[go: up one dir, main page]

JP3630056B2 - Chip-type electronic components and chip-type capacitors - Google Patents

Chip-type electronic components and chip-type capacitors Download PDF

Info

Publication number
JP3630056B2
JP3630056B2 JP2000017427A JP2000017427A JP3630056B2 JP 3630056 B2 JP3630056 B2 JP 3630056B2 JP 2000017427 A JP2000017427 A JP 2000017427A JP 2000017427 A JP2000017427 A JP 2000017427A JP 3630056 B2 JP3630056 B2 JP 3630056B2
Authority
JP
Japan
Prior art keywords
less
thickness
chip
electronic component
sintered metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000017427A
Other languages
Japanese (ja)
Other versions
JP2001210545A (en
Inventor
孝志 野路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18544426&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3630056(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2000017427A priority Critical patent/JP3630056B2/en
Publication of JP2001210545A publication Critical patent/JP2001210545A/en
Application granted granted Critical
Publication of JP3630056B2 publication Critical patent/JP3630056B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/232Terminals electrically connecting two or more layers of a stacked or rolled capacitor
    • H01G4/2325Terminals electrically connecting two or more layers of a stacked or rolled capacitor characterised by the material of the terminals

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Thermistors And Varistors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Ceramic Capacitors (AREA)
  • Non-Adjustable Resistors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば積層コンデンサのようなチップ型電子部品及びチップ型コンデンサに関し、より詳細には、電子部品素体及び電子部品素体の外表面に形成される外部電極が改良されたチップ型電子部品及びチップ型コンデンサに関する。
【0002】
【従来の技術】
近年、電子機器の小型化に伴い、積層コンデンサを始めとする様々なチップ型電子部品では、より一層の小型化が求められている。従来、小型のチップ型積層コンデンサとしては、長さ方向寸法3.2mm×幅方向寸法1.6mm×厚み方向寸法1.25mmのものが広く用いられてきた。この積層コンデンサの構造を図3(a)及び(b)に示す。
【0003】
積層コンデンサ51では、セラミック焼結体52内に、内部電極53a〜53dが形成されている。内部電極53a,53cと電気的に接続されるように、端面52aに外部電極54が形成されている。また、内部電極53b,53dと電気的に接続されるように、端面52bを覆うように外部電極55が形成されている。
【0004】
外部電極54,55は、それぞれ、銀ペーストを塗布し、焼き付けることにより形成された焼結金属層54a,55aと、焼結金属層54a,55a上に湿式メッキにより形成されたNiメッキ層54b,55bと、Snメッキ層54c,55cとを有する。上記寸法の積層コンデンサ51では、銀ペーストが、端面52aまたは52b側から塗布されるが、セラミック焼結体52のエッジ部において厚みが薄くなりがちであった。例えば、図3(a)の円Aを拡大して示す図3(b)から明らかなように、銀ペーストの塗布厚みがエッジ部において相対的に薄くなり、そのため焼結金属層54aの厚みがエッジ部において薄くなりがちであった。すなわち、端面52a,52bと、端面52a,52bに隣接する上面52c、下面52d及び側面とのなすエッジ部において、焼結金属層54a,55aの厚みが薄くなりがちであった。
【0005】
エッジ部において、焼結金属層54a,54bの厚みが薄くなると、プリント回路基板などに実装する際に、焼結金属層54a,54bの半田喰われが生じ易くなる。
【0006】
従って、従来、エッジ部をバレル研磨等により丸め、それによってエッジ部における焼結金属層54a,54bの厚みを増大させることが試みられている。
しかしながら、積層コンデンサ51の小型化が進むにつれて、溶融半田を用いてプリント回路基板などに実装する場合に溶融半田の表面張力によりチップ型積層コンデンサ51が一方の外部電極54,55が上方を向くように起立する、いわゆるツームストーン現象が生じがちとなる。
【0007】
他方、上記のように、セラミック焼結体52のエッジ部を丸めるための研磨量が小さくなると、半田喰われが生じ易くなる。
そこで、積層コンデンサ51では、半田喰われを防止するために、焼結金属層54a,55aの表面にNiメッキ層54b,55bが形成されている。このNiメッキ層54b,55bの厚みは通常1〜2μm程度であり、ほぼ均一な厚みに形成されている。上記半田喰われを防止するには、Niメッキ層の厚みを厚くすることが好ましい。
【0008】
他方、湿式メッキ法により形成されたNiメッキ層54b,55bは、セラミック焼結体52に締め付け応力を与える。従って、半田喰われを防止するために、Niメッキ層54b,55bの厚みを厚くすると、セラミック焼結体52にクラック等が発生しがちとなる。特に、Niメッキ層の厚みを6μmより厚くした場合、上記クラックが生じ易くなることがわかっている。
【0009】
加えて、Niメッキ層54b,55bの厚みを厚くするために、湿式メッキ時に流す電流を大きくすると、Niメッキ層54b,55bの厚みばらつきが生じ易くなる。また、水素が発生するために、Niメッキ層54b,55b表面に、ピットと称されている凹凸が発生し易くなる。
【0010】
他方、厚みが薄くなりがちである上記エッジ部上において、焼結金属層54a,55aを構成するための銀ペースト塗布厚みを厚くした場合には、エッジ部上において外部電極54,55の丸みが大きくなり、やはり前述したツームストーン現象が発生しがちとなる。
【0011】
一般に、電子部品の外部電極では、膜厚が均一であることが求められている。しかしながら、上記外部電極54,55では、焼結金属層54a,55aは、ペースト浸漬法により銀ペーストを塗布することにより形成されることが多い。従って、上記のように、導電ペースト塗布厚みを大きくすると、外部電極54,55のエッジ部上における丸みが大きくなり、ツームストーン現象が発生し易くなる。逆に、導電ペースト塗布厚みを薄くした場合には、エッジ部上においてさらに焼結金属層54a,55aの厚みが薄くなり、半田喰われが発生し易くなる。
【0012】
よって、本発明の目的は、さらに小型化を進めた場合であっても、プリント回路基板などに実装する際のツームストーン現象を確実に防止することができ、かつエッジ部における半田喰われを防止し得るチップ型電子部品及びチップ型コンデンサを提供することにある。
【0013】
【課題を解決するための手段】
本発明に係るチップ型電子部品は、長手方向寸法が略0.6mm以下、幅方向寸法が略0.3mm以下、厚み方向寸法が略0.3mm以下であり、長さ方向両端に位置する第1,第2の端面を有する電子部品素体と、前記電子部品素体の第1,第2の端面を覆い、かつ電子部品素体の端面に隣接する他の面に至る電極被り部を有するように、第1,第2の外部電極が形成されており、各外部電極が、焼結金属層と、焼結金属層上に形成されたNiメッキ層とを備えるチップ型電子部品において、前記長さ方向及び厚み方向と平行であり、幅方向と直交する方向に断面視した場合に、電子部品素体の端面と、隣接する他の面とのエッジ部における前記焼結金属層の最も薄い部分の厚みT1が10μm以下であり、該部分上のNiメッキ層の厚みT2が6μm以下であり、T2>T1×0.25であることを特徴とする。
【0014】
本発明に係るチップ型電子部品の特定の局面では、前記電子部品素体のエッジ部が丸められており、前記断面視した場合のエッジ部の曲率半径が30μm以下であり、上記断面視した場合のエッジ部における焼結金属層の外表面の曲率半径が60μm以下である。
【0015】
本発明に係るチップ型コンデンサは、長手方向寸法が略0.6mm以下、幅方向寸法が略0.3mm以下、厚み方向寸法が略0.3mm以下であり、長さ方向両端に位置する第1,第2の端面を有するコンデンサ素体と、前記コンデンサ素体の第1,第2の端面を覆い、かつコンデンサ素体の端面に隣接する他の面に至る電極被り部を有するように、第1,第2の外部電極が形成されており、各外部電極が、焼結金属層と、焼結金属層上に形成されたNiメッキ層とを備えるチップ型コンデンサにおいて、前記長さ方向及び厚み方向と平行であり、幅方向と直交する方向に断面視した場合に、コンデンサ素体の端面と、隣接する他の面とのエッジ部における前記焼結金属層の最も薄い部分の厚みT1が10μm以下であり、該部分上のNiメッキ層の厚みT2が6μm以下であり、T2>T1×0.25であることを特徴とする。
【0016】
本発明に係るチップ型電子部品及びチップ型コンデンサでは、好ましくは、前記Niメッキ層上に形成されており、かつSn、Pb及びSn−Pbのうち1種からなるメッキ層がさらに備えられる。
【0017】
【発明の実施の形態】
以下、図面を参照しつつ本発明に係るチップ型電子部品及びチップ型コンデンサとしての積層コンデンサを具体的に説明することにより、本発明を明らかにする。
【0018】
図1(a)及び(b)は、本発明の一実施例に係る積層コンデンサの縦断面図及び(a)における円Aを拡大して示す部分切欠拡大断面図である。
積層コンデンサ1は、セラミック焼結体2を用いて構成されている。本実施例では、上記積層コンデンサ1は、長さ方向寸法が略0.6mm以下、幅方向寸法が略0.3mm以下、厚み方向寸法が略0.3mm以下の寸法を有する。なお、長さ方向とは、セラミック焼結体2の対向し合う第1,第2の端面2a,2bを結ぶ方向をいい、厚み方向とは、セラミック焼結体2の上面2cと下面2dとを結ぶ方向をいい、幅方向とは、長さ方向及び幅方向と直交する方向をいうものとする。
【0019】
セラミック焼結体2は、例えばチタン酸バリウム系セラミックスのような誘電体セラミックスにより構成されている。セラミック焼結体2内には、セラミック焼結体層を介して重なり合うように、複数の内部電極3a〜3dが形成されている。内部電極3a,3cは、端面2aに引き出されており、内部電極3b,3dは端面2bに引き出されている。
【0020】
端面2aを覆うように第1の外部電極4が形成されている。第1の外部電極4は、端面2aだけでなく、端面2aに隣接する他の面、すなわち上面2c、下面2d及び一対の側面にも至るように形成されている。この端面2aに隣接している面に至っている外部電極部分を電極被り部4Aとする。
【0021】
第2の端面2bにも、外部電極4と同様に第2の外部電極5が形成されている。第2の外部電極5もまた、電極被り部5Aを有する。
第1,第2の外部電極4,5は、それぞれ、端面2a,2b側から導電ペーストを塗布し、焼き付けることにより形成された焼結金属層4a,5aを有する。焼結金属層を構成するための上記導電ペーストとしては、銀ペースト、銅ペースト、銀−パラジウム合金ペーストなど、適宜の導電性に優れた金属粉末含有導電ペーストを用いることができる。
【0022】
また、焼結金属層4a,5aの外表面には、湿式メッキ法により、半田喰われを防止するためにNiメッキ層4b,5bが形成されている。さらに、最外側表面には、すなわちNiメッキ層4b,5bの外側表面には、同じく湿式メッキ法により、半田付け性を高めるために、Snメッキ層4c,5cが形成されている。
【0023】
上記Niメッキ層4b,5bが、上記のように半田喰われ防止層として機能し、Snメッキ層4c,5cが易半田付け性層として作用する。
なお、本実施例では、易半田付け性層としてSnメッキ膜を形成したが、Snメッキ膜に変えて、Sn−Pb合金メッキ膜やPbメッキ膜など他の半田付け性に優れた材料からなるメッキ膜を形成してもよい。
【0024】
本実施例の積層コンデンサ1の特徴は、長さ方向寸法と厚み方向に平行な断面、すなわち図1に示されている断面において、エッジ部上の焼結金属層4a,5aの最も薄い部分の厚みT1が10μm以下であり、かつNiメッキ層4b,5bの同じくエッジ部上における厚みが6μm以下とされており、T2>T1×0.25とされていることにある。
【0025】
前述したように、積層コンデンサの小型化に伴って、ツームストーン現象が生じ易くなっている。従って、上記ツームストーン現象を抑制するには、セラミック焼結体2のエッジ部、すなわち端面2a,2bと、上面2c、下面2d及び一対の側面とのなす端縁部分を丸める加工量を小さくする必要がある。このエッジ部の加工量を、図1に示した断面、すなわち長さ方向及び厚み方向に平行な断面におけるエッジ部の曲率半径Rに基づき、以下、R量とする。このR量が小さいほど、曲率半径Rが小さく、従って丸みが少なく、R量が大きいほど、エッジ部が大きく丸められていることになる。
【0026】
上記のように、ツームストーン現象を抑制する場合、積層コンデンサ全体、すなわち外部電極4,5を形成した後におけるエッジ部におけるR量を小さくする必要がある。外部電極、特に焼結金属層4a,4bを構成するための導電ペースト塗布厚みが多い場合には、最終的な積層コンデンサ1におけるエッジ部におけるR量が大きくなる。
【0027】
従って、焼結金属層4a,5aを形成するための導電ペーストが、可能なかぎり薄くかつ均一に塗布し、さらにセラミック焼結体2のエッジ部のR量自体も小さくする必要がある。
【0028】
しかしながら、セラミック焼結体2のエッジ部のR量が小さくなると、導電ペーストのエッジ部上の塗布厚みが薄くなり、半田喰われが生じ易くなる。
そこで、本願発明者らは、上記ツームストーン現象の抑制と、半田喰われの防止の双方を果たすために、種々検討した結果、上記のように、略0.6mm以下×略0.3mm以下×略0.3mm以下のセラミック焼結体2を用いた場合、焼結金属層の最も薄い部分の厚みT1を10μm以下とし、Niメッキ層の厚みT2を6μm以下とし、T2>T1×0.25とすればよいことを見い出した。これを、具体的な実験例に基づき説明する。
【0029】
長さ方向寸法が0.57mm、幅方向寸法が0.27mm、厚み方向寸法が0.27mmのセラミック焼結体2を用い、セラミック焼結体2のエッジ部の上記R量を示す曲率半径が20〜25μmである積層コンデンサを種々作製した。この場合、焼結金属層4a,5aの厚みを4μmあるいは6μmとし、Niメッキ層4b,5bの厚みを0.7、1.0、1.5及び2μmと変化させた。
【0030】
上記のようにして得られた各積層コンデンサについて、プリント回路基板上に250℃の温度で60秒間の条件で半田付けを行い、焼結金属層4a,5aの半田喰われ発生率を調査した。結果を下記の表1に示す。
【0031】
【表1】

Figure 0003630056
【0032】
なお、表1において、半田喰われ発生率は、直径5μm以上の半田喰われが存在する場合に半田喰われが発生したものとし、各積層コンデンサ50個あたりの半田喰われ発生率を示す。これまで、焼結金属層の厚み及びNiメッキ層の厚みが厚いほど、焼結金属層に直径5μm以上の半田喰われが生じ難いと考えられていた。
【0033】
しかしながら、このように非常に小さなチップ型積層コンデンサにおいて、導電ペーストをディッピング法により付与する場合、該導電ペーストの塗布厚みを制御するのは非常に難しい。すなわち、同じ導電ペーストを用いる場合、セラミック焼結体2のエッジ部のR量を変化させねばならない。
【0034】
この場合、図2(a)に示すように、R量が非常に小さい場合には、エッジ部において、導電ペースト11の塗布厚みが非常に薄くなる。また、図2(b)に示すように、R量が大き過ぎる場合には、薄い部分の面積が大きくなるため半田喰われが発生し易くなったり、また実装上ではツームストーン等が起き易くなる。
【0035】
これに対して、表1から明らかなように、半田喰われ発生率は、焼結金属層4a,5aの厚みと、Niメッキ層4b,5bの厚みの比によっても変化することがわかる。すなわち、T2>T1×0.25とすれば、半田喰われを効果的に防止し得ることが確かめられた。
【0036】
従って、本実施例のように長さ方向寸法が略0.6mm以下、幅方向寸法が略0.3mm以下、及び厚み方向寸法が0.3mm以下の電子部品素体を用いたチップ型積層コンデンサにおいて、焼結金属層のエッジ部における最も薄い部分の厚みT1を10μm以下、該エッジ部におけるNiメッキ層の厚みをT2を6μm以下とした場合、T2>T1×0.25とすることにより、半田喰われを確実に防止することができる。
【0037】
また、Niメッキ層4b,5bの厚みをT2が6μm以下であるため、セラミック焼結体2のNiメッキ層4b,5bからの締め付け応力によるクラックも生じ難い。さらに、メッキに際しメッキ電流を大きくする必要がないため、Niメッキ層4b,5bの厚みばらつきやピットと称されている凹凸の発生も抑制することができる。
【0038】
加えて、焼結金属層4a,5aの最も薄い部分の厚みT1が10μm以下とされているので、ツームストーンを抑制することができる。
なお、上記積層コンデンサ1において、図1に示した断面から見た場合のエッジ部の曲率半径が30μmを超えると、素体のエッジ部上での外部電極の膜厚を十分に確保し難くなる。また、エッジ部における焼結金属層の外表面の曲率半径が60μmを超えると、上記のような小型のチップ型積層コンデンサ1のツームストーン現象が生じ易くなる。
【0039】
上記実施例では、積層コンデンサについて説明したが、本発明に係るチップ型電子部品は、積層コンデンサだけでなく、長さ方向寸法が略0.6mm以下、幅方向寸法が略0.3mm以下、厚み方向寸法略0.3mm以下の電子部品素体を有し、該電子部品素体の第1,第2の全面を覆うように外部電極が形成されている様々なチップ型電子部品に適用することができる。例えば、チップ型サーミスタ、チップ型抵抗素子、チップ型バリスタなどにも適用することができる。
【0040】
【発明の効果】
本発明に係るチップ型電子部品では、長さ方向寸法が略0.6mm以下、幅方向寸法が略0.3mm以下、及び厚み方向寸法が略0.3mm以下である非常に小さい電子部品素体を用いたチップ型電子部品において、長さ方向及び厚み方向と平行であり、幅方向と直交する方向に断面視した場合に、電子部品素体の端面と、隣接する他の面とのエッジ部における焼結金属層の最も薄い部分の厚みT1が10μm以下であり、該部分上のNiメッキ層の厚みT2が6μmであり、T2>T1×0.25とされているので、ツームストーン現象の発生を抑制し得るとともに、焼結金属層の半田喰われを効果的に抑制することができる。
【0041】
また、特に、上記断面視した場合の電子部品素体のエッジ部の曲率半径が30μm以下であり、エッジ部における焼結金属層の外表面の曲率半径が60μm以下の場合には、外部電極の素体エッジ部上における膜厚を十分な大きさとすることができ、かつツームストーン現象をより確実に抑制することができる。
【0042】
本発明に係るチップ型コンデンサでは、長さ方向寸法が略0.6mm以下、幅方向寸法が略0.3mm以下、及び厚み方向寸法が略0.3mm以下である非常に小さいコンデンサ素体を用いたチップ型コンデンサにおいて、長さ方向及び厚み方向と平行であり、幅方向と直交する方向に断面視した場合に、コンデンサ素体の端面と、隣接する他の面とのエッジ部における焼結金属層の最も薄い部分の厚みT1が10μm以下であり、該部分上のNiメッキ層の厚みT2が6μmであり、T2>T1×0.25とされているので、ツームストーン現象の発生を抑制し得るとともに、焼結金属層の半田喰われを効果的に抑制することができる。
【0043】
また、特に、上記断面視した場合のコンデンサ素体のエッジ部の曲率半径が30μm以下であり、エッジ部における焼結金属層の外表面の曲率半径が60μm以下の場合には、エッジ部上の外部電極の膜厚を十分な大きさとすることができ、かつツームストーン現象をより確実に抑制することができる。
【0044】
本発明において、Niメッキ層上に、Sn、PbまたはSn−Pbからなるメッキ層が形成されている場合には、外部電極の半田付け性が高められる。
【図面の簡単な説明】
【図1】(a)及び(b)は、本発明の一実施例に係るチップ型電子部品としてのチップ型積層コンデンサの縦断面図及び(a)中の円Aで示した部分の拡大断面図。
【図2】(a)及び(b)は、それぞれ、セラミック焼結体のエッジ部のR量が小さい場合及び大きい場合の焼結金属層の膜厚の変化を示す各部分切欠断面図。
【図3】(a)及び(b)は、従来の積層コンデンサの一例を示す縦断面図及び(a)中の円Aで示した部分の拡大図。
【符号の説明】
1…積層コンデンサ
2…セラミック焼結体
2a,2b…第1,第2の端面
2c…上面
2d…下面
3a〜3d…内部電極
4,5…第1,第2の外部電極
4A,5A…電極被り部
4a,5a…焼結金属層
4b,5b…Niメッキ層
4c,5c…Snメッキ層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a chip-type electronic component such as a multilayer capacitor and a chip-type capacitor. More specifically, the present invention relates to a chip-type electronic device in which an electronic component element and an external electrode formed on an outer surface of the electronic component element are improved. The present invention relates to parts and chip capacitors.
[0002]
[Prior art]
In recent years, with the miniaturization of electronic devices, various chip-type electronic components such as multilayer capacitors are required to be further miniaturized. Conventionally, as a small chip-type multilayer capacitor, a capacitor having a length direction dimension of 3.2 mm, a width direction dimension of 1.6 mm, and a thickness direction dimension of 1.25 mm has been widely used. The structure of this multilayer capacitor is shown in FIGS. 3 (a) and 3 (b).
[0003]
In the multilayer capacitor 51, internal electrodes 53 a to 53 d are formed in the ceramic sintered body 52. An external electrode 54 is formed on the end surface 52a so as to be electrically connected to the internal electrodes 53a and 53c. An external electrode 55 is formed so as to cover the end face 52b so as to be electrically connected to the internal electrodes 53b and 53d.
[0004]
The external electrodes 54 and 55 are respectively sintered metal layers 54a and 55a formed by applying and baking a silver paste, and Ni plating layers 54b formed by wet plating on the sintered metal layers 54a and 55a. 55b and Sn plating layers 54c and 55c. In the multilayer capacitor 51 having the above dimensions, the silver paste is applied from the end face 52 a or 52 b side, but the thickness tends to be thin at the edge portion of the ceramic sintered body 52. For example, as apparent from FIG. 3 (b) showing an enlarged circle A in FIG. 3 (a), the coating thickness of the silver paste becomes relatively thin at the edge portion, so that the thickness of the sintered metal layer 54a is reduced. It tends to be thin at the edge. That is, the sintered metal layers 54a and 55a tend to be thin at the edge portions formed by the end surfaces 52a and 52b and the upper surface 52c, the lower surface 52d and the side surfaces adjacent to the end surfaces 52a and 52b.
[0005]
When the thickness of the sintered metal layers 54a and 54b is reduced at the edge portion, the solder metal layers 54a and 54b are easily eroded when mounted on a printed circuit board or the like.
[0006]
Therefore, conventionally, an attempt has been made to round the edge portion by barrel polishing or the like, thereby increasing the thickness of the sintered metal layers 54a and 54b at the edge portion.
However, as the size of the multilayer capacitor 51 increases, the chip-type multilayer capacitor 51 faces one of the external electrodes 54 and 55 upward due to the surface tension of the molten solder when mounted on a printed circuit board or the like using molten solder. So-called tombstone phenomenon tends to occur.
[0007]
On the other hand, as described above, when the polishing amount for rounding the edge portion of the ceramic sintered body 52 becomes small, solder erosion tends to occur.
Therefore, in the multilayer capacitor 51, Ni plating layers 54b and 55b are formed on the surfaces of the sintered metal layers 54a and 55a in order to prevent solder erosion. The thicknesses of the Ni plating layers 54b and 55b are usually about 1 to 2 μm, and are formed to have a substantially uniform thickness. In order to prevent the solder erosion, it is preferable to increase the thickness of the Ni plating layer.
[0008]
On the other hand, the Ni plating layers 54 b and 55 b formed by the wet plating method give a clamping stress to the ceramic sintered body 52. Therefore, if the Ni plating layers 54b and 55b are thickened to prevent solder erosion, cracks or the like tend to occur in the ceramic sintered body 52. In particular, it has been found that when the thickness of the Ni plating layer is greater than 6 μm, the cracks are likely to occur.
[0009]
In addition, if the current passed during wet plating is increased in order to increase the thickness of the Ni plating layers 54b and 55b, thickness variations of the Ni plating layers 54b and 55b are likely to occur. Further, since hydrogen is generated, irregularities called pits are easily generated on the surfaces of the Ni plating layers 54b and 55b.
[0010]
On the other hand, when the thickness of the silver paste applied to form the sintered metal layers 54a and 55a is increased on the edge portion that tends to be thin, the roundness of the external electrodes 54 and 55 is increased on the edge portion. The above-mentioned tombstone phenomenon tends to occur.
[0011]
In general, the external electrode of an electronic component is required to have a uniform film thickness. However, in the external electrodes 54 and 55, the sintered metal layers 54a and 55a are often formed by applying a silver paste by a paste dipping method. Therefore, as described above, when the conductive paste application thickness is increased, the roundness on the edge portions of the external electrodes 54 and 55 is increased, and the tombstone phenomenon is likely to occur. Conversely, when the conductive paste coating thickness is reduced, the thickness of the sintered metal layers 54a and 55a is further reduced on the edge portion, and solder erosion is likely to occur.
[0012]
Therefore, the object of the present invention is to reliably prevent the tombstone phenomenon when mounted on a printed circuit board, etc., even when the size is further reduced, and to prevent solder erosion at the edge portion. An object of the present invention is to provide a chip-type electronic component and a chip-type capacitor.
[0013]
[Means for Solving the Problems]
The chip-type electronic component according to the present invention has a longitudinal dimension of approximately 0.6 mm or less, a width dimension of approximately 0.3 mm or less, and a thickness dimension of approximately 0.3 mm or less. 1. An electronic component element body having first and second end surfaces, and an electrode covering portion that covers the first and second end surfaces of the electronic component element body and reaches another surface adjacent to the end surface of the electronic component element body. As described above, in the chip-type electronic component in which the first and second external electrodes are formed, and each external electrode includes a sintered metal layer and a Ni plating layer formed on the sintered metal layer, When the cross-sectional view is parallel to the length direction and the thickness direction and orthogonal to the width direction, the sintered metal layer is the thinnest at the edge between the end face of the electronic component element body and another adjacent face. The thickness T1 of the portion is 10 μm or less, and the thickness of the Ni plating layer on the portion 2 is a 6μm or less, characterized in that it is a T2> T1 × 0.25.
[0014]
In a specific aspect of the chip-type electronic component according to the present invention, an edge portion of the electronic component element body is rounded, and a curvature radius of the edge portion when viewed in cross section is 30 μm or less, and when viewed in the cross section The curvature radius of the outer surface of the sintered metal layer at the edge portion is 60 μm or less.
[0015]
The chip capacitor according to the present invention has a longitudinal dimension of approximately 0.6 mm or less, a width dimension of approximately 0.3 mm or less, and a thickness dimension of approximately 0.3 mm or less. , A capacitor element body having a second end face, and an electrode covering portion that covers the first and second end faces of the capacitor element body and reaches another face adjacent to the end face of the capacitor element body. In a chip capacitor in which first and second external electrodes are formed, each external electrode including a sintered metal layer and a Ni plating layer formed on the sintered metal layer, the length direction and thickness The thickness T1 of the thinnest portion of the sintered metal layer at the edge portion between the end surface of the capacitor body and the other adjacent surface is 10 μm when viewed in a cross section in a direction perpendicular to the width direction and perpendicular to the width direction. Ni Ni on the part The thickness T2 of the key layer has a 6μm or less, characterized in that it is a T2> T1 × 0.25.
[0016]
In the chip-type electronic component and the chip-type capacitor according to the present invention, preferably, a plating layer formed on the Ni plating layer and made of one of Sn, Pb, and Sn-Pb is further provided.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be clarified by specifically explaining a chip-type electronic component and a multilayer capacitor as a chip-type capacitor according to the present invention with reference to the drawings.
[0018]
1A and 1B are a longitudinal sectional view of a multilayer capacitor according to an embodiment of the present invention and a partially cutaway enlarged sectional view showing an enlarged circle A in FIG.
The multilayer capacitor 1 is configured using a ceramic sintered body 2. In this embodiment, the multilayer capacitor 1 has a length direction dimension of approximately 0.6 mm or less, a width direction dimension of approximately 0.3 mm or less, and a thickness direction dimension of approximately 0.3 mm or less. The length direction refers to the direction connecting the opposing first and second end faces 2a, 2b of the ceramic sintered body 2, and the thickness direction refers to the upper surface 2c and the lower surface 2d of the ceramic sintered body 2. The width direction means a length direction and a direction orthogonal to the width direction.
[0019]
The ceramic sintered body 2 is made of dielectric ceramics such as barium titanate ceramics. In the ceramic sintered body 2, a plurality of internal electrodes 3 a to 3 d are formed so as to overlap with each other via a ceramic sintered body layer. The internal electrodes 3a and 3c are drawn out to the end face 2a, and the internal electrodes 3b and 3d are drawn out to the end face 2b.
[0020]
A first external electrode 4 is formed so as to cover end face 2a. The first external electrode 4 is formed to reach not only the end surface 2a but also other surfaces adjacent to the end surface 2a, that is, the upper surface 2c, the lower surface 2d, and a pair of side surfaces. An external electrode portion reaching the surface adjacent to the end surface 2a is defined as an electrode covering portion 4A.
[0021]
Similarly to the external electrode 4, the second external electrode 5 is formed on the second end surface 2 b. The second external electrode 5 also has an electrode covering portion 5A.
The first and second external electrodes 4 and 5 have sintered metal layers 4a and 5a formed by applying and baking a conductive paste from the end faces 2a and 2b, respectively. As said electrically conductive paste for comprising a sintered metal layer, metal powder containing electrically conductive paste excellent in appropriate electroconductivity, such as a silver paste, a copper paste, and a silver-palladium alloy paste, can be used.
[0022]
Further, Ni plating layers 4b and 5b are formed on the outer surfaces of the sintered metal layers 4a and 5a by wet plating to prevent solder erosion. Furthermore, Sn plating layers 4c and 5c are formed on the outermost surface, that is, on the outer surfaces of the Ni plating layers 4b and 5b, in order to improve solderability by the wet plating method.
[0023]
The Ni plating layers 4b and 5b function as a solder erosion preventing layer as described above, and the Sn plating layers 4c and 5c function as an easy solderability layer.
In this embodiment, the Sn plating film is formed as the easily solderable layer. However, instead of the Sn plating film, the Sn plating film is made of another material having excellent solderability such as an Sn-Pb alloy plating film or a Pb plating film. A plating film may be formed.
[0024]
The feature of the multilayer capacitor 1 of this embodiment is that the thinnest portion of the sintered metal layers 4a and 5a on the edge portion in the cross section parallel to the lengthwise dimension and the thickness direction, that is, the cross section shown in FIG. The thickness T1 is 10 μm or less, and the thickness of the Ni plating layers 4b and 5b is similarly 6 μm or less, and T2> T1 × 0.25.
[0025]
As described above, the tombstone phenomenon tends to occur as the multilayer capacitor becomes smaller. Therefore, in order to suppress the tombstone phenomenon, the processing amount for rounding the edge portions of the ceramic sintered body 2, that is, the end surfaces formed by the end surfaces 2 a and 2 b, the upper surface 2 c, the lower surface 2 d and the pair of side surfaces is reduced. There is a need. Based on the curvature radius R of the edge portion in the cross section shown in FIG. 1, that is, the cross section parallel to the length direction and the thickness direction, the processing amount of the edge portion is hereinafter referred to as R amount. The smaller the amount of R, the smaller the radius of curvature R, and hence the less roundness, and the larger the amount of R, the larger the edge portion is rounded.
[0026]
As described above, in order to suppress the tombstone phenomenon, it is necessary to reduce the R amount at the edge portion after forming the entire multilayer capacitor, that is, the external electrodes 4 and 5. When the thickness of the application paste for forming the external electrodes, particularly the sintered metal layers 4a and 4b is large, the R amount at the edge portion of the final multilayer capacitor 1 becomes large.
[0027]
Therefore, it is necessary to apply the conductive paste for forming the sintered metal layers 4a and 5a as thinly and uniformly as possible, and to reduce the R amount of the edge portion of the ceramic sintered body 2 itself.
[0028]
However, when the R amount at the edge portion of the ceramic sintered body 2 is reduced, the coating thickness on the edge portion of the conductive paste is reduced, and solder erosion is likely to occur.
Therefore, as a result of various studies to achieve both the suppression of the tombstone phenomenon and the prevention of solder erosion, the inventors of the present application, as described above, approximately 0.6 mm or less × approximately 0.3 mm or less × When the ceramic sintered body 2 of about 0.3 mm or less is used, the thickness T1 of the thinnest portion of the sintered metal layer is set to 10 μm or less, the thickness T2 of the Ni plating layer is set to 6 μm or less, and T2> T1 × 0.25. I found what I should do. This will be described based on a specific experimental example.
[0029]
Using a ceramic sintered body 2 having a length direction dimension of 0.57 mm, a width direction dimension of 0.27 mm, and a thickness direction dimension of 0.27 mm, the radius of curvature indicating the R amount of the edge portion of the ceramic sintered body 2 is Various multilayer capacitors having a thickness of 20 to 25 μm were prepared. In this case, the thickness of the sintered metal layers 4a and 5a was 4 μm or 6 μm, and the thickness of the Ni plating layers 4b and 5b was changed to 0.7, 1.0, 1.5 and 2 μm.
[0030]
Each multilayer capacitor obtained as described above was soldered on a printed circuit board at a temperature of 250 ° C. for 60 seconds, and the rate of occurrence of solder erosion of the sintered metal layers 4a and 5a was investigated. The results are shown in Table 1 below.
[0031]
[Table 1]
Figure 0003630056
[0032]
In Table 1, the solder erosion rate indicates the rate of solder erosion per 50 multilayer capacitors, assuming that solder erosion occurred when solder erosion having a diameter of 5 μm or more exists. Until now, it was thought that the larger the thickness of the sintered metal layer and the Ni plating layer, the harder the solder erosion of the diameter of 5 μm or more occurs in the sintered metal layer.
[0033]
However, in such a very small chip type multilayer capacitor, when the conductive paste is applied by the dipping method, it is very difficult to control the coating thickness of the conductive paste. That is, when the same conductive paste is used, the R amount of the edge portion of the ceramic sintered body 2 must be changed.
[0034]
In this case, as shown in FIG. 2A, when the R amount is very small, the coating thickness of the conductive paste 11 is very thin at the edge portion. Further, as shown in FIG. 2B, when the amount of R is too large, the area of the thin portion is increased, so that solder erosion is likely to occur, and tombstones are likely to occur on mounting. .
[0035]
On the other hand, as is apparent from Table 1, it can be seen that the rate of occurrence of solder erosion also varies depending on the ratio of the thickness of the sintered metal layers 4a and 5a and the thickness of the Ni plating layers 4b and 5b. That is, it was confirmed that if T2> T1 × 0.25, solder erosion can be effectively prevented.
[0036]
Therefore, as in this embodiment, a chip type multilayer capacitor using an electronic component body having a length direction dimension of about 0.6 mm or less, a width direction dimension of about 0.3 mm or less, and a thickness direction dimension of 0.3 mm or less. In the case where the thickness T1 of the thinnest portion in the edge portion of the sintered metal layer is 10 μm or less and the thickness of the Ni plating layer in the edge portion is T2 of 6 μm or less, T2> T1 × 0.25, Solder biting can be reliably prevented.
[0037]
Further, since the Ni plating layers 4b and 5b have a thickness T2 of 6 μm or less, cracks due to the clamping stress from the Ni plating layers 4b and 5b of the ceramic sintered body 2 hardly occur. Furthermore, since it is not necessary to increase the plating current during plating, the thickness variations of the Ni plating layers 4b and 5b and the occurrence of unevenness called pits can be suppressed.
[0038]
In addition, since the thickness T1 of the thinnest portion of the sintered metal layers 4a and 5a is 10 μm or less, the tombstone can be suppressed.
In the multilayer capacitor 1, when the curvature radius of the edge portion when viewed from the cross section shown in FIG. 1 exceeds 30 μm, it is difficult to ensure a sufficient film thickness of the external electrode on the edge portion of the element body. . Further, when the radius of curvature of the outer surface of the sintered metal layer at the edge portion exceeds 60 μm, the tombstone phenomenon of the small chip type multilayer capacitor 1 as described above tends to occur.
[0039]
In the above embodiment, the multilayer capacitor has been described. However, the chip-type electronic component according to the present invention is not only a multilayer capacitor, but also has a lengthwise dimension of approximately 0.6 mm or less, a widthwise dimension of approximately 0.3 mm or less, and a thickness. Applied to various chip-type electronic components having an electronic component element having a directional dimension of approximately 0.3 mm or less and having external electrodes formed so as to cover the first and second entire surfaces of the electronic component element. Can do. For example, the present invention can be applied to a chip thermistor, a chip resistor, a chip varistor, and the like.
[0040]
【The invention's effect】
In the chip-type electronic component according to the present invention, a very small electronic component element having a lengthwise dimension of approximately 0.6 mm or less, a widthwise dimension of approximately 0.3 mm or less, and a thicknesswise dimension of approximately 0.3 mm or less. In a chip-type electronic component using the above, when viewed in cross-section in a direction that is parallel to the length direction and the thickness direction and orthogonal to the width direction, an edge portion between the end surface of the electronic component element body and another adjacent surface The thickness T1 of the thinnest portion of the sintered metal layer in FIG. 10 is 10 μm or less, the thickness T2 of the Ni plating layer on the portion is 6 μm, and T2> T1 × 0.25. Generation | occurrence | production can be suppressed and the solder erosion of a sintered metal layer can be suppressed effectively.
[0041]
In particular, when the radius of curvature of the edge portion of the electronic component body in the cross-sectional view is 30 μm or less and the curvature radius of the outer surface of the sintered metal layer at the edge portion is 60 μm or less, the external electrode The film thickness on the element body edge portion can be made sufficiently large, and the tombstone phenomenon can be more reliably suppressed.
[0042]
In the chip type capacitor according to the present invention, a very small capacitor body having a length direction dimension of about 0.6 mm or less, a width direction dimension of about 0.3 mm or less, and a thickness direction dimension of about 0.3 mm or less is used. In the chip type capacitor, the sintered metal at the edge portion between the end face of the capacitor body and the other adjacent face when viewed in a cross-section in the direction parallel to the length direction and the thickness direction and orthogonal to the width direction The thickness T1 of the thinnest part of the layer is 10 μm or less, the thickness T2 of the Ni plating layer on the part is 6 μm, and T2> T1 × 0.25, so that the occurrence of the tombstone phenomenon is suppressed. In addition, it is possible to effectively suppress solder erosion of the sintered metal layer.
[0043]
In particular, when the curvature radius of the edge portion of the capacitor body in the cross-sectional view is 30 μm or less and the curvature radius of the outer surface of the sintered metal layer at the edge portion is 60 μm or less, The film thickness of the external electrode can be made sufficiently large, and the tombstone phenomenon can be more reliably suppressed.
[0044]
In the present invention, when a plating layer made of Sn, Pb or Sn-Pb is formed on the Ni plating layer, the solderability of the external electrode is improved.
[Brief description of the drawings]
1A and 1B are longitudinal sectional views of a chip-type multilayer capacitor as a chip-type electronic component according to an embodiment of the present invention, and an enlarged cross-section of a portion indicated by a circle A in FIG. Figure.
FIGS. 2A and 2B are partial cutaway cross-sectional views showing changes in the thickness of the sintered metal layer when the R amount of the edge portion of the ceramic sintered body is small and large, respectively.
3A and 3B are a longitudinal sectional view showing an example of a conventional multilayer capacitor and an enlarged view of a portion indicated by a circle A in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Multilayer capacitor 2 ... Ceramic sintered compact 2a, 2b ... 1st, 2nd end surface 2c ... Upper surface 2d ... Lower surface 3a-3d ... Internal electrode 4, 5 ... 1st, 2nd external electrode 4A, 5A ... Electrode Cover portions 4a, 5a ... sintered metal layers 4b, 5b ... Ni plating layers 4c, 5c ... Sn plating layers

Claims (5)

長手方向寸法が略0.6mm以下、幅方向寸法が略0.3mm以下、厚み方向寸法が略0.3mm以下であり、長さ方向両端に位置する第1,第2の端面を有する電子部品素体と、
前記電子部品素体の第1,第2の端面を覆い、かつ電子部品素体の端面に隣接する他の面に至る電極被り部を有するように、第1,第2の外部電極が形成されており、各外部電極が、焼結金属層と、焼結金属層上に形成されたNiメッキ層とを備えるチップ型電子部品において、
前記長さ方向及び厚み方向と平行であり、幅方向と直交する方向に断面視した場合に、電子部品素体の端面と、隣接する他の面とのエッジ部における前記焼結金属層の最も薄い部分の厚みT1が10μm以下であり、該部分上のNiメッキ層の厚みT2が6μm以下であり、T2>T1×0.25であることを特徴とする、チップ型電子部品。
Electronic component having first and second end faces having longitudinal dimension of about 0.6 mm or less, width direction dimension of about 0.3 mm or less, thickness direction dimension of about 0.3 mm or less, and located at both ends in the length direction With the body,
First and second external electrodes are formed so as to cover the first and second end faces of the electronic component element body and have electrode cover portions that reach other surfaces adjacent to the end face of the electronic component element body. In each chip-type electronic component, each external electrode includes a sintered metal layer and a Ni plating layer formed on the sintered metal layer.
When viewed in cross-section in a direction perpendicular to the width direction and parallel to the length direction and the thickness direction, the most of the sintered metal layer at the edge portion between the end surface of the electronic component element body and another adjacent surface A chip-type electronic component, wherein the thickness T1 of the thin portion is 10 μm or less, the thickness T2 of the Ni plating layer on the portion is 6 μm or less, and T2> T1 × 0.25.
前記電子部品素体のエッジ部が丸められており、前記断面視した場合のエッジ部の曲率半径が30μm以下であり、上記断面視した場合のエッジ部における焼結金属層の外表面の曲率半径が60μm以下である、請求項1に記載のチップ型電子部品。The edge part of the electronic component body is rounded, the radius of curvature of the edge part when viewed in cross section is 30 μm or less, and the radius of curvature of the outer surface of the sintered metal layer at the edge part when viewed in cross section The chip-type electronic component according to claim 1, wherein is 60 μm or less. 前記Niメッキ層上に形成されており、かつSn、Pb及びSn−Pbのうち1種からなるメッキ層をさらに備える、請求項1または2に記載のチップ型電子部品。3. The chip-type electronic component according to claim 1, further comprising a plating layer formed on the Ni plating layer and made of one of Sn, Pb, and Sn—Pb. 長手方向寸法が略0.6mm以下、幅方向寸法が略0.3mm以下、厚み方向寸法が略0.3mm以下であり、長さ方向両端に位置する第1,第2の端面を有するコンデンサ素体と、
前記コンデンサ素体の第1,第2の端面を覆い、かつコンデンサ素体の端面に隣接する他の面に至る電極被り部を有するように、第1,第2の外部電極が形成されており、各外部電極が、焼結金属層と、焼結金属層上に形成されたNiメッキ層とを備えるチップ型コンデンサにおいて、
前記長さ方向及び厚み方向と平行であり、幅方向と直交する方向に断面視した場合に、コンデンサ素体の端面と、隣接する他の面とのエッジ部における前記焼結金属層の最も薄い部分の厚みT1が10μm以下であり、該部分上のNiメッキ層の厚みT2が6μm以下であり、T2>T1×0.25であることを特徴とする、チップ型コンデンサ。
Capacitor element having a longitudinal dimension of about 0.6 mm or less, a width direction dimension of about 0.3 mm or less, a thickness direction dimension of about 0.3 mm or less, and first and second end faces located at both ends in the length direction. Body,
First and second external electrodes are formed so as to cover the first and second end faces of the capacitor element body and have electrode cover portions that reach other surfaces adjacent to the end face of the capacitor element body. In each of the chip capacitors, each external electrode includes a sintered metal layer and a Ni plating layer formed on the sintered metal layer.
When the cross-sectional view is parallel to the length direction and the thickness direction and orthogonal to the width direction, the sintered metal layer is the thinnest at the edge portion between the end face of the capacitor element body and another adjacent face. A chip capacitor, wherein the thickness T1 of the portion is 10 μm or less, the thickness T2 of the Ni plating layer on the portion is 6 μm or less, and T2> T1 × 0.25.
前記Niメッキ層上に形成されており、かつSn、Pb及びSn−Pbのうち1種からなるメッキ層をさらに備える、請求項4に記載のチップ型コンデンサ。5. The chip capacitor according to claim 4, further comprising a plating layer formed on the Ni plating layer and made of one of Sn, Pb, and Sn—Pb.
JP2000017427A 2000-01-26 2000-01-26 Chip-type electronic components and chip-type capacitors Expired - Lifetime JP3630056B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000017427A JP3630056B2 (en) 2000-01-26 2000-01-26 Chip-type electronic components and chip-type capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000017427A JP3630056B2 (en) 2000-01-26 2000-01-26 Chip-type electronic components and chip-type capacitors

Publications (2)

Publication Number Publication Date
JP2001210545A JP2001210545A (en) 2001-08-03
JP3630056B2 true JP3630056B2 (en) 2005-03-16

Family

ID=18544426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000017427A Expired - Lifetime JP3630056B2 (en) 2000-01-26 2000-01-26 Chip-type electronic components and chip-type capacitors

Country Status (1)

Country Link
JP (1) JP3630056B2 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4106910B2 (en) * 2002-01-15 2008-06-25 松下電器産業株式会社 Chip-type electronic component, manufacturing method thereof, printed circuit board including the same, and mounting method thereof
JP4366931B2 (en) * 2002-12-20 2009-11-18 株式会社村田製作所 Ceramic electronic component and manufacturing method thereof
TWI246095B (en) * 2004-02-27 2005-12-21 Murata Manufacturing Co Multilayer ceramic electronic component and method of manufacturing thereof
JP2006229005A (en) * 2005-02-18 2006-08-31 Tdk Corp Chip-type electronic component
JP2006245049A (en) * 2005-02-28 2006-09-14 Tdk Corp Electronic component and electronic apparatus
JP3861927B1 (en) 2005-07-07 2006-12-27 株式会社村田製作所 Electronic component, electronic component mounting structure, and electronic component manufacturing method
JP4868145B2 (en) * 2006-10-27 2012-02-01 Tdk株式会社 Ceramic electronic component and method for manufacturing the same
KR101099356B1 (en) 2008-01-29 2011-12-26 가부시키가이샤 무라타 세이사쿠쇼 chip-type semiconductor ceramic electronic component
JP2011151197A (en) * 2010-01-21 2011-08-04 Tdk Corp Method of manufacturing chip type electronic component
JP2012004480A (en) * 2010-06-21 2012-01-05 Tdk Corp Method for manufacturing electronic component and electronic component
JP5672162B2 (en) 2010-07-21 2015-02-18 株式会社村田製作所 Electronic components
KR101823149B1 (en) 2011-04-19 2018-01-29 삼성전기주식회사 Multilayer ceramic capacitor
JP5712970B2 (en) * 2011-08-09 2015-05-07 株式会社村田製作所 Thermistor
CN104093888B (en) * 2012-01-23 2016-08-24 株式会社村田制作所 Electronic unit and manufacture method thereof
KR101397835B1 (en) * 2012-07-18 2014-05-20 삼성전기주식회사 Multi-layered ceramic electronic parts and method of manufacturing the same
JP5708586B2 (en) * 2012-07-26 2015-04-30 株式会社村田製作所 Multilayer ceramic electronic component and manufacturing method thereof
KR101434107B1 (en) 2013-07-17 2014-08-25 삼성전기주식회사 Embedded multi-layered ceramic capacitor, method of manufacturing the same and manufacturing method of embedded circuit
JP6388809B2 (en) * 2014-09-17 2018-09-12 太陽誘電株式会社 Ceramic electronic component and method for manufacturing the same
JP6867745B2 (en) * 2015-02-13 2021-05-12 Tdk株式会社 Multilayer capacitor and mounting structure of multilayer capacitor
JP7148239B2 (en) * 2017-12-08 2022-10-05 太陽誘電株式会社 Ceramic electronic component and manufacturing method thereof
US11309481B2 (en) 2018-01-30 2022-04-19 Taiyo Yuden Co., Ltd Multi-layer piezoelectric ceramic component-mounted piezoelectric device
JP6780673B2 (en) * 2018-03-30 2020-11-04 株式会社村田製作所 Multilayer ceramic capacitors and their mounting structure
JP6602925B2 (en) * 2018-08-15 2019-11-06 太陽誘電株式会社 Ceramic electronic component and method for manufacturing the same
US11557432B2 (en) 2019-04-22 2023-01-17 Taiyo Yuden Co., Ltd. Ceramic electronic device, circuit substrate and manufacturing method of ceramic electronic device
JP2021019018A (en) 2019-07-17 2021-02-15 株式会社村田製作所 Multilayer ceramic electronic component and manufacturing method thereof
JP7619763B2 (en) 2020-04-08 2025-01-22 Koa株式会社 Electronic Components
JP7569131B2 (en) 2021-02-03 2024-10-17 太陽誘電株式会社 Ceramic electronic components and their manufacturing method
KR20230087953A (en) * 2021-12-10 2023-06-19 삼성전기주식회사 Multilayer ceramic capacitor

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63299223A (en) * 1987-04-27 1988-12-06 エヌ・イー ケムキヤツト株式会社 Termination compound for capacitor terminal and method of termination
JPH0227607A (en) * 1987-07-16 1990-01-30 Sprague Electric Co Electric nickel plating activator composition, its application and capacitor manufactured by applying it
JPH06196351A (en) * 1992-12-24 1994-07-15 Kyocera Corp Method for manufacturing monolithic ceramic capacitor
JPH0888138A (en) * 1994-09-16 1996-04-02 Murata Mfg Co Ltd Ceramic electronic part
JPH08107038A (en) * 1994-10-06 1996-04-23 Murata Mfg Co Ltd Ceramic electronic component
JPH08130149A (en) * 1994-10-28 1996-05-21 Tokin Corp Layer-built ceramic electronic component
JPH09213560A (en) * 1996-02-01 1997-08-15 Murata Mfg Co Ltd Laminated ceramic electronic component
JPH1022164A (en) * 1996-07-04 1998-01-23 Murata Mfg Co Ltd Ceramic electronic component
JPH10223407A (en) * 1997-02-13 1998-08-21 Mitsubishi Materials Corp Chip thermistor and production thereof
JPH1154368A (en) * 1997-07-30 1999-02-26 Tdk Corp Composite electronic parts and its manufacture
JPH11186092A (en) * 1997-12-25 1999-07-09 Tdk Corp Chip-shaped electronic component
JP2001085262A (en) * 1999-09-09 2001-03-30 Murata Mfg Co Ltd Ceramic electronic component
JP2001339177A (en) * 2000-05-29 2001-12-07 Alps Electric Co Ltd Small-sized electric apparatus
JP2004186602A (en) * 2002-12-05 2004-07-02 Murata Mfg Co Ltd Electronic component
JP2004241661A (en) * 2003-02-06 2004-08-26 Murata Mfg Co Ltd Electronic component, and manufacturing method thereof

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63299223A (en) * 1987-04-27 1988-12-06 エヌ・イー ケムキヤツト株式会社 Termination compound for capacitor terminal and method of termination
JPH0227607A (en) * 1987-07-16 1990-01-30 Sprague Electric Co Electric nickel plating activator composition, its application and capacitor manufactured by applying it
JPH06196351A (en) * 1992-12-24 1994-07-15 Kyocera Corp Method for manufacturing monolithic ceramic capacitor
JPH0888138A (en) * 1994-09-16 1996-04-02 Murata Mfg Co Ltd Ceramic electronic part
JPH08107038A (en) * 1994-10-06 1996-04-23 Murata Mfg Co Ltd Ceramic electronic component
JPH08130149A (en) * 1994-10-28 1996-05-21 Tokin Corp Layer-built ceramic electronic component
JPH09213560A (en) * 1996-02-01 1997-08-15 Murata Mfg Co Ltd Laminated ceramic electronic component
JPH1022164A (en) * 1996-07-04 1998-01-23 Murata Mfg Co Ltd Ceramic electronic component
JPH10223407A (en) * 1997-02-13 1998-08-21 Mitsubishi Materials Corp Chip thermistor and production thereof
JPH1154368A (en) * 1997-07-30 1999-02-26 Tdk Corp Composite electronic parts and its manufacture
JPH11186092A (en) * 1997-12-25 1999-07-09 Tdk Corp Chip-shaped electronic component
JP2001085262A (en) * 1999-09-09 2001-03-30 Murata Mfg Co Ltd Ceramic electronic component
JP2001339177A (en) * 2000-05-29 2001-12-07 Alps Electric Co Ltd Small-sized electric apparatus
JP2004186602A (en) * 2002-12-05 2004-07-02 Murata Mfg Co Ltd Electronic component
JP2004241661A (en) * 2003-02-06 2004-08-26 Murata Mfg Co Ltd Electronic component, and manufacturing method thereof

Also Published As

Publication number Publication date
JP2001210545A (en) 2001-08-03

Similar Documents

Publication Publication Date Title
JP3630056B2 (en) Chip-type electronic components and chip-type capacitors
KR102250458B1 (en) Electronic component
US8508912B2 (en) Capacitor and method for manufacturing the same
KR102443777B1 (en) Chip-type electronic components
KR20170061372A (en) Capacitor and manufacturing method of the same
JP2967660B2 (en) Electronic components
US11222752B2 (en) Ceramic electronic device
JP4339816B2 (en) Electronic components
JP2021015950A (en) Multilayer ceramic capacitor
JP4649847B2 (en) Chip-type electronic components
US12249467B2 (en) Electronic component
JP6965865B2 (en) Ceramic electronic components and manufacturing methods for ceramic electronic components
JP3633805B2 (en) Ceramic electronic components
JP4299292B2 (en) Electronic components
JP3460669B2 (en) Multilayer ceramic electronic components
JP2020174110A (en) Multilayer ceramic electronic component and circuit board
JP2004186602A (en) Electronic component
JPH04257211A (en) Chip type electronic component
US20230260700A1 (en) Multilayer ceramic electronic component
US11810723B2 (en) Ceramic electronic component
JP2025043029A (en) Electronic Components
JP7653799B2 (en) Ceramic electronic component, circuit board, and method for manufacturing ceramic electronic component
JP3460667B2 (en) Multilayer ceramic electronic components
US11158462B2 (en) Multilayer ceramic capacitor and multilayer ceramic capacitor mount structure
JP7468341B2 (en) Electronic Components

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041207

R150 Certificate of patent or registration of utility model

Ref document number: 3630056

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 9

EXPY Cancellation because of completion of term