[go: up one dir, main page]

JP3617741B2 - Receiver for spread spectrum communication - Google Patents

Receiver for spread spectrum communication Download PDF

Info

Publication number
JP3617741B2
JP3617741B2 JP28051096A JP28051096A JP3617741B2 JP 3617741 B2 JP3617741 B2 JP 3617741B2 JP 28051096 A JP28051096 A JP 28051096A JP 28051096 A JP28051096 A JP 28051096A JP 3617741 B2 JP3617741 B2 JP 3617741B2
Authority
JP
Japan
Prior art keywords
correlator
afc
data
integration time
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28051096A
Other languages
Japanese (ja)
Other versions
JPH10126310A (en
Inventor
瀬 拓 永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP28051096A priority Critical patent/JP3617741B2/en
Publication of JPH10126310A publication Critical patent/JPH10126310A/en
Application granted granted Critical
Publication of JP3617741B2 publication Critical patent/JP3617741B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は自動車電話・携帯電話等のディジタル無線通信に用いるスペクトラム拡散通信用受信装置に関する。
【0002】
【従来の技術】
図3は従来のスペクトラム拡散方式携帯電話装置の受信部を示し、受信アンテナ1、低雑音増幅回路2、電圧制御発振器3、直交検波回路4、A/D変換回路5、データ用相関器6、ディジタル同期検波回路7、誤り訂正符号復号回路8、キャリア位相回転検出回路10、平均化回路11、D/A変換回路12、データ用相関器タイミング制御回路13から構成されている。
【0003】
受信アンテナ1で捕らえた受信信号は、低雑音アンプ2で増幅され、電圧制御発信器3からの受信ローカル周波数をもとに直交検波回路4で準同期検波され、ベースバンド信号に周波数変換される。直交検波回路4の出力は、IchとQchとに別々にAD変換器5でディジタル信号に変換され、相関器6で送信時に使用された拡散符号との相関が求められる。相関器6の動作タイミングは、相関器タイミング制御回路13で制御される。相関器6の出力は、ディジタル同期検波回路7に入力されて同期検波され、誤り訂正符号復号回路8で誤り訂正符号の復号が行なわれ、受信データが復調される。相関器6の出力はまた、キャリア位相回転検出回路10に入力されて、電圧制御発振器3で作られる受信ローカル周波数の誤差によるキャリア位相回転の速度が求められ、次いで平均化回路11で時間平均が求められ、D/A変換回路12でアナログ制御電圧に変換されて、電圧制御発振器3の制御電圧入力端子に入力される。このAFC(Automatic Frequecy Control) 制御電圧により、相関器6の出力におけるキャリア位相回転速度が最低になるように、電圧制御発振器3の発振周波数が制御される。
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来のスペクトラム拡散方式携帯電話移動機装置においては、AFCを行うためのキャリア位相回転検出を、データ復調用の相関器6の出力を用いて行っているため、データのシンボルレートが低速なシステムにおいては、データ変調によるキャリア位相角度の変化とキャリア周波数誤差によるキャリア位相回転の識別が困難になり、AFC引き込みが正しく行われなくなるという問題を有し、この問題を避けるためには高精度の水晶発振器を必要とし、部品コストが高くなるという問題を有していた。
【0005】
本発明は、上記従来の問題を解決するもので、水晶発振器の所要精度を緩和し、低コストの優れたスペクトラム拡散通信用受信装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記問題を解決するために本発明は、スペクトラム拡散通信用受信装置において、データ復調用相関器と、このデータ復調相関器とは別系統でかつ電圧制御発振器に帰還させて動作するAFC用相関器と、このAFC用相関器の積分時間を前記データ復調用相関器の積分時間とは異なる長さに設定する制御手段とを設け、電源投入時には前記AFC用相関器の積分時間を前記データ復調用相関器の積分時間よりも短く設定し、AFC引き込み完了後には前記AFC用相関器の積分時間を前記データ復調用相関器の積分時間と等しいか、または前記データ復調用相関器の積分時間よりも長く設定することとしたものである。
これにより、受信装置においてデータシンボルレートによらずAFC引き込み範囲を拡大し、受信装置に用いる水晶発振器の所要精度を緩和することができるという作用を有するとともに、電源投入時にはAFC引き込み範囲の拡大を図り、引き込み完了後にはS/Nを高めることで、AFC制御残差を小さく抑えることができるという作用を有し、ひいては、水晶発振器の所要精度が厳しくない低コストの優れたスペクトラム拡散通信用受信装置が得られる。
【0007】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を用いて説明する。
【0009】
実施の形態1)
図1は本発明の第1の実施の形態におけるスペクトラム拡散通信経受信装置の構成を示し、図3に示した従来例と同様な要素には同様な符号を付してある。図1において、1は受信アンテナ、2は低雑音増幅回路、3は電圧制御発振器、4は直交検波回路、5はA/D変換回路、6はデータ用相関器、7はディジタル同期検波回路、8は誤り訂正符号復号回路、9はAFC用相関器、10はキャリア位相回転検出回路、11は平均化回路、12はD/A変換回路、13はデータ用相関器タイミング制御回路、14はAFC用相関器タイミング制御回路である。
【0010】
以上のように構成されたスペクトラム拡散通信用受信装置について、以下その動作を説明する。受信アンテナ1で捕らえられた受信信号は、低雑音アンプ2で増幅され、直交検波回路4で準同期検波され、ベースバンド信号に周波数変換される。直交検波回路4の出力は、Ich,Qch別々にAD変換器5でディジタル信号に変換され、データ用相関器6で送信時に使用された拡散符号との相関が求められ、ディジタル同期検波回路7で同期検波され、誤り訂正符号復号回路8で誤り訂正符号の復号が行われて、受信データが復調される。データ用相関器6の動作タイミングは、相関器タイミング制御回路13で制御される。一方、AFC用相関器9でも、送信時に使用された拡散符号との相関が求められ、キャリア位相回転検出回路10で電圧制御発振器3で作られる受信ローカル周波数の誤差によるキャリア位相回転の速度が求められ、平均化回路11で時間平均が求められ、D/A変換回路12でアナログ制御電圧に変換され、電圧制御発振器3の制御電圧入力端子に入力される。このAFC制御電圧により、データ用相関器6の出力におけるキャリア位相回転速度が最低になるように、電圧制御発振器3の発振周波数が制御される。なお、AFC用の相関器9の動作タイミングは、相関器タイミング制御回路14で制御される。
【0011】
ここでキャリア位相回転検出回路10の動作を説明する。データ変調がQPSK変調の場合、準同期検波された受信信号は、I,Q平面上の90度ずつ離れた4点に現れる。これらの点をデータシンボル毎に90度の整数倍の角度で回転させ、常に同じ象限の点に集まるように操作する。この操作を行うと、受信ローカル信号の周波数が送信機の搬送波周波数と等しい場合には、完全に1点に重なるが、受信ローカル周波数に誤差がある場合には、1シンボル時間毎のキャリア位相回転の分だけずれた角度で重なることになる。このずれの角度がデータ変調による位相の変化に比べて小さければ、このずれの角度から1シンボル当たりの位相回転角度を求めることができ、受信ローカル信号の周波数誤差を計算することが可能である。このことから同じキャリア周波数では、データシンボル速度が小さいほど正しい誤差周波数を検出できる範囲が狭くなることが分かる。しかし、データ用相関器6の積分時間は、データ変調のシンボル時間と等くなければならないが、AFC用相関器9の積分時間は、必ずしもデータ変調シンボル時間と同じである必要はなく、データ変調シンボル時間よりも短い積分時間とすることも可能である。これにより、キャリア位相回転検出回路10における位相回転速度検出範囲を広げることが可能である。ただし、この場合拡散符号の部分相関を利用することになるので、拡散符号には部分相関特性の優れた符号を使用する。なおデータ変調がBPSKの場合は、同期検波された受信信号はI,Q平面上の180度ずつ離れた2点に現れる。これらの点をデータシンボル毎に180度の整数倍の角度で回転させ、常に同じ象限の点に集まるように操作する。それ以降の処理はQPSK変調の場合と同様である。
【0012】
以上のように、本発明の実施の形態1によれば、データ復調とは別系統のAFC用相関器9を持ち、AFC用相関器9の積分時間をデータ復調用相関器6の積分時間とは異なる長さに設定する相関器タイミング制御回路14を備えることにより、水晶発振器の所要精度を緩和し、低コストの優れたスペクトラム拡散通信用受信装置を実現することができる。
【0013】
(実施の形態2)
図2は本発明の第2の実施の形態におけるスペクトラム拡散通信用受信装置の構成を示し、図1と同様な要素には同様な符号を付してある。図2において、1は受信アンテナ、2は低雑音増幅回路、3は電圧制御発振器、4は直交検波回路、5はA/D変換回路、6はデータ用相関器、7はディジタル同期検波回路、8は誤り訂正符号復号回路、9はAFC用相関器、10Aはキャリア位相回転検出回路、11は平均化回路、12はD/A変換回路、13はデータ用相関器タイミング制御回路、14AはAFC用相関器タイミング制御回路である。
【0014】
以上のように構成されたスペクトラム拡散通信用受信装置について、以下その動作を説明する。受信アンテナ1で捕らえられた受信信号は、低雑音アンプ2で増幅され、直交検波回路4で準同期検波されベースバンド信号に周波数変換される。直交検波回路4の出力は、Ich,Qch別々にA/D変換器5でディジタル信号に変換され、データ用相関器6で送信時に使用された拡散符号との相関が求められ、ディジタル同期検波回路7で同期検波され、誤り訂正符号復号回路8で誤り訂正符号の復号が行われて、受信データが復調される。データ用相関器6の動作タイミングは、相関器タイミング制御回路13で制御される。一方、AFC用相関器9でも、送信時に使用された拡散符号との相関が求められ、キャリア位相回転検出回路10Aで受信ローカル周波数の誤差によるキャリア位相回転の速度が求められ、平均化回路11で時間平均が求められ、D/A変換回路12でアナログ制御電圧に変化され、電圧制御発振器3の制御電圧入力端子に入力される。このAFC制御電圧により、データ用相関器6の出力におけるキャリア位相回転速度が最低になるように電圧制御発振器3の発振周波数が制御される。なお、AFC用相関器9の動作タイミングは、相関器タイミング制御回路14Aで制御され、初期状態ではAFC用相関器9の積分時間をデータ用相関器6の積分時間よりも短く設定し、AFC引き込み範囲が広くなるようにする。そして、キャリア位相回転検出回路10Aから、誤差周波数が設定値よりも小さくなったことを示すAFC引き込み完了フラグが出力され、AFC用相関器タイミング制御回路14Aに入力される。AFC用相関器タイミング制御回路14Aは、AFC引き込み完了フラグを受け取ると、AFC用相関器9の積分時間を長く設定し、これにより誤差周波数の検出範囲を狭くする代わりに、長時間積分することによる雑音の抑圧効果を高める。
【0015】
以上のように、本発明の実施の形態2によれば、電源投入時にはAFC用相関器9の積分時間をデータ復調用相関器6の積分時間よりも短く設定し、AFC引き込み完了後には、AFC用相関器9の積分時間をデータ復調用相関器6の積分時間よりも長く設定する相関器タイミング制御回路14Aを設けることにより、電源投入時にはAFC引き込み範囲の拡大を図り、引き込み完了後にはS/Nを高めることで、AFC制御残差を小さく抑えることができる。
【0016】
【発明の効果】
以上のように、本発明は、データ復調用相関器と、このデータ復調相関器とは別系統でかつ電圧制御発振器に帰還させて動作するAFC用相関器と、このAFC用相関器の積分時間を前記データ復調用相関器の積分時間とは異なる長さに設定する制御手段とを備え、電源投入時には前記AFC用相関器の積分時間を前記データ復調用相関器の積分時間よりも短く設定し、AFC引き込み完了後には前記AFC用相関器の積分時間を前記データ復調用相関器の積分時間と等しいか、または前記データ復調用相関器の積分時間よりも長く設定することを特徴とするスペクトラム拡散通信用受信装置としたので、受信装置においてデータシンボルレートによらずAFC引き込み範囲を拡大し、受信装置に用いる水晶発振器の所要精度を緩和することができるとともに、電源投入時にはAFC引き込み範囲の拡大を図り、引き込み完了後にはS/Nを高めることで、AFC制御残差を小さく抑えることができ、ひいては、水晶発振器の所要精度が厳しくない低コストの優れたスペクトラム拡散通信用受信装置を実現することができるという効果が得られる。
【図面の簡単な説明】
【図1】本発明の実施の形態1におけるスペクトラム拡散通信用受信装置の概略ブロック図
【図2】本発明の実施の形態2におけるスペクトラム拡散通信用受信装置の概略ブロック図
【図3】従来のスペクトラム拡散通信用受信装置の概略ブロック図
【符号の説明】
1 受信アンテナ
2 低雑音増幅回路
3 電圧制御発振器
4 直交検波回路
5 A/D変換回路
6 データ用相関器
7 ディジタル同期検波回路
8 誤り訂正符号復号回路
9 AFC用相関器
10、10A キャリア位相回転検出回路
11 平均化回路
12 D/A変換回路
13 データ用の相関器タイミング制御回路
14、14A AFC用の相関器タイミング制御回路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a receiver for spread spectrum communication used for digital wireless communication such as a car phone and a cellular phone.
[0002]
[Prior art]
FIG. 3 shows a receiving section of a conventional spread spectrum mobile phone device, which includes a receiving antenna 1, a low noise amplifier circuit 2, a voltage controlled oscillator 3, an orthogonal detection circuit 4, an A / D conversion circuit 5, a data correlator 6, It comprises a digital synchronous detection circuit 7, an error correction code decoding circuit 8, a carrier phase rotation detection circuit 10, an averaging circuit 11, a D / A conversion circuit 12, and a data correlator timing control circuit 13.
[0003]
The reception signal captured by the reception antenna 1 is amplified by the low noise amplifier 2, is quasi-synchronously detected by the quadrature detection circuit 4 based on the reception local frequency from the voltage control oscillator 3, and is converted into a baseband signal. . The output of the quadrature detection circuit 4 is converted into a digital signal by the AD converter 5 separately for Ich and Qch, and a correlation with the spreading code used at the time of transmission is obtained by the correlator 6. The operation timing of the correlator 6 is controlled by the correlator timing control circuit 13. The output of the correlator 6 is input to the digital synchronous detection circuit 7 for synchronous detection, and the error correction code decoding circuit 8 decodes the error correction code, and the received data is demodulated. The output of the correlator 6 is also input to the carrier phase rotation detection circuit 10 to determine the speed of the carrier phase rotation due to the error of the reception local frequency generated by the voltage controlled oscillator 3, and then the time average is calculated by the averaging circuit 11. It is obtained, converted into an analog control voltage by the D / A conversion circuit 12, and input to the control voltage input terminal of the voltage controlled oscillator 3. The oscillation frequency of the voltage controlled oscillator 3 is controlled by this AFC (Automatic Frequency Control) control voltage so that the carrier phase rotation speed at the output of the correlator 6 becomes the lowest.
[0004]
[Problems to be solved by the invention]
However, in the conventional spread spectrum mobile phone apparatus, since the carrier phase rotation detection for AFC is performed using the output of the correlator 6 for data demodulation, the data symbol rate is low. In such a system, it is difficult to distinguish between carrier phase angle change due to data modulation and carrier phase rotation due to carrier frequency error, and AFC pull-in is not performed correctly. To avoid this problem, high accuracy is required. The crystal oscillator is required, and the parts cost is high.
[0005]
SUMMARY OF THE INVENTION The present invention solves the above-described conventional problems, and an object of the present invention is to provide a receiver for spread spectrum communication that reduces the required accuracy of a crystal oscillator and is excellent in low cost.
[0006]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides a data demodulation correlator and an AFC correlator operating in a separate system from the data demodulation correlator and fed back to a voltage controlled oscillator in a spread spectrum communication receiver. If the integration time of the AFC for the correlator is provided a control means for setting a length different from the integration time of the data demodulation correlator, for the data demodulation integration time of the correlator for the AFC at power The integration time of the correlator is set to be shorter than that of the correlator, and after the AFC pull-in is completed, the integration time of the AFC correlator is equal to the integration time of the data demodulation correlator or shorter than the integration time of the data demodulation correlator. It is supposed to be set longer.
As a result, the AFC pull-in range can be expanded regardless of the data symbol rate in the receiving device, and the required accuracy of the crystal oscillator used in the receiving device can be relaxed. At the same time, the AFC pull-in range can be expanded when the power is turned on. In addition, it is possible to suppress the AFC control residual by increasing the S / N after completion of the pull-in, so that the required accuracy of the crystal oscillator is not strict and the low-cost excellent receiver for spread spectrum communication Is obtained.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0009]
( Embodiment 1)
FIG. 1 shows the configuration of a spread spectrum communication transceiving apparatus according to the first embodiment of the present invention. Elements similar to those of the conventional example shown in FIG. In FIG. 1, 1 is a receiving antenna, 2 is a low noise amplifier circuit, 3 is a voltage controlled oscillator, 4 is a quadrature detection circuit, 5 is an A / D conversion circuit, 6 is a correlator for data, 7 is a digital synchronous detection circuit, 8 is an error correction code decoding circuit, 9 is an AFC correlator, 10 is a carrier phase rotation detection circuit, 11 is an averaging circuit, 12 is a D / A conversion circuit, 13 is a data correlator timing control circuit, and 14 is an AFC. Correlator timing control circuit.
[0010]
The operation of the spread spectrum communication receiving apparatus configured as described above will be described below. The reception signal captured by the reception antenna 1 is amplified by the low noise amplifier 2, quasi-synchronously detected by the quadrature detection circuit 4, and frequency-converted to a baseband signal. The output of the quadrature detection circuit 4 is converted into a digital signal by the AD converter 5 separately for Ich and Qch, and a correlation with the spreading code used at the time of transmission is obtained by the data correlator 6. Synchronous detection is performed, the error correction code decoding circuit 8 decodes the error correction code, and the received data is demodulated. The operation timing of the data correlator 6 is controlled by the correlator timing control circuit 13. On the other hand, the AFC correlator 9 also obtains the correlation with the spreading code used at the time of transmission, and obtains the carrier phase rotation speed due to the error of the reception local frequency generated by the voltage controlled oscillator 3 in the carrier phase rotation detection circuit 10. The time average is obtained by the averaging circuit 11, converted to an analog control voltage by the D / A conversion circuit 12, and input to the control voltage input terminal of the voltage controlled oscillator 3. With this AFC control voltage, the oscillation frequency of the voltage controlled oscillator 3 is controlled so that the carrier phase rotation speed at the output of the data correlator 6 is minimized. The operation timing of the AFC correlator 9 is controlled by the correlator timing control circuit 14.
[0011]
Here, the operation of the carrier phase rotation detection circuit 10 will be described. When the data modulation is QPSK modulation, the received signal subjected to quasi-synchronous detection appears at four points separated by 90 degrees on the I and Q planes. These points are rotated by an integer multiple of 90 degrees for each data symbol, and operation is performed so that the points always gather in the same quadrant. When this operation is performed, when the frequency of the received local signal is equal to the carrier frequency of the transmitter, it completely overlaps with one point, but when there is an error in the received local frequency, the carrier phase is rotated every symbol time. Will overlap at an angle shifted by. If this shift angle is smaller than the phase change due to data modulation, the phase rotation angle per symbol can be obtained from this shift angle, and the frequency error of the received local signal can be calculated. From this, it can be seen that, at the same carrier frequency, the range in which the correct error frequency can be detected becomes narrower as the data symbol rate decreases. However, the integration time of the data correlator 6 must be equal to the data modulation symbol time, but the integration time of the AFC correlator 9 is not necessarily the same as the data modulation symbol time. It is also possible to set the integration time shorter than the symbol time. Thereby, the phase rotation speed detection range in the carrier phase rotation detection circuit 10 can be expanded. However, in this case, since the partial correlation of the spreading code is used, a code having excellent partial correlation characteristics is used as the spreading code. When the data modulation is BPSK, the synchronously detected received signal appears at two points separated by 180 degrees on the I and Q planes. These points are rotated by an integer multiple of 180 degrees for each data symbol, and operation is performed so that the points always gather in the same quadrant. The subsequent processing is the same as in the case of QPSK modulation.
[0012]
As described above, according to the first embodiment of the present invention, the AFC correlator 9 is provided separately from the data demodulation, and the integration time of the AFC correlator 9 is set as the integration time of the data demodulation correlator 6. By providing the correlator timing control circuit 14 set to different lengths , the required accuracy of the crystal oscillator can be relaxed, and a low-cost and excellent spread spectrum communication receiver can be realized.
[0013]
(Embodiment 2)
FIG. 2 shows the configuration of a spread spectrum communication receiving apparatus according to the second embodiment of the present invention. Elements similar to those in FIG. In FIG. 2, 1 is a receiving antenna, 2 is a low noise amplifier circuit, 3 is a voltage controlled oscillator, 4 is a quadrature detection circuit, 5 is an A / D conversion circuit, 6 is a data correlator, 7 is a digital synchronous detection circuit, 8 is an error correction code decoding circuit, 9 is an AFC correlator, 10A is a carrier phase rotation detection circuit, 11 is an averaging circuit, 12 is a D / A conversion circuit, 13 is a data correlator timing control circuit, and 14A is an AFC. Correlator timing control circuit.
[0014]
The operation of the spread spectrum communication receiving apparatus configured as described above will be described below. The reception signal captured by the reception antenna 1 is amplified by the low noise amplifier 2, is quasi-synchronously detected by the quadrature detection circuit 4, and is frequency-converted into a baseband signal. The output of the quadrature detection circuit 4 is converted into a digital signal by the A / D converter 5 separately for Ich and Qch, and the correlation with the spreading code used at the time of transmission is obtained by the data correlator 6. 7 is synchronously detected, and the error correction code decoding circuit 8 decodes the error correction code, and the received data is demodulated. The operation timing of the data correlator 6 is controlled by the correlator timing control circuit 13. On the other hand, the AFC correlator 9 also obtains the correlation with the spread code used at the time of transmission, the carrier phase rotation detection circuit 10A obtains the speed of the carrier phase rotation due to the error of the reception local frequency, and the averaging circuit 11 A time average is obtained, converted to an analog control voltage by the D / A conversion circuit 12, and input to the control voltage input terminal of the voltage controlled oscillator 3. With this AFC control voltage, the oscillation frequency of the voltage controlled oscillator 3 is controlled so that the carrier phase rotation speed at the output of the data correlator 6 is minimized. The operation timing of the AFC correlator 9 is controlled by the correlator timing control circuit 14A. In the initial state, the integration time of the AFC correlator 9 is set to be shorter than the integration time of the data correlator 6, and AFC pull-in is performed. Try to increase the range. Then, an AFC pull-in completion flag indicating that the error frequency has become smaller than the set value is output from the carrier phase rotation detection circuit 10A, and is input to the AFC correlator timing control circuit 14A. When the AFC correlator timing control circuit 14A receives the AFC pull-in completion flag, it sets the integration time of the AFC correlator 9 to be long, thereby integrating for a long time instead of narrowing the detection range of the error frequency. Increase noise suppression effect.
[0015]
As described above, according to the second embodiment of the present invention, the integration time of the AFC correlator 9 is set to be shorter than the integration time of the data demodulation correlator 6 when the power is turned on. By providing a correlator timing control circuit 14A that sets the integration time of the correlator 9 for use longer than the integration time of the correlator 6 for data demodulation, the AFC pull-in range is expanded when the power is turned on. By increasing N, the AFC control residual can be kept small.
[0016]
【The invention's effect】
As described above, the present invention includes a data demodulation correlator, and AFC correlator that operates by feedback to another system a and the voltage controlled oscillator and the data demodulation correlator integration time of the AFC correlators the and control means for setting a length that is different from the data integration time of the demodulation correlator, the integration time of the correlator for the AFC is set shorter than the integration time of the data demodulation correlator when the power is turned on After the AFC pull-in is completed, the spread time of the AFC correlator is set to be equal to or longer than the integration time of the data demodulation correlator. Since it is a communication receiver, the AFC pull-in range is expanded regardless of the data symbol rate in the receiver, and the required accuracy of the crystal oscillator used in the receiver is reduced. It is possible, work to expand AFC pull-in range at the time of power-on, after retraction completion to increase the S / N, it is possible to reduce the AFC control error, therefore, the cost required accuracy of the crystal oscillator is not severe An effect is achieved that an excellent spread spectrum communication receiver can be realized.
[Brief description of the drawings]
FIG. 1 is a schematic block diagram of a spread spectrum communication receiver in Embodiment 1 of the present invention. FIG. 2 is a schematic block diagram of a spread spectrum communication receiver in Embodiment 2 of the present invention. Schematic block diagram of receiver for spread spectrum communication [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Reception antenna 2 Low noise amplifier circuit 3 Voltage control oscillator 4 Quadrature detection circuit 5 A / D conversion circuit 6 Data correlator 7 Digital synchronous detection circuit 8 Error correction code decoding circuit 9 AFC correlator 10, 10A Carrier phase rotation detection Circuit 11 Averaging circuit 12 D / A conversion circuit 13 Correlator timing control circuit 14 for data, 14A Correlator timing control circuit for AFC

Claims (1)

データ復調相関器と、このデータ復調相関器とは別系統でかつ電圧制御発振器に帰還させて動作するAFC用相関器と、このAFC用相関器の積分時間を前記データ復調用相関器の積分時間とは異なる長さに設定する制御手段を備え
電源投入時には前記AFC用相関器の積分時間を前記データ復調用相関器の積分時間よりも短く設定し、AFC引き込み完了後には前記AFC用相関器の積分時間を前記データ復調用相関器の積分時間と等しいか、または前記データ復調用相関器の積分時間よりも長く設定することを特徴とするスペクトラム拡散通信用受信装置。
A data demodulation correlator, and AFC correlator operating is fed back to another system a and the voltage controlled oscillator and the data demodulation correlators integrates the integral time of the AFC correlators of the data demodulation correlator time and control means for setting a different length to,
When the power is turned on, the integration time of the AFC correlator is set shorter than the integration time of the data demodulation correlator, and after the AFC pull-in is completed, the integration time of the AFC correlator is set to the integration time of the data demodulation correlator. It is set equal to or longer than the integration time of the data demodulating correlator .
JP28051096A 1996-10-23 1996-10-23 Receiver for spread spectrum communication Expired - Fee Related JP3617741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28051096A JP3617741B2 (en) 1996-10-23 1996-10-23 Receiver for spread spectrum communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28051096A JP3617741B2 (en) 1996-10-23 1996-10-23 Receiver for spread spectrum communication

Publications (2)

Publication Number Publication Date
JPH10126310A JPH10126310A (en) 1998-05-15
JP3617741B2 true JP3617741B2 (en) 2005-02-09

Family

ID=17626109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28051096A Expired - Fee Related JP3617741B2 (en) 1996-10-23 1996-10-23 Receiver for spread spectrum communication

Country Status (1)

Country Link
JP (1) JP3617741B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3031355B1 (en) * 1998-10-01 2000-04-10 日本電気株式会社 Mobile station and AFC control method in mobile station
JP3397238B2 (en) * 1998-10-01 2003-04-14 日本電気株式会社 Mobile station and AFC control method in mobile station
JP2001016135A (en) 1999-06-29 2001-01-19 Nec Corp Method and system for automatically controlling frequency and cdma receiver
JP3297654B2 (en) * 1999-07-06 2002-07-02 松下電器産業株式会社 CDMA radio receiving apparatus and CDMA radio receiving method
JP3323464B2 (en) * 1999-11-30 2002-09-09 松下電器産業株式会社 CDMA radio receiving apparatus and CDMA radio receiving method
US8064414B2 (en) 2005-12-13 2011-11-22 Qualcomm, Incorporated Range extension techniques for a wireless local area network

Also Published As

Publication number Publication date
JPH10126310A (en) 1998-05-15

Similar Documents

Publication Publication Date Title
US5694417A (en) Short burst direct acquisition direct sequence spread spectrum receiver
US8238858B2 (en) Communication device, multi-band receiver, and receiver
JP2741336B2 (en) Frequency error correction device for spread spectrum signal receiver
US5712870A (en) Packet header generation and detection circuitry
US6510187B2 (en) Mobile radio terminal and automatic frequency control circuit
KR100308513B1 (en) Method for performing automatic frequency control in mobile station during in speech communication mode
JP3617741B2 (en) Receiver for spread spectrum communication
JP3763947B2 (en) Spread spectrum receiver and automatic gain control circuit of spread spectrum receiver
US20030185317A1 (en) Frequency error correction unit and method in a wireless LAN system
US6556619B2 (en) Frequency adjusting circuit in code division multiple access communication system
KR960701521A (en) Wireless Transceiver Circuits and Methods
JP3445186B2 (en) CDMA receiver
US10491264B1 (en) Combined demodulator and despreader
US20250007769A1 (en) Non-coherent dsss demodulator with fast signal arrival detection and improved timing and frequency offset estimation
JP4366847B2 (en) Semiconductor device and portable terminal device
JP4053957B2 (en) Wireless communication receiver
KR100357858B1 (en) A advanced frequency shift keying(fsk) rf signal tx/rx apparatus
EP1303068A1 (en) Radio communication terminal and demodulation method
JP4053956B2 (en) Wireless communication transmitter
JPH09298492A (en) AFC circuit
JPH10126322A (en) Method and device for communication, method and device for diversity control, and storage medium
Cirineo et al. Standard Interoperable Datalink System, Engineering Development Model
Tirkel et al. A Novel Synchronization Scheme for Spread Spectrum Radio Communications
KR970008943A (en) Short burst direct acquisition Direct sequential frequency spreading receiver
JP2000004185A (en) Spread spectrum communication system and its receiver, and synchronism holding means for spread spectrum communication

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041104

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees