA(0)から今回のなまし値PMWを読み出し、PMWからPMW720を減算して差分ΔPMWを算出する。
【0050】
この実施例では、ステップ9202とステップ9203において機関の加速状態の程度を判定する。すなわち、まず、ステップ9202において差分ΔPMWが第1の加速判定基準値Racc1以上か否かを判定し、ΔPMW≧Racc1の時はステップ9203において差分ΔPMWが第1の加速判定基準値Racc1より大きい第2の加速判定基準値Racc2以上か否かを判定する。そして、ΔPMW<Racc2の時は機関がそれほど大きな加速を行っていないと判定してステップ9204に進み、ΔPMW≧Racc2の時は機関が大きな加速を行っていると判定してステップ9205に進む。ステップ9204では、ステップ906で使用されるなまし回数Kの値をなまし基準値Kref から所定値C1だけ小さな値に設定し、ステップ9204では、なまし回数Kの値をなまし基準値Kref から所定値C2(>C1)だけ小さな値に設定する。
【0051】
一方、ステップ9202でΔPMW<Racc1と判定した時はステップ9206に進み、ステップ9206とステップ9207において機関の減速状態の程度を判定する。すなわち、まず、ステップ9206において差分ΔPMWが第1の減速判定基準値−Rdec1以下か否かを判定し、ΔPMW≦−Rdec1の時はステップ9207において差分ΔPMWが第1の減速判定基準値−Rdec1より小さい第2の減速判定基準値−Rdec2以下か否かを判定する。そして、ΔPMW>−Rdec2の時は機関がそれほど大きな減速を行っていないと判定してステップ9208に進み、ΔPMW≦−Rdec2の時は機関が大きな減速を行っていると判定してステップ9209に進む。ステップ9208では、ステップ906で使用されるなまし回数Kの値をなまし基準値Kref から所定値D1だけ小さな値に設定し、ステップ9209では、なまし回数Kの値をなまし基準値Kref から所定値D2(>D1)だけ小さな値に設定する。所定値D1は所定値C1と同じでも良く、また、所定値D2は所定値C2と同じでも良い。
【0052】
また、ステップ9206でΔPMW>−Rdec1と判定した時は、機関が加速状態にも減速状態にもないと判定してステップ9105に進む。ステップ9210では、なまし回数Kをなまし基準値Kref に設定する。
このように、機関の加速状態の大きさ、或いは減速状態の大きさに応じてなまし値の値を小さくすれば、なまし値の過渡状態に対応する応答性を一層向上させることができる。
【0053】
図12は、本発明の吸入空気量の計測装置の機関加速時の動作を示すものである。機関の加速時に圧力センサ7によって吸気管圧力の測定値が実線で示すように検出された場合、なまし回数Kが定常状態のままであると、吸気管圧力のなまし値PMWが実際の吸気管圧力に追従する速度が点線のように遅くなるが、本発明のように、機関の加速状態を検出した時点で、なまし回数Kの値を小さくすると、吸気管圧力のなまし値PMWは破線で示すように実際の吸気管圧力PMの変化に応答性良く追従するようになる。
【0054】
なお、図1の実施例では、圧力センサ7を配置するのは機関1の特定の1つの気筒のみであり、他の気筒の挙動はこの気筒と同じであるとしているが、正確を期するのであれば、機関1の各気筒に圧力センサを設ければ良い。
また、以上説明した実施例では、多気筒内燃機関に本発明を適用した場合について説明を行ったが、本発明は単気筒の内燃機関についても本発明を有効に適用することができる。
【0055】
【発明の効果】
以上説明したように、本発明の内燃機関の排気浄化用触媒装置によれば、内燃機関の気筒数や吸気管の容積に関わらず、また、サージタンクのようなリップル除去を目的とした吸気管の容積の増大を行うことなく、吸気管圧力の圧力センサによる検出値に現れるリップル分を完全に除去することができるため、吸気量を正確にローコストで計測することができるという効果がある。また、機関の過渡時を検出した時にはリップル除去のためのなましが小さくされるため、過渡時の応答性が良くなるという効果もある。
【図面の簡単な説明】
【図1】本発明の内燃機関の吸入空気量の計測装置の全体構成を示す図である。
【図2】 (a) ,(b) は図1のクランクポジションセンサの具体的な構成例を示す図である。
【図3】図1のECUの吸入空気量の計測の手順を示すタイムチャートである。
【図4】本発明の第1の実施例を示すものであり、図3のTDC毎にECUによって実行される割込処理の一例を示すフローチャートである。
【図5】図4で設定されたフラグによって動作する時間割込処理の手順を示すフローチャートである。
【図6】 (a) は本発明の第2の実施例を示すもので、なまし回数を機関回転数に応じて変更する際の変更マップの一例を示すもの、(b) は本発明の第3の実施例を示すもので、なまし回数を機関の負荷に応じて変更する際の変更マップの一例を示すものである。
【図7】本発明の第4の実施例を示すもので、なまし回数を機関回転数と負荷に応じて変更する際の変更マップの一例を示すものである。
【図8】本発明の第5の実施例を示すもので、図3のTDC毎にECUによって実行される割込処理の別の例を示すフローチャートである。
【図9】本発明の第6の実施例を示すもので、図3のTDC毎にECUによって実行される割込処理の更に別の例を示すフローチャートである。
【図10】図9の過渡状態の検出の詳細な手順の一例を示すフローチャートである。
【図11】図9の過渡状態の検出の詳細な手順の別の例を示すフローチャートである。
【図12】本発明の吸入空気量の計測装置の機関加速時の動作を示すものである。
【符号の説明】
1…内燃機関
2…吸気通路
3…スロットル弁
4…スロットル弁開度センサ
7…圧力センサ
8…燃料噴射弁
10…ECU(エンジン・コントロール・ユニット)
19…クランク角センサ
22…吸気弁
Claims (7)
- 吸気通路に吸気管圧力を計測する圧力センサを備えた内燃機関の吸入空気量の計測装置であって、
1つの気筒のピストンの上死点を検出する上死点の検出手段と、
前回の上死点の検出から今回の上死点の検出までの間の時間を計測する上死点間時間の計測手段と、
前記上死点間時間を予め定められた分割数で除算して、吸気管圧力の検出間隔を算出する吸気管圧力検出間隔の算出手段と、
前記圧力センサによって検出した吸気管圧力、なまし処理におけるサンプル個数、及び前回のなまし値に基いて、前記上死点の検出毎、並びに算出された検出間隔毎に前記分割回数よりも1回少ない回数だけ、今回のなまし値を算出する吸気管圧力のなまし手段、及び、
算出されたなまし値に基づいて現在の吸入空気量を算出する吸入空気量の算出手段と、を備えることを特徴とする内燃機関の吸入空気量の計測装置。 - 請求項1に記載の内燃機関の吸入空気量の計測装置において、前記なまし処理におけるサンプル個数が前記分割数に等しくなっていることを特徴とする内燃機関の吸入空気量の計測装置。
- 請求項1に記載の内燃機関の吸入空気量の計測装置において、更に、機関の回転数の検出手段と、機関の回転数に応じた前記なまし処理におけるサンプル個数の補正マップとを備え、前記吸気管圧力のなまし手段が、機関の回転数に応じて前記補正マップから前記サンプル個数を読み出し、読み出したサンプル個数によって今回のなまし値を計算することを特徴とする内燃機関の吸入空気量の計測装置。
- 請求項1に記載の内燃機関の吸入空気量の計測装置において、更に、機関の負荷の検出手段と、機関の負荷に応じた前記なまし処理におけるサンプル個数の補正マップとを備え、前記吸気管圧力のなまし手段が、機関の負荷に応じて前記補正マップから前記サンプル個数を読み出し、読み出したサンプル個数によって今回のなまし値を計算することを特徴とする内燃機関の吸入空気量の計測装置。
- 請求項1に記載の内燃機関の吸入空気量の計測装置において、更に、機関の回転数の検出手段と負荷の検出手段、及び、機関の回転数と負荷に応じた前記なまし処理におけるサンプル個数の補正マップとを備え、前記吸気管圧力のなまし手段が、機関の回転数と負荷に応じて前記補正マップから前記サンプル個数を読み出し、読み出したサンプル個数によって今回のなまし値を計算することを特徴とする内燃機関の吸入空気量の計測装置。
- 請求項1から5の何れか1項に記載の内燃機関の吸入空気量の計測装置において、更に、
前記検出間隔毎に検出された吸気管圧力を、検出順に少なくとも前記気筒の1行程が終了するまで記憶する記憶手段と、
この記憶手段に記憶された吸気管圧力の検出値のうち、検出間隔が1行程異なる2つの検出値の大きさを比較する検出値の比較手段と、
比較した検出値の差が所定値以上の時に、機関の過渡状態と判定する過渡状態の判定手段と、
機関が過渡状態と判定された時に、前記吸気管圧力のなまし手段において使用される前記なまし処理におけるサンプル個数を小さくする方向に補正するなまし処理におけるサンプル個数補正手段と、
を備えることを特徴とする内燃機関の吸入空気量の計測装置。 - 請求項6に記載の内燃機関の吸入空気量の計測装置において、前記比較手段が前記記憶手段に記憶された吸気管圧力の検出値の比較を上死点毎に行うことを特徴とする内燃機関の吸入空気量の計測装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34686798A JP3654781B2 (ja) | 1998-12-07 | 1998-12-07 | 内燃機関の吸入空気量の計測装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34686798A JP3654781B2 (ja) | 1998-12-07 | 1998-12-07 | 内燃機関の吸入空気量の計測装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000170582A JP2000170582A (ja) | 2000-06-20 |
JP3654781B2 true JP3654781B2 (ja) | 2005-06-02 |
Family
ID=18386356
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34686798A Expired - Lifetime JP3654781B2 (ja) | 1998-12-07 | 1998-12-07 | 内燃機関の吸入空気量の計測装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3654781B2 (ja) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4368053B2 (ja) * | 2000-11-22 | 2009-11-18 | 株式会社ミクニ | 内燃機関における吸入空気量測定方法 |
TW559640B (en) * | 2001-10-31 | 2003-11-01 | Yamaha Motor Co Ltd | Device and method for detection of atmospheric pressure of engine |
TWI224651B (en) * | 2001-11-30 | 2004-12-01 | Yamaha Motor Co Ltd | Engine controller |
US7204134B2 (en) * | 2003-03-03 | 2007-04-17 | Noritaka Matsuo | Engine suction air flow rate measuring device |
JP5434243B2 (ja) * | 2009-05-11 | 2014-03-05 | 日産自動車株式会社 | 可変圧縮比式内燃機関 |
JP5713254B2 (ja) * | 2010-08-04 | 2015-05-07 | 典孝 松尾 | エンジンの吸入空気流量計測装置 |
-
1998
- 1998-12-07 JP JP34686798A patent/JP3654781B2/ja not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2000170582A (ja) | 2000-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8256217B2 (en) | System and method for determining acceleration of an internal combustion engine | |
KR101060532B1 (ko) | 내연 기관의 시동 제어 장치 | |
US8434294B2 (en) | Method and device for determining a dynamic time duration for exhaust gas probes of an internal combustion engine | |
JP3693855B2 (ja) | 内燃機関の空燃比制御装置 | |
US6453664B2 (en) | Control system for internal combustion engine | |
JPH0368220B2 (ja) | ||
JP3282660B2 (ja) | 内燃機関の排気ガス浄化装置 | |
JP3654781B2 (ja) | 内燃機関の吸入空気量の計測装置 | |
JPH09303242A (ja) | 内燃機関の点火時期制御装置 | |
JP2006052684A (ja) | エンジンの制御装置 | |
JP3819494B2 (ja) | 内燃機関の燃料供給制御装置 | |
JP4361917B2 (ja) | エンジンの制御装置 | |
JP3973390B2 (ja) | 内燃機関の吸気圧検出方法 | |
JPS5934441A (ja) | 内燃エンジンの空燃比制御方法 | |
JP3973387B2 (ja) | 内燃機関の吸気圧検出方法 | |
JP2018096355A (ja) | 内燃機関の制御装置 | |
JP4137045B2 (ja) | 4サイクルエンジン用加減速検知装置及び方法 | |
JP4610404B2 (ja) | ディーゼルエンジンの制御装置 | |
JPH08261047A (ja) | リーン限界検出方法 | |
JP2841806B2 (ja) | エンジン用空燃比制御装置 | |
JP3963099B2 (ja) | 内燃機関の運転状態判別装置 | |
JP3563435B2 (ja) | 気筒別燃焼制御方法 | |
JP6683783B2 (ja) | エンジン制御装置 | |
JP4385542B2 (ja) | 内燃機関の空燃比制御装置 | |
JP3808151B2 (ja) | リーン空燃比補正方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20031202 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040202 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050201 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050301 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090311 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090311 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100311 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110311 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110311 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120311 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120311 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130311 Year of fee payment: 8 |