JP3641345B2 - 基板バイアス効果を利用した遅延回路 - Google Patents
基板バイアス効果を利用した遅延回路 Download PDFInfo
- Publication number
- JP3641345B2 JP3641345B2 JP08769997A JP8769997A JP3641345B2 JP 3641345 B2 JP3641345 B2 JP 3641345B2 JP 08769997 A JP08769997 A JP 08769997A JP 8769997 A JP8769997 A JP 8769997A JP 3641345 B2 JP3641345 B2 JP 3641345B2
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- power supply
- mos transistor
- channel mosfet
- delay circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000758 substrate Substances 0.000 title claims description 25
- 230000000694 effects Effects 0.000 title description 3
- 230000006641 stabilisation Effects 0.000 claims description 12
- 238000011105 stabilization Methods 0.000 claims description 12
- 239000004065 semiconductor Substances 0.000 claims description 8
- 230000000087 stabilizing effect Effects 0.000 claims description 4
- 230000004044 response Effects 0.000 claims description 3
- 238000007599 discharging Methods 0.000 claims 1
- 239000003990 capacitor Substances 0.000 description 25
- 239000008186 active pharmaceutical agent Substances 0.000 description 19
- 230000007423 decrease Effects 0.000 description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 230000003111 delayed effect Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Landscapes
- Pulse Circuits (AREA)
- Networks Using Active Elements (AREA)
Description
【発明の属する技術分野】
本発明は、半導体記憶デバイスの回路技術にかかり、特に、MOSFETを使用した遅延回路に関する。
【0002】
【従来の技術】
近年では、電子計算機や計測機器に加え、家電製品や電子カメラ等、一般の電気製品にも半導体記憶デバイスが使用されており、そのため、半導体記憶デバイスに対し、高集積化による大容量化と低価格化の要求が増々強くなっている。
【0003】
半導体記憶デバイスのうちでも特に使用量が多いものは、任意のアドレスの記憶内容にアクセスできるDRAM(ダイナミックランダムアクセスメモリ)である。DRAMの内部には、内部回路の動作を制御するためのATD(アドレス・トランジション・ディテクション:Address Transition Detection)回路が設けられており、そのATD回路内には、入力信号を所定時間遅延させ、後段の回路に出力する遅延回路が設けられている。
【0004】
図7(a)の符号110で示したものは、上述の遅延回路の従来技術のものであり、pチャネルMOSFET111とnチャネルMOSFET112のゲート端子には、入力信号VINが共通して入力されており、入力信号VINがハイ状態からロー状態に切り替わると、pチャネルMOSFET111がON、nチャネルMOSFET112がOFFし、pチャネルMOSFET111及び抵抗素子113を介して電源電圧VDDからキャパシタ114に電流が供給され、キャパシタ114が充電されることで電圧が上昇するように構成されている。
【0005】
他方、入力信号VINがロー状態からハイ状態に切り替わると、pチャネルMOSFET111がOFF、nチャネルMOSFET112がONし、充電されたキャパシタ114は、nチャネルMOSFET112を介して放電され、キャパシタ114の電圧が低下するように構成されている。
【0006】
キャパシタ114の電圧が上昇する場合、電源電圧VDDが定電圧であれば、電圧の上昇速度は、キャパシタ114の静電容量、pチャネルMOSFET111のON抵抗値、抵抗素子113の抵抗値等の素子特性によって定まるため、入力信号VINは、一定の遅延時間だけ遅れて後段のインバータ119に出力され、このインバータ119で反転され、出力信号VOUTとして出力される。
【0007】
しかしながら、遅延回路110に供給される電源電圧VDDの電圧値は、DRAM内の周辺回路の動作状態や、他の半導体デバイスの動作状態によって変動してしまう。そのような電源電圧VDDの変動があった場合には、キャパシタ114への充電電流の大きさが変動するため、遅延時間が短くなったり長くなったりしてしまう。例えば、電源電圧VDDが上昇した場合には、pチャネルMOSFET111のコンダクタンスが大きくなり、キャパシタ114への充電電流が増加する結果、遅延時間は短くなってしまう。
【0008】
そこで従来技術でも対策が採られており、図7(b)の符号120に示した遅延回路のように、DRAM内に安定化電源117を設け、電源電圧VDDの変動の影響を受けない安定化電圧VDLを発生させ、その安定化電圧VDLをpチャネルMOSFET111のソース端子に印加し、キャパシタ114には安定化電源117から充電電流が供給されるように構成していた。このような構成によれば、遅延時間は電源電圧VDDの変動を受けないようになる。
【0009】
しかしながら、スタンバイ時の消費電流、およびアクセススピードの面から全ての回路に安定化電源117からの電圧を供給することは困難である。従って、半導体集積回路上には、電源電圧VDDの変動の影響を受ける回路と電源電圧VDDの変動の影響を受けない回路とが混在することとなり、全体として電源電圧VDDの変動の影響をなくすることは困難である。
【0010】
また、近年では、DRAMの高速化のために、回路間の動作タイミングを一致させるための時間的余裕(回路動作マージン)が少なくなっており、かかる場合には、電源電圧VDDの変動による回路スピードの変動を細かく調整し、しかも、アクセススピードのために最適化されている全体の回路構成に影響を与えないようにしながら、回路動作マージンの減少をできるだけ抑えることが重要である。
【0011】
上述の理由により、電源電圧VDDが上昇した場合に遅延時間が短くなる回路(例えば、上述の遅延回路110)と、それとは逆に、電源電圧VDDが上昇した場合に遅延時間が長くなる遅延回路とが必要となるため、少ない素子数でそれを達成する技術の開発が待たれていた。
【0012】
【発明が解決しようとする課題】
本発明は上記開発要求に応じて創作されたもので、その目的は、電源電圧の上昇により、遅延時間が長くなる遅延回路を提供することにある。また、その遅延回路を用いた半導体記憶デバイスを提供することにある。
【0013】
【課題を解決するための手段】
前記課題を解決するために、請求項1記載の発明は、第1のノードと第1の電源用端子との間に接続された容量素子と、前記第1のノードと第2の電源用端子との間に接続され、入力信号に応答して導通することにより前記容量素子の充電又は放電を行なう第1のMOSトランジスタと、前記第1のノードの電圧値に応じた出力信号を供給する第1の回路とを有し、前記第1のMOSトランジスタの基板領域には第1の電圧が供給され、前記第2の電源用端子には前記第1の電圧を安定化した電圧が供給される。
【0014】
この請求項1記載の遅延回路では、請求項2記載の発明のように、前記第1のMOSトランジスタを介して前記容量素子に供給される電流が電流制限素子で制限されるように構成することができる。
【0015】
また、請求項3記載の発明のように、前記第1のMOSトランジスタにpチャネルMOSトランジスタ用い、該pチャネルMOSトランジスタが遮断状態に置かれるときに導通状態に置かれるnチャネルMOSトランジスタを設け、前記容量素子が、前記pチャネルMOSトランジスタを介して充電され、前記nチャネルMOSトランジスタを介して放電されるように構成することができる。
【0016】
また、この請求項3記載の遅延回路では、請求項4記載の発明のように、前記pチャネルMOSトランジスタの基板領域(バックゲート)に印加する電圧を外部電源電圧とし、前記pチャネルMOSトランジスタのソース端子に印加する電圧を外部電源電圧よりも電圧値の低い安定化電圧とすることができる。
【0017】
以上説明した請求項1乃至請求項4のいずれか1項記載の遅延回路は、請求項5記載の発明のように、半導体記憶デバイスに設けることができる。
【0018】
本発明の遅延回路は、上述のような構成であり、導通状態となったMOSトランジスタを介して、容量素子が安定化電源に接続され、抵抗素子等の電流制限素子を介して充放電電流が流れるので、容量素子の電圧値が変化する。容量素子(第1のノード)の電圧値に応じて、後段の回路の出力信号が変化する。
【0019】
本発明の遅延回路では、MOSトランジスタの基板領域(バックゲート)に、ソース端子の電圧とは異なる電源電圧が印加されているため、基板バイアス効果の影響を受け、MOSトランジスタのコンダクタンスが電源電圧の大きさによって変化する。電源電圧の変動により、ソース端子と基板領域との間の電圧差が大きくなった場合には、コンダクタンスは低下するが、MOSトランジスタのソース端子には安定化電圧が印加されるので、コンダクタンスが低下すると、容量素子に流れる充放電電流は減少するため、遅延時間は長くなる。
逆に、ソース端子と基板領域との間の電圧差が小さくなると、コンダクタンスは上昇し、容量素子に流れる充放電電流は増加するため、遅延時間は短くなる。
【0020】
このようなMOSトランジスタとしては、電源電圧が負の場合はnチャネルMOSトランジスタを用い、正である場合にはpチャネルMOSトランジスタを用いることができる。pチャネルMOSトランジスタを用いる場合、ソース端子を安定化電源側に接続し、ドレイン端子を容量素子側に接続しておくと、容量素子が充電される際に遅延された出力信号を得ることができる。
【0021】
【発明の実施の形態】
本発明の一実施形態を図面を用いて説明する。
図1を参照し、符号10は本発明の一例の遅延回路であり、DRAM内のタイミング調整回路の一部として設けられている。そのDRAMには、外部電源から供給される電源電圧VDD(第1の電圧)とグラウンド電圧VSSとが印加されており、その電源電圧VDDを電力源として、内部のメモリセルに対し、データの入出力ができるように構成されている。
【0022】
遅延回路10は、pチャネルMOSFET11(第1のMOSトランジスタ)、nチャネルMOSFET12、抵抗素子13、キャパシタ14(容量素子)、安定化電源17、インバータ19(第1のノードの電圧値に応じた出力信号を供給する第1の回路)を有しており、安定化電源17は、電源電圧VDDを安定化し、定電圧の安定化電圧VDLを供給できるように構成されている(定電圧化はグラウンド電圧VSSが基準)。ここで、電源電圧VDDは約3.3Vであり、安定化電圧VDLは約2.2Vである。
【0023】
pチャネルMOSFET11のソース端子は、安定化電源17に接続され、安定化電圧VDL(第1の電圧を安定化した電圧)が印加されるように構成されており、ドレイン端子は、抵抗素子13を介して、キャパシタ14の高電圧側の端子、及びnチャネルMOSFET12のドレイン端子(第1のノード:符号Aで示す。)に接続されている。キャパシタ14の低電圧側の端子とnチャネルMOSFET12のソース端子とは、グラウンド電圧VSSが印加される内部配線(第1の電源用端子)に接続されている。
【0024】
このpチャネルMOSFET11のゲート端子とnチャネルMOSFET12のゲート端子には、入力信号VINが共通して印加されるように構成されており、キャパシタ14の高電圧側の端子はインバータ19の入力端子に接続されている。
【0025】
インバータ19内には、pチャネルMOSFET15とnチャネルMOSFET16とが設けられており、ドレイン端子同士を互いに接続された状態で、pチャネルMOSFET15のソース端子は安定化電圧VDL側に、nチャネルMOSFET16のソース端子はグラウンド電圧VSS側に接続されている。キャパシタ14の高電圧側の端子は、pチャネルMOSFET15のゲート端子とnチャネルMOSFET16のゲート端子に共通に接続されている。pチャネルMOSFET15とnチャネルMOSFET16の互いに接続されたドレイン端子から、出力信号VOUTが取り出され、図示しない後段の回路に入力されている。
【0026】
この遅延回路10の動作を説明する。初期状態で、入力信号VINがハイ状態にあり、pチャネルMOSFET11がOFF(遮断状態)、nチャネルMOSFET12がON(導通状態)のとき、キャパシタ14には電荷は蓄積されていないものとする。
【0027】
この場合、抵抗素子13とnチャネルMOSFET12とキャパシタ14との接続中点(符号Aの第1のノード)はロー状態であり、インバータ19から出力される出力信号VOUTはハイ状態である。
【0028】
入力信号VINがハイ状態からロー状態に切り替わると、nチャネルMOSFET112がOFF、pチャネルMOSFET11がONする。pチャネルMOSFET11のONにより、キャパシタ14の高電圧側の端子は、pチャネルMOSFET11及び抵抗素子13を介して安定化電源17に接続され、pチャネルMOSFET11及び抵抗素子13によって電流制限された状態でキャパシタ14に対して充電電流が流れる。
【0029】
pチャネルMOSFET11のソース端子に印加されている安定化電圧VDLは、電源電圧VDDの変動の影響を受けず、定電圧であるので、pチャネルMOSFET11のコンダクタンスが一定であれば、キャパシタ14の電圧値は、pチャネルMOSFET11のON抵抗値、抵抗素子13の抵抗値及びキャパシタ14の静電容量に応じた速度で上昇する。
【0030】
インバータ19の出力は所定のスレッショルド電圧を超えたときにハイ状態からロー状態に切り替わるように構成されており、キャパシタ14の電圧がグラウンド電圧VSSからそのスレッショルド電圧を超えるまでの時間が遅延回路10の遅延時間となる。入力信号VINは、遅延回路10内をその遅延時間だけ遅れて伝達され、出力信号VOUTとして出力される。
【0031】
この場合、インバータ19内のpチャネルMOSFET15では、基板領域(バックゲート)とソース端子とは短絡され、安定化電圧VDLが共通して印加されており、電源電圧VDDが変動してもインバータ19のスレッショルド電圧には変動がないように構成されている。
【0032】
他方、キャパシタ14に電流を供給するpチャネルMOSFET11では、ソース端子には安定化電圧VDLが印加され、基板領域(バックゲート)には電源電圧VDDが印加されている。図2に、pチャネルMOSFET11と、nチャネルMOSFET12の拡散構造の概略図を示す。このDRAMにはNウェル41を有するp型シリコンサブストレート31が用いられており、そのNウェル41内にはp型領域32が拡散形成されている。これらp型領域32と表面に形成されたゲート酸化膜51とゲート電極52とで、p型領域32をソース端子とドレイン端子とするpチャネルMOSFET11が構成されている。
【0033】
他方、p型シリコンサブストレート31内にはn型領域42が拡散形成され、これらn型領域42と表面のゲート酸化膜51とゲート電極52とで、n型領域42をソース端子とドレイン端子とするnチャネルMOSFET12が構成されている。
【0034】
従って、pチャネルMOSFET11の基板領域はNウェル41であり、nチャネルMOSFET12の基板領域はp型シリコンサブストレート31自体である。
【0035】
そのNウェル41には電源電圧VDDが印加されており、従って、pチャネルMOSFET11では、基板領域に電源電圧VDDが印加されている。p型シリコンサブストレート31には、グラウンド電圧VSSが印加され、pチャネルMOSFET11の基板領域とp型シリコン基板31とは逆バイアス状態にされている。
【0036】
安定化電圧VDLは電源電圧VDDから作られるので、
VDL < VDD
の大小関係がある。図3に示すように、pチャネルMOSFETのソース端子の電圧を基準とし、ゲート端子の電圧をVGS、バックゲート電圧(基板領域の電圧)をVBS、ドレイン端子の電圧をVDSとし、また、ソース端子からドレイン端子に向かって流れる電流をIDSとした場合、バックゲート電圧VBSと電源電圧VDD、及び安定化電圧VDLの間には、次式、
VBS = VDL−VDD < 0
の関係がある。
【0037】
MOSFETの通常の結線は、ソース端子と基板領域とを短絡しているので、バックゲート電圧VBSはゼロ(VBS=0)である。pチャネルMOSFETのゲート電圧VGSとドレイン電流IDSとの関係を、バックゲート電圧VBSがゼロである場合と、ゼロでない場合(VBS<0)について、図4のグラフに示す。同じ大きさのゲート電圧VGSを印加した場合には、バックゲート電圧VGSが負電圧方向で大きい方がドレイン電流IDSは小さくなる。
【0038】
pチャネルMOSFETのドレイン電圧VDSとドレイン電流IDSとの関係を、バックゲート電圧VBSがゼロの場合と負電圧の場合について、図5(a)、同図(b)のグラフにそれぞれ示す。
【0039】
ゲート電圧VGSをVG1〜VG4とした場合の各特性(VG4<VG3<VG2<VG1<0)から分かるように、同じ大きさのゲート電圧VGSを印加した場合には、バックゲート電圧VBSが負電圧方向で大きい方がドレイン電流IDSは小さくなっている。
【0040】
ゲート電圧VGS及びドレイン電圧VDSを一定にした場合の、バックゲート電圧VBSとドレイン電流IDSの関係を図6のグラフに示す。各曲線とも、VGS=VDSにした。バックゲート電圧VBSを負電圧方向に大きくなるほどドレイン電流IDSの電流量は小さくなっている。
【0041】
このように、基板領域の電位をソース端子の電位よりも高くし、バックゲート電圧を印加した方が、pチャネルMOSFET11のコンダクタンスは低下する。そして、そのコンダクタンスの値は、図6から分かるように、基板領域とソース端子の電位差に大じて変動する。具体的には、電源電圧VDDが上昇した場合にはバックゲート電圧VBSは負電圧方向に大きくなるため、pチャネルMOSFET11のコンダクタンスは小さくなり、キャパシタ14に対する充電電流が減少する結果、遅延時間が長くなる。反対に、電源電圧VDDが低下した場合はバックゲート電圧VBSは絶対値で小さくなるため、コンダクタンスは大きくなり、遅延時間が短くなる。このように、電源電圧VDDの変動によって、遅延時間が自動的に伸縮される。
【0042】
なお、上述の実施例では、正の電源電圧VDDを用いる場合の遅延回路10について説明したが、負電源を用いる場合には、その負電源の電圧をnチャネルMOSFETの基板領域に印加する遅延回路を構成してもよい。
【0043】
【発明の効果】
電源電圧上昇により遅延時間が長くなり、電源電圧低下により遅延時間が短くなるので、タイミング調整回路の設計が容易になる。
電源電圧変動によって遅延時間が自動的に伸縮されるので、タイミング調整回路を簡略化することができる。
【図面の簡単な説明】
【図1】本発明の遅延回路の一例
【図2】pチャネルMOSFETとnチャネルMOSFETの拡散構造の概略図
【図3】pチャネルMOSFETのVGS、VDS、VBSを説明するための図
【図4】VBSによるVGS−IDS特性の相違を説明するためのグラフ
【図5】(a)VBS=0の場合のVDS−IDS特性を示すグラフ
(b)VBS<0の場合のVDS−IDS特性を示すグラフ
【図6】VGS及びVDSを一定にした場合のVBS−IDS特性を示すグラフ
【図7】(a)電源電圧上昇により遅延時間が短くなる従来技術の遅延回路
(b)遅延時間が電源電圧変動の影響を受けない従来技術の遅延回路
【符号の説明】
10……遅延回路 11……第1のMOSトランジスタ(pチャネルMOSトランジスタ) 12……相補的に導通するnチャネルMOSトランジスタ
13……電流制限素子(抵抗素子) 14……容量素子 17……安定化電源
19……第1の回路(インバータ) 41……基板領域
A……第1のノード VDD……第1の電圧(電源電圧) VDL……第1の電圧を安定化した電圧 VIN……入力信号 VOUT……出力信号 VSS……第1の電源用端子
Claims (5)
- 第1のノードと第1の電源用端子との間に接続された容量素子と、
前記第1のノードと第2の電源用端子との間に接続され、入力信号に応答して導通することにより前記容量素子の充電又は放電を行なう第1のMOSトランジスタと、
前記第1のノードの電圧値に応じた出力信号を供給する第1の回路とを有し、
前記第1のMOSトランジスタの基板領域には第1の電圧が供給され、前記第2の電源用端子には前記第1の電圧を安定化した電圧が供給される遅延回路。 - 前記第1のノードと前記第1のMOSトランジスタとの間又は前記第2の電源用端子と前記第1のMOSトランジスタとの間に電流制限素子が接続されている請求項1に記載の遅延回路。
- 前記第1のMOSトランジスタはpチャネルMOSトランジスタであり、前記第1のノードと前記第1の電源用端子との間に前記pチャネルMOSトランジスタと相補的に導通するnチャネルMOSトランジスタが接続されている請求項1又は2に記載の遅延回路。
- 前記第1の電圧は外部から供給される電源電圧であり、前記安定化電圧は内部回路にて前記電源電圧を安定化した前記電源電圧よりも低い電圧である請求項3に記載の遅延回路。
- 前記請求項1、2、3又は4に記載の遅延回路を備える半導体記憶デバイス。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08769997A JP3641345B2 (ja) | 1997-03-21 | 1997-03-21 | 基板バイアス効果を利用した遅延回路 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08769997A JP3641345B2 (ja) | 1997-03-21 | 1997-03-21 | 基板バイアス効果を利用した遅延回路 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10270988A JPH10270988A (ja) | 1998-10-09 |
JP3641345B2 true JP3641345B2 (ja) | 2005-04-20 |
Family
ID=13922179
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP08769997A Expired - Lifetime JP3641345B2 (ja) | 1997-03-21 | 1997-03-21 | 基板バイアス効果を利用した遅延回路 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3641345B2 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4971699B2 (ja) | 2006-06-26 | 2012-07-11 | ルネサスエレクトロニクス株式会社 | 遅延回路 |
KR100955682B1 (ko) * | 2008-04-28 | 2010-05-03 | 주식회사 하이닉스반도체 | 센싱 지연회로 및 이를 이용한 반도체 메모리 장치 |
JP6352042B2 (ja) * | 2013-06-28 | 2018-07-04 | エイブリック株式会社 | 遅延回路、発振回路及び半導体装置 |
CN112383291B (zh) * | 2020-11-10 | 2023-04-28 | 北京智芯微电子科技有限公司 | 数字可控延迟链 |
-
1997
- 1997-03-21 JP JP08769997A patent/JP3641345B2/ja not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH10270988A (ja) | 1998-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100285184B1 (ko) | 승압 회로 및 반도체 기억 장치 | |
US6373321B1 (en) | CMOS semiconductor device | |
US7042245B2 (en) | Low power consumption MIS semiconductor device | |
US6426671B1 (en) | Internal voltage generating circuit | |
US6441669B2 (en) | Internal power-source potential supply circuit, step-up potential generating system, output potential supply circuit, and semiconductor memory | |
JP3874247B2 (ja) | 半導体集積回路装置 | |
KR900004725B1 (ko) | 전원전압 강하회로 | |
US20090102544A1 (en) | Semiconductor device including detector circuit capable of performing high-speed operation | |
JP2001095234A (ja) | 半導体集積回路 | |
US6690226B2 (en) | Substrate electric potential sense circuit and substrate electric potential generator circuit | |
US5825237A (en) | Reference voltage generation circuit | |
JP2005191821A (ja) | コンパレータ回路及び電源回路 | |
US8773195B2 (en) | Semiconductor device having a complementary field effect transistor | |
KR100401392B1 (ko) | 전압조절회로및그방법,조절된전압조절회로및메모리회로 | |
US8791749B2 (en) | Semicondcutor integrated circuit including power generation block and power supply control block | |
US6630717B2 (en) | CMOS semiconductor circuit with reverse bias applied for reduced power consumption | |
JP3641345B2 (ja) | 基板バイアス効果を利用した遅延回路 | |
US8222952B2 (en) | Semiconductor device having a complementary field effect transistor | |
US7763991B2 (en) | Voltage generating circuit | |
US6650152B2 (en) | Intermediate voltage control circuit having reduced power consumption | |
US20020000852A1 (en) | Reset circuit | |
US7230456B2 (en) | Low current consumption detector circuit and applications | |
JP3480309B2 (ja) | 半導体記憶装置 | |
JPH10160768A (ja) | 電圧レベル検出装置 | |
JP2001036013A (ja) | 半導体装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041224 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050118 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050121 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090128 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090128 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100128 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110128 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110128 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120128 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120128 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130128 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140128 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |