[go: up one dir, main page]

JP3615817B2 - Method for manufacturing organic electroluminescence element - Google Patents

Method for manufacturing organic electroluminescence element Download PDF

Info

Publication number
JP3615817B2
JP3615817B2 JP02563295A JP2563295A JP3615817B2 JP 3615817 B2 JP3615817 B2 JP 3615817B2 JP 02563295 A JP02563295 A JP 02563295A JP 2563295 A JP2563295 A JP 2563295A JP 3615817 B2 JP3615817 B2 JP 3615817B2
Authority
JP
Japan
Prior art keywords
film
organic
cathode
polyurea
forming chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02563295A
Other languages
Japanese (ja)
Other versions
JPH08222368A (en
Inventor
禎之 浮島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP02563295A priority Critical patent/JP3615817B2/en
Publication of JPH08222368A publication Critical patent/JPH08222368A/en
Application granted granted Critical
Publication of JP3615817B2 publication Critical patent/JP3615817B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Electroluminescent Light Sources (AREA)

Description

【0001】
【産業上の利用分野】
本発明は有機エレクトロルミネッセンス素子の製造方法に関する。
【0002】
【従来の技術】
従来、この種の有機エレクトロルミネッセンス素子(以下有機EL素子という)としては、
1. 陽極(金属)/正孔輸送層/発光層/陰極(金属)
2. 陽極/発光層/電子輸送層/陰極
3. 陽極/正孔輸送層/発光層/電子輸送層/陰極
4. 陽極/発光層/陰極
のような積層型の有機EL素子が知られている。
【0003】
そして、積層型の有機EL素子としては、特開平3-274693号公報で「発光層材料もしくは電荷注入層材料としてエレクトロルミネッセンスの発光層機能、電荷輸送機能及び電荷注入機能の少なくとも一つを有する膜厚0.5μm以下の重合体薄膜を用いた有機薄膜エレクトロルミネッセンス素子」が開示されており、また、特開平6-243966号公報で「基板上に形成された有機EL素子において、該有機EL素子の有機薄膜が原料モノマーの蒸着重合法で形成された高分子膜またはオリゴマー膜から成る発光層である有機EL素子」が開示されている。
【0004】
そして、発光層、電子輸送層等の有機化合物膜はスピンコート、ディッピング等の湿式法、或いは真空蒸着法で薄膜化され、その発光特性について種々研究されている。
【0005】
現在駆動電圧が10V以下で数万cd/m2の輝度を有する有機EL素子が開発され、発光特性としては実用化レベルに達している。
【0006】
しかし、素子駆動時の劣化が著しく、陰極の腐食や有機化合物の結晶化等を引き起こすことが問題となっている。
【0007】
そこで、これらの問題を解決するための手段として、陰極の酸化を保護するための材料の研究が進められており、例えば、MgO、CaO等の酸化金属、或いは無定形シリカ等の材料が知られている。
【0008】
MgO、CaO等の酸化金属を用いて保護し、更にEL素子全体を封止する方法としては、特開平5-89959号公報で「互いに対向する2つの電極間に蛍光性の有機固体からなる発光層が少なくとも介在してなる積層構造体を有する有機EL素子の前記積層構造体の外表面に、電気絶縁性無機化合物からなる保護層を設けた後、この保護層の外側に、電気絶縁性ガラス、電気絶縁性高分子化合物および電気絶縁性気密流体からなる群より選択される1つからなるシールド層を設けた有機EL素子の封止方法」が開示されている。
【0009】
また、無定形シリカを用いて保護する方法としては、特開平5-335080号公報で「少なくとも一方が透明である陽極と陰極の間に少なくとも一種類の有機化合物を含む電界発光物質層を設けた有機薄膜電界発光素子に無定形シリカ保護層を形成した電界発光素子」が開示されている。
【0010】
【発明が解決しようとする課題】
前記従来の有機EL素子の陰極材料としては、電子がより容易に注入出来るように、仕事関数の小さい金属が用いられており、リチウムのようなアルカリ金属、或いはマグネシウム、カルシウムのようなアルカリ土類金属が効果的であるとされている。
【0011】
しかし、これらアルカリ金属、アルカリ土類金属は活性なために、経時的に大気中の水分や酸素と反応して、陰極としての性能を著しく劣化させるという問題がある。
【0012】
また、前記特開平5-89959号公報で開示されている有機EL素子の封止方法の場合は、MgOの蒸発温度が600℃と高いために蒸着粒子による熱ダメージで有機層が劣化したり、基板温度を200〜300℃にしないと緻密なMgO膜が出来ないという問題がある。
【0013】
また、前記特開平5-335080号公報で開示されている電界発光素子の場合は、モノクロロシランを用いたRFプラズマCVD法で作製するために装置コストが高いという問題がある。
【0014】
本発明は、前記問題点を解消し、陰極の不安定性がなく、長寿命の有機エレクトロルミネッセンス素子の製造方法を提供することを目的とする。
【0015】
【課題を解決するための手段】
【0016
本発明の有機エレクトロルミネッセンス素子の製造方法は、真空中でポリ尿素原料モノマーを蒸発させ、これを基板上に陽極、有機化合物膜、陰極で構成された有機エレクトロルミネッセンス素子の陰極上で蒸着重合させて、ポリ尿素膜を形成した後、引き続き真空雰囲気中において、該ポリ尿素膜に紫外線照射で架橋させてポリ尿素保護膜を形成することを特徴とする。
【0017
また、前記有機化合物膜を少なくとも発光層を備えた膜としてもよい。
【0018
また、前記ポリ尿素原料モノマーはジアミンモノマーと、ジイソシアナートモノマーとしてもよい。
【0019
【作用】
真空中でポリ尿素原料モノマーを蒸発させると原料モノマーは基板上に構成された陰極上に蒸着し、蒸着した保護膜の原料モノマーは重合してポリ尿素膜を形成する。
【0020
陰極上に形成されたポリ尿素膜は低分子量のオリゴマー膜であるため、紫外線を照射することにより架橋し、網目構造状の高分子化したポリ尿素膜となり、耐水性、耐熱性、耐久性の優れた保護膜となる。
【0021
【実施例】
先ず、有機EL素子の構造について説明する。
該有機EL素子の構造としては、陽極(ITO)/発光層/陰極のような有機化合物膜が発光層(高分子膜或いはオリゴマー膜から成る)のみの単層構造の場合、陽極/正孔輸送層/発光層/陰極、または陽極/発光層/電子輸送層/陰極のような有機化合物膜が正孔輸送層と発光層、或いは発光層と電子輸送層の2層構造の場合、陽極/正孔輸送層/発光層/電子輸送層/陰極の3層構造の場合がある。
【0022
ここで、有機化合物膜の正孔輸送層としては、例えばN,N′−ジフェニル−N,N′−ビス(3−メチルフェニル)1,1′−ビフェニル4,4′−ジアミン(以下TPDという)に代表される正孔輸送能を持つ低分子色素を蒸着法により形成した薄膜や正孔輸送性の分子構造を有する高分子膜(ポリアミド、ポリイミド、ポリアゾメチン等)を蒸着重合法により形成した薄膜が用いられ、また正孔輸送性の低分子色素を高分子薄膜中に蒸着分散させたものでもよい。
【0023
また、発光層としては、例えば8−オキシキノリノアルミニウム錯体(以下Alq3という)に代表される発光性色素を蒸着法により形成した薄膜やスチルベン、オキサジアゾール等の共役系構造を有する高分子膜(ポリ尿素、ポリイミド、ポリオキサジアゾール等)を蒸着重合法により形成した薄膜が用いられ、また発光性色素を高分子薄膜中に蒸着分散させたものでもよい。
【0024
更に、電子輸送層としては、例えばAlq3やオキサジアゾール誘導体の蒸着薄膜が用いられ、またアントラキノジメタン誘導体、ジフェニルキノン誘導体の薄膜も用いることが出来る。
【0025
次に、本発明の具体的実施例について説明する。
【0026
図1は本発明の2層構造の有機EL素子の構造を示すもので、有機EL素子1は、例えば無アルカリガラスから成る基板2、例えばITO膜から成る陽極3、正孔輸送層(または発光層)4、発光層(または電子輸送層)5、例えばMg−Ag合金から成る陰極6は、ポリ尿素保護膜7、Agから成る取出電極8で構成されている。
図2は本発明の有機EL素子を製造するために用いる装置の1例を示すものであり、陽極形成装置は含まないものである。図中、11は酸素プラズマ処理室、12は正孔輸送層、発光層、電子輸送層等の有機化合物膜の成膜室、13は陰極形成室、14は保護膜形成室、15は紫外線処理室を示す。そして酸素プラズマ処理室11、成膜室12、陰極形成室13、保護膜形成室14、紫外線処理室15の各室間を開閉自在のゲートバルブ16で仕切るようにすると共に、各室内に基板2を搬送するトレー式の搬送系17を配設した。
【0027
酸素プラズマ処理室11内を真空ポンプ等の真空排気系18に接続すると共に、酸素プラズマ処理室11内にはITO膜にプラズマ処理を施す銅製のRF電極19を配設した。
【0028
成膜室12内を真空ポンプ等の真空排気系20に接続し、成膜室12内の下方の一方にTPD、Alq3等の色素原料Tをその周囲に巻回したヒーター21(a、b)で所定温度に加熱し、蒸発させるアルミナ製の色素蒸発源22(a、b)を2個並設すると共に、成膜室12内の下方の他方に蒸着重合高分子膜の原料モノマーU、Vを赤外線ランプ23で所定温度に加熱し、蒸発させるガラス製または金属製の有機物蒸発源24、25を配設し、成膜室12内の上方に色素蒸発源22、蒸発源24、25に対向させて有機化合物膜を成膜すべき基板2を配設すると共に、基板2の裏面側に基板2上に成膜された高分子膜を加熱するシースヒーター26を配設した。
【0029
また、基板2と色素蒸発源22(a、b)との間にシャッター27(a、b)を、また基板2と有機物蒸発源24、25との間にシャッター28を夫々配設した。また、有機物蒸発源24、25内に夫々熱電対29、30を配設した。
【0030
陰極形成室13内を真空ポンプ等の真空排気系31に接続し、陰極形成室13内の下方の一方に陰極4の一方の原料W(原料WはMg)をその周囲を巻回したヒーター32で所定温度に加熱し、蒸発させるアルミナ製の陰極材料蒸発源33を配設すると共に、陰極形成室13内の下方の他方に陰極4の他方の原料X(原料XはAg)を所定温度に加熱し、蒸発させるタングステン製またはモリブデン製のボートから成る陰極材料蒸発源34を配設した。
【0031
また、基板2と陰極材料蒸発源33との間にシャッター35を、また基板2と陰極材料蒸発源34との間にシャッター36を夫々配設した。
【0032
保護膜形成室14内を真空ポンプ等の真空排気系37に接続し、保護膜形成室14内の下方にポリ尿素膜の原料モノマーY、Z(原料Yはジアミンモノマー、原料モノマーZはジイソシアナートモノマー)を赤外線ヒーター38で所定温度に加熱し、蒸発させるガラス製または金属製の保護膜蒸発源39、40を配設した。
【0033
また、基板2と保護膜蒸発源39、40との間にシャッター41を夫々配設した。また、基板2近傍に保護膜の水晶振動式膜厚モニター42を配設した。また、保護膜蒸発源39、40内に夫々熱電対43、44を配設した。
【0034
紫外線処理室15内を真空ポンプ等の真空排気系45に接続し、紫外線処理室15内に紫外線を照射して低分子のポリ尿素を架橋し、高分子化させてポリ尿素保護膜とする紫外線ランプ46を配設した。
【0035
尚、図中、47は有機物蒸発源24、25間に設けた仕切り板、48は保護膜蒸発源39、40間に設けた仕切り板を夫々示す。
【0036
次に図2に示す装置を用いて図1に示す有機EL素子の製造例を比較例とともに説明する。
【0037
実施例1
本実施例は正孔輸送層をTPD膜とし、発光層をAlq3膜とし、その成膜を成膜室12内の蒸発源を2個の並設せる色素蒸発源22(a、b)を用いて行うこととした。
【0038
先ず、イソプロパノール中で煮沸洗浄した縦100mm×横100mm×厚さ1.1mmガラス基板(平岡特殊硝子株式会社、商品名コーニング7059)2上に1000Å(0.1μm)のITO(In2O3-10wt%SnO2)膜をスパッタリング法により形成した。
【0039
次に、各室間のゲートバルブ16を閉じた状態で基板2を酸素プラズマ処理室11内に仕込み、搬送系17に取付けた後、酸素プラズマ処理室11内を真空排気系18により圧力6.65Pa(0.05Torr)を維持した状態でRF電極19により50Wで、酸素ガス分圧1.33Pa(0.01Torr)で、基板2に酸素プラズマ処理を施した。
【0040
酸素プラズマ処理室11と成膜室12との間のゲートバルブ16を開き、酸素プラズマ処理を施した基板2を成膜室12内に搬送系17で搬送した後、酸素プラズマ処理室11と成膜室12との間のゲートバルブ16を閉じた。
【0041
そして、成膜室12内を真空排気系20により圧力6.65×10-4Pa(5×10-6Torr)を維持した状態でヒーター21aで色素蒸発源22a内の色素原料TのTPDを220℃に加熱し、所定の蒸発レートに設定した後、シャッター27aの開閉操作によりTPDを蒸発させて基板2のITO膜3上に正孔輸送層4として膜厚500Å(0.05μm)のTPDを堆積した。
【0042
続いて、TPDの正孔輸送層4の形成と同様にヒーター21bで色素蒸発源22b内の色素原料TのAlq3を250℃に加熱し、所定の蒸発レートを設定した後、シャッター27bの開閉操作によりAlq3を蒸発させて正孔輸送層4上に発光層5として膜厚500Å(0.05μm)のAlq3を堆積した。
【0043
次に、成膜室12と陰極形成室13との間のゲートバルブ16を開き、正孔輸送層4と発光層5を成膜した基板2を陰極形成室13内に搬送系17で搬送した後、成膜室12と陰極形成室13との間のゲートバルブ16を閉じた。
【0044
そして、陰極形成室13内を真空排気系31により圧力1.33×10-4Pa(1×10-6Torr)を維持した状態で、ヒーター32で蒸発源33内のMgを450〜480℃に加熱すると共に、蒸発源34内のAgを650〜700℃に加熱し、Mg:Ag=10:1の原子比になるように夫々の蒸発レートを設定後、シャッター35並びにシャッター36の開閉操作によりMgとAgを蒸発させて発光層5上に膜厚2000Å(0.2μm)のMg−Agから成る陰極6を堆積した。
【0045
次に、陰極形成室13と保護膜形成室14との間のゲートバルブ16を開き、陰極6を形成した基板2を保護膜形成室14内に搬送系17で搬送した後、陰極形成室13と保護膜形成室14との間のゲートバルブ16を閉じた。
【0046
そして、保護膜形成室14内を真空排気系37により圧力1.33×10-3Pa(1×10-5Torr)を維持した状態で、蒸発源39内の原料モノマーY(4,4′−ジアミノジフェニルメタン:以下MDAという)の温度を熱電対43で測定しながらヒーター38で100℃に加熱すると共に、蒸発源40内の原料モノマーZ(4,4′−ジフェニルメタンジイソシアナート:以下MDIという)の温度を熱電対44で測定しながらヒーター38で70℃に加熱し、MDA:MDIのモノマー組成比が1:1なるように夫々の蒸発レートを設定後、シャッター41の開閉操作によりMDAとMDIを蒸発させて、膜厚モニター42により陰極6上に300Å(0.03μm)/分の析出速度で膜厚10000Å(1μm)に堆積させた後、陰極6上で重合させてポリ尿素膜を形成した。
【0047
次に、保護膜形成室14と紫外線処理室15との間のゲートバルブ16を開き、ポリ尿素膜を形成した基板2を紫外線処理室15内に搬送系17で搬送した後、保護膜形成室14と紫外線処理室15との間のゲートバルブ16を閉じた。
【0048
そして、紫外線処理室15内を真空排気系45により圧力0.67Pa(5×10-3Torr)を維持した状態で、紫外線ランプ46より中心波長254nm、10Wの光(紫外線)をポリ尿素膜に30分間照射して、図1に示す2層構造のポリ尿素保護膜7を備える有機EL素子1を作成した。
【0049
次に、紫外線処理室15内より有機EL素子1を取り出した。
【0050
この有機EL素子1へ7VのDC電圧を印加したところ緑色の発光が確認された。
また、この有機EL素子1に定電流密度10mA/cm2、初期輝度600cd/m2、大気中の条件下で駆動させ、経時変化を調べたところ、1000時間後に330cd/m2の面状発光を保っていた。
この時、TPDの結晶化に伴うダークスポットが観察された以外は、素子の劣化は見られなかった。
【0051
比較例1
前記実施例1に準じてポリ尿素保護膜なしの有機EL素子を作成し、この有機EL素子に前記実施例1と同様の条件で駆動させたところ、48時間後にMgAg電極の劣化により消光した。
【0052
実施例2
本実施例は発光層をポリオキサジアゾール膜とし、電子輸送層をAlq3膜とし、その成膜を成膜室12内の蒸発源24、25と、色素蒸発源22bを用いて行うこととした。
【0053
先ず、イソプロパノール中で煮沸洗浄した縦100mm×横100mm×厚さ1.1mmガラス基板(平岡特殊硝子株式会社、商品名コーニング7059)2上に1000Å(0.1μm)のITO(In2O3-10wt%SnO2)膜をスパッタリング法により形成した。
【0054
次に、各室間のゲートバルブ16を閉じた状態で基板2を酸素プラズマ処理室11内に仕込み、搬送系17に取付けた後、酸素プラズマ処理室11内を真空排気系18により圧力6.65Pa(0.05Torr)を維持した状態でRF電極19により50Wで、酸素ガス分圧1.33Pa(0.01Torr)で、基板2に酸素プラズマ処理を施した。
【0055
酸素プラズマ処理室11と成膜室12との間のゲートバルブ16を開き、酸素プラズマ処理を施した基板2を成膜室12内に搬送系17で搬送した後、酸素プラズマ処理室11と成膜室12との間のゲートバルブ16を閉じた。
【0056
そして、成膜室12内を真空排気系20により圧力1.33×10-3Pa(1×10-5Torr)を維持した状態で、蒸発源24内の原料モノマーU(5−ジフェニルアミノ−1,3−ジカルボニルクロライドベンゼン:以下TPA−3.5DCという)の温度を熱電対29で測定しながらヒーター23で108℃に加熱すると共に、蒸発源25内の原料モノマーV(テレフタル酸ジヒトラジド:以下TPDHという)を熱電対30で測定しながらヒーター23で225℃に加熱し、TPA−3.5D C:TPDHのモノマー組成比が1:1となるように夫々の蒸発レートを設定後、シャッター28の開閉操作によりTPA−3.5DCとTPDHを蒸発させて、膜厚モニター(図示せず)により基板2上のITO膜3上に50Å(0.005μm)/分の析出速度で膜厚700Å(0.07μm)に堆積させながら重合させてポリオキサジアゾールの前駆体のポリヒドラジド膜を形成した。
この前駆体のポリヒドラジド膜にシースヒーター26により300℃の熱処理を施して発光層4として膜厚500Å(0.05μm)のポリオキサジアゾール膜を得た。
【0057
続いて、ヒーター21bで色素蒸発源22b内の色素原料TのAlq3を250℃に加熱し、所定の蒸発レートを設定した後、シャッター27bの開閉操作によりAlq3を蒸発させて発光層4上に電子輸送層5として膜厚500Å(0.05μm)のAlq3を堆積した。
【0058
次に、成膜室12と陰極形成室13との間のゲートバルブ16を開き、発光層4と電子輸送層5を成膜した基板2を陰極形成室13内に搬送系17で搬送した後、成膜室12と陰極形成室13との間のゲートバルブ16を閉じた。
【0059
そして、陰極形成室13内を真空排気系31により圧力1.33×10-4Pa(1×10-6Torr)を維持した状態で、ヒーター32で蒸発源33内のMgを450〜480℃に加熱すると共に、蒸発源34内のAgを650〜700℃に加熱し、Mg:Ag=10:1の原子比になるように夫々の蒸発レートを設定後、シャッター35並びにシャッター36の開閉操作によりMgとAgを蒸発させて電子輸送層5上に膜厚2000Å(0.2μm)のMg−Agから成る陰極6を堆積した。
【0060
次に、陰極形成室13と保護膜形成室14との間のゲートバルブ16を開き、陰極6を形成した基板2を保護膜形成室14内に搬送系17で搬送した後、陰極形成室13と保護膜形成室14との間のゲートバルブ16を閉じた。
【0061
そして、保護膜形成室14内を真空排気系37により圧力を圧力1.33×10-3Pa(1×10-5Torr)を維持した状態で、蒸発源39内の原料モノマーY(MDA)の温度を熱電対43で測定しながらヒーター38で100℃に加熱すると共に、蒸発源40内の原料モノマーZ(MDI)の温度を熱電対44で測定しながらヒーター38で70℃に加熱し、MDA:MDIのモノマー組成比が1:1となるように夫々の蒸発レートを設定後、シャッター41の開閉操作によりMDAとMDIを蒸発させて、膜厚モニター42により陰極6上に300Å(0.03μm)/分の析出速度で膜厚10000Å(1μm)に堆積させた後、陰極6上で重合させてポリ尿素膜を形成した。
【0062
次に、保護膜形成室14と紫外線処理室15との間のゲートバルブ16を開き、ポリ尿素膜7を形成した基板2を紫外線処理室15内に搬送系17で搬送した後、保護膜形成室14と紫外線処理室15との間のゲートバルブ16を閉じた。
【0063
そして、紫外線処理室15内を真空排気系45により圧力0.67Pa(5×10-3Torr)を維持した状態で、紫外線ランプ46より中心波長254nm、10Wの光(紫外線)をポリ尿素膜に30分間照射して、図1に示す2層構造のポリ尿素保護膜7を備える図1に示す有機EL素子1を作成した。
【0064
次に、紫外線処理室15内より有機EL素子1を取り出した。
【0065
この有機EL素子1へ10VのDC電圧を印加したところ青緑色の発光が確認された。
【0066
また、この有機EL素子1に定電流密度10mA/cm2、初期輝度300cd/m2、大気中の条件下で駆動させ、経時変化を調べたところ、1000時間後に120cd/m2の面状発光を保っていた。
この時、発光層、電子輸送層およびMgAg電極の劣化に伴うダークスポットは観察されなかった。
【0067
比較例2
前記実施例2に準じてポリ尿素保護膜なしの有機EL素子を作成し、この有機EL素子に前記実施例2と同様の条件で駆動させたところ、25時間後にMgAg電極の劣化により消光した。
【0068
実施例3
本実施例は有機化合物膜が発光層のみの単層構造の例で、発光層としては、スチルベン構造を有するポリ尿素膜の成膜と同時に正孔輸送性色素のTPDを蒸発させてポリ尿素中にTPDを分散させた膜とし、その成膜を成膜室12内の蒸発源24、25と色素蒸発源22bを用いて行うこととした。
【0069
前記実施例1、2と同様に、ITO膜を形成して酸素プラズマ処理を施した基板2を成膜室12へ搬送し、成膜室12内で、蒸発源24内の原料モノマーUのMDIを60℃に加熱すると共に、蒸発源25内の原料モノマーVの4−アミノ−4′−(N,N−ジメチルアミノ)スチルベンを135℃に加熱し、更に色素蒸発源22b内の色素原料TのTPDを180℃に加熱してシャッター27b、28を開き、基板2上のITO膜3上に発光層として膜厚1000Å(0.1μm)のスチルベン構造を有するポリ尿素中にTPDを分散させた膜を形成した。
【0070
続いて、前記実施例1、2と同様に、発光層上に陰極およびポリ尿素保護膜を形成し、ポリ尿素保護膜を備える有機EL素子を作成した。
【0071
この有機EL素子に定電流密度10mA/cm2、初期輝度200cd/m2、大気中の条件下で駆動させ、経時変化を調べたところ、1000時間後に120cd/m2の面状発光を保っていた。
【0072
比較例3
前記実施例3に準じてポリ尿素保護膜なしの有機EL素子を作成し、この有機EL素子に前記実施例3と同様の条件で駆動させたところ、12時間後にMgAg電極の劣化により消光した。
【0073
実施例4
本実施例は有機化合物膜が正孔輸送層/発光層/電子輸送層から成る3層構造の例で、正孔輸送層としてTPD膜、発光層としてスチルベン構造を有するポリ尿素膜、電子輸送層としてAlq3膜を用いた。
【0074
前記実施例1、2と同様に、ITO膜を形成して酸素プラズマ処理を施した基板2を成膜室12へ搬送し、成膜室12内で、先ず、蒸発源22a内の色素原料TのTPDを220℃に加熱してシャッター27aを開き、基板2上のITO膜3上に正孔輸送層として膜厚400Å(0.04μm)のTPD膜を堆積した。
【0075
次に、蒸発源24内の原料モノマーUのMDIを60℃に加熱すると共に、蒸発源25内の原料モノマーVの4−アミノ−4′−(N,N−ジメチルアミノ)スチルベンを135℃に加熱してシャッター28を開き、正孔輸送層の上に発光層として膜厚200Å(0.02μm)のスチルベン構造を有するポリ尿素膜を堆積した。
【0076
次に、蒸発源22b内の色素原料TのAlq3を280℃に加熱してシャッター27bを開き、基板2上の発光層の上に電子輸送層としてAlq3膜を300Å(0.03μm)を堆積した。
【0077
続いて、前記実施例1、2と同様に、基板2上の電子輸送層上に陰極およびポリ尿素保護膜を形成し、ポリ尿素保護膜を備える有機EL素子を作成した。
【0078
この有機EL素子に定電流密度10mA/cm2、初期輝度800cd/m2、大気中の条件下で駆動させ、経時変化を調べたところ、1000時間後に350cd/m2の面状発光を保っていた。
【0079
比較例4
前記実施例4に準じてポリ尿素保護膜なしの有機EL素子を作成し、この有機EL素子に前記実施例4と同様の条件で駆動させたところ、30時間後にMgAg電極の劣化により消光した。
【0080
前記実施例ではポリ尿素保護膜となるポリ尿素膜の形成を蒸着重合法で行ったが、キャスト法、スピンコート法で形成するようにしてもよい。
【0081
また、前記図2装置では酸素プラズマ処理室11、有機化合物膜の成膜室12、陰極形成室13、保護膜形成室14、紫外線処理室15を夫々独立させると共に並設し、各室をゲートバルブ16で仕切るようにしたが、装置全体を一つの真空装置に構成し、該真空装置内に酸素プラズマ処理室、有機化合物膜の成膜室、陰極形成室、保護膜形成室、紫外線処理室を収容し、各室間を開閉自在の仕切壁で仕切った装置としてもよい。
【0082
また、前記実施例ではポリ尿素保護膜の形成を保護膜形成室で行うようにしたが、ポリ尿素保護膜の形成を有機化合物膜の成膜室12で行うようにしてもよい。
【0083
勿論、基板の酸素プラズマ処理、保護膜への紫外線照射処理を他のチャンバー(真空処理室)内で行うことも可能である。
【0084
従来のCaO、MgO等の酸化金属を陰極の保護膜として用いる場合は、良質の保護膜を得るには、保護膜の形成時に基板を300〜400℃のような温度に加熱する必要があるが、本発明ではポリ尿素保護膜の形成を室温で行えるためにポリ尿素膜の成膜時の発熱に伴う素子の劣化が大幅に低減することが出来る。
【0085
【発明の効果】
本発明の有機エレクトロルミネッセンス素子の製造方法によるときは、陰極上へのポリ尿素保護膜の形成を蒸着重合法でポリ尿素膜を成膜し、その後該ポリ尿素膜に紫外線を照射するようにしたので、オリゴマー状態のポリ尿素膜を架橋して網目構造状の耐水性、耐熱性、耐久性に優れた高分子化された高分子膜に改質することが出来るから、陰極の腐食をポリ尿素保護膜で防止した長寿命の有機エレクトロルミネッセンス素子を極めて容易に製造することが出来る方法を提供する効果がある。
また、ポリ尿素保護膜の形成を室温で行えるためにポリ尿素膜の成膜時の発熱に伴う素子の劣化が大幅に低減することが出来る。
【図面の簡単な説明】
【図1】本発明の有機エレクトロルミネッセンス素子の1実施例の説明側面図、
【図2】本発明の有機エレクトロルミネッセンス素子の製造装置の1実施例の説明線図。
【符号の説明】
1 有機エレクトロルミネッセンス素子、 2 基板、
3 陽極、 4 正孔輸送層(または発光層)、
5 発光層(または電子輸送層)、 6 陰極、
7 ポリ尿素保護膜、 8 取出電極、
11 酸素プラズマ処理室、 12 成膜室、
13 陰極形成室、 14 保護膜形成室、
15 紫外線処理室、 16 ゲートバルブ、
17 搬送系、 18、20、31、37、45 真空排気系、
19 RF電極、 22a、22b 色素蒸発源、
24、25 有機物蒸発源、 33、34 陰極材料蒸発源、
39、40 保護膜蒸発源、 46 紫外線ランプ、
T 色素原料、 U、V 有機物原料モノマー、
W、X 陰極原料、 Y、Z 保護膜原料モノマー。
[0001]
[Industrial application fields]
The present inventionThe present invention relates to a method for manufacturing an organic electroluminescence element.
[0002]
[Prior art]
Conventionally, as this type of organic electroluminescence element (hereinafter referred to as organic EL element),
1. Anode (metal) / hole transport layer / light emitting layer / cathode (metal)
2. Anode / light-emitting layer / electron transport layer / cathode
3. Anode / hole transport layer / light emitting layer / electron transport layer / cathode
4. Anode / light emitting layer / cathode
Such a stacked organic EL element is known.
[0003]
As a stacked organic EL element, a film having at least one of an electroluminescent light emitting layer function, a charge transport function and a charge injection function as a light emitting layer material or a charge injection layer material is disclosed in Japanese Patent Application Laid-Open No. 3-274693. An organic thin film electroluminescence device using a polymer thin film having a thickness of 0.5 μm or less is disclosed, and Japanese Patent Application Laid-Open No. 6-243966 discloses an “organic EL device formed on a substrate. An organic EL device is disclosed in which an organic thin film is a light emitting layer composed of a polymer film or an oligomer film formed by vapor deposition polymerization of raw material monomers.
[0004]
Then, organic compound films such as a light emitting layer and an electron transport layer are thinned by a wet method such as spin coating and dipping, or a vacuum deposition method, and various studies have been made on their light emission characteristics.
[0005]
At present, an organic EL element having a luminance of several tens of thousands cd / m @ 2 at a driving voltage of 10 V or less has been developed, and has reached a practical level as a light emission characteristic.
[0006]
However, the deterioration at the time of driving the device is significant, causing problems such as corrosion of the cathode and crystallization of organic compounds.
[0007]
Therefore, as a means for solving these problems, research on materials for protecting the oxidation of the cathode is underway. For example, materials such as metal oxides such as MgO and CaO, or amorphous silica are known. ing.
[0008]
As a method of protecting the entire EL element by using a metal oxide such as MgO or CaO, as disclosed in Japanese Patent Laid-Open No. 5-89959, “light emission made of a fluorescent organic solid between two electrodes facing each other” is disclosed. After providing a protective layer made of an electrically insulating inorganic compound on the outer surface of the laminated structure of an organic EL element having a laminated structure in which at least a layer is interposed, an electrically insulating glass is formed outside the protective layer. Further, there is disclosed a method for sealing an organic EL device provided with a shield layer made of one selected from the group consisting of an electrically insulating polymer compound and an electrically insulating airtight fluid.
[0009]
Further, as a method for protecting with amorphous silica, JP-A-5-335080 discloses that an electroluminescent material layer containing at least one organic compound is provided between an anode and a cathode, at least one of which is transparent. An electroluminescent device in which an amorphous silica protective layer is formed on an organic thin film electroluminescent device is disclosed.
[0010]
[Problems to be solved by the invention]
As the cathode material of the conventional organic EL element, a metal having a small work function is used so that electrons can be injected more easily. An alkali metal such as lithium or an alkaline earth such as magnesium or calcium is used. Metal is said to be effective.
[0011]
However, since these alkali metals and alkaline earth metals are active, there is a problem that the performance as a cathode is remarkably deteriorated by reacting with moisture and oxygen in the atmosphere over time.
[0012]
In the case of the organic EL element sealing method disclosed in JP-A-5-89959, the organic layer deteriorates due to thermal damage caused by vapor deposition particles because the evaporation temperature of MgO is as high as 600 ° C. There is a problem that a dense MgO film cannot be formed unless the substrate temperature is 200 to 300 ° C.
[0013]
In addition, in the case of the electroluminescent element disclosed in Japanese Patent Laid-Open No. 5-335080, there is a problem that the apparatus cost is high because it is manufactured by the RF plasma CVD method using monochlorosilane.
[0014]
The present invention solves the above problems, has no instability of the cathode, and has a long service life.Provided is a method for manufacturing an organic electroluminescence device.For the purpose.
[0015]
[Means for Solving the Problems]
0016]
The method for producing an organic electroluminescence device of the present invention comprises evaporating a polyurea raw material monomer in a vacuum and vapor-depositing it on the cathode of an organic electroluminescence device comprising an anode, an organic compound film and a cathode on a substrate. After forming the polyurea film,In a vacuum atmosphere,The polyurea film is cross-linked by ultraviolet irradiation to form a polyurea protective film.
0017]
The organic compound film may be a film having at least a light emitting layer.
0018]
The polyurea raw material monomer may be a diamine monomer and a diisocyanate monomer.
0019]
[Action]
When the polyurea raw material monomer is evaporated in a vacuum, the raw material monomer is deposited on the cathode formed on the substrate, and the deposited raw material monomer of the protective film is polymerized to form a polyurea film.
0020]
Since the polyurea film formed on the cathode is a low molecular weight oligomer film, it is cross-linked by irradiating with ultraviolet rays to form a polymerized polyurea film having a network structure, which has water resistance, heat resistance and durability. It becomes an excellent protective film.
0021]
【Example】
First, the structure of the organic EL element will be described.
As the structure of the organic EL element, when an organic compound film such as an anode (ITO) / light emitting layer / cathode is a single layer structure having only a light emitting layer (consisting of a polymer film or an oligomer film), anode / hole transport When the organic compound film such as layer / light emitting layer / cathode or anode / light emitting layer / electron transport layer / cathode has a two-layer structure of a hole transport layer and a light emitting layer, or a light emitting layer and an electron transport layer, the anode / positive There may be a three-layer structure of a hole transport layer / light emitting layer / electron transport layer / cathode.
0022]
Here, as the hole transport layer of the organic compound film, for example, N, N′-diphenyl-N, N′-bis (3-methylphenyl) 1,1′-biphenyl 4,4′-diamine (hereinafter referred to as TPD). ) A thin film formed by vapor deposition of a low molecular weight dye having a hole transport ability represented by) and a polymer film (polyamide, polyimide, polyazomethine, etc.) having a hole transport molecular structure were formed by vapor deposition polymerization. A thin film may be used, and a hole transporting low molecular weight dye may be deposited and dispersed in a polymer thin film.
0023]
As the light emitting layer, for example, a thin film in which a light emitting dye represented by 8-oxyquinolino aluminum complex (hereinafter referred to as Alq3) is formed by vapor deposition or a polymer film having a conjugated structure such as stilbene or oxadiazole. A thin film formed by vapor deposition polymerization (polyurea, polyimide, polyoxadiazole, etc.) is used, and a light-emitting dye may be vapor-deposited and dispersed in a polymer thin film.
0024]
Further, as the electron transporting layer, for example, a vapor-deposited thin film of Alq3 or an oxadiazole derivative is used, and a thin film of an anthraquinodimethane derivative or a diphenylquinone derivative can also be used.
0025]
Next, specific examples of the present invention will be described.
0026]
FIG. 1 shows a structure of an organic EL element having a two-layer structure according to the present invention. An organic EL element 1 includes a substrate 2 made of, for example, an alkali-free glass, an anode 3 made of, for example, an ITO film, and a hole transport layer (or light emission). Layer) 4, light emitting layer (or electron transport layer) 5, for example, a cathode 6 made of an Mg—Ag alloy is composed of a polyurea protective film 7 and an extraction electrode 8 made of Ag.
FIG. 2 shows an example of an apparatus used for producing the organic EL element of the present invention, and does not include an anode forming apparatus. In the figure, 11 is an oxygen plasma treatment chamber, 12 is a deposition chamber for organic compound films such as a hole transport layer, a light emitting layer, and an electron transport layer, 13 is a cathode formation chamber, 14 is a protective film formation chamber, and 15 is an ultraviolet treatment. Indicates a room. The oxygen plasma processing chamber 11, film forming chamber 12, cathode forming chamber 13, protective film forming chamber 14, and ultraviolet processing chamber 15 are partitioned by a gate valve 16 that can be freely opened and closed, and the substrate 2 is placed in each chamber. A tray-type transport system 17 is disposed for transporting the.
0027]
The oxygen plasma processing chamber 11 was connected to an evacuation system 18 such as a vacuum pump, and a copper RF electrode 19 for plasma processing the ITO film was disposed in the oxygen plasma processing chamber 11.
0028]
A heater 21 (a, b) in which the inside of the film forming chamber 12 is connected to an evacuation system 20 such as a vacuum pump, and a dye raw material T such as TPD or Alq 3 is wound around one of the lower sides in the film forming chamber 12. Two alumina dye evaporation sources 22 (a, b) that are heated to a predetermined temperature and evaporated are arranged side by side, and the raw material monomers U, V of the vapor-deposition polymerized polymer film are arranged on the other lower side in the film forming chamber 12. The glass or metal organic matter evaporation sources 24 and 25 to be heated to a predetermined temperature by the infrared lamp 23 are disposed, and the pigment evaporation source 22 and the evaporation sources 24 and 25 are opposed to each other above the film forming chamber 12. The substrate 2 on which the organic compound film was to be formed was disposed, and the sheath heater 26 for heating the polymer film formed on the substrate 2 was disposed on the back side of the substrate 2.
0029]
Further, a shutter 27 (a, b) is disposed between the substrate 2 and the dye evaporation source 22 (a, b), and a shutter 28 is disposed between the substrate 2 and the organic substance evaporation sources 24, 25, respectively. In addition, thermocouples 29 and 30 are disposed in the organic matter evaporation sources 24 and 25, respectively.
0030]
The cathode forming chamber 13 is connected to an evacuation system 31 such as a vacuum pump, and one source W of the cathode 4 (the source W is Mg) is wound around one of the lower portions of the cathode forming chamber 13 around the heater 32. An alumina cathode material evaporation source 33 for heating and evaporating at a predetermined temperature is disposed, and the other raw material X of the cathode 4 (the raw material X is Ag) is set at a predetermined temperature in the other lower portion of the cathode forming chamber 13. A cathode material evaporation source 34 composed of a boat made of tungsten or molybdenum to be heated and evaporated was disposed.
0031]
In addition, a shutter 35 is disposed between the substrate 2 and the cathode material evaporation source 33, and a shutter 36 is disposed between the substrate 2 and the cathode material evaporation source 34.
0032]
The inside of the protective film forming chamber 14 is connected to an evacuation system 37 such as a vacuum pump, and the raw material monomers Y and Z of the polyurea film (the raw material Y is a diamine monomer and the raw material monomer Z is diisocyanate) below the protective film forming chamber 14. A glass or metal protective film evaporation source 39, 40 is provided for heating the salt monomer) to a predetermined temperature with an infrared heater 38 and evaporating it.
0033]
Further, shutters 41 are disposed between the substrate 2 and the protective film evaporation sources 39 and 40, respectively. Further, a quartz vibration type film thickness monitor 42 of a protective film is disposed in the vicinity of the substrate 2. Further, thermocouples 43 and 44 are disposed in the protective film evaporation sources 39 and 40, respectively.
0034]
The ultraviolet treatment chamber 15 is connected to an evacuation system 45 such as a vacuum pump, and the ultraviolet treatment chamber 15 is irradiated with ultraviolet rays to crosslink low molecular polyurea and polymerize it to form a polyurea protective film. A lamp 46 was provided.
0035]
In the figure, 47 is a partition plate provided between the organic material evaporation sources 24 and 25, and 48 is a partition plate provided between the protective film evaporation sources 39 and 40, respectively.
0036]
Next, a manufacturing example of the organic EL element shown in FIG. 1 will be described together with a comparative example using the apparatus shown in FIG.
0037]
Example 1
In this embodiment, the hole transport layer is a TPD film, the light emitting layer is an Alq3 film, and the film formation is performed using a dye evaporation source 22 (a, b) in which two evaporation sources in the film formation chamber 12 are arranged side by side. I decided to do it.
0038]
First, a 100mm vertical (100mm x 100mm x 1.1mm thickness glass substrate (Hiraoka Special Glass Co., Ltd., Corning 7059) 2) 1000mm (0.1μm) ITO (In2O3-10wt% SnO2) film cleaned by boiling in isopropanol Was formed by sputtering.
0039]
Next, after the substrate 2 is charged into the oxygen plasma processing chamber 11 with the gate valve 16 between the chambers closed and attached to the transfer system 17, the inside of the oxygen plasma processing chamber 11 is pressurized to 6.65 Pa by the vacuum exhaust system 18. While maintaining (0.05 Torr), the substrate 2 was subjected to oxygen plasma treatment at 50 W with an oxygen gas partial pressure of 1.33 Pa (0.01 Torr) using the RF electrode 19.
0040]
The gate valve 16 between the oxygen plasma processing chamber 11 and the film forming chamber 12 is opened, and the substrate 2 that has been subjected to the oxygen plasma processing is transferred into the film forming chamber 12 by the transfer system 17, and then formed with the oxygen plasma processing chamber 11. The gate valve 16 between the membrane chamber 12 was closed.
0041]
Then, the TPD of the dye material T in the dye evaporation source 22a is heated to 220 ° C. by the heater 21a while the pressure inside the film forming chamber 12 is maintained at 6.65 × 10 −4 Pa (5 × 10 −6 Torr) by the vacuum exhaust system 20. Then, after setting the evaporation rate to a predetermined value, the TPD was evaporated by opening / closing the shutter 27a, and a TPD having a thickness of 500 mm (0.05 μm) was deposited as the hole transport layer 4 on the ITO film 3 of the substrate 2.
0042]
Subsequently, similar to the formation of the hole transport layer 4 of TPD, the heater 21b heats Alq3 of the dye material T in the dye evaporation source 22b to 250 ° C., sets a predetermined evaporation rate, and then opens and closes the shutter 27b. Then, Alq3 was evaporated to deposit 500 nm (0.05 μm) of Alq3 on the hole transport layer 4 as the light emitting layer 5.
0043]
Next, the gate valve 16 between the film forming chamber 12 and the cathode forming chamber 13 is opened, and the substrate 2 on which the hole transport layer 4 and the light emitting layer 5 are formed is transferred into the cathode forming chamber 13 by the transfer system 17. Thereafter, the gate valve 16 between the film forming chamber 12 and the cathode forming chamber 13 was closed.
0044]
While the cathode forming chamber 13 is maintained at a pressure of 1.33 × 10 −4 Pa (1 × 10 −6 Torr) by the vacuum exhaust system 31, the heater 32 heats Mg in the evaporation source 33 to 450 to 480 ° C. Then, Ag in the evaporation source 34 is heated to 650 to 700 ° C., the respective evaporation rates are set so that the atomic ratio of Mg: Ag = 10: 1, and then the shutter 35 and the shutter 36 are operated to open and close the Mg and Ag. The cathode 6 made of Mg—Ag having a thickness of 2000 μm (0.2 μm) was deposited on the light emitting layer 5.
0045]
Next, the gate valve 16 between the cathode forming chamber 13 and the protective film forming chamber 14 is opened, and the substrate 2 on which the cathode 6 is formed is transferred into the protective film forming chamber 14 by the transfer system 17, and then the cathode forming chamber 13. And the protective valve forming chamber 14 were closed.
0046]
The raw material monomer Y (4,4′-diaminodiphenylmethane in the evaporation source 39: with the pressure 1.33 × 10 −3 Pa (1 × 10 −5 Torr) maintained in the protective film forming chamber 14 by the vacuum exhaust system 37: The temperature of the MDA) is measured by the thermocouple 43 and heated to 100 ° C. by the heater 38, and the temperature of the raw material monomer Z (4,4′-diphenylmethane diisocyanate: hereinafter referred to as MDI) in the evaporation source 40 is adjusted. Heating to 70 ° C. with the heater 38 while measuring with the thermocouple 44, setting the respective evaporation rates so that the monomer composition ratio of MDA: MDI is 1: 1, then opening and closing the shutter 41 evaporates MDA and MDI. The film thickness was then deposited on the cathode 6 at a deposition rate of 300 mm (0.03 μm) / min to a film thickness of 10,000 mm (1 μm) and then polymerized on the cathode 6 to form a polyurea film.
0047]
Next, the gate valve 16 between the protective film forming chamber 14 and the ultraviolet processing chamber 15 is opened, and the substrate 2 on which the polyurea film is formed is transported into the ultraviolet processing chamber 15 by the transport system 17, and then the protective film forming chamber. The gate valve 16 between 14 and the ultraviolet processing chamber 15 was closed.
0048]
Then, with the inside of the ultraviolet processing chamber 15 maintained at a pressure of 0.67 Pa (5 × 10 −3 Torr) by the vacuum exhaust system 45, light (ultraviolet) having a central wavelength of 254 nm and 10 W is applied to the polyurea film for 30 minutes from the ultraviolet lamp 46. Irradiation was performed to prepare an organic EL element 1 including the polyurea protective film 7 having a two-layer structure shown in FIG.
0049]
Next, the organic EL element 1 was taken out from the ultraviolet processing chamber 15.
0050]
When a DC voltage of 7 V was applied to the organic EL element 1, green light emission was confirmed.
In addition, when the organic EL element 1 was driven under conditions of constant current density 10 mA / cm 2, initial luminance 600 cd / m 2, and in the atmosphere, and the change with time was examined, the planar light emission of 330 cd / m 2 was maintained after 1000 hours. It was.
At this time, no deterioration of the device was observed except that a dark spot accompanying crystallization of TPD was observed.
0051]
Comparative Example 1
An organic EL device without a polyurea protective film was prepared according to Example 1, and this organic EL device was driven under the same conditions as in Example 1. After 48 hours, it was extinguished due to deterioration of the MgAg electrode.
0052]
Example 2
In this embodiment, the light emitting layer is a polyoxadiazole film, the electron transport layer is an Alq3 film, and the film formation is performed using the evaporation sources 24 and 25 in the film forming chamber 12 and the dye evaporation source 22b. .
0053]
First, 1000mm (0.1μm) ITO (In2O3-10wt% SnO2) film on a glass substrate (Hiraoka Special Glass Co., Ltd., Corning 7059) 100mm long x 100mm wide x 1.1mm thick cleaned by boiling in isopropanol Was formed by sputtering.
0054]
Next, after the substrate 2 is charged into the oxygen plasma processing chamber 11 with the gate valve 16 between the chambers closed and attached to the transfer system 17, the inside of the oxygen plasma processing chamber 11 is pressurized to 6.65 Pa by the vacuum exhaust system 18. While maintaining (0.05 Torr), the substrate 2 was subjected to oxygen plasma treatment at 50 W with an oxygen gas partial pressure of 1.33 Pa (0.01 Torr) using the RF electrode 19.
0055]
The gate valve 16 between the oxygen plasma processing chamber 11 and the film forming chamber 12 is opened, and the substrate 2 that has been subjected to the oxygen plasma processing is transferred into the film forming chamber 12 by the transfer system 17, and then formed with the oxygen plasma processing chamber 11. The gate valve 16 between the membrane chamber 12 was closed.
0056]
Then, with the pressure 1.33 × 10 −3 Pa (1 × 10 −5 Torr) maintained in the film forming chamber 12 by the vacuum exhaust system 20, the raw material monomer U (5-diphenylamino-1,3- While the temperature of dicarbonyl chloride benzene (hereinafter referred to as TPA-3.5DC) is measured with a thermocouple 29 and heated to 108 ° C. with the heater 23, the raw material monomer V in the evaporation source 25 (terephtalic acid dihitrazide: hereinafter referred to as TPDH) Is heated to 225 ° C. with the heater 23 while measuring with the thermocouple 30 and the respective evaporation rates are set so that the monomer composition ratio of TPA-3.5DC: TPDH becomes 1: 1, and then the shutter 28 is opened and closed. TPA-3.5DC and TPDH are evaporated by a film thickness monitor (not shown) to a film thickness of 700 mm (0.07 μm) at a deposition rate of 50 mm (0.005 μm) / min on the ITO film 3 on the substrate 2. Deposited To form a polyhydrazide film polyoxadiazole precursors by polymerizing while.
The precursor polyhydrazide film was subjected to heat treatment at 300 ° C. by a sheath heater 26 to obtain a polyoxadiazole film having a thickness of 500 mm (0.05 μm) as the light emitting layer 4.
0057]
Subsequently, the heater 21b heats Alq3 of the dye raw material T in the dye evaporation source 22b to 250 ° C., sets a predetermined evaporation rate, evaporates Alq3 by opening and closing the shutter 27b, and causes electrons on the light emitting layer 4 to be evaporated. Alq 3 having a thickness of 500 mm (0.05 μm) was deposited as the transport layer 5.
0058]
Next, the gate valve 16 between the film forming chamber 12 and the cathode forming chamber 13 is opened, and the substrate 2 on which the light emitting layer 4 and the electron transport layer 5 are formed is transferred into the cathode forming chamber 13 by the transfer system 17. The gate valve 16 between the film forming chamber 12 and the cathode forming chamber 13 was closed.
0059]
While the cathode forming chamber 13 is maintained at a pressure of 1.33 × 10 −4 Pa (1 × 10 −6 Torr) by the vacuum exhaust system 31, the heater 32 heats Mg in the evaporation source 33 to 450 to 480 ° C. Then, Ag in the evaporation source 34 is heated to 650 to 700 ° C., the respective evaporation rates are set so that the atomic ratio of Mg: Ag = 10: 1, and then the shutter 35 and the shutter 36 are operated to open and close the Mg and Ag. Then, a cathode 6 made of Mg—Ag having a thickness of 2000 μm (0.2 μm) was deposited on the electron transport layer 5.
0060]
Next, the gate valve 16 between the cathode forming chamber 13 and the protective film forming chamber 14 is opened, and the substrate 2 on which the cathode 6 is formed is transferred into the protective film forming chamber 14 by the transfer system 17, and then the cathode forming chamber 13. And the protective valve forming chamber 14 were closed.
0061]
Then, the temperature of the raw material monomer Y (MDA) in the evaporation source 39 is set to a thermoelectric state with the pressure inside the protective film forming chamber 14 maintained at 1.33 × 10 −3 Pa (1 × 10 −5 Torr) by the vacuum exhaust system 37. While being measured by the pair 43, the heater 38 is heated to 100 ° C., and the temperature of the raw material monomer Z (MDI) in the evaporation source 40 is heated to 70 ° C. by the thermocouple 44 while being measured by the thermocouple 44. After setting the respective evaporation rates so that the monomer composition ratio becomes 1: 1, MDA and MDI are evaporated by opening and closing the shutter 41, and 300 mm (0.03 μm) / min on the cathode 6 by the film thickness monitor 42 After depositing at a deposition rate to a film thickness of 10,000 μm (1 μm), polymerization was performed on the cathode 6 to form a polyurea film.
0062]
Next, the gate valve 16 between the protective film forming chamber 14 and the ultraviolet processing chamber 15 is opened, and the substrate 2 on which the polyurea film 7 is formed is transferred into the ultraviolet processing chamber 15 by the transfer system 17 and then the protective film is formed. The gate valve 16 between the chamber 14 and the ultraviolet processing chamber 15 was closed.
0063]
Then, with the inside of the ultraviolet processing chamber 15 maintained at a pressure of 0.67 Pa (5 × 10 −3 Torr) by the vacuum exhaust system 45, light (ultraviolet) having a central wavelength of 254 nm and 10 W is applied to the polyurea film for 30 minutes from the ultraviolet lamp 46. Irradiation was performed to prepare the organic EL element 1 shown in FIG. 1 having the polyurea protective film 7 having a two-layer structure shown in FIG.
0064]
Next, the organic EL element 1 was taken out from the ultraviolet processing chamber 15.
0065]
When a DC voltage of 10 V was applied to the organic EL element 1, blue-green light emission was confirmed.
0066]
In addition, when the organic EL element 1 was driven under the conditions of constant current density 10 mA / cm 2, initial luminance 300 cd / m 2, and in the atmosphere, and the change with time was examined, planar light emission of 120 cd / m 2 was maintained after 1000 hours. It was.
At this time, the dark spot accompanying deterioration of a light emitting layer, an electron carrying layer, and a MgAg electrode was not observed.
0067]
Comparative Example 2
An organic EL element without a polyurea protective film was prepared according to Example 2, and this organic EL element was driven under the same conditions as in Example 2. After 25 hours, the organic EL element was quenched due to deterioration of the MgAg electrode.
0068]
Example 3
In this example, the organic compound film has a single layer structure having only a light emitting layer. As the light emitting layer, TPD of a hole transporting dye is evaporated at the same time as the formation of a polyurea film having a stilbene structure. A film in which TPD is dispersed is formed using the evaporation sources 24 and 25 and the dye evaporation source 22b in the film forming chamber 12.
0069]
As in the first and second embodiments, the substrate 2 formed with the ITO film and subjected to the oxygen plasma treatment is transferred to the film forming chamber 12, and the MDI of the raw material monomer U in the evaporation source 24 is transferred into the film forming chamber 12. Is heated to 60 ° C., the raw material monomer V 4-amino-4 ′-(N, N-dimethylamino) stilbene in the evaporation source 25 is heated to 135 ° C., and the dye raw material T in the dye evaporation source 22 b is further heated. The TPD is heated to 180 ° C., the shutters 27b and 28 are opened, and the TPD is dispersed in polyurea having a stilbene structure with a thickness of 1000 mm (0.1 μm) as a light emitting layer on the ITO film 3 on the substrate 2. Formed.
0070]
Subsequently, in the same manner as in Examples 1 and 2, a cathode and a polyurea protective film were formed on the light emitting layer, and an organic EL device provided with the polyurea protective film was produced.
0071]
When this organic EL device was driven under conditions of a constant current density of 10 mA / cm 2, an initial luminance of 200 cd / m 2 and in the atmosphere, and the change with time was examined, the planar light emission of 120 cd / m 2 was maintained after 1000 hours.
0072]
Comparative Example 3
An organic EL device without a polyurea protective film was prepared according to Example 3 and was driven under the same conditions as in Example 3. As a result, after 12 hours, the organic EL device was quenched due to deterioration of the MgAg electrode.
0073]
Example 4
In this example, the organic compound film is an example of a three-layer structure comprising a hole transport layer / light-emitting layer / electron transport layer, a TPD film as the hole transport layer, a polyurea film having a stilbene structure as the light-emitting layer, and an electron transport layer As an Alq3 film.
0074]
As in the first and second embodiments, the substrate 2 on which the ITO film is formed and subjected to the oxygen plasma treatment is transferred to the film forming chamber 12, and in the film forming chamber 12, first, the dye material T in the evaporation source 22a The TPD was heated to 220 ° C., the shutter 27a was opened, and a 400 μm (0.04 μm) TPD film was deposited on the ITO film 3 on the substrate 2 as a hole transport layer.
0075]
Next, the MDI of the raw material monomer U in the evaporation source 24 is heated to 60 ° C., and the 4-amino-4 ′-(N, N-dimethylamino) stilbene of the raw material monomer V in the evaporation source 25 is heated to 135 ° C. The shutter 28 was opened by heating, and a polyurea film having a stilbene structure with a thickness of 200 mm (0.02 μm) was deposited as a light emitting layer on the hole transport layer.
0076]
Next, Alq3 of the dye raw material T in the evaporation source 22b was heated to 280 [deg.] C. to open the shutter 27b, and an Alq3 film of 300 [mu] m (0.03 [mu] m) was deposited on the light emitting layer on the substrate 2 as an electron transport layer.
0077]
Subsequently, in the same manner as in Examples 1 and 2, a cathode and a polyurea protective film were formed on the electron transport layer on the substrate 2 to produce an organic EL device having a polyurea protective film.
0078]
When this organic EL device was driven under the conditions of a constant current density of 10 mA / cm 2, an initial luminance of 800 cd / m 2 and in the atmosphere, and the change with time was examined, the planar light emission of 350 cd / m 2 was maintained after 1000 hours.
0079]
Comparative Example 4
An organic EL device without a polyurea protective film was prepared according to Example 4 and was driven under the same conditions as in Example 4. When 30 hours later, the organic EL device was extinguished due to deterioration of the MgAg electrode.
0080]
In the above embodiment, the polyurea film serving as the polyurea protective film is formed by the vapor deposition polymerization method, but may be formed by a cast method or a spin coat method.
0081]
In the apparatus shown in FIG. 2, the oxygen plasma processing chamber 11, the organic compound film forming chamber 12, the cathode forming chamber 13, the protective film forming chamber 14, and the ultraviolet processing chamber 15 are made independent and juxtaposed. The entire apparatus is configured as a single vacuum apparatus, and an oxygen plasma processing chamber, an organic compound film forming chamber, a cathode forming chamber, a protective film forming chamber, and an ultraviolet processing chamber are included in the vacuum device. It is good also as an apparatus which accommodated and divided | segmented between each room by the partition wall which can be opened and closed freely.
0082]
In the above embodiment, the polyurea protective film is formed in the protective film forming chamber. However, the polyurea protective film may be formed in the organic compound film forming chamber 12.
0083]
Of course, oxygen plasma treatment of the substrate and ultraviolet irradiation treatment of the protective film can be performed in another chamber (vacuum treatment chamber).
0084]
When a conventional metal oxide such as CaO or MgO is used as a protective film for the cathode, it is necessary to heat the substrate to a temperature of 300 to 400 ° C. when forming the protective film in order to obtain a good protective film. In the present invention, since the polyurea protective film can be formed at room temperature, it is possible to greatly reduce the deterioration of the element due to the heat generation during the formation of the polyurea film.
0085]
【The invention's effect】
According to the method of manufacturing an organic electroluminescence device of the present invention, a polyurea protective film is formed on the cathode by a vapor deposition polymerization method, and then the polyurea film is irradiated with ultraviolet rays. Therefore, the polyurea film in the oligomer state can be cross-linked to be modified into a polymerized polymer film having excellent water resistance, heat resistance and durability with a network structure. There is an effect of providing a method by which a long-life organic electroluminescence element prevented by a protective film can be produced very easily.
In addition, since the polyurea protective film can be formed at room temperature, it is possible to greatly reduce the deterioration of the element due to heat generation during the formation of the polyurea film.
[Brief description of the drawings]
FIG. 1 is an explanatory side view of one embodiment of an organic electroluminescence device of the present invention,
FIG. 2 is an explanatory diagram of one embodiment of an apparatus for manufacturing an organic electroluminescence element of the present invention.
[Explanation of symbols]
1 organic electroluminescence device, 2 substrate,
3 anode, 4 hole transport layer (or light emitting layer),
5 light emitting layer (or electron transport layer), 6 cathode,
7 Polyurea protective film, 8 Extraction electrode,
11 oxygen plasma treatment chamber, 12 film formation chamber,
13 cathode forming chamber, 14 protective film forming chamber,
15 UV treatment chamber, 16 Gate valve,
17 Conveyance system, 18, 20, 31, 37, 45 Vacuum exhaust system,
19 RF electrode, 22a, 22b Dye evaporation source,
24, 25 Organic material evaporation source, 33, 34 Cathode material evaporation source,
39, 40 Protective film evaporation source, 46 UV lamp,
T dye raw material, U, V organic raw material monomer,
W, X Cathode raw material, Y, Z Protective film raw material monomer.

Claims (3)

真空中でポリ尿素原料モノマーを蒸発させ、これを基板上に陽極、有機化合物膜、陰極で構成された有機エレクトロルミネッセンス素子の陰極上で蒸着重合させて、ポリ尿素膜を形成した後、引き続き真空雰囲気中において、該ポリ尿素に紫外線照射で架橋させてポリ尿素保護膜を形成することを特徴とする有機エレクトロルミネッセンス素子の製造方法The polyurea raw material monomer is evaporated in a vacuum, and this is vapor-deposited on the cathode of an organic electroluminescence device composed of an anode, an organic compound film and a cathode on the substrate to form a polyurea film, followed by vacuum. A method for producing an organic electroluminescence device, comprising forming a polyurea protective film by crosslinking the polyurea with ultraviolet irradiation in an atmosphere . 前記有機化合物膜は少なくとも発光層を備えた膜であることを特徴とする請求項第項に記載の有機エレクトロルミネッセンス素子の製造方法。Method of manufacturing an organic electroluminescent device of claim 1 wherein said organic compound film is characterized in that it is a film having at least a light emitting layer. 前記ポリ尿素原料モノマーはジアミンモノマーと、ジイソシアナートモノマーであることを特徴とする請求項第項または第項に記載の有機エレクトロルミネッセンス素子の製造方法。The method for producing an organic electroluminescence device according to claim 1 or 2, wherein the polyurea raw material monomer is a diamine monomer and a diisocyanate monomer.
JP02563295A 1995-02-14 1995-02-14 Method for manufacturing organic electroluminescence element Expired - Fee Related JP3615817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02563295A JP3615817B2 (en) 1995-02-14 1995-02-14 Method for manufacturing organic electroluminescence element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02563295A JP3615817B2 (en) 1995-02-14 1995-02-14 Method for manufacturing organic electroluminescence element

Publications (2)

Publication Number Publication Date
JPH08222368A JPH08222368A (en) 1996-08-30
JP3615817B2 true JP3615817B2 (en) 2005-02-02

Family

ID=12171245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02563295A Expired - Fee Related JP3615817B2 (en) 1995-02-14 1995-02-14 Method for manufacturing organic electroluminescence element

Country Status (1)

Country Link
JP (1) JP3615817B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10214682A (en) * 1997-01-30 1998-08-11 Mitsubishi Chem Corp Manufacturing apparatus and manufacturing method for organic electroluminescent element
JPH10241858A (en) * 1997-02-25 1998-09-11 Tdk Corp Manufacture of organic electroluminescent display device and device therefor
JPH10255972A (en) * 1997-03-10 1998-09-25 Idemitsu Kosan Co Ltd Method and apparatus for manufacturing organic electroluminescence element
JPH10270164A (en) * 1997-03-26 1998-10-09 Idemitsu Kosan Co Ltd Method and apparatus for manufacturing organic electroluminescence element
JP3704883B2 (en) * 1997-05-01 2005-10-12 コニカミノルタホールディングス株式会社 Organic electroluminescent device and method for manufacturing the same
JPH1140369A (en) * 1997-07-15 1999-02-12 Casio Comput Co Ltd EL device
JP4425438B2 (en) * 1999-07-23 2010-03-03 株式会社半導体エネルギー研究所 Method for manufacturing EL display device
JP2001284059A (en) * 2000-03-29 2001-10-12 Honda Motor Co Ltd Transparent electrode, organic electroluminescent element, treating device and treating method of transparent electrode
KR100617176B1 (en) * 2001-10-08 2006-08-31 엘지전자 주식회사 Organic electroluminescent device
KR100472502B1 (en) 2001-12-26 2005-03-08 삼성에스디아이 주식회사 Organic electro luminescence display device
JP2004103442A (en) * 2002-09-11 2004-04-02 Ulvac Japan Ltd Organic EL device and method of manufacturing the same
JP2004158353A (en) * 2002-11-07 2004-06-03 Nippon Sheet Glass Co Ltd Substrate with transparent conductive film, manufacturing method of substrate with transparent conductive film and electroluminescent element having substrate with transparent conductive film
US7026658B2 (en) 2003-03-13 2006-04-11 Samsung Sdi, Co., Ltd. Electrical conductors in an electroluminescent display device
JP2004281247A (en) * 2003-03-17 2004-10-07 Pioneer Electronic Corp Organic electroluminescent display panel and method of manufacturing the same
KR100707602B1 (en) 2005-10-20 2007-04-13 삼성에스디아이 주식회사 Organic electroluminescent display and manufacturing method
JP4795779B2 (en) * 2005-11-09 2011-10-19 株式会社アルバック Organic electroluminescence display panel
JP5095990B2 (en) * 2006-12-22 2012-12-12 東京エレクトロン株式会社 Substrate processing apparatus and cleaning method
KR101839929B1 (en) 2011-03-18 2018-03-20 삼성디스플레이 주식회사 Organic light emitting display apparatus and method for manufacturing organic light emitting display apparatus
CN109148711B (en) * 2017-06-19 2020-11-17 Tcl科技集团股份有限公司 Device packaging method based on inorganic thin film

Also Published As

Publication number Publication date
JPH08222368A (en) 1996-08-30

Similar Documents

Publication Publication Date Title
JP3615817B2 (en) Method for manufacturing organic electroluminescence element
JP5072184B2 (en) Deposition method
CN100483787C (en) Method of fabricating an el display device, and apparatus for forming a thin film
US7838092B2 (en) Gas barrier film, substrate film, and organic electroluminescence device
US7815981B2 (en) Gas barrier film, substrate film, and organic electroluminescence device
KR100991445B1 (en) Manufacturing method of a light emitting device
US8278135B2 (en) Highly pure film formation method for light emitting device using gas from evaporated electroluminescent source
KR101419865B1 (en) Fabrication method of organic compound-containing layer
EP0977469B1 (en) Improved transparent, flexible permeability barrier for organic electroluminescent devices
KR100484702B1 (en) Process for manufacture of organic electroluminescence element
JP2003017244A (en) Organic electroluminescent device and method of manufacturing the same
US20060225783A1 (en) Gas barrier film, substrate film, and organic electroluminescence device
TW200306131A (en) Manufacturing system, manufacturing method, method of operating a manufacturing apparatus, and light emitting device
US10355246B2 (en) Barrier coating for opto-electronics devices
JP4054561B2 (en) Deposition method
JP2005285659A (en) Organic EL device and manufacturing method thereof
US20050238816A1 (en) Method and apparatus of depositing low temperature inorganic films on plastic substrates
JP3865807B2 (en) Organic electroluminescence device
JP5798452B2 (en) Evaporation source
JP4688857B2 (en) Film forming apparatus and film forming method
JP4515060B2 (en) Manufacturing apparatus and method for producing layer containing organic compound
JP4368633B2 (en) Manufacturing equipment
JP2004103442A (en) Organic EL device and method of manufacturing the same
JP2004164992A (en) Manufacture method of electron injection property electrode, and manufacturing method of organic electroluminescent element
JP2005212230A (en) Transparent gas barrier film and electroluminescence device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees