JP3628406B2 - Biaxially oriented polypropylene film - Google Patents
Biaxially oriented polypropylene film Download PDFInfo
- Publication number
- JP3628406B2 JP3628406B2 JP33071995A JP33071995A JP3628406B2 JP 3628406 B2 JP3628406 B2 JP 3628406B2 JP 33071995 A JP33071995 A JP 33071995A JP 33071995 A JP33071995 A JP 33071995A JP 3628406 B2 JP3628406 B2 JP 3628406B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- fusing
- residual elongation
- flow direction
- polypropylene film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/71—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Bag Frames (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
- Lining Or Joining Of Plastics Or The Like (AREA)
Description
【0001】
【発明が属する技術分野】
本発明は、溶断シール強度に優れ、またシール部の破断までの伸びが大きいため、重量物を包装しても破袋しにくく、一般包装用フィルム、繊維包装用フィルムとして好適に使用できる二軸延伸ポリプロピレンフィルムを提供するものである。
【0002】
【従来の技術】
二軸延伸ポリプロピレンフィルムは、透明性、表面光沢、及び剛性に優れ、包装用素材として広く用いられている。包装用袋を作製する方法の一つに溶断シールという方法がある。この方法は加熱した溶断刃で2枚のフィルムを切断すると同時に接着する方法であるが、二軸延伸ポリプロピレンフィルム(OPP)は無延伸のポリプロピレンフィルム(CPP)に比べ、配向が大きく、フィルム融点も高いため、一般に残留伸度が小さく、耐破袋性に劣る。
【0003】
これらを改良するため、ポリプロピレンを主体とした基材層の表面に低融点の樹脂、たとえば直鎖状低密度ポリエチレン、オレフィン系共重合体樹脂(エチレン含有量3%以上のエチレン−プロピレンランダム共重合体、エチレン−ブテン共重合体等)をフィルム全厚さの30%〜60%の厚みで積層する方法が提案されている(特開平1−195043号公報、特開平3−297643号公報、特開平4−353445号公報)。
【0004】
【発明が解決しようとする課題】
しかしながら、CPPフィルムを用いた場合や、上記の積層フィルムを用いた場合は、溶断シール強度、耐破袋性は向上するが、OPPフィルムの特徴である透明性が低下し、表面光沢、及び剛性も低下してしまう。
【0005】
また、溶断シール強度及び残留伸度を大きくする他の方法として、製膜時にフィルムの流れ方向(以下MD方向とも略す)の延伸倍率を小さくする方法がある。しかし、通常の高結晶性ポリプロピレンを用いた場合、MD方向の延伸倍率を4倍以下にすると延伸ムラが発生し、フィルム外観を低下させてしまう。
【0006】
本発明の目的は、優れた透明性、及び表面光沢、剛性という特長を損なうことなく、溶断シールした場合に耐破袋性に優れるため、一般包装用フィルム、繊維包装用フィルムとして好適に使用できる二軸延伸ポリプロピレンフィルムを提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは、上記問題点を解決するため鋭意研究を重ねた結果、特定のメルトインデックス及び組成をもつ結晶性プロピレン重合体を、特定の条件で加工することにより、満足できる性能を有する二軸延伸ポリプロピレンフィルムが得られることを見い出し、本発明を完成するに至った。
【0008】
すなわち、本発明は、フィルムの流れ方向の溶断シール強度が25〜41N/15mm、残留伸度が下記式(1)及び(2)を満たし、且つフィルムの流れ方向の引張弾性率が1200〜1620N/mm 2 であることを特徴とする二軸延伸ポリプロピレンフィルムを提供するものである。
【0009】
182≧S≧2.3×106/d3 (d≧25) (1)
182≧S≧150 (d<25) (2)
(但し、Sは残留伸度(%)、dはフィルム厚(μm)である。)
また、本発明は上記二軸延伸ポリプロピレンフィルムを得るための好適な製造方法として、メルトインデックスが0.1〜10g/10分、13C−核磁気共鳴吸収法によるアイソタクチックペンタッド分率のmmmm(以下ペンタッド分率とも略す)が0.85〜0.95の結晶性プロピレン重合体よりなるシートを、MD方向に延伸温度140〜160℃の範囲で2〜5倍及び該MD方向に対して直角の方向(以下、TD方向とも略す)に8〜12倍の延伸倍率で延伸することを特徴とする上記二軸延伸ポリプロピレンフィルムの製造方法をも提供するものである。
【0010】
【発明の実施の形態】
本発明の二軸延伸ポリプロピレンフィルムは、フィルムの流れ方向の溶断シール強度が25〜41N/15mm、残留伸度が下記式(1)及び(2)を満たし、且つフィルムの流れ方向の引張弾性率が1200〜1620N/mm 2 であることを特徴とするものである。
【0011】
182≧S≧2.3×106/d3 (d≧25) (1)
182≧S≧150 (d<25) (2)
(但し、Sは残留伸度(%)、dはフィルム厚(μm)である。)
ここでフィルムの流れ方向の溶断シール強度とは、先端角度50度の溶断刃を用い、シール温度400℃、溶断刃の速度75mm/秒で、フィルムの流れ方向に対して直角となるように該溶断刃を当てて溶断シールした場合のシール部の引張破断強度である。
【0012】
また、上記残留伸度は、フィルムの流れ方向にフィルムを引っ張ったとき、引張破断するまでのフィルムの伸び率をいう。そして、本発明の二軸延伸ポリプロピレンフィルムは、該残留伸度が、上記フィルムの厚みに対して一定の範囲にある。例えば、厚さが25μmのフィルムの場合、かかる残留伸度は147%以上であり、後記の実施例等より理解されるように他の条件と共に作用し、溶断シールにより耐破袋性の優れた袋状物を得ることが可能である。
【0013】
前記したように、高い溶断シール強度、残留伸度及び引張弾性率を有し、しかも、二軸延伸ポリプロピレンの優れた特性である高い剛性を有する二軸延伸ポリプロピレンフィルムは、本発明によって初めて提案されたものである。
【0014】
本発明の二軸延伸ポリプロピレンフィルムは、かかる特性を有することにより包装用フィルムとして好適に使用される。即ち、溶断シール強度が25N/15mm以上の強度を有することにより、溶断シールした包装袋に重量物を入れた場合でもシール部が重量による負荷に耐えることができ、破袋を効果的に防止できる。上記溶断シール強度は、破袋を効果的に防止するためには、特に30N/15mm以上のものを選択して使用することが好ましい。
【0015】
また、残留伸度が式(1)及び(2)を満たす伸びを有することにより、内容物を包装袋中に急激に投入した場合でも、衝撃を吸収し、破袋を効果的に防止できる。
【0016】
更に、本発明の二軸延伸ポリプロピレンフィルムは、上記のようにフィルムの流れ方向(MD方向)の引張弾性率が1200N/mm2以上という剛性を備えているため、包装袋用フィルムとして使用した場合、包装機械適性が良好である。また、包装後の皺の発生を効果的に防止できるため、内容物の透視性にも優れ、極めて理想的な包装材料となり得る。
【0017】
上記の引張弾性率は特に1300N/mm2以上のものを選択して使用することが好ましい。
【0018】
本発明の二軸延伸ポリプロピレンフィルムは単層であってもよく、複層であっても良い。複層とする代表的な態様を例示すれば、基材層は後記の結晶性ポリプロピレンを用い、表層には該結晶性ポリプロピレンにアンチブロッキング剤や帯電防止剤等の表面性能を改質する添加剤を混合した樹脂より成る層を形成する態様、基材層は後記の結晶性ポリプロピレンを用い、表層にはヒートシール性の優れた樹脂よりなる層、例えば、ポリエチレン、プロピレン−エチレン共重合体、エチレン−1−ブテン共重合体、エチレン−プロピレン−1−ブテン共重合体、エチレン−プロピレン−ブタジエン共重合体、エチレン−酢酸ビニル共重合体、及びこれらのポリオレフィンを主成分とするブレンド物等よりなる層を本発明の二軸延伸ポリオレフィンフィルムの特性を発揮し得る範囲内の厚みで積層する態様が挙げられる。
【0019】
本発明の二軸延伸ポリプロピレンフィルムは用途に応じ、10〜60μの厚さものが選択される。また、積層フィルムにおいては、表層の樹脂が後記の結晶性ポリプロピレン以外の場合は、フィルムの剛性や透明性が低下しやすいため、該表層の厚みは通常フィルム全厚みの30%未満の厚み、特に15%以下の厚みとすることが好ましい。
【0020】
本発明の二軸延伸ポリプロピレンフィルムの製造方法は特に制限されないが、メルトインデックスが0.1〜10g/10分、13C−核磁気共鳴吸収法によるアイソタクチックペンタッド分率のmmmmが0.85〜0.95の結晶性プロピレン重合体よりなるシートを、MDに2〜5倍及びTDに8〜12倍の延伸倍率で延伸することにより得ることが可能である。
【0021】
ここで言うアイソタクチックペンタッド分率とは、A.ZambelliらによってMacromolecules,13,267(1980)に発表された13C−核磁気共鳴スペクトルのピークの帰属に基づいて定量されたプロピレンユニット5個が連続して等しい立体配置をとる分率である。
【0022】
本発明で用いる結晶性ポリプロピレンは、プロピレン以外のα−オレフィン含有率が1モル%以下の結晶性ポリプロピレンであり、具体的には、ホモポリプロピレンまたはプロピレン以外のα−オレフィン含有率が1モル%以下、好ましくは0.5モル%以下のプロピレン−α−オレフィン共重合体、またはこれらの混合物である。
【0023】
上記のα−オレフィンとしては、たとえば、エチレン、1−ブテン、1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン、1−ノネン、1−デセン、4−メチル−1−ペンテン等を挙げることができる。これらのα−オレフィン含有率が1モル%より大きいと得られる二軸延伸ポリプロピレンフィルムの熱収縮率が大きくなりすぎ、また、剛性や耐熱性も不足するため、本発明のポリプロピレンフィルムは得られない。
【0024】
本発明で用いる結晶性ポリプロピレンは、結晶性の指針であるペンタッド分率がO.85〜0.95、特に0.88〜0.93のものが好適に使用される。ペンタッド分率が0.85より小さいとフィルムの剛性が不足し、また、0.95より大きいと残留伸度が小さくなるため、本発明のポリプロピレンフィルムは得られない。
【0025】
また、本発明で用いる結晶性ポリプロピレンのメルトインデックス(以下MIと略す)は0.1〜10g/10分である。即ち、MIが0.1g/10分より小さいと製膜時の機械負荷が大きくなり、また、10g/10分より大きいと、フィルムの溶断シール強度が低下するので本発明には適していない。
【0026】
また、MIを0.1〜1g/10分とした場合には特に溶断シール強度が高くなる。
【0027】
本発明で用いる結晶性ポリプロピレンには必要に応じて帯電防止剤、滑剤、アンチブロッキング剤等を添加することができる。また、性能を低下させない範囲で、他の樹脂を添加することもできる。他の樹脂としては、上記α−オレフィンの単独重合体、上記α−オレフィン同士の共重合体、石油樹脂等を挙げることができる。
【0028】
本発明の二軸延伸ポリプロピレンフィルムは、上記の結晶性ポリプロピレンの粉体またはペレットをシート状等に溶融押出し、さらに二軸に延伸することによって製造できる。また、積層されたフィルムの場合には、各層を構成する樹脂を共押出してその後二軸に延伸するか、または一層の樹脂を溶融押出して一軸延伸し、その上に他層の樹脂を溶融押出して上記一軸延伸の方向とほぼ直角方向に延伸する方法等が採用される。
【0029】
延伸倍率は、MD方向に2〜5倍、該MD方向に対して直角となるTD方向に8〜12倍に延伸するのが好適である。上記の延伸倍率がMD方向に2倍、TD方向に8倍より小さい場合、得られる二軸延伸ポリプロピレンフィルムの剛性が小さくなり、また、延伸倍率がMD方向に5倍、TD方向にで12倍より大きいと溶断シール強度及び残留伸度が小さくなる。また、MD方向の延伸倍率を3〜4倍とした場合には、特に残留伸度が大きくなり、耐破袋性に優れたフィルムが得られる。
【0030】
また、MD方向およびTD方向への延伸温度は、製膜機械の特性やフィルム厚さによって異なるが、通常MDで140℃〜160℃、TDで160℃〜190℃である。
【0031】
上記MD方向への延伸温度が140℃より低いと残留伸度が小さくなり、本発明の二軸延伸ポリプロピレンを得ることが困難となり、また、160℃より高いとMD方向に延伸したシートがロールに粘着するという問題が生じる。
【0032】
また、上記結晶性ポリプロピレンのMD方向への配向を抑制する温度条件を採用することにより、さらに溶断シール強度及び残留伸度が大きいフィルムを得ることが可能であり、一般には、MD方向の延伸温度を高温に設定して行われる。かかる延伸温度は、例えば150℃〜160℃である。
【0033】
【発明の効果】
本発明の二軸延伸ポリプロピレンフィルムは、上記の説明のように、特定の組成をもつ樹脂を特定条件で延伸加工することにより、溶断シール強度及び残留伸度が大きいため耐破袋性に優れ、また、剛性にも優れるという、従来の二軸延伸ポリプロピレンフィルムでは実現できなかった優れた特性を有する。
【0034】
また、本発明の二軸延伸ポリプロピレンフィルムの製造方法においては、低ペンタッド分率の結晶性ポリプロピレンを原料として用いることにより、溶断部の接着強度を大きくすることができ、結果として残留伸度を大きくすることができる。また、原料自体の伸びも大きく、残留伸度の増大に寄与する。
【0035】
更に、高ペンタッド分率の結晶性ポリプロピレンでは実現できなかった低倍率でのMD方向への延伸が可能となり、残留伸度の増大に寄与するものと考えられる。
【0036】
また、結晶性ポリプロピレン中のプロピレン以外のα−オレフィン含有率を1モル%以下とすることにより、フィルムの剛性を高めることができる他、MDの配向を抑制する高い温度条件下に延伸をすることが可能となり、このことによっても残留伸度を大きくすることができる。
【0037】
残留伸度が大きいことによって溶断シール部に加わるストレスが緩和され、結果として破袋を効果的に防止することができるものと考えられる。
【0038】
また、以上の条件に加え、結晶性ポリプロピレンのMIを小さくすることによって、さらに溶断シール強度を大きくすることができる。この原因は、低MIの結晶性ポリプロピレンほど分子量が大きく、溶断部の溶融による分子の絡みつきが増すものと推定される。
【0039】
本発明の二軸延伸ポリプロピレンフィルムは上記の様な特性を持つため、重量物を包装しても破袋しにくく、一般包装用フィルム、繊維包装用フィルムとして好適に使用することができる。
【0040】
【実施例】
以下、本発明を実施例及び比較例を掲げて説明するが、本発明はこれらの実施例に限定されるものではない。
【0041】
以下の実施例において用いた測定方法について説明する。
【0042】
(1)溶断シール強度及び残留伸度
▲1▼溶断シール
二つ折りにされてMD方向に連続して流れるフィルムを、該流れ方向に対して溶断刃が直角となるように溶断シールを行い両辺に溶断シール部を有し、底辺が折り返しによって構成された溶断シール袋を製造した。溶断シールに使用した溶断シール機は、共栄印刷機械材料株式会社製;PP500型であり、溶断シール条件は下記のように設定した。
【0043】
▲2▼溶断シール強度
上記の▲1▼において溶断シールして得られた溶断シール袋の両側から、溶断シール部を中心に各5片ずつ幅15mm、長さ100mmのサンプルを切り出し、サンプルの両端を引張強度測定機(オートグラフ;島津社製)のチャックで固定した。この場合、サンプルの長さ方向のチャック間隙が40mmになるように調整した。引張速度100mm/minで引張試験を行い、シール部が破断する強度を測定し、平均値を溶断シール強度(N/15mm)とした。
【0044】
▲3▼残留伸度
フィルムのMD方向において、溶断シール部が破断したときの伸び率を下記式によって算出した。
【0045】
S=((s−40)/40)×100
S:残留伸度
s:シール部が破断したときのチャック間隙
(2)メルトインデックス(MI)
JIS−K7210に準じて測定した。
【0046】
(3)ペンタッド分率
日本電子社製のJMX−GSX−270(13C−核共鳴周波数67.8MHz)を用い、次の条件で測定した。
【0047】
測定モード: 1H−完全デカップリング
パルス幅 : 7.0マイクロ秒(C45度)
パルス繰り返し時間: 3秒
積算回数 : 10000回
溶媒 :オルトジクロルベンゼン/重ベンゼンの混合溶媒(90/10容量%)
試料濃度 :120mg/2.5ml溶媒
測定温度 :120℃
この場合、ペンタッド分率は13C−核磁気共鳴スペクトルのメチル基領域における分裂ピークの測定により求めた。また、メチル基領域のピークの帰属は、A.Zambelli et al[Macromolecules 13,267(1980)]によった。
【0048】
(4)フィルム剛性
JIS−K7113に準じ、以下の方法で引張弾性率を測定した。
【0049】
フィルムから幅10mm、長さ100mmのサンプルを切り出し、サンプルの両端を引張強度測定機(オートグラフ;島津社製)のチャックで固定した。この場合、サンプルの長さ方向のチャック間隙が20mmになるように調整した。引張速度20mm/minで引張試験を行い、引張応力−歪み曲線を作成した。
【0050】
引張弾性率は引張応力−歪み曲線の初めの直線部分を用いて、次の式によって計算した。
【0051】
Em=Δδ/Δε
Em:引張弾性率
Δδ:直線上の2点間の、サンプルの元の平均断面積による応力の差
Δε:同じ2点間の歪みの差
(5)透明性
JIS−K6714に準じ、フィルムのヘイズ値を測定した。
【0052】
(6)耐破袋性
▲1▼の方法に準じて、図1に示す幅(MD)14cm,長さ(TD)21cmの溶断シール袋を作製し、これに、同じく図1に示すように300mlの水を入れた後、開口部を粘着テープで縛ってサンプル袋を作製した。サンプル袋の底面を下にして50cmの高さからコンクリートの床に落下させた。サンプル袋は30個作製し、溶断シール部が破れたサンプル数から、次の式によって求めた割合を耐破袋性とした。(溶断シール部以外は破れない。)
R=((30−B)/30)×100
R:耐破袋性(%)
B:溶断シール部が破れたサンプル数
実施例1〜9,比較例1〜7
表1に示したペンタッド分率及びMIの結晶性ホモポリプロピレン100重量部にエルカ酸アミド0.03重量部、ステアリン酸カルシウム0.04重量部、粒径1.5μの球状シリカ0.1重量部を加えて溶融混練した。上記樹脂をT−ダイより押出し、テンター法二軸延伸機を用いて、表1に示した延伸温度、MD方向への倍率で延伸し、さらにTD方向に10倍で延伸して厚さ25μmの延伸フィルムを得た。このフィルムについて、溶断シール強度、残留伸度、引張弾性率、ヘイズ及び耐破袋性を測定し、結果を表1に示した。
【0053】
実施例10
エチレン含有量0.5モル%の結晶性ポリプロピレンを用い、MD方向への延伸倍率を4.0倍にした他は実施例2と同様に行った。結果を表1に示した。
【0054】
実施例11
実施例2と同様な方法で行い、厚さ50μmのフィルムを得た。結果を表1に示した。
【0055】
【表1】
【0056】
実施例12〜15,比較例8,9
表2に示したペンタッド分率及びMIの結晶性ホモポリプロピレン100重量部にエルカ酸アミド0.03重量部、ステアリン酸カルシウム0.04重量部を加えてこれを基材層用の樹脂として用いた。一方、エチレン含有量3%のプロピレン−エチレンランダム共重合体100重量部にエルカ酸アミド0.03重量部、ステアリン酸カルシウム0.04重量部、粒径1.5μの球状シリカ0.1重量部を加えたものを表層用の樹脂として用い、これらの樹脂を溶融混練して3層ダイ及びテンター法二軸延伸機を用いて、表2に示した延伸温度、MD倍率で延伸し、さらにTDに10倍で延伸して26μmの基材層の両面に2μmの表面層が積層されてなる30μmの3層積層フィルムを得た。このフィルムについて、溶断シール強度、残留伸度、引張弾性率、ヘイズ及び耐破袋性を測定し、結果を表2に示した。
【0057】
【表2】
【図面の簡単な説明】
【図1】耐破袋性の試験方法を示す概略図である。[0001]
[Technical field to which the invention belongs]
The present invention is superior in fusing seal strength and has a large elongation until breakage of the seal portion, so that it is difficult to break a bag even if a heavy article is packaged, and can be suitably used as a film for general packaging and a film for fiber packaging. A stretched polypropylene film is provided.
[0002]
[Prior art]
Biaxially stretched polypropylene films are excellent in transparency, surface gloss and rigidity, and are widely used as packaging materials. One method for producing a packaging bag is a fusing seal. This method is a method in which two films are cut and bonded simultaneously with a heated cutting blade, but a biaxially oriented polypropylene film (OPP) has a larger orientation and a film melting point than an unstretched polypropylene film (CPP). Since it is high, the residual elongation is generally small and the bag breaking resistance is poor.
[0003]
In order to improve these, a low melting point resin such as a linear low density polyethylene, an olefin copolymer resin (ethylene-propylene random copolymer having an ethylene content of 3% or more) is formed on the surface of the base material layer mainly composed of polypropylene. A method of laminating a polymer, an ethylene-butene copolymer, etc. at a thickness of 30% to 60% of the total thickness of the film has been proposed (Japanese Patent Laid-Open Nos. 1-195043 and 3-297433, (Kaihei 4-353445).
[0004]
[Problems to be solved by the invention]
However, when a CPP film is used or when the above laminated film is used, the fusing seal strength and the resistance to bag breakage are improved, but the transparency characteristic of the OPP film is reduced, the surface gloss, and the rigidity. Will also decline.
[0005]
As another method for increasing the fusing seal strength and the residual elongation, there is a method for reducing the draw ratio in the film flow direction (hereinafter also referred to as MD direction) during film formation. However, when normal high crystalline polypropylene is used, if the draw ratio in the MD direction is set to 4 times or less, stretching unevenness occurs and the film appearance is deteriorated.
[0006]
The object of the present invention is excellent in bag breaking resistance when melted and sealed without impairing the characteristics of excellent transparency, surface gloss and rigidity, and can be suitably used as a general packaging film and a fiber packaging film. The object is to provide a biaxially oriented polypropylene film.
[0007]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have obtained a satisfactory performance by processing a crystalline propylene polymer having a specific melt index and composition under specific conditions. The inventors have found that an axially stretched polypropylene film can be obtained, and have completed the present invention.
[0008]
That is, according to the present invention, the fusing seal strength in the flow direction of the film is 25 to 41 N / 15 mm, the residual elongation satisfies the following formulas (1) and (2), and the tensile elastic modulus in the flow direction of the film is 1200. there is provided a biaxially oriented polypropylene film, which is a ~1620 N / m m 2.
[0009]
182 ≧ S ≧ 2.3 × 10 6 / d 3 (d ≧ 25) (1)
182 ≧ S ≧ 150 (d <25) (2)
(However, S is the residual elongation (%) and d is the film thickness (μm).)
In addition, the present invention provides a preferable production method for obtaining the above biaxially stretched polypropylene film having a melt index of 0.1 to 10 g / 10 min and an isotactic pentad fraction by 13 C-nuclear magnetic resonance absorption method. A sheet made of a crystalline propylene polymer having a mmmm (hereinafter also abbreviated as a pentad fraction) of 0.85 to 0.95 is 2 to 5 times in the range of a stretching temperature of 140 to 160 ° C. in the MD direction and to the MD direction. Further, the present invention also provides a method for producing the above biaxially stretched polypropylene film, wherein the film is stretched at a stretching ratio of 8 to 12 times in a perpendicular direction (hereinafter also abbreviated as TD direction).
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The biaxially stretched polypropylene film of the present invention has a fusing seal strength in the flow direction of the film of 25 to 41 N / 15 mm, a residual elongation satisfying the following formulas (1) and (2), and a tensile strength in the flow direction of the film. it is characterized in that the elastic modulus is 1200 ~1620 N / m m 2.
[0011]
182 ≧ S ≧ 2.3 × 10 6 / d 3 (d ≧ 25) (1)
182 ≧ S ≧ 150 (d <25) (2)
(However, S is the residual elongation (%) and d is the film thickness (μm).)
Here, the fusing seal strength in the film flow direction means that the fusing blade has a tip angle of 50 degrees, the sealing temperature is 400 ° C., the fusing blade speed is 75 mm / sec, and is perpendicular to the film flow direction. It is the tensile strength at break of the seal part when the fusing blade is applied and fusing is sealed.
[0012]
Moreover, the said residual elongation means the elongation rate of a film until it breaks | pulverizes when a film is pulled in the flow direction of a film. And the biaxially-stretched polypropylene film of this invention has this residual elongation in a fixed range with respect to the thickness of the said film. For example, in the case of a film having a thickness of 25 μm, the residual elongation is 147% or more, and it works together with other conditions as will be understood from the examples and the like described later. A bag-like product can be obtained.
[0013]
As described above, a biaxially stretched polypropylene film having high fusing seal strength, residual elongation and tensile modulus, and having high rigidity, which is an excellent characteristic of biaxially stretched polypropylene, is proposed for the first time by the present invention. It is a thing.
[0014]
The biaxially stretched polypropylene film of the present invention is suitably used as a packaging film by having such properties. That is, by having a fusing seal strength of 25 N / 15 mm or more, even when a heavy article is put in a fusing-sealed packaging bag, the sealing portion can withstand a load due to weight, and bag breakage can be effectively prevented. . In order to effectively prevent bag breakage, it is particularly preferable to select and use a fusing seal strength of 30 N / 15 mm or more.
[0015]
Further, since the residual elongation has an elongation satisfying the expressions (1) and (2), even when the contents are rapidly put into the packaging bag, the impact can be absorbed and the bag breakage can be effectively prevented.
[0016]
Furthermore, since the biaxially stretched polypropylene film of the present invention has the rigidity that the tensile elastic modulus in the film flow direction (MD direction) is 1200 N / mm 2 or more as described above, it is used as a film for packaging bags. Good suitability for packaging machinery. Moreover, since generation | occurrence | production of the wrinkle after packaging can be prevented effectively, it is excellent in the transparency of the content, and can become a very ideal packaging material.
[0017]
In particular, it is preferable to select and use one having a tensile elastic modulus of 1300 N / mm 2 or more.
[0018]
The biaxially stretched polypropylene film of the present invention may be a single layer or a multilayer. As an example of a typical embodiment of a multi-layer, the base layer uses crystalline polypropylene as described later, and the surface layer is an additive that modifies the surface performance of the crystalline polypropylene, such as an antiblocking agent and an antistatic agent. A mode of forming a layer made of a resin mixed with the above, a base layer using crystalline polypropylene described later, and a surface layer made of a resin having excellent heat sealability, such as polyethylene, propylene-ethylene copolymer, ethylene -1-butene copolymer, ethylene-propylene-1-butene copolymer, ethylene-propylene-butadiene copolymer, ethylene-vinyl acetate copolymer, and blends mainly composed of these polyolefins. The aspect which laminates | stacks a layer with the thickness in the range which can exhibit the characteristic of the biaxially stretched polyolefin film of this invention is mentioned.
[0019]
The biaxially stretched polypropylene film of the present invention is selected to have a thickness of 10 to 60 μm depending on the application. In addition, in the laminated film, when the surface layer resin is other than crystalline polypropylene described later, the rigidity and transparency of the film is likely to be lowered, and thus the thickness of the surface layer is usually less than 30% of the total film thickness, particularly The thickness is preferably 15% or less.
[0020]
The production method of the biaxially oriented polypropylene film of the present invention is not particularly limited, but the melt index is 0.1 to 10 g / 10 minutes, and the mmmm of the isotactic pentad fraction by the 13 C-nuclear magnetic resonance absorption method is 0.00. It is possible to obtain a sheet made of 85 to 0.95 crystalline propylene polymer by stretching it at a stretching ratio of 2 to 5 times in MD and 8 to 12 times in TD.
[0021]
The isotactic pentad fraction referred to here is A.I. It is the fraction in which five propylene units quantified based on the assignment of the peak of the 13 C-nuclear magnetic resonance spectrum published in Macromolecules, 13 , 267 (1980) by Zambelli et al.
[0022]
The crystalline polypropylene used in the present invention is a crystalline polypropylene having an α-olefin content other than propylene of 1 mol% or less, specifically, an α-olefin content other than homopolypropylene or propylene is 1 mol% or less. , Preferably 0.5 mol% or less of propylene-α-olefin copolymer, or a mixture thereof.
[0023]
Examples of the α-olefin include ethylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 4-methyl-1-pentene, and the like. be able to. If the α-olefin content is higher than 1 mol%, the resulting biaxially stretched polypropylene film has too high a heat shrinkage rate, and also lacks rigidity and heat resistance, so the polypropylene film of the present invention cannot be obtained. .
[0024]
The crystalline polypropylene used in the present invention has a pentad fraction of O.D. 85-0.95, especially 0.88-0.93 are preferably used. If the pentad fraction is less than 0.85, the rigidity of the film is insufficient, and if it is more than 0.95, the residual elongation becomes small, so that the polypropylene film of the present invention cannot be obtained.
[0025]
The crystalline polypropylene used in the present invention has a melt index (hereinafter abbreviated as MI) of 0.1 to 10 g / 10 min. That is, if the MI is less than 0.1 g / 10 minutes, the mechanical load during film formation becomes large, and if it is more than 10 g / 10 minutes, the fusing seal strength of the film is lowered, so that it is not suitable for the present invention.
[0026]
Moreover, when MI is set to 0.1 to 1 g / 10 minutes, the fusing seal strength is particularly high.
[0027]
If necessary, an antistatic agent, a lubricant, an antiblocking agent, and the like can be added to the crystalline polypropylene used in the present invention. Moreover, other resin can also be added in the range which does not reduce performance. Examples of other resins include homopolymers of the α-olefin, copolymers of the α-olefin, petroleum resins, and the like.
[0028]
The biaxially stretched polypropylene film of the present invention can be produced by melt-extruding the crystalline polypropylene powder or pellets into a sheet or the like, and further stretching biaxially. In the case of laminated films, the resin constituting each layer is coextruded and then biaxially stretched, or one layer of resin is melt extruded and uniaxially stretched, and the other layer of resin is melt extruded. For example, a method of stretching in a direction substantially perpendicular to the direction of the uniaxial stretching is adopted.
[0029]
The draw ratio is preferably 2 to 5 times in the MD direction and 8 to 12 times in the TD direction perpendicular to the MD direction. When the above draw ratio is 2 times in the MD direction and less than 8 times in the TD direction, the resulting biaxially stretched polypropylene film has low rigidity, and the draw ratio is 5 times in the MD direction and 12 times in the TD direction. If it is larger, the fusing seal strength and the residual elongation are reduced. In addition, when the draw ratio in the MD direction is 3 to 4 times, the residual elongation is particularly large, and a film having excellent bag resistance is obtained.
[0030]
Moreover, although the extending | stretching temperature to MD direction and TD direction changes with the characteristics and film thickness of a film forming machine, it is 140 to 160 degreeC normally in MD, and is 160 to 190 degreeC in TD.
[0031]
If the stretching temperature in the MD direction is lower than 140 ° C., the residual elongation becomes small, and it is difficult to obtain the biaxially stretched polypropylene of the present invention, and if it is higher than 160 ° C., the sheet stretched in the MD direction becomes a roll. The problem of sticking occurs.
[0032]
In addition, by adopting a temperature condition that suppresses the orientation of the crystalline polypropylene in the MD direction, it is possible to obtain a film with higher fusing seal strength and residual elongation. Is performed at a high temperature. Such stretching temperature is, for example, 150 ° C. to 160 ° C.
[0033]
【The invention's effect】
As described above, the biaxially stretched polypropylene film of the present invention is excellent in bag-breaking resistance because the fusing seal strength and the residual elongation are large by stretching a resin having a specific composition under specific conditions. Moreover, it has the outstanding characteristic which was not realizable with the conventional biaxially-stretched polypropylene film that it is excellent also in rigidity.
[0034]
Further, in the method for producing a biaxially stretched polypropylene film of the present invention, the adhesive strength of the fusing part can be increased by using crystalline polypropylene having a low pentad fraction as a raw material, resulting in a large residual elongation. can do. Moreover, the elongation of the raw material itself is large, which contributes to an increase in the residual elongation.
[0035]
Furthermore, it becomes possible to stretch in the MD direction at a low magnification, which could not be realized with crystalline polypropylene having a high pentad fraction, and it is considered that this contributes to an increase in the residual elongation.
[0036]
In addition, by setting the content of α-olefin other than propylene in the crystalline polypropylene to 1 mol% or less, the film can be increased in rigidity and stretched under a high temperature condition that suppresses MD orientation. This also makes it possible to increase the residual elongation.
[0037]
It is considered that the stress applied to the fusing seal portion is relieved by the large residual elongation, and as a result, bag breaking can be effectively prevented.
[0038]
In addition to the above conditions, the fusing seal strength can be further increased by reducing the MI of the crystalline polypropylene. The cause is presumed that the lower the MI, the higher the molecular weight, and the greater the molecular entanglement due to melting of the melted part.
[0039]
Since the biaxially stretched polypropylene film of the present invention has the characteristics as described above, it is difficult to break the bag even if a heavy article is packaged, and can be suitably used as a film for general packaging and a film for textile packaging.
[0040]
【Example】
Hereinafter, the present invention will be described with reference to examples and comparative examples, but the present invention is not limited to these examples.
[0041]
The measurement method used in the following examples will be described.
[0042]
(1) Fusing seal strength and residual elongation (1) Fusing seal Folded film is flown continuously in the MD direction, and fusing seal is performed on both sides so that the fusing blade is perpendicular to the flow direction. A fusing seal bag having a fusing seal portion and having a bottom side formed by folding was manufactured. The fusing sealing machine used for fusing sealing was made by Kyoei Printing Machinery Materials Co., Ltd .; PP500 type, and fusing sealing conditions were set as follows.
[0043]
(2) Fusing seal strength Samples of 15 mm in width and 100 mm in length were cut out from both sides of the fusing seal bag obtained by fusing and sealing in (1) above, centering on the fusing seal part, and both ends of the sample. Was fixed with a chuck of a tensile strength measuring machine (Autograph; manufactured by Shimadzu Corporation). In this case, the chuck gap in the sample length direction was adjusted to 40 mm. A tensile test was performed at a pulling speed of 100 mm / min, the strength at which the seal portion was broken was measured, and the average value was taken as the fusing seal strength (N / 15 mm).
[0044]
(3) In the MD direction of the residual elongation film, the elongation percentage when the fusing seal part broke was calculated by the following formula.
[0045]
S = ((s−40) / 40) × 100
S: Residual elongation s: Chuck gap when the seal breaks (2) Melt index (MI)
It measured according to JIS-K7210.
[0046]
(3) Pent fraction The measurement was performed under the following conditions using JMX-GSX-270 ( 13 C-nuclear resonance frequency 67.8 MHz) manufactured by JEOL.
[0047]
Measurement mode: 1 H-complete decoupling pulse width: 7.0 microseconds (C45 degrees)
Pulse repetition time: 3 seconds Cumulative count: 10,000 times Solvent: Mixed solvent of orthodichlorobenzene / heavy benzene (90/10 vol%)
Sample concentration: 120 mg / 2.5 ml Solvent measurement temperature: 120 ° C.
In this case, the pentad fraction was determined by measuring the splitting peak in the methyl group region of the 13 C-nuclear magnetic resonance spectrum. The assignment of the peak in the methyl group region is as follows. According to Zambelli et al [Macromolecules 13 , 267 (1980)].
[0048]
(4) Film rigidity According to JIS-K7113, the tensile modulus was measured by the following method.
[0049]
A sample having a width of 10 mm and a length of 100 mm was cut out from the film, and both ends of the sample were fixed with a chuck of a tensile strength measuring machine (Autograph; manufactured by Shimadzu Corporation). In this case, the chuck gap in the length direction of the sample was adjusted to 20 mm. A tensile test was performed at a tensile speed of 20 mm / min to prepare a tensile stress-strain curve.
[0050]
The tensile modulus was calculated by the following formula using the first linear part of the tensile stress-strain curve.
[0051]
Em = Δδ / Δε
Em: Tensile modulus Δδ: Difference in stress due to the original average cross-sectional area of the sample between two points on the straight line Δε: Difference in strain between the same two points (5) Transparency Haze of the film in accordance with JIS-K6714 The value was measured.
[0052]
(6) Bag-breaking resistance According to the method of (1), a fusing seal bag having a width (MD) of 14 cm and a length (TD) of 21 cm shown in FIG. 1 is prepared, and as shown in FIG. After adding 300 ml of water, the opening was tied with an adhesive tape to prepare a sample bag. The sample bag was dropped from a height of 50 cm onto a concrete floor with the bottom face down. Thirty sample bags were prepared, and the ratio obtained from the following formula from the number of samples in which the fusing seal part was broken was defined as the bag resistance. (It cannot be broken except for the fusing seal.)
R = ((30−B) / 30) × 100
R: Bag breaking resistance (%)
B: Number of samples in which the fusing seal part was broken Examples 1 to 9, Comparative Examples 1 to 7
0.03 part by weight of erucamide, 0.04 part by weight of calcium stearate, and 0.1 part by weight of spherical silica having a particle size of 1.5 μ are added to 100 parts by weight of the crystalline homopolypropylene having the pentad fraction and MI shown in Table 1. In addition, melt kneading was performed. The resin is extruded from a T-die and stretched at a stretching temperature and a magnification in the MD direction shown in Table 1 using a tenter method biaxial stretching machine, and further stretched 10 times in the TD direction to a thickness of 25 μm. A stretched film was obtained. The film was measured for fusing seal strength, residual elongation, tensile elastic modulus, haze and resistance to bag breakage, and the results are shown in Table 1.
[0053]
Example 10
The same procedure as in Example 2 was performed except that crystalline polypropylene having an ethylene content of 0.5 mol% was used and the draw ratio in the MD direction was set to 4.0 times. The results are shown in Table 1.
[0054]
Example 11
A film having a thickness of 50 μm was obtained in the same manner as in Example 2. The results are shown in Table 1.
[0055]
[Table 1]
[0056]
Examples 12 to 15 and Comparative Examples 8 and 9
0.03 part by weight of erucamide and 0.04 part by weight of calcium stearate were added to 100 parts by weight of crystalline homopolypropylene having a pentad fraction and MI shown in Table 2, and this was used as a resin for the base layer. Meanwhile, 0.03 part by weight of erucamide, 0.04 part by weight of calcium stearate, and 0.1 part by weight of spherical silica having a particle size of 1.5 μ were added to 100 parts by weight of a propylene-ethylene random copolymer having an ethylene content of 3%. The added resin is used as a resin for the surface layer, and these resins are melt-kneaded and stretched at the stretching temperature and MD ratio shown in Table 2 using a three-layer die and a tenter method biaxial stretching machine. The film was stretched 10 times to obtain a 30 μm three-layer laminated film in which a 2 μm surface layer was laminated on both sides of a 26 μm base material layer. The film was measured for fusing seal strength, residual elongation, tensile elastic modulus, haze, and pouch resistance, and the results are shown in Table 2.
[0057]
[Table 2]
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a schematic view showing a method for testing bag breaking resistance.
Claims (3)
182≧S≧2.3×106/d3 (d≧25) (1)
182≧S≧150 (d<25) (2)
(但し、Sは残留伸度(%)、dはフィルム厚(μm)である。)The fusing seal strength in the flow direction of the film is 25 to 41 N / 15 mm, the residual elongation satisfies the following formulas (1) and (2), and the tensile elastic modulus in the flow direction of the film is 1200 to 1620 N / mm. biaxially oriented polypropylene film, which is a 2.
182 ≧ S ≧ 2.3 × 10 6 / d 3 (d ≧ 25) (1)
182 ≧ S ≧ 150 (d <25) (2)
(However, S is the residual elongation (%) and d is the film thickness (μm).)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33071995A JP3628406B2 (en) | 1995-12-19 | 1995-12-19 | Biaxially oriented polypropylene film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33071995A JP3628406B2 (en) | 1995-12-19 | 1995-12-19 | Biaxially oriented polypropylene film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09169050A JPH09169050A (en) | 1997-06-30 |
JP3628406B2 true JP3628406B2 (en) | 2005-03-09 |
Family
ID=18235810
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33071995A Expired - Fee Related JP3628406B2 (en) | 1995-12-19 | 1995-12-19 | Biaxially oriented polypropylene film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3628406B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1036587A (en) * | 1996-07-24 | 1998-02-10 | Chisso Corp | Biaxially oriented polypropylene film |
JP2001072815A (en) | 1999-09-07 | 2001-03-21 | Chisso Corp | Propylene resin composition |
US6395071B1 (en) | 1999-10-01 | 2002-05-28 | Chisso Corporation | Breathing film |
JP4578664B2 (en) * | 1999-10-18 | 2010-11-10 | ミサワホーム株式会社 | Plastic film containing wood powder with few surface defects and method for producing the same |
JP2005263256A (en) * | 2004-03-18 | 2005-09-29 | Hosokawa Yoko Co Ltd | Article storing bag |
JP5499505B2 (en) * | 2009-03-27 | 2014-05-21 | 住友ベークライト株式会社 | Freeze vacuum drying packaging bag and freeze vacuum drying method using freeze vacuum drying packaging bag |
JP6548450B2 (en) * | 2015-05-18 | 2019-07-24 | グンゼ株式会社 | Polypropylene-based stretched film and packaging bag |
-
1995
- 1995-12-19 JP JP33071995A patent/JP3628406B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH09169050A (en) | 1997-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2006118030A1 (en) | Heat-sealable multilayer polypropylene resin film and packaging material | |
JP2018079583A (en) | Polypropylene-based stretched sealant film and film laminate using the same | |
KR20220045043A (en) | package | |
KR20080044762A (en) | Packing film | |
JP6898799B2 (en) | Polypropylene-based longitudinally uniaxially stretched film, film laminate, and bag-shaped material | |
JP4429430B2 (en) | Sealant film | |
JP3628406B2 (en) | Biaxially oriented polypropylene film | |
JPS6150974B2 (en) | ||
US20180009205A1 (en) | Multi-layer film | |
WO2015115631A1 (en) | Multi-layer non-oriented polyolefin film | |
JP3934181B2 (en) | Heat-sealable laminated stretched polypropylene film and package | |
JP2017193063A (en) | Tear oriented sealant film and film laminate | |
JP4747538B2 (en) | Heat-sealable laminated polypropylene resin film and package | |
JPH07329260A (en) | Heat sealable stretched laminated film | |
WO2023210278A1 (en) | Sealant film, packaging material, and package | |
EP1858651B1 (en) | Sealable biaxially oriented polypropylene film for packaging | |
JPH08197694A (en) | Laminated film for package | |
JP4239079B2 (en) | Heat-sealable laminated polypropylene resin film and package | |
JP4877062B2 (en) | Coextruded multilayer film and packaging material comprising the film | |
JP4239067B2 (en) | Laminated polypropylene resin film and package using the same | |
JPH08300470A (en) | Biaxially oriented polypropylene film | |
JP2004345185A (en) | Polyolefinic foamed film | |
JPH07232417A (en) | Polyolefin heat-shrinkable laminated film and method for producing the same | |
JP4305734B2 (en) | Polyolefin foam film | |
JPH07241906A (en) | Biaxially stretched polyolefin film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040225 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040520 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040714 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041206 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041208 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071217 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101217 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131217 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |