[go: up one dir, main page]

JP3608412B2 - Planar light emitter, front light, liquid crystal device, and light guide plate - Google Patents

Planar light emitter, front light, liquid crystal device, and light guide plate Download PDF

Info

Publication number
JP3608412B2
JP3608412B2 JP37358198A JP37358198A JP3608412B2 JP 3608412 B2 JP3608412 B2 JP 3608412B2 JP 37358198 A JP37358198 A JP 37358198A JP 37358198 A JP37358198 A JP 37358198A JP 3608412 B2 JP3608412 B2 JP 3608412B2
Authority
JP
Japan
Prior art keywords
light
guide plate
light guide
light source
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP37358198A
Other languages
Japanese (ja)
Other versions
JP2000193972A (en
Inventor
啓志 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP37358198A priority Critical patent/JP3608412B2/en
Priority to PCT/JP1999/007019 priority patent/WO2004083948A1/en
Publication of JP2000193972A publication Critical patent/JP2000193972A/en
Application granted granted Critical
Publication of JP3608412B2 publication Critical patent/JP3608412B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0038Linear indentations or grooves, e.g. arc-shaped grooves or meandering grooves, extending over the full length or width of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0055Reflecting element, sheet or layer

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は面状発光体、フロントライト、液晶装置及び導光板に係り、特に、液晶表示装置のフロントライトとして用いられる場合に好適な面状発光体の構造に関する。
【0002】
【従来の技術】
従来から携帯機器などには消費電力の小さい反射型の液晶表示パネルが用いられているが、夜間などの暗所では表示が見えないという問題点がある。一方、透過型の液晶表示パネルはバックライトを備えていることから暗所でも表示を見ることができるが、バックライトの消費電力が多いとともに、明るい昼間に建物の外部で使用する場合には却って表示が見にくくなるという問題点がある。
【0003】
上記の問題点を解決するために、反射型の液晶表示パネルの前面に導光板を設置し、導光板の端部近傍に配置した冷陰極管などの光源からの光を導光板内に導入し、導光板の板面から液晶表示パネルに向けて光を照射することによって暗所でも表示を見ることができるようにした面状発光体であるフロントライトを備えた液晶表示装置が提案されている。フロントライトを備えた液晶表示装置において、昼間は導光板を通して液晶表示パネルを視認できるため、通常の反射型の液晶表示パネルとして用いることができ、暗所ではフロントライトを点灯することによって液晶表示パネルを照明し、表示を視認可能とすることができる。
【0004】
【発明が解決しようとする課題】
ところで、上記従来のフロントライトにおいては冷陰極管などの線状光源を用いることによって導光板内にほぼ均一に光を導入し、液晶表示パネルを照明するように構成されているが、携帯機器などの小型の機器においては冷陰極管などを用いることがコスト上及び容積上の観点から不可能な場合があるとともに、冷陰極管では消費電力が大きすぎるという問題点がある。
【0005】
このため、たとえば発光ダイオードなどの安価かつ低消費電力の点状光源を用いることによって機器の低コスト化、小型化、低消費電力化を可能にすることが考えられる。しかし、この場合には、発光ダイオードが点状光源であり、しかも、その光放出方向に指向性を有しているため、導光板への光の放出が不均一になり、その結果、液晶表示パネルへの照明光の光強度分布(面内分布)に偏りが発生して暗所における視認性に支障が出るという問題点がある。
【0006】
また、図5に示すように表面に緩斜面12a及び急斜面12bからなる平面視ストライプ状、断面三角状の凸状部を並列させて形成した導光板12を用いたフロントライト10を設ける場合には、照明時における表示の実効的な明るさを高めるために導光板12の板面の法線よりやや傾いた図示のF方向から視認するように設定する場合が多いが、光源として冷陰極管などの線状光源を用いる場合には急斜面12bから漏れる光によって図6に示すように多数の輝線が横線として視認される。この場合に、光源として発光ダイオードなどの点状光源13を用いると、冷陰極管などの線状光源の場合とは異なり図7に示すように光源からの導光方向に沿って短い輝線が筋状に見えてしまうため、線状光源の場合よりも視認性がさらに悪化するという問題点がある。
【0007】
そこで本発明は上記の問題点を解決するものであり、その課題は、発光ダイオードなどの点状光源を用いても視認性の悪化しないフロントライトなどの面状発光体を提供することにある。
【0008】
【課題を解決するための手段】
上記課題を解決するために本発明が講じた手段は、板面に沿った所定方向に向けて内部を伝播する光を板面上から放出するように構成された透光性を備えた導光板と、該導光板の端部近傍に配置され前記導光板内に前記所定方向とは異なる他方向に向けて光を導入させる光源とを備え、前記導光板における前記光源を配置した側とは異なる端部に、前記他方向に向けて前記導光板内を伝播してきた光を前記導光板内における概ね前記所定方向へ向けて反射する反射層を設けたことを特徴とする面状発光体である。
【0009】
この手段によれば、光源から導光板の内部に導入された光は導光板内を進行して反射板にて反射されて概ね所定方向に進む光となり、導光板の板面から放出されるので、光源から放出位置までの光路長を長くとることができるため、光源に指向性があったり、光源の形状が点状光源であったり、或いは光源から導光板への光の導入分布に偏りがあったりした場合などにおいて、放出光の面内均一性を高めることができる。また、各種表示体の前面側に配置されるフロントライトとして用いられる場合、前面側へ漏れる漏洩光の分布の偏りを緩和させることができるので、視認性を向上させることができる。なお、上記他方向としては、たとえば導光板の板面に沿った方向であって、前記所定方向の反対方向である場合がある。
【0010】
また、前記導光板と前記反射層との間に光散乱層を配置することが好ましい。反射面の手前に光散乱層が配置されていることにより反射前後において光が散乱されるので、放出光の面内均一性をより高めることができる。
【0011】
なお、前記光源は前記導光板内における光の放出方向に指向性を有する場合があり、また、前記光源は点状光源である場合があり、これらの場合に本願発明は特に有効である。
【0012】
また、前記光源は発光ダイオードであることが好ましい。発光ダイオードを用いることによって面状発光体を内蔵する機器の小型化、軽量化を図ることができるとともに、製造コストを低減できる。
【0013】
また、前記導光板は前記他方向に進む光を前記反射層に到達する以前には板面上から放出しないように構成されていることが望ましい。光源から導入された光のうち他方向に進む光を放出しないように導光板を形成していることにより、導光板の板面から放出される光の光路長を全て光源から反射層までの距離以上に取ることができるため、放出光の面内均一性を高めることができる。
【0014】
また、前記導光板の表面には光を板面から放出するための斜面を備えた凸状部若しくは凹部が形成されていることが好ましい。また、この前記凸状部若しくは凹部には、前記導光板の内部から見て前記他方向に対向するように形成され、前記導光板の板面に対して緩角度を有する緩斜面と、前記導光板の内部から見て前記所定方向に対向するように形成され、前記導光板の板面に対して急角度を有する急斜面とが設けられていることが望ましい。この場合、表面が緩斜面と急斜面のみで構成され、断面三角状、平面視ストライプ状の凸状部であることが好ましい。このとき、凸状部が光の放出方向とは逆側の板面上に形成されており、しかも、所定方向と他方向とが相互に反対方向である場合には、急斜面は凸状部の光源側に、緩斜面は光源とは反対側に形成される。
【0015】
一方、前記光源及び前記導光板が液晶装置のパネル面の前面側に配置されるフロントライトとして構成されていることが望ましい。このようなフロントライトとしては、以下に記述するものがある。
【0016】
板面に沿った所定方向に向けて内部を伝播する光を板面上から放出するように構成された透光性を備えた導光板と、該導光板の端部近傍に配置され前記導光板内に前記所定方向とは異なる他方向に向けて光を導入させる光源とを備え、前記導光板は透視可能に構成されており、前記導光板における前記光源を配置した側とは異なる端部に、前記他方向に向けて前記導光板内を伝播してきた光を前記導光板内における概ね前記所定方向へ向けて反射する反射層を設けたことを特徴とするフロントライトである。
【0017】
この手段によれば、光源から導光板内に導入した光は導光板内を所定方向に伝播して反射層にて反射され、他方向に向けて伝播し、導光板の板面から放出される。したがって、光源から導光板内を伝播して放出されるまでの光路長を大きくとることができるため、光源の光放出方向に指向性があってもこれを緩和することができるので、照明光の面内均一性の向上と漏洩光の偏りの低減とを図ることができ、光源の指向性に起因する視認性の悪化を低減できる。
【0018】
また、前記反射層の反射面の手前に光散乱層を配置することが好ましい。このフロントライトによれば、光源から離れた光散乱層によって散乱された光が導光板から放出されるので、光源の光放出方向に指向性があっても指向性の少ない光源と同等の作用が得られるため、さらに視認性を向上できる。特に、従来のフロントライト構造において導光板の入射面に散乱板を配置した場合に較べて光源に近い領域で大きな指向性の緩和作用が期待できる。また、この緩和作用によって、光散乱板として比較的散乱強度の低いものを用いることができ、光の損失を低減することができる。
【0019】
また、前記光源は前記導光板内における光の放出方向に指向性を有することを特徴とするフロントライト。
【0020】
また、前記光源は点状光源である場合に特に本願発明は有効であり、前記光源は発光ダイオードであることが望ましい。また、前記導光板は前記他方向に進む光を前記反射層に到達する以前には板面上から放出しないように構成されていることが特に効果的である。
【0021】
上記の各フロントライトを液晶パネルの前面側に備えた反射型の液晶装置を構成することができ、この場合には明るい場所でも暗い場所でも良好な視認性を得ることができる。
【0022】
【発明の実施の形態】
次に、本発明に係る面状発光体及び液晶装置の実施形態について詳細に説明する。図1は本発明に係る面状発光体20の概略構造を示す模式断面図である。本実施形態は、発光ダイオードなどの点状光源21と、射出成形などにより形成されたアクリル樹脂やポリカーボネート樹脂などからなる透光性を備えた導光板22と、導光板22における点状光源21の配置された側の端面22cとは逆側の端面22dに貼着された透過型の光散乱板23と、光散乱板23の表面に貼着された反射板24とから構成されている。なお、光散乱板23及び反射板24は、導光板22の端面22dに対して当接しているだけでケース体などの他部材により保持されていてもよく、また、端面22d上に物理的若しくは化学的な方法で形成されていてもよい。
【0023】
導光板22の表面上には、緩斜面22a及び急斜面22bからなるストライプ状の凸状部が多数並列形成されている。ここで、図1においては凸状部の本数を3本に限定し、凸状部の形状が分かりやすいように凸状部の形状を拡大して模式的に描いてある。導光板22の板面に沿って伝播する光は、導光板の裏面や緩斜面22aに当たっても導光板の高い光屈折率によって全反射して外部へは漏れず、伝播方向の変化も少なく導光板内を再び板面に沿って伝播するが、急斜面22bに当たる光のうち急斜面22bへの入射角が臨界角よりも小さい場合は、導光板22の表面側への漏洩光22Bとして放出され、急斜面22bへの入射角が臨界角よりも大きい場合は全反射される。この反射光が導光板22の裏面に達した時、裏面への入射角が臨界角よりも大きい場合は全反射され再び導光板内を伝播する。一方、裏面への入射角が臨界角よりも大きい場合には反射されず、導光板22の裏面から下方へと照明光22Aとして放出される。この場合、急斜面22bを急傾斜にするほど照明光22Aの平均の出射方向は導光板22の板面の法線方向に近づくので照明効率が良くなるが、同時に急斜面22bへの入射角が臨界角より小さくなる光の割合が大きくなるので全反射されずに急斜面22bから放出される漏洩光22Bも増加する。この漏洩光22Bが多いほど視認性が悪くなるので、急斜面22bは適宜の傾斜角度、たとえば30〜50程度に設定される。なお、導光板22において光を導光板の裏面から放出させるための光放出構造としては、上記凸状部に限定されるものではない。
【0024】
本実施形態では、点状光源21から放出される光は一旦導光板の板面に沿って図示左側へと進む。ここで、光の一部は緩斜面22aや裏面に当たるが、これらの光のうちほとんどは緩斜面22aや裏面にて全反射して導光板22内に留まりながら伝播していく。緩斜面22aの傾斜角度は点状光源21から放出されて緩斜面22aに当たる光が全反射されずに外部へと漏れるようなことがないように、しかし、緩斜面22aの光進行方向に見た時の断面での斜辺が長くなることで凸状部の形成ピッチが大きくなり急斜面22bの数、面積が少なくなるようなことがないように定められる。
【0025】
やがて光は、導光板22の図示左端の端面22dに到達すると光散乱板23を透過して反射板24で反射し、導光板22の内部を図示右側へと進む。すると、この反射光の進行方向の表面側には急斜面22bが形成されているため、急斜面22bに当たった光の多くは全反射によって導光板22の裏面から放出される照明光22Aとなり、一部は急斜面22bを抜けて漏洩光22Bとなる。
【0026】
図2は上記の面状発光体20をフロントライトとして備えた液晶表示装置の概略構成を示すものである。この液晶表示装置は、反射層31を備えた反射型液晶表示パネル30の前面側に面状発光体20の導光板22を配置して構成されている。面状発光体20は、外部が明るい場合には外光を透過させて反射型液晶表示パネル30の内部に光を導き、反射層31にて反射した光によって反射型液晶表示パネル30の表示領域Vに形成された表示内容を視認できるようになっている。一方、外部が暗い場合には点状光源21を点灯することによって、導光板22の下面から反射型液晶表示パネル30に向けて照明光22Aを照射することができるので、この照明光22Aによって反射型液晶表示パネル30に形成された表示内容を視認することができるようになる。
【0027】
図3は上記の面状発光体20の一部断面平面図である。点状光源21は導光板22の一つの端面22cに沿ってほぼ均等に3つ並んで配置されている。それぞれの点状光源21は、図示矢印に示すように正面方向への照度が最も高く、正面方向から外れるに従って急激に照度が小さくなるように指向性を有する発光特性を備えている。したがって、図5に示す従来のフロントライトのように光源11から導光板12の板面に沿って進行する光を用いて照明を行う場合に、光源11の代わりに点状光源21を採用すると、図4に示す表示領域Vのうち、導光板22の点状光源21に近い光源近傍領域Vaにおいて充分な照明光の面内均一性が得られない。この場合に、点状光源21と導光板22との間に光散乱板などを配置して光を拡散することで、上記の光源近傍領域Vaでも充分な照明光の面内均一性を得る方法もある。導光板の入射面に散乱板を配置した場合、導光板から十分離れた場所に点光源21を配置し十分な光路長を確保することによって、散乱板面での散乱光が線状光源と同等になるので面内均一性が得られる。この時の散乱板は散乱強度の低い光散乱板でも良いが導光板と点光源との距離を十分とる必要があるので構造上問題が生ずる。そのため点光源21を導光板に隣接させた状態で同様の効果を得ようとすると散乱強度の高い光散乱板を用いる必要があることから、光損失が大きく、充分な明るさを得ることが困難であったり、逆に充分な明るさを得るには消費電力が大きく成りすぎるという問題が生ずる。
【0028】
本実施形態では、図3に示すように点状光源21から光を導光板22内に導入させるとほとんどの光が反対側の端部22dにたどり着き、反対側の端部22dに形成された光散乱板23及び反射板24にて散乱され、反射された後の光が照明光22Aとして急斜面22bから下方へと照射される。点状光源21から光散乱板23までの光路長を長く取ることができるので、光散乱板23の散乱強度が小さくても光散乱板23による散乱光は線状光源と同等の光となるので照明光22Aの充分な面内均一性を得ることが可能であるとともに、図7に示すような漏洩光22Bの偏りを低減することができる。
【0029】
ここで、点状光源21の指向性がそれほど強いものでなければ、光散乱層23がなくても或る程度の照明光の面内均一性や漏洩光の均一性を確保することができる。また、光散乱板23を用いる代わりに、反射板24の表面(反射面)を粗面に形成したり、反射板24の表面に選択的に別素材を付着させて細かな凹凸を形成したりすることなどによって光散乱効果を得てもよい。また、導光板の端面部22dに細かな凹凸を形成し光散乱部としてもよい。
【0030】
なお、面状発光体として照明光の面内分布を均一化するために光の進行方向に沿って次第に上記凸状部などの光放出構造の密度や形状を変化させる場合、本実施形態では反射板24などの反射層の反射面から反射される反射光の進行方向(すなわち図1における図示右方向)に沿って光放出構造の密度や形状を変化させることによって、照明光22Aの面内均一性を高めることができる。
【0031】
【発明の効果】
以上説明したように本発明によれば、光源から導光板の内部に導入された光は導光板内を進行して反射板にて反射されて概ね所定方向に進む光となり、導光板の板面から放出されるので、光源から放出位置までの光路長を長くとることができるため、光源に指向性があったり、光源の形状が点状光源であったり、或いは光源から導光板への光の導入分布に偏りがあったりした場合などにおいて、放出光の面内均一性を高めることができる。また、各種表示体の前面側に配置されるフロントライトとして用いられる場合、前面側へ漏れる漏洩光の分布の偏りを緩和させることができるので、視認性を向上させることができる。
【図面の簡単な説明】
【図1】本発明に係る面状発光体(フロントライト)の実施形態の構造を示す概略模式断面図である。
【図2】同実施形態を用いた液晶表示装置の概略構成を示す概略構成図である。
【図3】同実施形態の平面的な配光状態を示すための一部断面概略平面図である。
【図4】同実施形態を用いた液晶表示装置の概略の平面構成を示す概略平面図である。
【図5】従来のフロントライトの概略構造を示すための概略模式断面図である。
【図6】従来のフロントライトにおいて光源として線状光源を用いた場合の外観を示すための外観説明図である。
【図7】従来のフロントライトにおいて光源として点状光源を用いた場合の外観を示すための外観説明図である。
【符号の説明】
20 面状発光体
21 点状光源
22 導光板
22a 緩斜面
22b 急斜面
22c,22d 端面部
22A 照明光
22B 漏洩光
23 光散乱板
24 反射板
30 液晶表示パネル
31 反射層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a planar light emitter, a front light , a liquid crystal device, and a light guide plate , and more particularly to a structure of a planar light emitter suitable for use as a front light of a liquid crystal display device.
[0002]
[Prior art]
Conventionally, reflective liquid crystal display panels with low power consumption have been used for portable devices and the like, but there is a problem that the display cannot be seen in a dark place such as at night. On the other hand, the transmissive liquid crystal display panel is equipped with a backlight, so the display can be seen even in the dark. However, the backlight consumes a lot of power. There is a problem that it is difficult to see the display.
[0003]
In order to solve the above problems, a light guide plate is installed on the front surface of the reflective liquid crystal display panel, and light from a light source such as a cold cathode tube arranged near the end of the light guide plate is introduced into the light guide plate. A liquid crystal display device having a front light which is a planar light emitter that can be viewed in a dark place by irradiating light from the surface of the light guide plate toward the liquid crystal display panel has been proposed. . In a liquid crystal display device equipped with a front light, the liquid crystal display panel can be visually recognized through a light guide plate in the daytime, so that it can be used as a normal reflection type liquid crystal display panel. The display can be made visible.
[0004]
[Problems to be solved by the invention]
By the way, in the above conventional front light, a linear light source such as a cold cathode tube is used to introduce light almost uniformly into the light guide plate and illuminate the liquid crystal display panel. In such a small device, it may be impossible to use a cold cathode tube from the viewpoint of cost and volume, and there is a problem that power consumption is too large in the cold cathode tube.
[0005]
For this reason, for example, it is conceivable that the device can be reduced in cost, size, and power consumption by using an inexpensive and low power consumption point light source such as a light emitting diode. However, in this case, since the light emitting diode is a point light source and has directivity in the light emission direction, the light emission to the light guide plate becomes non-uniform, resulting in a liquid crystal display. There is a problem that the light intensity distribution (in-plane distribution) of the illumination light to the panel is biased and the visibility in a dark place is hindered.
[0006]
In the case of providing a front light 10 using a light guide plate 12 formed by arranging convex portions having a stripe shape in a plan view composed of a gentle slope 12a and a steep slope 12b and a triangular cross section as shown in FIG. In order to increase the effective brightness of the display at the time of illumination, it is often set to be viewed from the F direction shown in the figure slightly inclined from the normal of the plate surface of the light guide plate 12. When the linear light source is used, a number of bright lines are visually recognized as horizontal lines as shown in FIG. 6 due to light leaking from the steep slope 12b. In this case, when a point light source 13 such as a light-emitting diode is used as the light source, unlike the case of a linear light source such as a cold cathode tube, short bright lines are formed along the light guide direction from the light source as shown in FIG. Therefore, the visibility is further deteriorated as compared with the case of a linear light source.
[0007]
Therefore, the present invention solves the above-described problems, and an object thereof is to provide a planar light-emitting body such as a front light that does not deteriorate in visibility even when a point light source such as a light-emitting diode is used.
[0008]
[Means for Solving the Problems]
The means taken by the present invention to solve the above problems is a light guide plate having translucency configured to emit light propagating through the inside in a predetermined direction along the plate surface from the plate surface. And a light source that is disposed near the end of the light guide plate and that introduces light into the light guide plate in a different direction from the predetermined direction, and is different from a side of the light guide plate on which the light source is disposed. A planar light-emitting body, characterized in that a reflection layer that reflects light propagating in the light guide plate in the other direction toward the predetermined direction in the light guide plate is provided at an end portion. .
[0009]
According to this means, the light introduced from the light source into the light guide plate travels through the light guide plate, is reflected by the reflection plate, and travels in a predetermined direction, and is emitted from the plate surface of the light guide plate. Since the optical path length from the light source to the emission position can be increased, the light source has directivity, the shape of the light source is a point light source, or the light introduction distribution from the light source to the light guide plate is biased In some cases, the in-plane uniformity of emitted light can be improved. In addition, when used as a front light arranged on the front side of various display bodies, it is possible to alleviate the uneven distribution of leakage light that leaks to the front side, so that visibility can be improved. The other direction may be, for example, a direction along the plate surface of the light guide plate and a direction opposite to the predetermined direction.
[0010]
Moreover , it is preferable to arrange | position a light-scattering layer between the said light-guide plate and the said reflection layer. Since the light scattering layer is disposed in front of the reflecting surface, the light is scattered before and after the reflection, so that the in-plane uniformity of the emitted light can be further improved.
[0011]
The light source may have directivity in the direction of light emission in the light guide plate, and the light source may be a point light source. In these cases, the present invention is particularly effective.
[0012]
The light source is preferably a light emitting diode. By using a light emitting diode, it is possible to reduce the size and weight of a device incorporating a planar light emitter, and to reduce the manufacturing cost.
[0013]
Further, the light guide plate is desirably above the light traveling in the other direction before reaching the reflective layer is configured so as not to release from the plate surface. The light guide plate is formed so as not to emit light traveling in the other direction among the light introduced from the light source, so that the optical path length of the light emitted from the plate surface of the light guide plate is all the distance from the light source to the reflection layer Since it can take above, the in-plane uniformity of emitted light can be improved.
[0014]
Moreover , it is preferable that a convex portion or a concave portion having a slope for emitting light from the plate surface is formed on the surface of the light guide plate. Furthermore, this said convex portion or concave portion, is formed so as to face the other direction as viewed from the inside of the light guide plate, and a gentle slope having a gentle angle with respect to the plate surface of the light guide plate, said guide It is desirable to provide a steep slope formed so as to face the predetermined direction when viewed from the inside of the optical plate and having a steep angle with respect to the plate surface of the light guide plate. In this case, the surface is preferably composed of only a gentle slope and a steep slope, and is a convex portion having a triangular cross section and a stripe shape in plan view. At this time, when the convex portion is formed on the plate surface opposite to the light emitting direction, and the predetermined direction and the other direction are opposite to each other, the steep slope is the convex portion. On the light source side, the gentle slope is formed on the side opposite to the light source.
[0015]
On the other hand , it is desirable that the light source and the light guide plate are configured as a front light disposed on the front side of the panel surface of the liquid crystal device. Such front lights include those described below.
[0016]
A light guide plate having translucency configured to emit light propagating through the inside in a predetermined direction along the plate surface, and the light guide plate disposed near an end of the light guide plate A light source for introducing light toward the other direction different from the predetermined direction, and the light guide plate is configured to be seen through, at an end portion different from the side where the light source is disposed in the light guide plate. The front light is characterized in that a reflection layer is provided that reflects light propagating in the light guide plate in the other direction toward the predetermined direction in the light guide plate.
[0017]
According to this means, light introduced from the light source into the light guide plate propagates in the light guide plate in a predetermined direction, is reflected by the reflective layer, propagates in the other direction, and is emitted from the plate surface of the light guide plate. . Therefore, since the optical path length from the light source to the light guide plate before being emitted can be made large, even if there is directivity in the light emission direction of the light source, this can be mitigated. It is possible to improve the in-plane uniformity and reduce the bias of leaked light, and to reduce the deterioration of visibility due to the directivity of the light source.
[0018]
Moreover , it is preferable to arrange | position a light-scattering layer in front of the reflective surface of the said reflective layer. According to this front light, since the light scattered by the light scattering layer away from the light source is emitted from the light guide plate, even if the light emission direction of the light source has directivity, the same effect as a light source with less directivity is obtained. Thus, visibility can be further improved. In particular, compared with a conventional front light structure in which a scattering plate is disposed on the incident surface of the light guide plate, a large directivity mitigating action can be expected in a region near the light source. In addition, this relaxation action allows the use of a light scattering plate having a relatively low scattering intensity, thereby reducing light loss.
[0019]
The front light is characterized in that the light source has directivity in the light emission direction in the light guide plate.
[0020]
The present invention is particularly effective when the light source is a point light source, and the light source is preferably a light emitting diode. Further, it is particularly effective that the light guide plate is configured not to emit light traveling in the other direction from the plate surface before reaching the reflection layer.
[0021]
A reflective liquid crystal device having the above-described front lights on the front side of the liquid crystal panel can be configured. In this case, good visibility can be obtained in a bright place or a dark place.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the planar light emitter and the liquid crystal device according to the present invention will be described in detail. FIG. 1 is a schematic cross-sectional view showing a schematic structure of a planar light emitter 20 according to the present invention. In the present embodiment, a point light source 21 such as a light emitting diode, a light guide plate 22 having translucency made of acrylic resin or polycarbonate resin formed by injection molding, and the point light source 21 in the light guide plate 22 It is composed of a transmissive light scattering plate 23 attached to the end surface 22d opposite to the arranged end surface 22c, and a reflection plate 24 attached to the surface of the light scattering plate 23. The light scattering plate 23 and the reflection plate 24 may be held by another member such as a case body only by contacting the end surface 22d of the light guide plate 22, and may be physically or on the end surface 22d. It may be formed by a chemical method.
[0023]
On the surface of the light guide plate 22, a large number of stripe-shaped convex portions each including a gentle slope 22 a and a steep slope 22 b are formed in parallel. Here, in FIG. 1, the number of convex portions is limited to three, and the shape of the convex portions is schematically enlarged and drawn so that the shape of the convex portions can be easily understood. The light propagating along the plate surface of the light guide plate 22 is totally reflected by the high light refractive index of the light guide plate and does not leak to the outside even if it hits the back surface or the gentle slope 22a of the light guide plate, and the change in the propagation direction is small. The light again propagates along the plate surface, but when the incident angle to the steep slope 22b is smaller than the critical angle among the light impinging on the steep slope 22b, it is emitted as leaked light 22B to the surface side of the light guide plate 22 and steep slope 22b. When the incident angle to the is larger than the critical angle, total reflection is performed. When this reflected light reaches the back surface of the light guide plate 22, if the incident angle on the back surface is larger than the critical angle, it is totally reflected and propagates through the light guide plate again. On the other hand, when the incident angle to the back surface is larger than the critical angle, it is not reflected and is emitted downward from the back surface of the light guide plate 22 as illumination light 22A. In this case, as the steep slope 22b is steeper, the average emission direction of the illumination light 22A approaches the normal direction of the plate surface of the light guide plate 22, so that the illumination efficiency is improved. At the same time, the incident angle to the steep slope 22b is the critical angle. Since the proportion of light that becomes smaller increases, leakage light 22B that is emitted from the steep slope 22b without being totally reflected also increases. As the amount of the leaked light 22B increases, the visibility becomes worse. Therefore, the steep slope 22b is set to an appropriate inclination angle, for example, about 30 to 50. Note that the light emission structure for emitting light from the back surface of the light guide plate 22 in the light guide plate 22 is not limited to the convex portion.
[0024]
In the present embodiment, the light emitted from the point light source 21 once travels to the left side of the drawing along the plate surface of the light guide plate. Here, part of the light hits the gentle slope 22 a and the back surface, but most of the light is totally reflected by the gentle slope 22 a and the back surface and propagates while remaining in the light guide plate 22. The inclination angle of the gentle slope 22a is such that the light emitted from the point light source 21 and hits the gentle slope 22a does not leak to the outside without being totally reflected, but viewed in the light traveling direction of the gentle slope 22a. The length of the hypotenuse in the cross section at the time is increased so that the formation pitch of the convex portions is increased and the number and area of the steep slopes 22b are not reduced.
[0025]
Eventually, when the light reaches the left end face 22d of the light guide plate 22, the light passes through the light scattering plate 23 and is reflected by the reflection plate 24, and proceeds inside the light guide plate 22 to the right side of the drawing. Then, since the steep slope 22b is formed on the surface side in the traveling direction of the reflected light, most of the light hitting the steep slope 22b becomes illumination light 22A emitted from the back surface of the light guide plate 22 due to total reflection, and partly Passes through the steep slope 22b and becomes leaked light 22B.
[0026]
FIG. 2 shows a schematic configuration of a liquid crystal display device provided with the planar light emitter 20 as a front light. This liquid crystal display device is configured by disposing a light guide plate 22 of a planar light emitter 20 on the front side of a reflective liquid crystal display panel 30 having a reflective layer 31. When the outside is bright, the planar light-emitting body 20 transmits external light to guide the light into the reflective liquid crystal display panel 30, and the display area of the reflective liquid crystal display panel 30 is reflected by the light reflected by the reflective layer 31. The display content formed on V can be visually recognized. On the other hand, when the outside is dark, the illumination light 22A can be irradiated from the lower surface of the light guide plate 22 toward the reflective liquid crystal display panel 30 by turning on the point light source 21, and therefore reflected by the illumination light 22A. The display contents formed on the liquid crystal display panel 30 can be visually recognized.
[0027]
FIG. 3 is a partial cross-sectional plan view of the planar light emitter 20 described above. The three point light sources 21 are arranged substantially evenly along one end face 22 c of the light guide plate 22. Each point light source 21 has a light emitting characteristic having directivity so that the illuminance in the front direction is the highest as shown by the arrows in the figure, and the illuminance decreases rapidly as it deviates from the front direction. Accordingly, when illumination is performed using light traveling along the plate surface of the light guide plate 12 from the light source 11 as in the conventional front light shown in FIG. In the display area V shown in FIG. 4, sufficient in-plane uniformity of illumination light cannot be obtained in the light source vicinity area Va near the point light source 21 of the light guide plate 22. In this case, a method of obtaining sufficient in-plane uniformity of illumination light even in the light source vicinity region Va by disposing light by arranging a light scattering plate or the like between the point light source 21 and the light guide plate 22. There is also. When the scattering plate is disposed on the incident surface of the light guide plate, the scattered light on the scattering plate surface is equivalent to the linear light source by arranging the point light source 21 at a location sufficiently away from the light guide plate to ensure a sufficient optical path length. Therefore, in-plane uniformity can be obtained. At this time, the scattering plate may be a light scattering plate having a low scattering intensity, but there is a structural problem because it is necessary to provide a sufficient distance between the light guide plate and the point light source. Therefore, if the same effect is to be obtained in the state where the point light source 21 is adjacent to the light guide plate, it is necessary to use a light scattering plate having a high scattering intensity. Therefore, light loss is large and it is difficult to obtain sufficient brightness. On the contrary, there is a problem that the power consumption becomes too large to obtain sufficient brightness.
[0028]
In this embodiment, as shown in FIG. 3, when light is introduced from the point light source 21 into the light guide plate 22, most of the light arrives at the opposite end 22d, and the light formed at the opposite end 22d. The light after being scattered and reflected by the scattering plate 23 and the reflecting plate 24 is irradiated downward as the illumination light 22A from the steep slope 22b. Since the optical path length from the point light source 21 to the light scattering plate 23 can be made long, even if the scattering intensity of the light scattering plate 23 is small, the scattered light by the light scattering plate 23 becomes the same light as the linear light source. It is possible to obtain sufficient in-plane uniformity of the illumination light 22A, and to reduce the bias of the leakage light 22B as shown in FIG.
[0029]
Here, if the directivity of the point light source 21 is not so strong, a certain degree of in-plane uniformity of illumination light and uniformity of leakage light can be secured without the light scattering layer 23. Further, instead of using the light scattering plate 23, the surface (reflection surface) of the reflection plate 24 is formed into a rough surface, or another material is selectively attached to the surface of the reflection plate 24 to form fine irregularities. For example, the light scattering effect may be obtained. Further, fine irregularities may be formed on the end face portion 22d of the light guide plate to form a light scattering portion.
[0030]
In this embodiment, when the density or shape of the light emitting structure such as the convex portion is gradually changed along the light traveling direction in order to make the in-plane distribution of the illumination light uniform as a planar light emitter The in-plane uniformity of the illumination light 22A is obtained by changing the density and shape of the light emitting structure along the traveling direction of reflected light reflected from the reflecting surface of the reflecting layer such as the plate 24 (that is, the right direction in FIG. 1). Can increase the sex.
[0031]
【The invention's effect】
As described above, according to the present invention, the light introduced from the light source into the light guide plate travels through the light guide plate, is reflected by the reflection plate, and travels in a predetermined direction. Since the light source is emitted from the light source, the optical path length from the light source to the emission position can be increased, so that the light source has directivity, the shape of the light source is a point light source, or the light from the light source to the light guide plate In the case where the introduction distribution is biased, the in-plane uniformity of the emitted light can be improved. In addition, when used as a front light arranged on the front side of various display bodies, it is possible to alleviate the uneven distribution of leakage light that leaks to the front side, so that visibility can be improved.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing the structure of an embodiment of a planar light emitter (front light) according to the present invention.
FIG. 2 is a schematic configuration diagram showing a schematic configuration of a liquid crystal display device using the embodiment.
FIG. 3 is a partial cross-sectional schematic plan view for illustrating a planar light distribution state according to the embodiment;
FIG. 4 is a schematic plan view showing a schematic plan configuration of a liquid crystal display device using the same embodiment.
FIG. 5 is a schematic cross-sectional view for illustrating a schematic structure of a conventional front light.
FIG. 6 is an external explanatory diagram for illustrating an external appearance when a linear light source is used as a light source in a conventional front light.
FIG. 7 is an external explanatory diagram for showing an external appearance when a point light source is used as a light source in a conventional front light.
[Explanation of symbols]
20 planar light emitter 21 point light source 22 light guide plate 22a gentle slope 22b steep slope 22c, 22d end face 22A illumination light 22B leaked light 23 light scattering plate 24 reflector 30 liquid crystal display panel 31 reflective layer

Claims (10)

板面に沿った所定方向に向けて内部を伝播する光を板面上から放出するように構成された透光性を備えた導光板と、該導光板の端部近傍に配置され前記導光板内に前記所定方向とは異なる他方向に向けて光を導入させる光源とを備え、前記導光板における前記光源を配置した側とは異なる端部に、前記他方向に向けて前記導光板内を伝播してきた光を前記導光板内における概ね前記所定方向へ向けて反射する反射層を設けた面状発光体において、
前記導光板は、前記他方向に進む光を前記反射層に到達する以前には板面上から放出しないように構成されていることを特徴とする面状発光体。
A light guide plate having translucency configured to emit light propagating through the plate surface in a predetermined direction along the plate surface, and the light guide plate disposed near an end of the light guide plate A light source that introduces light in a different direction different from the predetermined direction, and in the light guide plate toward the other direction at an end different from the side where the light source is disposed in the light guide plate. In the planar light-emitting body provided with a reflective layer that reflects the propagated light toward the predetermined direction in the light guide plate.
The planar light emitter, wherein the light guide plate is configured not to emit light traveling in the other direction from the plate surface before reaching the reflection layer.
請求項1において、前記光源は前記導光板内における光の放出方向に指向性を有することを特徴とする面状発光体。The planar light-emitting body according to claim 1, wherein the light source has directivity in a light emission direction in the light guide plate. 請求項1において、前記光源は点状光源であることを特徴とする面状発光体。2. The planar light emitter according to claim 1, wherein the light source is a point light source. 請求項2又は3において、前記光源は発光ダイオードであることを特徴とする面状発光体。4. The planar light emitter according to claim 2, wherein the light source is a light emitting diode. 板面に沿った所定方向に向けて内部を伝播する光を板面上から放出するように構成された透光性を備えた導光板と、該導光板の端部近傍に配置され前記導光板内に前記所定方向とは異なる他方向に向けて光を導入させる光源とを備え、前記導光板は透視可能に構成されており、前記導光板における前記光源を配置した側とは異なる端部に、前記他方向に向けて前記導光板内を伝播してきた光を前記導光板内における概ね前記所定方向へ向けて反射する反射層を設けたフロントライトにおいて、
前記導光板は、前記他方向に進む光を前記反射層に到達する以前には板面上から放出しないように構成されていることを特徴とするフロントライト。
A light guide plate having translucency configured to emit light propagating through the plate surface in a predetermined direction along the plate surface, and the light guide plate disposed near an end of the light guide plate A light source for introducing light toward the other direction different from the predetermined direction, the light guide plate is configured to be seen through, and at an end portion different from the side where the light source is disposed in the light guide plate In the front light provided with a reflective layer that reflects the light propagating in the light guide plate toward the other direction, generally in the predetermined direction in the light guide plate,
The light guide plate is configured so that light traveling in the other direction is not emitted from the plate surface before reaching the reflection layer.
請求項5において、前記光源は前記導光板内における光の放出方向に指向性を有することを特徴とするフロントライト。6. The front light according to claim 5, wherein the light source has directivity in a light emission direction in the light guide plate. 請求項5において、前記光源は点状光源であることを特徴とするフロントライト。6. The front light according to claim 5, wherein the light source is a point light source. 請求項6又は7において、前記光源は発光ダイオードであることを特徴とするフロントライト。8. The front light according to claim 6, wherein the light source is a light emitting diode. 請求項5から請求項8までのいずれか1項に記載されたフロントライトを液晶パネルの前面側に備えたことを特徴とする液晶装置。A liquid crystal device comprising the front light according to any one of claims 5 to 8 on a front side of a liquid crystal panel. 透光性を備え、板面に沿った所定方向に向けて内部を伝播する光を板面上から放出するように構成され、
前記所定方向とは異なる他方向に向けて内部を伝播してきた光が到達する端部には、前記他方向に向けて内部を伝播してきた光を概ね前記所定方向へ向けて反射する反射層が設けられた導光板において、
前記他方向に進む光を前記反射層に到達する以前には板面上から放出しないように構成されていることを特徴とする導光板。
It has translucency and is configured to emit light propagating through the inside in a predetermined direction along the plate surface from the plate surface,
A reflection layer that reflects light propagating through the interior toward the other direction generally reflects toward the predetermined direction at an end where the light propagating through the interior toward the other direction is different from the predetermined direction. In the light guide plate provided,
A light guide plate configured to prevent light traveling in the other direction from being emitted from the plate surface before reaching the reflection layer.
JP37358198A 1998-12-28 1998-12-28 Planar light emitter, front light, liquid crystal device, and light guide plate Expired - Lifetime JP3608412B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP37358198A JP3608412B2 (en) 1998-12-28 1998-12-28 Planar light emitter, front light, liquid crystal device, and light guide plate
PCT/JP1999/007019 WO2004083948A1 (en) 1998-12-28 1999-12-14 Flat source of light front light and liquid crytal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37358198A JP3608412B2 (en) 1998-12-28 1998-12-28 Planar light emitter, front light, liquid crystal device, and light guide plate

Publications (2)

Publication Number Publication Date
JP2000193972A JP2000193972A (en) 2000-07-14
JP3608412B2 true JP3608412B2 (en) 2005-01-12

Family

ID=18502411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37358198A Expired - Lifetime JP3608412B2 (en) 1998-12-28 1998-12-28 Planar light emitter, front light, liquid crystal device, and light guide plate

Country Status (2)

Country Link
JP (1) JP3608412B2 (en)
WO (1) WO2004083948A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3968742B2 (en) * 2000-03-30 2007-08-29 株式会社エンプラス Light guide plate, surface light source device and display device
JP2006147451A (en) * 2004-11-24 2006-06-08 Alps Electric Co Ltd Surface light emitting device and display unit using it
JP4486879B2 (en) * 2004-12-22 2010-06-23 日本ぱちんこ部品株式会社 Light emitting element decoration device for gaming machines

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62109185U (en) * 1985-12-27 1987-07-11
JP2950219B2 (en) * 1995-10-13 1999-09-20 オムロン株式会社 Surface light source device, image display device using the surface light source device, and prism array used for the surface light source device
JPH11184386A (en) * 1997-12-24 1999-07-09 Seiko Instruments Inc Front light type lighting device and reflection type color display device with front light type lighting device

Also Published As

Publication number Publication date
WO2004083948A1 (en) 2004-09-30
JP2000193972A (en) 2000-07-14

Similar Documents

Publication Publication Date Title
US5101325A (en) Uniform illumination of large, thin surfaces particularly suited for automotive applications
JP3543911B2 (en) Sidelight type surface light source device
US6663254B2 (en) Light guide plate, surface light source device and display
US8136955B2 (en) Illumination system and display including same
US20010019380A1 (en) Lighting unit and liquid crystal display utilizing the same
JP2004139785A (en) Lighting device and liquid crystal display
JP2003132724A (en) Surface light-emitting device and liquid crystal display device
JP2001035230A (en) Flat lighting system
JP2003242818A (en) Surface light emitting device and liquid crystal display device
CN101561116A (en) Light guide plate, backlight module and display device
JP3739327B2 (en) Surface illumination device and liquid crystal display device
US6816214B1 (en) Guide plate, surface light source device of side light type and liquid crystal display
US6474824B1 (en) Surface-emitting device, front light, and liquid crystal device
JP2000082313A (en) Side light type plane light source device and liquid crystal display device
JP3608412B2 (en) Planar light emitter, front light, liquid crystal device, and light guide plate
US9921357B2 (en) Thin backlight with recycling to reduce the bezel width
JP2006073223A (en) Surface light emitting device and liquid crystal display device
EP2116892B1 (en) Display device having high brightness uniformity at positions close to light source
JP4195548B2 (en) Illumination device
GB2566711A (en) A backlight panel for providing area backlighting of a panel display device
JP5586396B2 (en) Instrument guidelines
JP3903839B2 (en) Lighting device
KR101255300B1 (en) Prism sheet
JP2000268616A (en) Surface light emitter, front light, liquid crystal device and electronic equipment
KR20000077154A (en) Light plate, surface light source device and display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040526

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040818

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041004

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121022

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121022

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term