JP2009270132A - Method for producing steelmaking slag with high swelling stability - Google Patents
Method for producing steelmaking slag with high swelling stability Download PDFInfo
- Publication number
- JP2009270132A JP2009270132A JP2008118800A JP2008118800A JP2009270132A JP 2009270132 A JP2009270132 A JP 2009270132A JP 2008118800 A JP2008118800 A JP 2008118800A JP 2008118800 A JP2008118800 A JP 2008118800A JP 2009270132 A JP2009270132 A JP 2009270132A
- Authority
- JP
- Japan
- Prior art keywords
- slag
- cao
- refining
- steelmaking slag
- steelmaking
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
- Carbon Steel Or Casting Steel Manufacturing (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Treatment Of Steel In Its Molten State (AREA)
Abstract
【課題】 電気炉や取鍋精錬炉の鋼の精錬温度を制御して、スラグ中のf−CaOの滓化を促進し、f−CaOの晶出を抑制して、エージング処理を行わなくても十分に膨張特性の低いスラグの製造方法を提供する。
【解決手段】 鋼の精錬方法において、CaOを含む造滓材を取鍋精錬などの還元精錬中のスラグ中に最終投入した後、精錬温度を1600℃以上に昇温すると共に、スラグを該1600℃以上の温度域で一定時間以上、すなわち略15分間以上、保持することにより、製鋼スラグ組成を特定の範囲内に保持して、スラグの組成をCaOが晶出しない組成に限定することを特徴とする膨張安定性の高い低膨張性製鋼スラグの製造法で、エージング処理を行わなくとも膨張安定性の高い製鋼スラグを製造する。
【選択図】 図1PROBLEM TO BE SOLVED: To control the refining temperature of steel in an electric furnace or ladle refining furnace, promote f-CaO hatching in slag, suppress crystallization of f-CaO, and perform aging treatment The present invention also provides a method for producing a slag having sufficiently low expansion characteristics.
In a steel refining method, a steelmaking material containing CaO is finally put into slag during reduction refining such as ladle refining, and then the refining temperature is raised to 1600 ° C. or higher, and the slag is reduced to 1600 By maintaining the steelmaking slag composition within a specific range by holding it for a certain time or more in a temperature range of ℃ or higher, that is, approximately 15 minutes or more, the composition of the slag is limited to a composition in which CaO does not crystallize. A steelmaking slag having a high expansion stability is produced without performing an aging treatment by a method for producing a low expansion steelmaking slag having a high expansion stability.
[Selection] Figure 1
Description
この発明は製鋼スラグにおいて、未溶融のCaO系スラグにより生じる膨張特性を解消して、スラグを道路用材料や土木用材料等のリサイクル材料として有効なものにするための還元精錬時のスラグ生成方法に関する。 The present invention relates to a method for producing slag during reductive refining in order to eliminate the expansion characteristics caused by unmelted CaO-based slag in steelmaking slag and to make the slag effective as a recycled material such as a road material and a civil engineering material. About.
鉄鋼製造の際に、同時に生成する非金属性の滓を、総じて「鉄鋼スラグ」という。鉄鋼スラグは高炉で銑鉄を製造する際に副生成する「高炉スラグ」と、熔銑、スクラップ等を精錬して鋼を製造する際に同時に生成する「製鋼スラグ」に分類され、この製鋼スラグは、精錬炉の種類によって、転炉スラグ、電気炉スラグに分類される。 Non-metallic soot that is produced at the same time during steel production is generally called “steel slag”. Steel slag is classified into `` blast furnace slag '' that is by-produced when producing pig iron in the blast furnace and `` steel slag '' that is produced at the same time when steel is manufactured by refining molten metal, scrap, etc. Depending on the type of refining furnace, it is classified into converter slag and electric furnace slag.
製鋼スラグは金属酸化物を含有するため、高比重かつ高強度なため、緩冷凝固により鉱物状に凝固させた後、破砕および粒度調整し、路盤材やアスファルト骨材等の道路用材料や、埋め戻し材、基礎工事用など土木用材料等のリサイクル材料として有効に利用されている。 Steelmaking slag contains metal oxides, so it has high specific gravity and high strength, so it is solidified into a mineral state by slow solidification, then crushed and adjusted in particle size, road materials such as roadbed materials and asphalt aggregates, It is effectively used as a recycling material for civil engineering materials such as backfill materials and foundation works.
製鋼スラグは、造滓材として投入されるCaOや、SiO2や、Al2O3や、溶鋼よりスラグ中へ酸化物として取り込まれる鉄やマンガン等の金属酸化物からなる。これらをスラグ処理ヤードにて緩冷却凝固することにより、2CaO・SiO2(ダイカルシウムシリケート)や、3CaO・SiO2(トリカルシウム・シリケート)や、2CaO・Al2O3・SiO2(ゲーレナイト)等の鉱物相の状態で固化するが、精錬温度や精錬時間の不足などにより、一部のCaOやMgOが未溶融状態で残存し、製鋼スラグの膨張要因となることが知られている。 Steelmaking slag is made of CaO, SiO 2 , Al 2 O 3, and metal oxides such as iron and manganese incorporated as oxides from molten steel into the slag. By these are slow cooling and solidifying at slag processing yard, 2CaO · SiO 2 (Dicalcium silicate) and, 3CaO · SiO 2 (tricalcium silicate) and, 2CaO · Al 2 O 3 · SiO 2 ( gehlenite) etc. It is known that some of the CaO and MgO remain in an unmelted state due to lack of the refining temperature and refining time, which causes expansion of the steelmaking slag.
製鋼スラグ中に残存する未溶融のCaO(以下、「f−CaO」という。)は、水と接触することで、CaO+H2O→Ca(OH)2(体積変化率:1.95倍)の体積変化を伴う水和反応を起こす(例えば、非特許文献1参照。)。 Unmelted CaO remaining in the steelmaking slag (hereinafter referred to as “f-CaO”) is in contact with water, so that CaO + H 2 O → Ca (OH) 2 (volume change rate: 1.95 times). A hydration reaction accompanied by volume change occurs (for example, see Non-Patent Document 1).
また、f−CaOが十分溶融していても、スラグの組成に、3CaO・SiO2が含まれる場合、3CaO・SiO2→2CaO・SiO2+CaOの分解反応で、2CaO・SiO2の相間に晶出したCaO相が膨張要因となることが知られている(例えば、非特許文献2参照。)。 Further, even if f-CaO is not sufficiently melted, the composition of the slag, if they contain 3CaO · SiO 2, the decomposition reaction of 3CaO · SiO 2 → 2CaO · SiO 2 + CaO, crystallized during 2CaO · SiO 2 phases It is known that the released CaO phase becomes a cause of expansion (for example, see Non-Patent Document 2).
f−CaOを含む製鋼スラグを路盤材等の道路用材料に供した場合、雨水等と反応して舗装後に膨張反応が起こり、花咲現象と呼ばれる路面性状の悪化を招く。このため、製鋼スラグ製品の製造に際し、通常はエージングという体積安定化処理が行われる。 When steelmaking slag containing f-CaO is used for road materials such as roadbed materials, it reacts with rainwater and the like to cause an expansion reaction after paving, leading to deterioration of road surface properties called flowering phenomenon. For this reason, when manufacturing a steelmaking slag product, the volume stabilization process called aging is normally performed.
従来技術の上記のスラグの膨張安定性を確保する手段としては、f−CaOの水和反応を終了させるエージング処理と、f−CaO相を水和反応が起こりにくい組成に改質する方法、あるいはf−CaO相が晶出しないスラグを生成する方法などが挙げられる。 As means for ensuring the expansion stability of the above-mentioned slag in the prior art, an aging treatment for terminating the hydration reaction of f-CaO and a method for modifying the f-CaO phase into a composition that hardly causes a hydration reaction, or Examples thereof include a method for producing slag in which the f-CaO phase does not crystallize.
ここで、製鋼スラグ中のf−CaOの水和反応を終了させ、スラグ製品の膨張安定性を確保する処理を上述のようにエージングといい、現在最も広く普及した技術である。エージングは、三ヶ月〜六ヶ月程度の間、露天の下にて野積みして雨水などと反応させる大気エージングと、蒸気や加圧蒸気、温水と反応させることによってエージング期間の短縮化を図る促進エージングに大別される。このうち大気エージングは処理期間が長く、広大なエージングヤードが必要となるため、スラグ製品の製造においては促進エージングが広く採用されている。エージング技術に関しては、各種の処理方法およびその応用に関して多くの特許技術が確立されている。 Here, the process of terminating the hydration reaction of f-CaO in steelmaking slag and ensuring the expansion stability of the slag product is referred to as aging as described above, and is the most widely used technology at present. Aging promotes shortening of the aging period by stacking under an open air for about 3 to 6 months and reacting with rain water, etc., and reacting with steam, pressurized steam, or hot water Broadly divided into aging. Among these, atmospheric aging has a long treatment period and requires a vast aging yard, and therefore accelerated aging is widely used in the production of slag products. Regarding the aging technique, many patented techniques have been established for various processing methods and their applications.
温水エージング関連特許では、スラグの破砕処理及びエージング処理方法(例えば、特許文献1参照。)や製鋼スラグの処理方法(例えば、特許文献2参照。)がある。 Patents related to hot water aging include slag crushing and aging treatment methods (for example, see Patent Document 1) and steelmaking slag treatment methods (for example, see Patent Document 2).
蒸気エージング関連特許では、蒸気エージング設備のエージングピット(例えば、特許文献3参照。)、スラグの蒸気エージング装置(例えば、特許文献4参照。)、製鋼スラグのエージング処理装置および処理方法(例えば、特許文献5参照。)、製鋼スラグのエージング方法(例えば、特許文献6参照。)やスラグ路盤材の製造方法(例えば、特許文献7参照。)がある。 In steam aging-related patents, aging pits of steam aging equipment (for example, see Patent Document 3), slag steam aging devices (for example, see Patent Document 4), steelmaking slag aging treatment devices and methods (for example, patents) There are aging methods for steelmaking slag (for example, see Patent Document 6) and slag roadbed material manufacturing methods (for example, see Patent Document 7).
加圧蒸気エージング関連特許では、製鋼スラグのエージング方法及びその装置(例えば、特許文献8参照。)や、製鋼スラグのエージング方法(例えば、特許文献9参照。)がある。 Patents related to pressurized steam aging include a steelmaking slag aging method and apparatus (for example, see Patent Document 8) and a steelmaking slag aging method (for example, see Patent Document 9).
エージング以外のスラグの膨張抑制処理方法としては、膨張要因であるCaO相に金属酸化物を含有させることによって、CaOの水和反応を抑制する方法が提案されている。これらには、転炉スラグの改質(例えば、特許文献10参照。)や、耐膨張性・耐崩壊性に優れた転炉スラグおよびその製造方法(例えば、特許文献11参照。)がある。また、潜在水硬性またはポゾラン反応するシリカ含有物質によって、CaO相を水和反応させる方法や、製鋼系スラグの膨張抑制方法および再生資源の製造方法(例えば、特許文献12参照。)がある。さらに、スラグ組成を制御することによって、膨張特性の低いスラグを得る方法等、多様な手法が検討されており、製鋼スラグの改質方法(例えば、特許文献13参照。)や(例えば、特許文献14参照。)、低膨張製鋼スラグの製造方法(例えば、特許文献15参照。)や、製鋼スラグ製品の製造方法および製鋼スラグ製品(例えば、特許文献16参照。)や製鋼スラグの溶融改質方法(例えば、特許文献1参照。)等がある。 As a method for suppressing expansion of slag other than aging, a method for suppressing the hydration reaction of CaO by adding a metal oxide to the CaO phase, which is an expansion factor, has been proposed. These include converter slag reforming (see, for example, Patent Document 10), converter slag excellent in expansion resistance and collapse resistance, and a method for manufacturing the same (for example, see Patent Document 11). In addition, there are a method of hydrating a CaO phase with a silica-containing substance that is latent hydraulic or pozzolanic, a method of suppressing expansion of steelmaking slag, and a method of manufacturing recycled resources (for example, see Patent Document 12). Furthermore, various methods such as a method of obtaining a slag having low expansion characteristics by controlling the slag composition have been studied, and a steelmaking slag reforming method (for example, see Patent Document 13) or (for example, Patent Document). 14), a method for producing low-expansion steelmaking slag (for example, see Patent Document 15), a method for producing a steelmaking slag product, a steelmaking slag product (for example, see Patent Document 16), and a method for melt reforming steelmaking slag. (For example, refer to Patent Document 1).
本発明が解決しようとする課題は、電気炉や取鍋精錬炉の鋼の精錬温度をコントロールすることによって、スラグ中のf−CaOの滓化を促進し、かつ、スラグの組成を限定することによりf−CaOの晶出を抑制し、エージング処理を行わなくても十分に膨張特性の低いスラグの製造方法を提供することである。 The problem to be solved by the present invention is to promote the hatching of f-CaO in slag and to limit the composition of slag by controlling the refining temperature of steel in an electric furnace or ladle refining furnace. Is to suppress the crystallization of f-CaO and to provide a method for producing a slag having sufficiently low expansion characteristics without performing an aging treatment.
上記の課題を解決するための本発明の手段は、請求項1の発明では、精錬炉における鋼の精錬方法において、取鍋精錬などの還元精錬中のスラグ中にCaOを含む造滓材を最終投入した後、精錬温度を1600℃以上に昇温すると共に、スラグを1600℃以上の温度域で一定時間以上、すなわち15分間以上、保持することにより、CaOの滓化を促進することを特徴とする膨張安定性の高い低膨張性製鋼スラグの製造法である。すなわち、請求項1の手段はエージング処理を行わなくとも膨張安定性の高いスラグを製造する方法である。 The means of the present invention for solving the above-mentioned problems is that, in the invention of claim 1, in the steel refining method in the refining furnace, the slag material containing CaO is finally contained in the slag during reduction refining such as ladle refining. After the charging, the refining temperature is raised to 1600 ° C. or higher, and the slag is maintained in a temperature range of 1600 ° C. or higher for a certain period of time, that is, 15 minutes or longer, thereby promoting the hatching of CaO. It is a manufacturing method of the low expansion steelmaking slag with high expansion stability. That is, the means of claim 1 is a method for producing a slag having high expansion stability without performing an aging treatment.
請求項2の発明では、製鋼スラグの主たる鉱物層を2CaO・SiO2あるいは2CaO・Al2O3・SiO2に保持することによりスラグの組成をCaOが晶出しない組成に限定することを特徴とする請求項1に記載の膨張安定性の高い低膨張性製鋼スラグの製造方法である。 The invention according to claim 2 is characterized in that the main mineral layer of the steelmaking slag is held in 2CaO · SiO 2 or 2CaO · Al 2 O 3 · SiO 2 so that the composition of the slag is limited to a composition in which CaO does not crystallize. It is a manufacturing method of the low expansion steelmaking slag with high expansion stability of Claim 1 to do.
本発明は、上記の手段を用いることによって、精錬に係るエネルギーにf−CaOの滓化に必要なエネルギーを付加することで実施可能であるため、精錬終了後の温度が低下したスラグを昇温するエネルギー効率がよく、かつ、精錬と同時に行うことができるため、別途に工程を新設する必要がない。また、凝固後、直ちに粉化するスラグや、エージング処理中に粉化するスラグなどの微粉状スラグは、エージング処理においてスラグ粒間が目詰まりし、蒸気あるいは雨水の浸透にムラができ、エージングの不均一が起こるなど、膨張特性の信頼性を確保しがたい。しかし、本発明ではエージング処理無しで、膨張性の低いスラグが得られるため、粉化するスラグの膨張安定性の確保ができるなど、従来の方法に比して優れた効果を奏する。 Since the present invention can be implemented by adding energy necessary for f-CaO hatching to the energy related to refining by using the above-mentioned means, the temperature of the slag whose temperature has been lowered after refining is increased. Therefore, it is not necessary to install a new process because it is energy efficient and can be performed simultaneously with refining. In addition, slag that pulverizes immediately after solidification or slag that pulverizes during the aging process is clogged between slag grains in the aging process, and uneven penetration of steam or rainwater can occur. It is difficult to ensure the reliability of expansion characteristics such as non-uniformity. However, in the present invention, slag having low expansibility can be obtained without aging treatment, and therefore, it is possible to secure the expansion stability of the slag to be pulverized, and there are excellent effects as compared with the conventional method.
本発明における実施の最良の形態について、表および図面を参照して以下に説明する。CaO系造滓材を多量に使用する還元精錬以降の精錬工程において、スラグの主たる鉱物層を2CaO・SiO2あるいは2CaO・Al2O3・SiO2となるよう成分を調整した。具体的にはスラグ組成を、CaO、MgO、SiO2、Al2O3の各含有率の和が、質量%で100%となるように換算した値で、45.0%≦CaO+MgO≦76.0%、4.0%≦SiO2≦35.0%、5.0%≦Al2O3≦35.0%、かつ、製鋼スラグ全体を質量%で100%としたときに、MgOの含有率が質量%で12%未満となる成分範囲にて、スラグの主たる鉱物層が、2CaO・SiO2あるいは2CaO・Al2O3・SiO2となることを確認しており、この成分範囲を満足するように成分調整することが望ましい。ここで、CaO含有率が蒸気成分範囲を超えて高い場合、スラグの鉱物層がCaO層あるいは3CaO・SiO2となり、本発明の方法によって滓化を促進しても、f−CaOが晶出し、膨張抑制効果が得られない。 The best mode for carrying out the present invention will be described below with reference to the tables and drawings. In the refining process after reductive refining using a large amount of the CaO-based slagging material, the components were adjusted so that the main mineral layer of slag became 2CaO · SiO 2 or 2CaO · Al 2 O 3 · SiO 2 . Specifically, the slag composition is a value obtained by converting the sum of the contents of CaO, MgO, SiO 2 , and Al 2 O 3 to 100% by mass, and 45.0% ≦ CaO + MgO ≦ 76. MgO content when 0%, 4.0% ≦ SiO 2 ≦ 35.0%, 5.0% ≦ Al 2 O 3 ≦ 35.0%, and the entire steelmaking slag is 100% by mass It has been confirmed that the main mineral layer of slag is 2CaO · SiO 2 or 2CaO · Al 2 O 3 · SiO 2 in the component range where the rate is less than 12% by mass, and this component range is satisfied. It is desirable to adjust the components so as to. Here, when the CaO content rate is high beyond the vapor component range, the slag mineral layer becomes a CaO layer or 3CaO · SiO 2 , and f-CaO crystallizes even when hatching is promoted by the method of the present invention. The expansion suppressing effect cannot be obtained.
精錬条件は表1のように、精錬温度を1511℃から1635℃とし、各精錬温度に到達後、6分から37分間当該温度に±5℃の範囲で保持した。次いで、精錬終了後、徐冷ヤードで冷却凝固したスラグをサンプリングし、JIS A5015の「道路用鉄鋼スラグ」の附属書2に規定の、鉄鋼スラグの水浸膨張試験方法により膨張特性を測定した。上記の精錬における精錬温度および保持時間と得られたスラグの水浸膨張率を表1に示す。さらに、得られたスラグの水浸膨張率と処理温度の関係を図1のグラフに示す。 As shown in Table 1, the refining conditions were a refining temperature of 1511 ° C. to 1635 ° C., and after reaching each refining temperature, the temperature was held in the range of ± 5 ° C. for 6 minutes to 37 minutes. Subsequently, after completion of the refining, the slag cooled and solidified in the slow cooling yard was sampled, and the expansion characteristics were measured by the water immersion expansion test method for steel slag as defined in Annex 2 of “Steel Slag for Roads” of JIS A5015. Table 1 shows the refining temperature and holding time in the refining and the water immersion expansion rate of the obtained slag. Furthermore, the graph of FIG. 1 shows the relationship between the water immersion expansion rate of the obtained slag and the treatment temperature.
図1のグラフよりスラグの膨張特性は精錬温度と高い相関を有することがわかる。1600℃を超える温度域にて処理を行ったスラグ、すなわち、試料名:スラグ−14、スラグ−15、スラグ−16、スラグ−17、スラグ−18の4試料では、水浸膨張率が0.05%以下の極めて低い値であった。本結果より、本発明により、スラグ中の未溶融CaO(f−CaO)が十分滓化し、再晶出もないことが示唆される。したがって、本発明の方法による製鋼スラグは、リサイクルに際し、路盤材やアスファルト骨材などの道路用材料や、埋め戻し材や基礎工事時用の土木用材料として高い信頼を有するものである。 From the graph of FIG. 1, it can be seen that the expansion characteristic of slag has a high correlation with the refining temperature. In the case of slag processed in a temperature range exceeding 1600 ° C., that is, four samples of sample names: slag-14, slag-15, slag-16, slag-17, and slag-18, the water expansion coefficient is 0. It was an extremely low value of 05% or less. From this result, it is suggested by the present invention that unmelted CaO (f-CaO) in the slag sufficiently hatches and there is no recrystallization. Therefore, the steelmaking slag by the method of the present invention has high reliability as road materials such as roadbed materials and asphalt aggregates, backfill materials, and civil engineering materials for foundation work during recycling.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008118800A JP2009270132A (en) | 2008-04-30 | 2008-04-30 | Method for producing steelmaking slag with high swelling stability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008118800A JP2009270132A (en) | 2008-04-30 | 2008-04-30 | Method for producing steelmaking slag with high swelling stability |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009270132A true JP2009270132A (en) | 2009-11-19 |
Family
ID=41436954
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008118800A Pending JP2009270132A (en) | 2008-04-30 | 2008-04-30 | Method for producing steelmaking slag with high swelling stability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009270132A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013015690A1 (en) | 2011-07-28 | 2013-01-31 | Etna B.V. | Method and device for treating a molten slag |
JP2017020058A (en) * | 2015-07-07 | 2017-01-26 | Jfeスチール株式会社 | Method for reforming steelmaking slag |
-
2008
- 2008-04-30 JP JP2008118800A patent/JP2009270132A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013015690A1 (en) | 2011-07-28 | 2013-01-31 | Etna B.V. | Method and device for treating a molten slag |
JP2017020058A (en) * | 2015-07-07 | 2017-01-26 | Jfeスチール株式会社 | Method for reforming steelmaking slag |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5573403B2 (en) | Method for recycling steelmaking slag and raw material for phosphate fertilizer | |
Yildirim et al. | Use of steel slag in subgrade applications | |
JP5800387B2 (en) | Soil improvement material | |
Barella et al. | Survey about safe and reliable use of EAF slag | |
CN109929965A (en) | A method of the dusting and reuse of control steelmaking refining slag | |
CN105579598B (en) | Method and mineral hydraulic adhesive for handling slag | |
CN102296152A (en) | Novel converter steelmaking dephosphorization agent and preparation method thereof | |
JP3091177B2 (en) | Steelmaking reduction slag reforming method | |
Wang | Properties and utilization of steel slag in engineering applications | |
JP2009270132A (en) | Method for producing steelmaking slag with high swelling stability | |
Chiang et al. | Iron and steel slags | |
KR101351598B1 (en) | Desulfurizing agent for steelmaking using ladle slag and manufacturing method thereof | |
JP2011105519A (en) | Rapid aging method for steel slag | |
JP5668634B2 (en) | Expanded controlled steel slag hydrated solid artificial stone and method for producing the same | |
JP7112392B2 (en) | Method for processing and activating steel mill slag | |
CN104540791B (en) | For processing method and the mineral hydraulic adhesive of slag | |
KR101773132B1 (en) | Manufacturing method of ferrosilicon from silicon sludge and millscale and ferrosilicon manufactured thereby | |
TWI523952B (en) | The preparation method of modified converter slag | |
CN114163147A (en) | Method for reducing free calcium oxide in steel slag by using nickel-iron slag and application thereof | |
JP6984192B2 (en) | Caking material | |
CN102765738B (en) | Amorphous calcium aluminate and preparation method thereof | |
US11034617B2 (en) | Steel product, cement manufacturing process and cement | |
Randhawa | An overview of sustainable solutions towards recycling of metallurgical slags | |
KR101591288B1 (en) | composite for blast furnace slag cement including eaf oxidizing slag and reducing slag | |
JPS6218498B2 (en) |