[go: up one dir, main page]

JP3644330B2 - Treatment method for reducing slag - Google Patents

Treatment method for reducing slag Download PDF

Info

Publication number
JP3644330B2
JP3644330B2 JP33240799A JP33240799A JP3644330B2 JP 3644330 B2 JP3644330 B2 JP 3644330B2 JP 33240799 A JP33240799 A JP 33240799A JP 33240799 A JP33240799 A JP 33240799A JP 3644330 B2 JP3644330 B2 JP 3644330B2
Authority
JP
Japan
Prior art keywords
slag
reduction
phase
sintering
treatment method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33240799A
Other languages
Japanese (ja)
Other versions
JP2001152233A (en
Inventor
浩 小出
亮 笹川
健人 今川
茂 森下
拓司 浜崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP33240799A priority Critical patent/JP3644330B2/en
Publication of JP2001152233A publication Critical patent/JP2001152233A/en
Application granted granted Critical
Publication of JP3644330B2 publication Critical patent/JP3644330B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電気炉などの製鋼工程において生成される還元期の製鋼スラグを、極めて安価に再利用が可能な状態にする方法に関するものである。
【0002】
【従来の技術】
高炉−転炉製鋼法により生成する高炉スラグや転炉スラグは、道路用材やコンクリート骨材などに有効利用されている。しかし、電気炉製鋼法やステンレス製鋼法などにおける製鋼工程での還元期に発生するスラグは、粉化する性質を有するため、その有効利用が困難であり、現在でも相当な量が埋立処分されている。
【0003】
これら粉化性の還元期スラグは、通常、塩基度(CaO/SiO2 )が1.5以上と高く、トリカルシウムシリケート(3CaO・SiO2 )とダイカルシウムシリケート(2CaO・SiO2 )を含んでおり、このうちのトリカルシウムシリケートは冷却過程で下記化学式1に示すように、ダイカルシウムシリケートとライム(CaO)に分解する。
【0004】
【化1】
3CaO・SiO2 →2CaO・SiO2 +CaO
【0005】
また、ダイカルシウムシリケートは、冷却過程で、約2130℃で液相からα型に、約1450℃でα型からα’型へ相転移し、さらに約850℃でα’型からγ型に相転移する。このうちのα’型からγ型への相転移は、密度3310kg/m3 から2970kg/m3 への膨張変態であるため、体積膨張に伴って粉化現象が生じる。
【0006】
粉化性還元期スラグの化学成分例を下記表1に示すが、この表1よりこれらの還元期スラグは、通常、塩基度(CaO/SiO2 )が1.5以上と高いことが判る。
【0007】
【表1】

Figure 0003644330
【0008】
通常、高炉では塩基度が1.2程度になるように石灰を投入して塩基度を調整していることから、還元期スラグは成分的には高炉内に投入されたり、または、高炉の前工程である焼結工程で使用される石灰の代替えとして有用であることが判る。しかしながら、通気性の観点から、高炉に使用するための粒径は数cm程度、焼結に使用するための粒径は数mm程度であることが望まれるので、前記したように微粉となる還元期スラグを、高炉での塩基度調整や焼結時に石灰の代替えとして利用することができなかった。
【0009】
そこで、これら還元期スラグを再利用可能な状態にするための粉化防止方法について、従来より多くの研究がなされており、大別して「急冷法」と「粉化防止剤添加法」に分類することができる。
【0010】
このうち、「急冷法」は、溶融状態のスラグを急冷することで、トリカルシウムシリケートからダイカルシウムシリケートへの分解を防止したり、ダイカルシウムシリケートをα’型からβ型(密度3280kg/m3 )に変換することで粉化を防止するもので、例えば特開昭50−80203号、特開昭63−69735号、特開昭63−277541号、特開平8−231253号等に開示されている。
【0011】
また、「粉化防止剤添加法」は、溶融状態のスラグに粉化防止剤を添加し、スラグを改質して粉化を防止するもので、例えば特開昭62−162657号、特開昭63−79743号、特開平3−23243号、特開平4−114935号、特開平4−139041号、特開平4−1254445号、特開平5−98338号、特開平9−165238号、特開平9−256024号、特開平11−61219号等には、粉化防止剤としてホウ素化合物や、ホウ素化合物に他の安価な粉化防止剤を混合して使用するものが開示されている。また、スラグ中の燐濃度を上昇させることによって粉化を防止する方法が、特開昭59−13651号、特開昭59−115982号、特開平7−309644号、特開平8−49007号等に開示されている。
【0012】
【発明が解決しようとする課題】
しかしながら、「急冷法」のうち空気によるものは、送風機の動力コストや冷却後のスラグ同士が溶着するといった問題があり、また、水によるものは、▲1▼溶融スラグと溶鋼が十分に分離されずに冷却水槽に入った場合や、▲2▼溶融スラグ傾注鍋の凝固表面が割れた時などのように、大量の溶融スラグが冷却水槽に一度に入った場合に、水蒸気爆発を生じることがあるので、現実的にこれらの方法を採用することは困難である。
【0013】
また、ホウ素や燐を添加する「粉化剤添加防止法」では、ホウ素や燐を添加したスラグは鋼の品質に悪影響を与えるため、製鉄用の副原料としては使用が困難であり、これらを除去するためのコストが増大するという問題がある。
【0014】
本発明は、上記した問題点に鑑みてなされたものであり、電気炉などの製鋼工程において生成される還元期の製鋼スラグを、安全に、しかも、粉化防止剤を添加することなく、極めて安価な方法で数mm程度に粒状化して、製鉄用の焼結原料等に再利用できる状態にする方法を提供することを目的としている。
【0015】
【課題を解決するための手段】
上記した目的を達成するために、本発明に係る還元期スラグの処理方法は、放冷した後ピット内で十分に湿潤させ、次に、水切り後放置してスラグが有する水硬性により凝集・固化させ、その後、所定の粒度に破砕・整粒して高炉又は焼結工程で原料として使用することとしている。そして、このようにすることで、安全でしかも低コストに、還元期スラグを再利用することができる。
【0016】
【発明の実施の形態】
セメントは珪酸石灰塩、アルミン酸石灰塩などが水と化合して水和物を生成し、この水和物が次第に成長して硬質ゲル化し、強度を発揮する。普通ポルトランドセメントの化学成分を、上記表1に併せて示したが、表1より分かるように、粉化性還元期スラグの化学成分は、セメントと似通っており、セメントほどの強度を持った固化物にはならないものの、これらの還元期スラグも水と化合して水和物を生成し、硬化する性質(水硬性)を有する。
【0017】
本発明は、上記した性質に着目してなされたものであり、電気炉製鋼やステンレス製鋼で生成される還元期のスラグを、放冷した後ピット内で十分に湿潤させ、次に、水切り後放置してスラグが有する水硬性により凝集・固化させ、その後、所定の粒度に破砕・整粒して高炉又は焼結工程で原料として使用することを要旨とする還元期スラグの処理方法である。
【0018】
本発明に係る還元期スラグの処理方法において、放冷したスラグを十分に湿潤させる方法は、内側に位置するスラグまで十分に湿潤できるものであれば、その方法は問わないが、散水による方法では、内側に位置するスラグまで十分に湿潤するのは容易ではない。これに対して、例えば前記した粉化スラグをピット内で水没させることによる方法では、広い敷地を有することなく、内側に位置するスラグまで容易に、十分に湿潤することができる。そして、この方法によれば、湿潤に必要な水量もスラグが水没する量となるので、概ねスラグと同じ量(重量比)ですむ。
【0019】
ピットに水没することにより、スラグを湿潤する場合には、半日以上湿潤しておくことが望ましい。その理由は、湿潤時間が短いと、部分的に湿潤されない部分が残るからである。
【0020】
本発明に係る還元期スラグの処理方法は、上記したように水とスラグの化学反応により、微粒のスラグ同士を結合させて塊状化するので、安全で、しかも、安価に塊状化することができる。
【0021】
粉化性還元期スラグを湿潤した後の粒度分布を調査した結果を下記表2に示すが、表2より、還元期スラグを湿潤した後、水切りして放置した場合、水和による凝集・固化効果が認められ、湿潤後1週間の放置により125μm以下の比率は50%以下にまで減少した。
【0022】
【表2】
Figure 0003644330
【0023】
このような水硬品の粒状化は水和結合であり、例えば石灰の代替えとして焼結で利用する際には、熱割れによる粉化が生じることが憂慮されるが、本発明者らの実験では、図2に示すように、熱割れは僅かであり、焼結昇温過程での粉化はほとんど問題ないことが判明している。なお、図2中の崩壊率とは、粒径が2mm以上のスラグを15分間加熱した後に、粒径が2mm以下のスラグの割合を示したものである。
【0024】
【実施例】
以下、本発明に係る還元期スラグの処理方法を図1に示す一実施例に基づいて説明する。
図1はステンレス製鋼時に生成される還元期スラグを本発明方法で処理する方法を順を追って説明する図である。
【0025】
図1において、1は例えばステンレス製鋼のAOD炉から発生する溶融スラグの運搬鍋であり、この還元期の溶融スラグ2aを、先ず放流して放冷する。そして、放冷したスラグ2bを例えばショベル3を用いてピット4に投入した後、ピット4内に注水して前記スラグ2bを十分に湿潤させる(約1日)。
【0026】
その後、湿潤したスラグ2cをショベル3でピット4から取出して水切りした後、例えばトラック5に積載して別の場所に運んで山積みし、例えば2週間程度放置する。この放置により、前記湿潤後水切りしたスラグ2dは、スラグ2dが有する水硬性により凝集・固化する。
【0027】
そして、凝集・固化したスラグ2eは、例えば破砕・整粒設備6に搬送され、ここで、例えば13mmの網目を有するスクリーン6aを通して篩下のスラグは焼結工場で再利用し、篩上のスラグは破砕機6bで破砕された後、再度スクリーン6aに通す。
【0028】
以上説明したように、本発明に係る還元期スラグの処理方法によれば、水とスラグの化学反応により、微粒のスラグ同士を結合させて塊状化するので、安全で、しかも、安価に塊状化することができ、高炉での塩基度調整用として、また、焼結時に石灰の代替えとして再利用することができるようになる。
【0029】
図1で説明した方法で処理したステンレスAODスラグを、焼結に使用した結果を下記表3に示す。焼結原料として配合するスラグが粉化して微粉状態の場合(比較例)、通気性が低下して焼結機のパレット層厚を薄くする必要があり、生産性が低下することになる。一方、上記した本発明方法によって処理した粒状化スラグ(湿潤後 2週間放置したもの)を配合した場合には、ほとんど通気性の低下は見られず、下記表3中の生産性について、スラグを配合しない場合(ベース)とほぼ同等であった。また、焼結鉱の品質の指標である還元粉化性についても、粒状化により改善されていることが確認された。
【0030】
【表3】
Figure 0003644330
【0031】
【発明の効果】
以上説明したように、本発明に係る還元期スラグの処理方法は、水とスラグの化学反応により、微粒のスラグ同士を結合させて塊状化するので、安全で、しかも、安価に還元期スラグを塊状化することができ、再利用が困難であった粉化性還元期スラグの資源化を図ることができる。
【図面の簡単な説明】
【図1】本発明に係る還元期スラグの処理方法を順を追って説明する図である。
【図2】粉化性還元スラグ水硬品を加熱した場合に、加熱温度と崩壊率の関係を示した図である。
【符号の説明】
2a 溶融スラグ
2b 粉化スラグ
2c 湿潤スラグ
2d 水切りスラグ
2e 凝集・固化スラグ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for making steelmaking slag in a reduction phase produced in a steelmaking process such as an electric furnace reusable at a very low cost.
[0002]
[Prior art]
Blast furnace slag and converter slag generated by the blast furnace-converter steelmaking method are effectively used for road materials, concrete aggregates, and the like. However, slag generated during the reduction process in the steelmaking process in the electric furnace steelmaking method and stainless steelmaking method has the property of being pulverized, so that it is difficult to effectively use it. Yes.
[0003]
These powder resistance of the reduction period slag usually basicity (CaO / SiO 2) is as high as 1.5 or higher, contains tricalcium silicate (3CaO · SiO 2) and Dicalcium silicate (2CaO · SiO 2) Among them, tricalcium silicate is decomposed into dicalcium silicate and lime (CaO) as shown in the following chemical formula 1 in the cooling process.
[0004]
[Chemical 1]
3CaO · SiO 2 → 2CaO · SiO 2 + CaO
[0005]
In addition, dicalcium silicate undergoes a phase transition from the liquid phase to the α-type at about 2130 ° C., from the α-type to the α′-type at about 1450 ° C., and further from the α′-type to the γ-type at about 850 ° C. Metastasize. Among these, the phase transition from the α ′ type to the γ type is an expansion transformation from a density of 3310 kg / m 3 to 2970 kg / m 3, and thus a pulverization phenomenon occurs with volume expansion.
[0006]
Examples of chemical components of the pulverizable reducing period slag are shown in Table 1 below. From Table 1, it can be seen that these reducing period slags usually have a high basicity (CaO / SiO 2 ) of 1.5 or more.
[0007]
[Table 1]
Figure 0003644330
[0008]
Normally, in the blast furnace, the basicity is adjusted by adding lime so that the basicity is about 1.2. Therefore, the reduction slag is componentally introduced into the blast furnace or in front of the blast furnace. It turns out that it is useful as a substitute of the lime used in the sintering process which is a process. However, from the viewpoint of air permeability, it is desirable that the particle size for use in a blast furnace is about several centimeters, and the particle size for use in sintering is about several millimeters. Phase slag could not be used as a substitute for lime during basicity adjustment and sintering in a blast furnace.
[0009]
Therefore, many researches have been conducted on methods for preventing pulverization to make these reduction-phase slags reusable, and they are roughly classified into “quick cooling method” and “powdering agent addition method”. be able to.
[0010]
Among these, the “rapid cooling method” prevents the decomposition of tricalcium silicate into dicalcium silicate by quenching molten slag, or dicalcium silicate from α ′ type to β type (density 3280 kg / m 3). ), Which is disclosed in, for example, JP-A-50-80203, JP-A-63-69735, JP-A-63-277541, JP-A-8-231253, and the like. Yes.
[0011]
The “anti-powder additive addition method” is a method in which an anti-powder agent is added to molten slag and the slag is modified to prevent pulverization. For example, Japanese Patent Application Laid-Open No. 62-162657, JP 63-79743, JP 3-23243, JP 4-114935, JP 4-139041, JP 4-125445, JP 5-98338, JP 9-165238, JP 9-256024, JP-A-11-61219, and the like disclose a boron compound as a powdering inhibitor, or a mixture of a boron compound with another inexpensive dusting inhibitor. Further, methods for preventing pulverization by increasing the phosphorus concentration in the slag are disclosed in JP-A-59-13651, JP-A-59-115982, JP-A-7-309644, JP-A-8-49007, etc. Is disclosed.
[0012]
[Problems to be solved by the invention]
However, in the “rapid cooling method”, those using air have problems such as the power cost of the blower and the slag after cooling are welded together, and those using water are sufficiently separated from (1) molten slag and molten steel. If a large amount of molten slag enters the cooling water tank once, such as when it enters the cooling water tank or when the solidified surface of the molten slag tilting pan cracks, it may cause a steam explosion. Therefore, it is difficult to actually adopt these methods.
[0013]
In addition, in the “powdering agent addition prevention method” in which boron or phosphorus is added, slag added with boron or phosphorus has an adverse effect on the quality of steel, so it is difficult to use as a secondary material for iron making. There exists a problem that the cost for removing increases.
[0014]
The present invention has been made in view of the above-mentioned problems, and the steelmaking slag in the reduction phase generated in the steelmaking process such as an electric furnace is extremely safe and without adding a pulverization inhibitor. An object of the present invention is to provide a method of granulating to about several mm by an inexpensive method so that it can be reused as a sintering raw material for iron making.
[0015]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the reduction phase slag treatment method according to the present invention is allowed to cool and then sufficiently wet in the pit, and then left after draining to coagulate and solidify due to the hydraulic properties of the slag. After that, it is crushed and sized to a predetermined particle size and used as a raw material in a blast furnace or a sintering process . And, by doing so, in a safe, yet low-cost, reduction period slag can be Rukoto for reusing.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
In cement, silicate silicate, aluminate lime, and the like combine with water to form a hydrate, which gradually grows into a hard gel and exhibits strength. The chemical composition of ordinary Portland cement is shown in Table 1 above. As can be seen from Table 1, the chemical composition of pulverized reducing slag is similar to that of cement, and solidified with the strength of cement. Although it does not become a product, these reduction-phase slags also have a property (hydraulic) that combines with water to form a hydrate and harden.
[0017]
The present invention has been made paying attention to the above-described properties, and the slag in the reduction phase produced by electric furnace steelmaking or stainless steelmaking is allowed to cool and then sufficiently wetted in the pit, and then drained. It is a processing method for reducing phase slag that is allowed to stand and agglomerate and solidify due to the hydraulic properties of the slag, and then crush and sizing to a predetermined particle size and use as a raw material in a blast furnace or sintering process .
[0018]
In the method for treating reducing slag according to the present invention, the method of sufficiently wetting the cooled slag is not limited as long as it can sufficiently wet up to the slag located inside, but in the method by watering, It is not easy to sufficiently wet the slag located inside. On the other hand, for example, in the method by submerging the powdered slag in the pit, the slag located inside can be easily and sufficiently wetted without having a large site. According to this method, the amount of water necessary for wetting is the amount by which the slag is submerged.
[0019]
When the slag is moistened by being submerged in the pit, it is desirable to moisten it for more than half a day. The reason is that when the wet time is short, a portion that is not partially wet remains.
[0020]
The reduction phase slag treatment method according to the present invention combines and agglomerates fine slags by the chemical reaction between water and slag as described above, and can be agglomerated safely and inexpensively. .
[0021]
The results of the investigation of the particle size distribution after wetting the pulverizable reducing phase slag are shown in Table 2 below. From Table 2, if the reducing phase slag is moistened and then drained and left to stand, it is agglomerated and solidified by hydration. The effect was recognized, and the ratio of 125 μm or less was reduced to 50% or less by standing for 1 week after being wet.
[0022]
[Table 2]
Figure 0003644330
[0023]
Such granulation of hydraulic products is a hydration bond, and for example, when used in sintering as a substitute for lime, there is a concern that pulverization due to thermal cracking may occur. Then, as shown in FIG. 2, it has been found that there are few thermal cracks, and that powdering during the sintering temperature raising process has almost no problem. In addition, the decay rate in FIG. 2 shows the ratio of the slag whose particle size is 2 mm or less after heating the slag whose particle size is 2 mm or more for 15 minutes.
[0024]
【Example】
Hereinafter, the processing method of the reduction period slag concerning this invention is demonstrated based on one Example shown in FIG.
FIG. 1 is a diagram for explaining step by step a method of treating reducing phase slag produced during stainless steel making by the method of the present invention.
[0025]
In FIG. 1, reference numeral 1 denotes a transport pan for molten slag generated from, for example, an AOD furnace made of stainless steel. First, the molten slag 2a in the reduction phase is discharged and allowed to cool. Then, after the cooled slag 2b is introduced into the pit 4 using, for example, the shovel 3, water is poured into the pit 4 to sufficiently wet the slag 2b (about 1 day).
[0026]
Thereafter, the wet slag 2c is taken out from the pit 4 by the excavator 3 and drained, and then loaded on the truck 5, for example, carried to another place, piled up, and left for about two weeks, for example. By this standing, the slag 2d drained after wetting is aggregated and solidified due to the hydraulic property of the slag 2d.
[0027]
The coagulated and solidified slag 2e is conveyed to, for example, a crushing / sizing facility 6. Here, the slag under the sieve is reused in a sintering plant through a screen 6a having a mesh of 13 mm, for example. Is crushed by the crusher 6b and then passed again through the screen 6a.
[0028]
As described above, according to the reduction phase slag processing method according to the present invention, the slag is combined and agglomerated by a chemical reaction between water and slag, so that it is agglomerated safely and inexpensively. It can be reused for basicity adjustment in a blast furnace and as a substitute for lime during sintering.
[0029]
The results of using the stainless steel AOD slag treated by the method described in FIG. 1 for sintering are shown in Table 3 below. When the slag blended as a sintering raw material is pulverized and is in a fine powder state (comparative example), it is necessary to reduce the air permeability and reduce the thickness of the pallet layer of the sintering machine, resulting in a decrease in productivity. On the other hand, when granulated slag treated by the above-described method of the present invention (which was allowed to stand for 2 weeks after wetting) was blended, almost no decrease in air permeability was observed. It was almost the same as when not blended (base). Moreover, it was confirmed that the reduction powdering property, which is an index of the quality of sintered ore, is also improved by granulation.
[0030]
[Table 3]
Figure 0003644330
[0031]
【The invention's effect】
As described above, the reduction phase slag treatment method according to the present invention combines fine slags into a mass by a chemical reaction between water and slag, so that the reduction phase slag is safe and inexpensive. It can be agglomerated and resources of the pulverizable reducing period slag which has been difficult to reuse can be achieved.
[Brief description of the drawings]
FIG. 1 is a diagram for step-by-step explanation of a processing method for reducing slag according to the present invention.
FIG. 2 is a graph showing the relationship between the heating temperature and the decay rate when powdered reduced slag hydraulic products are heated.
[Explanation of symbols]
2a Molten slag 2b Powdered slag 2c Wet slag 2d Draining slag 2e Aggregated / solidified slag

Claims (1)

電気炉製鋼やステンレス製鋼で生成される還元期のスラグを、放冷した後ピット内で十分に湿潤させ、次に、水切り後放置してスラグが有する水硬性により凝集・固化させ、その後、所定の粒度に破砕・整粒して高炉又は焼結工程で原料として使用することを特徴とする還元期スラグの処理方法。The slag in the reduction phase produced by electric furnace steel or stainless steel is allowed to cool and then sufficiently wetted in the pit , then left after draining and allowed to agglomerate and solidify due to the hydraulic properties of the slag. A reduction phase slag treatment method, which is crushed and sized to a particle size of slag and used as a raw material in a blast furnace or a sintering process .
JP33240799A 1999-11-24 1999-11-24 Treatment method for reducing slag Expired - Fee Related JP3644330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33240799A JP3644330B2 (en) 1999-11-24 1999-11-24 Treatment method for reducing slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33240799A JP3644330B2 (en) 1999-11-24 1999-11-24 Treatment method for reducing slag

Publications (2)

Publication Number Publication Date
JP2001152233A JP2001152233A (en) 2001-06-05
JP3644330B2 true JP3644330B2 (en) 2005-04-27

Family

ID=18254633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33240799A Expired - Fee Related JP3644330B2 (en) 1999-11-24 1999-11-24 Treatment method for reducing slag

Country Status (1)

Country Link
JP (1) JP3644330B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4822902B2 (en) * 2006-03-29 2011-11-24 山陽特殊製鋼株式会社 Method for reforming electric furnace reducing slag
JP5574057B2 (en) 2012-06-27 2014-08-20 新日鐵住金株式会社 Slag supply container for electric furnace for steelmaking slag reduction treatment
JP7572624B2 (en) 2021-01-28 2024-10-24 日本製鉄株式会社 Recycled slag and refining method using recycled slag

Also Published As

Publication number Publication date
JP2001152233A (en) 2001-06-05

Similar Documents

Publication Publication Date Title
JPS6319231B2 (en)
US4062672A (en) Process for improving the fragmentation capability of metallurgical slags and cinders
JP3644330B2 (en) Treatment method for reducing slag
JP2001192741A (en) Method for utilizing steel making slag
JP3965139B2 (en) Method for reforming steelmaking slag
JP3840371B2 (en) Steelmaking slag and sand-washed sludge treatment method
JP7112392B2 (en) Method for processing and activating steel mill slag
JP3234195B2 (en) Method and apparatus for solidifying and stabilizing molten fly ash
JP2005272275A (en) Method for reforming chrome ore melting reduction furnace slag
JP7310745B2 (en) Method for producing reforming converter slag and method for producing granular material for roadbed material
JP3711738B2 (en) Effective use of slag
JP2000192155A (en) Method for treating sludge containing water and oil
JPS5827917A (en) Treatment of converter slag or the like
JPH02144186A (en) Manufacture of aggregate for preventing leaching
CN102864270A (en) Vanadium extraction cooling agent and preparation method thereof
SU1269739A3 (en) Method of producing desulfurizer for cast iron and steel
JPH10263768A (en) How to reuse converter slag
JPH0826791A (en) Method of reforming stainless slag
JP3060408B2 (en) Dioxin reduction / solidification / stabilization treatment method and apparatus for molten fly ash
JPS63277541A (en) Treatment of molten slag occurring in stainless steel melting
JP2001262217A (en) Method and device for treating reduced slag in electric furnace
CN111254279B (en) A kind of vanadium-containing steel slag granulation and sintering method
JP2002241150A (en) Reduced slag solidified body and its manufacturing method
JP2009270132A (en) Method for producing steelmaking slag with high swelling stability
JPH08319152A (en) Alumina-magnesia-carbon regenerated refractory brick

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050124

R150 Certificate of patent or registration of utility model

Ref document number: 3644330

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees