[go: up one dir, main page]

JP3607890B2 - オゾン発生器 - Google Patents

オゾン発生器 Download PDF

Info

Publication number
JP3607890B2
JP3607890B2 JP2001357860A JP2001357860A JP3607890B2 JP 3607890 B2 JP3607890 B2 JP 3607890B2 JP 2001357860 A JP2001357860 A JP 2001357860A JP 2001357860 A JP2001357860 A JP 2001357860A JP 3607890 B2 JP3607890 B2 JP 3607890B2
Authority
JP
Japan
Prior art keywords
electrode
voltage electrode
low
discharge gap
ozone generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001357860A
Other languages
English (en)
Other versions
JP2003160309A (ja
Inventor
雄二郎 沖原
要一郎 田畑
明 臼井
弘道 小宮
裕司 眼龍
昌樹 葛本
昇 和田
幸治 太田
重典 八木
裕三 鐘ヶ江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2001357860A priority Critical patent/JP3607890B2/ja
Priority to TW91111251A priority patent/TW575519B/zh
Priority to US10/156,031 priority patent/US7108836B2/en
Priority to DE60206350T priority patent/DE60206350T2/de
Priority to EP02014891A priority patent/EP1314691B1/en
Priority to CNB021271364A priority patent/CN100411973C/zh
Publication of JP2003160309A publication Critical patent/JP2003160309A/ja
Application granted granted Critical
Publication of JP3607890B2 publication Critical patent/JP3607890B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • C01B13/11Preparation of ozone by electric discharge
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2201/00Preparation of ozone by electrical discharge
    • C01B2201/10Dischargers used for production of ozone
    • C01B2201/12Plate-type dischargers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2201/00Preparation of ozone by electrical discharge
    • C01B2201/20Electrodes used for obtaining electrical discharge
    • C01B2201/22Constructional details of the electrodes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2201/00Preparation of ozone by electrical discharge
    • C01B2201/30Dielectrics used in the electrical dischargers
    • C01B2201/32Constructional details of the dielectrics
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2201/00Preparation of ozone by electrical discharge
    • C01B2201/70Cooling of the discharger; Means for making cooling unnecessary
    • C01B2201/74Cooling of the discharger; Means for making cooling unnecessary by liquid
    • C01B2201/76Water

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、積層された複数の平板状の高圧電極及び低圧電極を有し、この間に交流電圧を印加し放電を生じさせオゾンガスを生成する平板積層型オゾン発生装置に関し、特にこの平板積層型オゾン発生装置の要部であって、高圧電極及び低圧電極を有し酸素ガスを供給されてオゾンガスを生成するオゾン発生器に関するものである。
【0002】
【従来の技術】
図27は例えば特許第3113885号「オゾン発生装置用放電セル」に記載された従来のオゾン発生器の断面図である。従来のオゾン発生器は、図27に示すように、概略平板状の剛性体からなる複数の低圧電極7を、両側一対のブロック25を挟んで板厚方向に重ね合わせることにより、複数の電極モジュールの積層体が構成されている。電極モジュールの積層体は、電極押え板22と基台24との間に、両側部を積層方向に貫通する複数本の締め付けボルト21により締着されている。
【0003】
各電極モジュールは、上下一対の低圧電極7と、この低圧電極7,7間に挟まれた両側一対のブロック25と、ブロック25,25の内側に位置して低圧電極7,7間に配置された誘電体ユニット30と、誘電体ユニット30の両面側に放電空隙6を形成するために設けられた複数の放電空隙形成用の弾性体スペーサ26とを有している。弾性体スペーサ26は、紙面に対して垂直方向に延びる断面円形の棒状をなす。
【0004】
両側一対のブロック25は、ステンレス鋼板等の導電性板材からなる性剛体で、低圧電極7間の両側部に介在することにより、この間に、ブロック厚に等しいギャップ量の空間を形成する。
【0005】
尚、図面はいずれも上下方向の寸法を誇張したものになっており、実際の厚さは例えば低圧電極7で3mm以下、ブロック25で3mm以下というように非常に薄く作製されている。
【0006】
上下一対の低圧電極7は、内部に冷却水通路9が形成されておりヒートシンクを兼ねている。また、片側のブロック25にも冷却水通路9が形成されている。そして、低圧電極7内の冷却水通路9は、冷媒としての冷却水を流通させるために、ブロック25を経由して基台24に設けられた冷却水出入口12に連通している。
【0007】
一方、低圧電極7の放電空隙6に対向する主面には、例えばエッチング等によりオゾンガス通路8が形刻されている。このオゾンガス通路8は、ブロック25に形成されたオゾンガス通路8を経由して基台24に設けられたオゾンガス出口11に連通している。また、放電空隙6の両側部には、放電空隙6に対して酸素ガスを紙面に向かって垂直方向に供給する酸素ガス入口10が設けられている。
【0008】
上下一対の低圧電極7と両側一対のブロック25で囲まれた空間に配置される誘電体ユニット30は、誘電体としての上下一対のガラス板5の間に高圧電極3を挟んだサンドイッチ構造を成す薄板状剛性体である。 高圧電極3は、ステンレス鋼板等の導電性薄板からなり、その一部は図示しない給電端子として外部へ導出されている。
【0009】
誘電体ユニット30の両面側に放電空隙6を形成するために設けられる放電空隙形成用の弾性体スペーサ26は、耐オゾン性及び弾力性を有する断面が円形の細い樹脂線材であり、放電空隙6の内に所定の間隔で配置されている。各スペーサ26の厚み(外径)は、圧縮のない状態で放電空隙6の各ギャップ量より5〜6%程度大きく設定されている。
【0010】
この設定により、弾性体スペーサ26は低圧電極7と誘電体ユニット30により上下から圧縮され、この圧縮により、誘電体ユニット30は上下から均等な圧力で弾性的に押圧され、上記空間内の上下方向中央部に保持される。その結果、誘電体ユニット30の両面側には、均等なギャップ量の放電空隙6が形成される。
【0011】
尚、弾性体スペーサ26の代わりに剛性体スペーサを用いた場合においては、剛性体スペーサはブロック25を締め付けた時に必然的に決定される放電空隙長(放電空隙の積層方向の高さ)より小さい径のものが用いられる。そのため、スペーサは放電空隙の中で積層方向に圧縮されない。
【0012】
次に動作について説明する。
低圧電極7と高圧電極3の間に交流高電圧を印加すると、誘電体5を介して放電空隙6に誘電体バリヤー放電が発生する。この放電によって酸素ガスが一旦酸素原子に解離し、ほぼ同時にこの酸素原子と他の酸素分子及び壁等の三体衝突が引き起こされオゾンガスが生成される。この仕組みを利用して、放電空隙6に連続に酸素ガスを供給することで、放電で生成されたオゾンガスは、オゾンガス出口11からオゾン化ガスとして連続的に取り出すことができる。
【0013】
この放電で取り出せるオゾン発生効率は、一般に最大約20%である。すなわち、放電電力の80%は電極を加熱してロスする。また、オゾンガスの発生効率は電極温度(厳密には放電ガス温度)に依存しており、電極の温度が低いほど発生効率が高い。そのため、電極を冷却水等で直接冷却する、或いは放電空隙6のギャップ長を短くすることで放電空隙6中のガス温度の上昇を抑制し、かつ電子温度を高めることでオゾン生成効率を高め、オゾン分解を抑制して、結果として効率良く高濃度のオゾンガスが取り出せるオゾン発生器を可能としている。
【0014】
【発明が解決しようとする課題】
このような構成の従来のオゾン発生器においては、電極の冷却が低圧電極7側の片面冷却であり、高圧電極3が冷却されていない。そのため、高・低圧電極を冷却する両面冷却方式よりも、同一電力を投入した場合放電空隙6のガス温度は約4倍程度となる。そして、このガス温度上昇によって、生成したオゾンを分解する量が増大するため、電極に投入する放電電力密度をさらに高く上げられず、オゾンガスを効率良く発生させることが出来なかった。
【0015】
また、弾性体のスペーサ26を用いる際、放電空隙6内には放電による十分高いエネルギーを有した電子が存在するため、有機材で形成した弾性体のスペーサ26は、この放電に触れることにより高エネルギーの電子(放電エネルギー)が衝突して化学結合が遊離する損傷を受ける。そして、オゾン発生器を連続運転で使用すると、金属製スペーサに比べてスペーサ26は短い期間で劣化し、その劣化によりガスを均一に流すことが不可能になり、効率が急激に減少し、装置の寿命が短くなる欠点が有った。
【0016】
また、耐オゾン性のあるテフロン(登録商標)(登録商標)製の弾性体スペーサを使用した場合においても、上述の高エネルギーの電子(放電エネルギー)が衝突して化学結合が遊離する損傷を受ける。さらに、空気中において一般に「難燃性物質」である物質を用いても、高濃度のオゾンや酸素ガス雰囲気では「可燃性物質」と同様になり、放電空間に直接接触する部分に設置することにおいては、放電エネルギーによって弾性体スペーサの昇化反応が活性化してクリーンなオゾンガスが得られなくなる問題点があった。
【0017】
一方、弾性体のスペーサ26の代わりに剛性体のスペーサを用いた場合、ブロック25を介して締め付けた時に必然的に決定される放電空隙長より小さい径になるように設計する。そのため、放電空隙6を微少な隙間にして高濃度のオゾンを発生させようとする場合、放電ガス通路の圧力損失(図27の紙面に垂直なガス通路の圧力損失)よりも、放電空隙形成用スペーサ26で仕切っている隙間での圧力損失(放電空隙形成用スペーサ26と誘電体5との微少な間隙での圧力損失)が非常に小さくなる。これにより、放電空隙形成用スペーサ26によるガスを均一に流すことが困難となる。その結果、オゾン発生効率が低下して、コンパクトなオゾン発生器にすることが出来ないなどの問題点があった。
【0018】
一般に、スペーサ26の形成する隙間での圧力損失を、放電通路部の圧力損失の約10倍以上にしなければガス流体を均一に流すことができない。例えば、放電空隙6が0.1mm程度であるとき、スペーサ26の厚みと放電空隙との隙間は、非常に高い精度であることが要求される。そして、このような精度でスペーサ26を製作し、かつ放電空隙に接触せずに配置することは非常に困難である。このような理由により、スペーサ26を精度良く製作するためにはコストが非常にアップし、装置を安価に製作することが不可能であった。
【0019】
また、このような構成の従来のオゾン発生器においては、上下一対の低圧電極7と、この低圧電極7,7間に挟まれた両側一対のブロック25と、ブロック25,25の内側に位置して低圧電極7,7間に配置された誘電体ユニット30と、誘電体ユニット30の両面側に放電空隙6を形成するために設けられた複数の放電空隙形成用の弾性体スペーサ26から成る電極モジュールを、低圧電極7を介して複数個積層し、固定する手段として上端に設けた電極押え板22と下端に設けた基台24間を電極モジュールの両側位置に積層方向に貫通させた締め付けボルト21で締め付けている。すなわち、電極モジュールを挟んだ低圧電極7の両端で締め付ける構成にしたため、電極モジュールの両サイドが支点となり、本来平面であるべき低圧電極7が円弧状に歪み、特に0.1mmの厚さの放電空隙においては、空隙長が均一にならなくなり高濃度のオゾンが得られなくなる問題点があった。
【0020】
さらに、従来のオゾンガス通路8はガスシールドを施さないで作製されていた。そのため、各積層された低圧電極7で挟まれた電極モジュールに、原料酸素ガスを100%供給することが出来なかった。すなわち、酸素ガスが電極モジュールの放電通路を通らず直接オゾンガス出口11に逃げてしまう「ショートパス現象」が生じていた。この「ショートパス現象」が発生すると、電極モジュールのオゾン発生効率が低下するとともに高濃度のオゾンを生成することができず、さらに、放電空隙6で発生したオゾン濃度は原料の酸素ガスのショートパス流量によって薄められるため、高濃度のオゾンガスをさらに取出せないの問題点が発生していた。
【0021】
この発明は、上述のような複数の課題を一括して解決するためになされたものであり、
第1の目的は、オゾン発生性能を損わず信頼性の高い電極モジュール構造であり、しかも電極モジュールの寿命を長くすることのできるオゾン発生器を提供することを目的とする。
第2の目的は、非常に薄い平板状の電極モジュールを簡単な作業で、積層・組合せることができ、さらにコンパクトなモジュール化を実現することができるオゾン発生器を提供することを目的とする。
第3の目的は、高圧電極3及び低圧電極7の両電極を良好に冷却可能な構造のオゾン発生器を提供することを目的とする。
第4の目的は、電極の少なくとも一方を、冷却構造とオゾンガス取出構造をともに備え、薄く、軽く、しかも安価で品質の良い電極とすることができるオゾン発生器を提供することを目的とする。
第5の目的は、生成するオゾンガスの純度が良い、つまりクリーンオゾンガスを生成することのできるオゾン発生器を提供することを目的とする。
第6の目的は、オゾン発生器内の部品機能を統合化させ、部品点数の削減もしくは部品コストの低減を図ることのできるオゾン発生器を提供することを目的とする。
【0022】
この発明は上述のような目的を達成するためになされたものであり、電極モジュールを容易に支持することができ、電極モジュール間の原料ガスを確実にシールドすることができるとともに、電極の位置決めを容易に行うことができ、複数個の電極モジュールを放電空隙のバラツキをなくして支持することができ、性能の良いオゾン発生器を得るものである。
また、耐オゾン性に優れ、コンパクトで長寿命、高品質のオゾン発生器を実現するものである。
また、放電空隙の構成は特許第3113885号に用いた放電空隙内の弾性体を用いず、さらに空隙長より径の小さい高精度の剛性体スペーサを必要とせず、放電空隙長に等しい厚さのスペーサを用いることを可能とするオゾン発生器を得るものである。
【0023】
【課題を解決するための手段】
この発明は、内部にオゾンガス通路と冷却水通路が形成されている平板状の低圧電極と、上記低圧電極の両主面のそれぞれに対向して設けられた平板状の第1の高圧電極、第2の高圧電極と、上記低圧電極と上記第1の高圧電極との間に設けられた平板状の第1の誘電体及び積層方向に厚さの薄い第1の放電空隙を形成するための第1のスペーサと、上記低圧電極と上記第2の高圧電極との間に設けられた平板状の第2の誘電体及び積層方向に厚さの薄い第2の放電空隙を形成するための第2のスペーサと、上記第1の高圧電極の上記第1の放電空隙と反対側の主面に対向して設けられ内部に該第1の高圧電極を冷却する冷却水通路が形成されている第1の電極冷却板と、上記第2の高圧電極の上記第2の放電空隙と反対側の主面に対向して設けられ内部に該第2の高圧電極を冷却する冷却水通路が形成されている第2の電極冷却板と、上記第1の高圧電極と上記第1の電極冷却板の間に挟まれた第1の熱伝導・電気絶縁板と、上記第2の高圧電極と上記第2の電極冷却板の間に挟まれた第2の熱伝導・電気絶縁板と、を含み、上記低圧電極と上記第1の高圧電極との間、上記低圧電極と上記第2の高圧電極との間にそれぞれ交流電圧を印加され、酸素ガスを含む原料ガスが注入された上記第1の放電空隙及び上記第2の放電空隙に放電を生じさせオゾンガスを発生させる電極モジュールと、上記電極モジュールの片側の、上記低圧電極と上記第1の電極冷却板との間、及び上記低圧電極と上記第2の電極冷却板との間にそれぞれ設けられ、該低圧電極、該第1の電極冷却板、該第2の電極冷却板にそれぞれ設けられた冷却水通路を相互につなげる冷却水通路或いは該低圧電極に設けられたオゾンガス通路につながるオゾンガス通路が形成されたマニホールドブロックと、を備えたことを特徴とするオゾン発生器にある。
また、上記電極モジュール及びマニホールドブロックが上記酸素ガスを含む原料ガスが充満された発生器カバー内に収納され、上記酸素ガスを含む原料ガスが上記放電空隙へ周囲から侵入し発生したオゾンガスが上記低圧電極の中心部の孔から上記オゾンガス通路に導かれる。
また、上記各マニホールドブロックは、積層方向に2つの部材に分かれており、上記部材間に弾性構造が設けられ、上記部材間の上記冷却水通路又は上記オゾンガス通路は、それぞれ該通路が形成された円筒部とこれを受け入れる凹部およびこれらの間に気密性を保つために配設されたOリングで接続されている。
また、上記低圧電極、第1及び第2の高圧電極、誘電体、スペーサ、電極冷却板並びに熱伝導・電気絶縁板が積層された部分と、上記低圧電極、第1及び第2の電極冷却板、及びマニホールドブロック積層された部分とが別々の挟持機構で挟持固定され、上記低圧電極の上記双方の部分の間にくびれ部が設けられている。
【0024】
また、低圧電極は、主面に溝が形成された2枚以上の金属製の平板が溝を向き合うようにして貼り合わせて作製されることにより内部にオゾンガス通路と冷却水通路が形成されている。
【0025】
また、第1の電極冷却板及び第2の電極冷却板は、主面に溝が形成された2枚以上の金属製の平板が溝を向き合うようにして貼り合わせて作製されることにより内部に冷却水通路が形成されている。
【0026】
また、金属製の平板は、加熱と加圧のみで貼り合わせられている。
【0027】
また、低圧電極の第1の放電空隙及び第2の放電空隙に対向する両主面が、無機物でなる誘電体膜で被われている。
【0028】
また、誘電体膜は、セラミック材で作製されている。
【0029】
また、誘電体膜は、ガラス材で作製されている。
【0030】
また、第1の誘電体の第1の高圧電極に対向する主面が、導電性を有する導電膜で被われ、導電膜が第1の高圧電極に接触しており、第2の誘電体の第2の高圧電極に対向する主面が、導電性を有する導電膜で被われ、導電膜が第2の高圧電極に接触している。
【0031】
また、第1の誘電体と第1の高圧電極、及び第2の誘電体と第2の高圧電極は、それぞれ導電性接着剤で貼り合わせられている。
【0032】
また、導電膜の外周エッジ部が、無機物でなる絶縁保護膜で被覆されている。
【0033】
また、導電性接着剤の外周エッジ部が、無機物でなる絶縁保護膜で被覆されている。
【0034】
また、第1の高圧電極及び第2の高圧電極の外径は、誘電体の外径よりも小さい。
【0035】
また、第1の高圧電極及び第2の高圧電極の外径は、誘電体を被う導電膜の外径よりも小さい。
【0036】
また、第1の高圧電極と第1の熱伝導・電気絶縁板との間、及び第1の熱伝導・電気絶縁板と第1の電極冷却板との間にそれぞれ両者に接触させて伸縮性を有する熱伝導シートが挟み込まれ、第2の高圧電極と第2の熱伝導・電気絶縁板との間、及び第2の熱伝導・電気絶縁板と第2の電極冷却板との間にそれぞれ両者に接触させて伸縮性を有する熱伝導シートが挟み込まれている。
【0037】
また、熱伝導シートは、シリコンで作製され、熱伝導シートの両主面にセラミックパウダが塗付されている。
【0038】
また、この発明に係るオゾン発生器においては、平板状の低圧電極と、低圧電極の両主面のそれぞれに対向して設けられた平板状の第1の高圧電極、第2の高圧電極と、低圧電極と第1の高圧電極との間に設けられた平板状の第1の誘電体及び積層方向に厚さの薄い第1の放電空隙を形成するための第1のスペーサと、低圧電極と第2の高圧電極との間に設けられた平板状の第2の誘電体及び積層方向に厚さの薄い第2の放電空隙を形成するための第2のスペーサと、 第1の高圧電極の第1の放電空隙と反対側の主面に対向して設けられ第1の高圧電極を冷却する第1の電極冷却板と、第2の高圧電極の第2の放電空隙と反対側の主面に対向して設けられ第2の高圧電極を冷却する第2の電極冷却板と、第1の高圧電極と第1の電極冷却板の間に挟まれた伸縮性を有する第1の熱伝導・電気絶縁シートと、第2の高圧電極と第2の電極冷却板の間に挟まれた伸縮性を有する第2の熱伝導・電気絶縁シートとを備え、低圧電極と第1の高圧電極との間、低圧電極と第2の高圧電極との間にそれぞれ交流電圧を印加され、酸素ガスが注入された第1の放電空隙及び第2の放電空隙に放電を生じさせオゾンガスを発生させる。
【0039】
また、低圧電極と第1の電極冷却板との間、及び低圧電極と第2の電極冷却板との間にそれぞれ設けられ、低圧電極、第1の電極冷却板、第2の電極冷却板にそれぞれ設けられた冷却水通路を相互につなげる冷却水通路、或いは低圧電極に設けられたオゾンガス通路につながるオゾンガス通路が形成されたマニホールドブロックを備えている。
【0040】
また、マニホールドブロックは、低圧電極、第1の高圧電極及び第2の高圧電極の積層方向に弾性機能を有する弾性構造を有する。
【0041】
また、スペーサは、低圧電極の冷却水通路を形成するリブに対向する位置に配置されている。
【0042】
また、この発明に係るオゾン発生器においては、平板状の低圧電極と、低圧電極の両主面のそれぞれに対向して設けられた平板状の第1の高圧電極、第2の高圧電極と、低圧電極と第1の高圧電極との間に設けられた平板状の第1の誘電体及び積層方向に厚さの薄い第1の放電空隙を形成するための第1のスペーサと、低圧電極と第2の高圧電極との間に設けられた平板状の第2の誘電体及び積層方向に厚さの薄い第2の放電空隙を形成するための第2のスペーサと、第1の高圧電極の第1の放電空隙と反対側の主面に対向して設けられ第1の高圧電極を冷却する第1の電極冷却板と、第2の高圧電極の第2の放電空隙と反対側の主面に対向して設けられ第2の高圧電極を冷却する第2の電極冷却板と、第1の高圧電極と第1の電極冷却板の間に挟まれた第1の熱伝導・電気絶縁板と、第2の高圧電極と第2の電極冷却板の間に挟まれた第2の熱伝導・電気絶縁板と、低圧電極と第1の電極冷却板との間、及び低圧電極と第2の電極冷却板との間にそれぞれ設けられ、低圧電極、第1の電極冷却板、第2の電極冷却板にそれぞれ設けられた冷却水通路を相互につなげる冷却水通路、或いは低圧電極に設けられたオゾンガス通路につながるオゾンガス通路が形成されたマニホールドブロックとを備え、低圧電極の第1の放電空隙及び第2の放電空隙に対向する両主面が、無機物でなる誘電体膜で被われ、第1の誘電体の第1の高圧電極に対向する主面が、導電性を有する導電膜で被われ、導電膜が第1の高圧電極に接触しており、第2の誘電体の第2の高圧電極に対向する主面が、導電性を有する導電膜で被われ、導電膜が第2の高圧電極に接触しており、第1の高圧電極と第1の熱伝導・電気絶縁板との間、及び第1の熱伝導・電気絶縁板と第1の電極冷却板との間にそれぞれ両者に接触させて伸縮性を有する熱伝導シートが挟み込まれ、第2の高圧電極と第2の熱伝導・電気絶縁板との間、及び第2の熱伝導・電気絶縁板と第2の電極冷却板との間にそれぞれ両者に接触させて伸縮性を有する熱伝導シートが挟み込まれ、低圧電極と第1の高圧電極との間、低圧電極と第2の高圧電極との間にそれぞれ交流電圧を印加され、酸素ガスが注入された第1の放電空隙及び第2の放電空隙に放電を生じさせオゾンガスを発生させる。
【0043】
また、低圧電極、第1、第2の高圧電極、第1、第2の誘電体、第1、第2のスペーサ、第1、第2の電極冷却板及び第1、第2の熱伝導・電気絶縁板を有する電極モジュールが、複数個積層されている。
【0044】
【発明の実施の形態】
以下、この発明を図に基づいて説明する。
図1は平板積層型オゾン発生装置を説明する模式的な説明図である。平板積層型オゾン発生装置は、オゾンを発生させる要部構成としてのオゾン発生器100と、このオゾン発生器100に電力を供給するオゾントランス200及び高周波インバータ300から構成されている。
【0045】
高周波インバータ300は、電源入力404から入力された電力を必要な周波数に変換してインバータ出力ケーブル403に出力する。オゾントランス200は、この電力を所定の電圧まで昇圧させ、オゾン発生に必要な電力としてオゾン発生器100に供給する。高周波インバータ300は、さらに電流/電圧を制御する機能を有し供給する電力注入量を制御する。
オゾントランス200から供給される高電圧は、高電圧ケーブル401から高圧ブッシング120を通してオゾン発生器100の高圧電極3に供給される。一方、低電圧は、低電圧ケーブル402から基台24を介して低圧電極7に供給される。
【0046】
オゾン発生器100は、高圧電極3及び低圧電極7を有する複数の電極モジュール102を備えている。所定の個数の電極モジュール102が基台24上に図中矢印Z方向に積層されてオゾン発生器電極101が構成されている。オゾン発生器電極101は、発生器カバー110で覆われている。発生器カバー110には、窒素、炭酸ガス等が微量含まれた酸素ガスを供給するオゾン発生器酸素ガス入口130が設けられている。供給された酸素ガスは、発生器カバー110に充満され、後述する放電空隙に入り込む。一方、基台24には、後述する放電空隙にて生成されたオゾンガスをオゾン発生器100から外部に出すオゾンガス出口11と電極モジュール102を冷却する冷却水が出入りする冷却水出入口12が設けられている。
【0047】
このような構成の平板積層型オゾン発生装置において、本発明は特にオゾン発生装置の要部であるオゾン発生器100に関するものであり、詳細には、オゾン発生器100のオゾン発生器電極101及び電極モジュール102の構造に関するものである。
【0048】
実施の形態1.
図2はこの発明の実施の形態1のオゾン発生器を示すオゾン発生器電極の模式的な詳細断面図である。図2において、オゾン発生器電極101は、平板状の低圧電極7と、低圧電極7の両主面のそれぞれに対向して設けられた平板状の第1、第2の高圧電極3(3−1),3(3−2)と、低圧電極7と第1の高圧電極3(3−1)との間に設けられた平板状の第1の誘電体5(5−1)及び積層方向に厚さの薄い第1の放電空隙6(6−1)を形成するための図示しない第1のスペーサと、低圧電極7と第2の高圧電極3(3−2)との間に設けられた平板状の第2の誘電体5(5−2)及び積層方向に厚さの薄い第2の放電空隙6(6−2)を形成するための図示しない第2のスペーサとを有する。
【0049】
オゾン発生器電極101は、さらに第1の高圧電極3(3−1)の第1の放電空隙6(6−1)と反対側の主面に対向して設けられ第1の高圧電極3(3−1)を冷却する第1の電極冷却板1(1−1)と、第2の高圧電極3(3−2)の第2の放電空隙6(6−2)と反対側の主面に対向して設けられ第2の高圧電極3(3−2)を冷却する第2の電極冷却板1(1−2)と、第1の高圧電極3(3−1)と第1の電極冷却板1(1−1)の間に挟まれた第1の熱伝導・電気絶縁板2(2−1)と、第2の高圧電極3(3−2)と第2の電極冷却板1(1−2)の間に挟まれた第2の熱伝導・電気絶縁板2(2−2)とを有する。
【0050】
そして、オゾン発生器電極101は、低圧電極7と第1の高圧電極3(3−1)との間、低圧電極7と第2の高圧電極3(3−2)との間にそれぞれ交流電圧を印加され、酸素ガスが注入された第1の放電空隙6(6−1)及び第2の放電空隙6(6−2)に放電を生じさせオゾンガスを発生させる。
【0051】
図1に示したオゾントランス200から高圧ブッシング120を介して高圧電極3の給電端子4に電力が供給される。高圧電極3は、ステンレス、アルミ等の金属で作製されている。誘電体5の主面は高圧電極3に密着している。誘電体5は、セラミック、ガラス、シリコン等の材料で作製されている。誘電体5と低圧電極7との間には、後述するスペーサによって放電空隙6が形成されている。本実施の形態においては、放電空隙6は円板状に形成されており、図1の発生器カバー110に充満された酸素ガスは、放電空隙6の全周囲から中心方向に向かって注入される。
【0052】
高圧電極3と低圧電極7との間に交流・高電圧を印加することで、放電空隙6を流れる酸素ガスをオゾンに変換する。放電空隙6でオゾン化酸素に変換されたオゾンガスは、低圧電極7の中心部から低圧電極7内に設けられたオゾンガス通路8を経由してオゾンガス出口11に導かれる。
【0053】
低圧電極7は、ステンレス鋼板等からなる2枚の導電板を接合して板間にオゾンガス通路8を形成した薄板状の導電性剛体である。低圧電極7には、オゾンガス通路8以外にオゾン発生効率を上げるための冷却水通路9が設けられている。そして、この冷却水通路9に冷却水を流すことで、放電空隙6内のガス温度を下げる。
【0054】
一方、高圧電極3を冷却するために、各高圧電極3には熱伝導・電気絶縁板2を介して水冷式の電極冷却板1が配置されている。電極冷却板1は、ステンレス等からなる2枚の鋼板を接合して板間に冷却水通路9を形成した薄板状の剛体である。すなわち、電極冷却板1内にも冷却水通路9が設けられており、この冷却水通路9には、冷却水が流される。
【0055】
低圧電極7内に形成されたオゾンガス通路8は、マニホールドブロック23に形成されたオゾンガス通路8を経由して基台24に設けられたオゾンガス出口11に連通している。一方、電極冷却板1及び低圧電極7に形成された冷却水通路9はマニホールドブロック23に形成された冷却水通路9を経由して基台24に設けられた冷却水出入口12に連通している。
特に図示はしないが、電極冷却板1あるいは低圧電極7とマニホールドブロック23あるいは基台24間における冷却水の水密はOリング等のガスケット材が挟み込まれている。また、オゾンガスの気密にもOリング等のガスケット材が挟み込まれている。
【0056】
低圧電極7、高圧電極3、誘電体5、スペーサ、電極冷却板1及び熱伝導・電気絶縁板2から成る電極モジュール102は、各構成要素を貫通する締め付けボルト21によって、電極押え板22と基台24との間で締着されて固定されている。放電空隙6はマニホールドブロック23によって、積層方向に所定の厚さに保たれている。
【0057】
尚、本実施の形態は、高圧電極3と低圧電極7との間に無声(誘電体バリヤー)放電に必要な誘電体5を設け、そしてこの誘電体5と低圧電極7との間にスペーサを配置して放電空隙6を設けている。しかし、高圧電極3と誘電体5との間にスペーサを配置して放電空隙6を設けても良い。
【0058】次に動作について説明する。高圧電極3と低圧電極7に交流・高電圧を印加すると、放電空隙6で無声(誘電体バリヤー)放電が発生する。この放電空隙6に酸素ガスを通すと酸素が変換されオゾンが発生する。発生器カバー110に充満された酸素ガスは、低圧電極7と誘電体5との間に形成された放電空隙6を通過し、その間にオゾンに変換される。本実施の形態においては、誘電体5、高圧電極3及び両者間に形成された放電空隙6は、各々概略円板状を成している。そして、酸素ガスは誘電体5の全周囲から中心に向かって流れ放電空隙6でオゾン化酸素ガスとなる。
【0059】
オゾンを効率よく生成させるには、特に厚さの薄い空間である放電空隙6を精度を良く保つ必要がある。電極モジュールの積層体を、電極押え板22と基台24との間で、両側部にブロック23を配置して積層方向に貫通する複数本の締め付けボルト21により締め付けることにより、所定の空隙精度を得られるようにしている。そして、放電空隙6は、低圧電極7の表面に配置した図示しない放電空隙用スペーサによって形成している。つまり、放電空隙6の厚さ(積層方向の高さ)は、この放電空隙用スペーサの高さで設定している。この放電空隙用スペーサの高さを均一に加工すること及び締め付けボルト21で各電極を締め付けることで、放電空隙6の精度を確保している。
【0060】
オゾンを効率よく生成するもう一つの手段として、放電空隙6内の温度を下げる方法がある。電極として高圧電極3と低圧電極7が設けられており、この両電極を水またはガス等で冷却する方法が考えられる。水とガスの冷却効果は水の方が大きいが、水を用いる場合、高圧電極3には高電圧が印加されるため、冷却水の電気伝導率を小さく(イオン交換水を用いる等)する必要がある。一方、ガスを用いる場合はその必要は無いが構造が複雑、騒音が大きい、または冷媒の熱容量が小さい等一長一短がある。
【0061】
本実施の形態においては、低圧電極7に隣接して放電空隙6が形成されており、低圧電極7内に冷却水通路9を設けることで、放電空隙6を冷却している。また、高圧電極3を冷却するため、熱伝導・電気絶縁板2を介して電極冷却板1を設け、これにより高圧電極3の熱を逃がす構成にしている。高圧電極3で発生した熱は、熱伝導が高く電気絶縁性に優れた熱伝導・電気絶縁板2をとおり、冷却水でヒートシンクされた電極冷却板1により冷却される。このように高圧電極3と低圧電極7を同時に冷却することで、放電空隙6のガス温度を低く保つことができる。
【0062】
また、低圧電極7の両側において2枚の誘電体5を介して2つの高圧電極3で挟み、さらに2つの高圧電極3を電気絶縁板2を介して電極冷却板1で冷却できる構成にしたので、電極冷却板1に流す冷却水の電気伝導率を小さくする必要は無く、一般の水道水程度でよい。そのため、低圧電極7を冷却する冷却水と共通の冷却水にできる利点も生じる。
【0063】
このようなことから、本実施の形態においては、放電空隙6の冷却効率を向上させ、また放電空隙6の温度を良好に下げることができる。これにより、オゾン発生効率を低下させずに電力密度を上げることができ、電極モジュール数の減少が可能となり装置の小型化及び低価格化を図ることができる。さらに、高圧電極3を熱伝導・電気絶縁板2を介して冷却するため、冷却水として電気伝導率の小さいイオン交換水等を使用せずに済み、一般の水道水程度の冷却水を用いることができる。そのため、電気伝導度の監視装置やイオン交換水の循環設備等が不要となり、装置構成点数の削減による低価格化や、維持費用の低減を図ることができる。
【0064】
実施の形態2.
図3はこの発明の実施の形態2のオゾン発生器を示す低圧電極7の上面図である。図4は図3のA−A線に沿う矢視断面図である。図5は図3のB−B線に沿う矢視断面図である。低圧電極7は、図4及び図5において示されるように上側低圧電極7aと下側低圧電極7bの2枚の金属電極から構成されている。2枚の電極7a,7bの片側主面にはあらかじめエッチングもしくは機械加工によって深さ数mmの溝が形刻されている。そして、この溝を向き合うようにして2枚の電極7a,7bを貼り合わせて低圧電極7が作製されている。向き合わされた溝は、低圧電極7の内部にオゾンガス通路8及び冷却水通路9を形成する。
【0065】
また、低圧電極7の片側端部(図3の左側)のオゾンガス・冷却水取出し部900には、積層方向に延びるオゾンガス通路8及び冷却水通路9が形成されている。ここで冷却水通路9は、冷却水入口9aと冷却水出口9bとに分かれている。冷却水入口9a及び冷却水出口9bに連通する冷却水通路9は図3に点線で示されるように低圧電極7の内部においてほぼ全体にわたって形成されている。すなわち、概略円形の低圧電極放電部700に中央から外周部まで同心円状に複数形成されている。尚、隣り合う同心円状の冷却水通路9は、幅の細いリブにて仕切られている。一方、低圧電極7の内部に形成されるオゾンガス通路8は、片側端部の積層方向に延びる通路から中央部に延び、中央部で両主面に形成された開口に連通している。
【0066】
低圧電極7の片側端部に設けられた積層方向に延びるオゾンガス通路8及び冷却水通路9は、マニホールドブロック23に設けられたオゾンガス通路及び冷却水通路とつながり、最終的に基台24に設けられたオゾンガス出口11及び冷却水出入口12につながっている。
【0067】
2枚の電極7a,7bのオゾンガス通路8及び冷却水通路9が形成されるための溝が形成された面に対して反対側の面には、放電空隙6を形成するための丸形の凸部が同じくエッチングもしくは機械加工によって主面全体に複数形成されている。上述のオゾンガス通路8は、この放電空隙6が形成される面に形成された開口に連通している。
【0068】
発生したオゾンガスは、低圧電極7の中央部から低圧電極7内に設けられたオゾンガス通路8を通って低圧電極7の片側端部のオゾンガス・冷却水取出し部900に設けられた積層方向に延びるオゾンガス通路8に至る。一方、低圧電極7内の全体に流れる冷却水は、オゾンガス・冷却水取出し部900の冷却水入口穴9aから低圧電極7に入り、低圧電極放電部700の全面を冷却し、オゾンガス・冷却水取出し部900の冷却水出口穴9bへ抜ける。
【0069】
低圧電極7の端部に設けられたオゾンガス・冷却水取出し部900でのオゾンガス出口の集合及び冷却水の出入口の集合構造は、低圧電極7に隣接して設けられたマニホールドブロック23と協同して基台24に設けられたオゾンガス出口11及び冷却水出入口12につながる。このように本実施の形態においては、低圧電極7及びマニホールドブロック23内に通路を形成することにより、集合継手、配管部材を無くし、これら継手、配管部材によるスペースを削減することによりコンパクトで簡素化したオゾン発生器を実現している。
【0070】
このようなことから、本実施の形態においては、低圧電極7をエッチングもしくは機械加工によって数mm以内で凹凸加工した少なくとも2枚以上の金属板を貼り合わせることで気密流通空間を構成し、オゾンガス通路8及び冷却水通路9とを気密分離させて形成したので、低圧電極7の厚みを薄くすることができ、装置の小型化が行える。また、冷却水及びオゾンガス取出し用配管が不要となるため、組立て、分解が簡単に行え、安価なオゾン発生器を提供することができる。
【0071】
尚、本実施の形態においては、2枚の電極7a,7bが接合されて低圧電極7が作製されているが、3枚以上の電極が接合されて内部にオゾンガス通路8及び冷却水通路9が形成されるようにしても良い。
【0072】
また、本実施の形態においては、低圧電極7と誘電体5との間に放電空隙6を設け、低圧電極7内にオゾンガス通路8を形成しているが、高圧電極3と誘電体5との間に放電空隙を設け、高圧電極3内にオゾンガス通路を形成しても良い。
さらには、電極冷却板1内にオゾンガス通路を形成しても良い。
【0073】
実施の形態3.
図6はこの発明の実施の形態3のオゾン発生器を示す電極冷却板1の上面図である。図7は図6のC−C線に沿う矢視断面図である。図8は図6のD−D線に沿う矢視断面図である。電極冷却板1は、図7及び図8において示されるように上側冷却板1aと下側冷却板1bの2枚の金属板から構成されている。2枚の金属板1a,1bの片側主面にはあらかじめにはエッチングもしくは機械加工によって深さ数mm以内の溝が形刻されている。そして、この溝を向き合うようにして2枚の金属板1a,1bを貼り合わせて電極冷却板1が作製されている。向き合わされた溝は、電極冷却板1の内部に冷却水通路9を形成する。
【0074】
電極冷却板1の片側端部(図6の左側)には、実施の形態2の低圧電極7のオゾンガス・冷却水取出し部900と同じように、積層方向に延びるオゾンガス通路8及び冷却水通路9が形成されている。ここで冷却水通路9は、冷却水入口9aと冷却水出口9bとに分かれている。冷却水入口9a及び冷却水出口9bに連通する冷却水通路9は図6に点線で示されるように電極冷却板1の内部においてほぼ全体にわたって形成されている。すなわち、概略円形の主要部に中央から外周部まで同心円状に複数形成されている。尚、隣り合う同心円状の冷却水通路9は、幅の細いリブにて仕切られている。
【0075】
電極冷却板1の片側端部に設けられた積層方向に延びるオゾンガス通路8及び冷却水通路9は、マニホールドブロック23に設けられたオゾンガス通路及び冷却水通路とつながり、最終的に基台24に設けられたオゾンガス出口11及び冷却水出入口12につながっている。
【0076】
このようなことから、本実施の形態においては、電極冷却板1をエッチングもしくは機械加工によって数mm以内で凹凸加工した少なくとも2枚以上の金属板を貼り合わせることで気密流通空間を構成し、冷却水通路9を形成したので、電極冷却板1の厚みを薄くすることができ、装置の小型化が行える。また、冷却水及びオゾンガス取出し用配管が不要となるため、組立て、分解が簡単に行え、安価なオゾン発生器を提供することができる。
【0077】
尚、本実施の形態においては、2枚の金属板1a,1bが接合されて電極冷却板1が作製されているが、3枚以上の電極が接合されて内部にオゾンガス通路8及び冷却水通路9が形成されるようにしても良い。
【0078】
実施の形態4.
本実施の形態は金属板の接合方法に関する。2枚の金属板の接合に関し一般的な方法としては、接合剤としてロー剤を用いたロー付け方式がある。ところが、オゾンガス通路8はオゾンが流通するため、オゾンガスによるロー剤との酸化反応が起こり、オゾンガスの分解、酸化物の生成等、オゾン発生器にとって良くない現象が発生する。そこで、本実施の形態においては、この一般的なロー付け方式を用いない。
【0079】
すなわち、実施の形態2の2枚の電極7a,7bの接合、及び実施の形態3の2枚の金属板1a,1bの接合において、この一般的なロー付け方式を用いない。本実施の形態においては、2枚の金属板の接合に関し、加熱・加圧式接合方法を用いる。この方法は、2枚の金属板を加熱しながら積層方向に大きな圧力をもって押し付けて、接触面で両金属を融合させて接合するものである。金属はその金属特有の溶融点で溶融する。そのため、接合材質で決まる所定の加熱と所定の加圧により金属を接合することができる。この方法は、ロー剤はもとより他の接合剤も全く使用しない。そのため、オゾンによる酸化反応物が生成されずクリーンなオゾンを生成することができる。
【0080】
このようなことから、本実施の形態においては、2枚以上の金属板を貼り合わせる方法に関し、接合剤を使用せず加熱と加圧のみで接合させる方法を用いたので、オゾンによる接合剤の腐食が生じず寿命が長く信頼性の高いオゾン発生器とすることができる。
【0081】
実施の形態5.
図9はこの発明の実施の形態5のオゾン発生器を示すオゾン発生器電極の詳細断面図である。本実施の形態においては、低圧電極7の放電空隙6に対向する放電面全体が無機材でなる誘電体膜13にて覆われている。この誘電体膜13は、放電空隙6に面している。この誘電体膜13の厚さは、金属イオンが充分阻止できる厚みとしている。
【0082】
このような構成のオゾン発生器においては、無声放電が発生する放電空隙6が両面ともに無機材で囲まれることとなり、この空隙に酸素ガスを通すことにより、金属コンタミネーションのないクリーンなオゾンを発生することができる。
【0083】
実施の形態6.
図10はこの発明の実施の形態6のオゾン発生器を示す低圧電極7の上面図である。図11は図10のE−E線に沿う矢視断面図である。図12は図10のF−F線に沿う矢視断面図である。本実施の形態においては、低圧電極7の放電空隙6に対向する放電面全体がセラミック誘電体膜13aにて覆われている。このセラミック誘電体膜13aは、放電空隙6に面している。セラミック誘電体膜13a上には、放電空隙6を形成するために小型円板状の複数のセラミック誘電体放電空隙用スペーサ13a1が配置されている。
【0084】
このような構成のオゾン発生器においては、酸素ガスは、低圧電極7の外周部より放電空隙6内に流入し、セラミック誘電体放電空隙用スペーサ13a1間を通りながら無声放電によりオゾンを生成し、低圧電極7の中心に形成されたオゾンガス通路8より、低圧電極7の内部を通り外部に流出する。このとき、放電空隙6は両面ともに無機材で囲まれさらにスペーサも無機材であるので、さらに金属コンタミネーションのないクリーンなオゾンを発生することができる。
【0085】
尚、セラミック誘電体膜13aは、溶射方式により形成され、数μmの厚さに膜厚制御される。さらにこの溶射方式では、セラミック誘電体放電空隙用スペーサ13a1も同時に形成することができる。
【0086】
実施の形態7.
図13はこの発明の実施の形態7のオゾン発生器を示す低圧電極7の上面図である。図14は図13のG−G線に沿う矢視断面図である。図15は図13のH−H線に沿う矢視断面図である。本実施の形態においては、低圧電極7の放電空隙6に対向する放電面全体がガラス誘電体膜13bにて覆われている。このガラス誘電体膜13bは、放電空隙6に面している。ガラス誘電体膜13b上には、放電空隙6を形成するために小型円板状の複数のガラス誘電体放電空隙用スペーサ13b1が配置されている。
【0087】
このような構成のオゾン発生器においては、酸素ガスは、低圧電極7の外周部より放電空隙6内に流入し、ガラス誘電体放電空隙用スペーサ13b1間を通りながら無声放電によりオゾンを生成し、低圧電極7の中心に形成されたオゾンガス通路8より、低圧電極7の内部を通り外部に流出する。このとき、放電空隙6は両面ともに無機材で囲まれさらにスペーサも無機材であるので、さらに金属コンタミネーションのないクリーンなオゾンを発生することができる。
【0088】
尚、ガラス誘電体膜13bの作製においては、まず石英材質のガラス板をマスクを利用してショトブラスト処理し凸型のガラス誘電体放電空隙用スペーサ13b1を形成する。その後このガラス誘電体膜13bを接着剤13b2にて低圧電極7に貼る。
【0089】
実施の形態8.
図16はこの発明の実施の形態8のオゾン発生器を示すオゾン発生器電極の詳細断面図である。本実施の形態においては、誘電体5の高圧電極3側の主面が全面にわたって導電膜14にて覆われている。
【0090】
導電膜14を設けていない場合、高圧電極3面と誘電体5面を接着等を用いることなく互いに機械的圧力のみで圧着すると、高圧電極3面と誘電体5面を密着良く接触できない。そして、接触面の一部で空隙ができ、この空隙で不正放電(局部放電)が生じてしまう。この不正放電は、誘電体5を破損したり、オゾン発生効率の低下をしたり、クリーンオゾンの発生を妨害したりするので問題であった。
【0091】
本実施の形態においては、誘電体5の表面に導電膜14を塗布することで、たとえ完全に密着良く接合できなくとも、誘電体5の導電膜14と高圧電極3は同電位になるため、接触面の一部に空隙が形成されていても不正放電(局部放電)を防止でき、金属コンタミネーションの発生を阻止することができる。
【0092】
実施の形態9.
図17はこの発明の実施の形態9のオゾン発生器を示す高圧電極3と誘電体5の側面図である。本実施の形態においては、高圧電極3と誘電体5との間が隙間無く導電性接着剤にて接合されている。このような構成においても、高圧電極3と誘電体5との密着性を高めることができ、不正放電を防止でき、金属コンタミネーションの発生を阻止することができる。さらには、位置決め等の調整が不要になり、組立が容易になる。
【0093】
実施の形態10.
図18はこの発明の実施の形態10のオゾン発生器を示す誘電体5を上から見た場合と横から見た場合の図である。本実施の形態は、導電膜14のエッジ部における金属コンタミネーションを押える構造を有するものである。導電膜14は高電圧の電位が印加され、そのエッジ部で不正コロナ放電が発生する。この不正コロナ放電の発生は金属コンタミネーションの発生要因となる。本実施の形態においては、導電膜14の外周部の段差を形成している部分に全周にわたって、絶縁保護膜16を被覆している。エッジ部で不正コロナ放電が発生することを防止することができ、金属コンタミネーションの発生を防止することができる。
その他の構成は実施の形態8と同様である。
【0094】
実施の形態11.
図19はこの発明の実施の形態11のオゾン発生器を示す高圧電極3と誘電体5の側面図である。本実施の形態においては、導電性接着剤15の外周部の段差を形成している部分に全周にわたって、絶縁保護膜16を被覆している。そのため、導電性接着剤15のエッジ部で発生する不正コロナ放電を防止することができ、金属コンタミネーションの発生を防止することができる。
その他の構成は実施の形態9と同様である。
【0095】
実施の形態12.
本実施の形態においては、高圧電極3の外径が、誘電体5の外径及び誘電体5の表面に設けられた導電膜14の外径より小さくされている。その他の構成は実施の形態8と同様である。
【0096】
高圧電極3の外径を、誘電体5や導電膜14の外径より小さくすることで、不正コロナ放電を無くし金属コンタミネーションを防ぐことができる。導電膜14の外径が高圧電極3より小さい場合、高圧電極3と誘電体5との間で放電を起こし、金属コンタミネーションの発生の要因となる。
【0097】
実施の形態13.
図20はこの発明の実施の形態13のオゾン発生器を示すオゾン発生器電極の詳細断面図である。本実施の形態においては、高圧電極3と熱伝導・電気絶縁板2との間に、及び電極冷却板1と熱伝導・電気絶縁板2との間に、それぞれ伸縮性に優れさらに熱伝導率の高い材料、例えばシリコンゴム等で作製された熱伝導シート17が挟まれている。その他の構成は実施の形態1と同様である。
【0098】
高電圧部の冷却においては、高圧電極3から発生する熱を熱伝導・電気絶縁板2を介して電極冷却板1から逃がしている。高圧電極3、電極冷却板1及び熱伝導・電気絶縁板2の各々の接合面の加工精度により高圧電極3と熱伝導・電気絶縁板2との間、及び電極冷却板1と熱伝導・電気絶縁板2との間に隙間ができる。酸素ガスの熱伝導率は非常に低く隙間の存在は、熱抵抗を大きくする。それ故高圧電極3の冷却を効率良く行うには、その隙間をなくす必要がある。
【0099】
本実施の形態の熱伝導シート17は、伸縮性に優れさらに熱伝導率の高い材料で作製されているので、加工精度の違いにより発生する隙間を無くし、高圧電極3の発熱を電極冷却板1に伝えることができ、高圧電極3の温度を良好に下げることができる。
【0100】
このようなことから本実施の形態においては、高圧電極3と熱伝導・電気絶縁板2との間、及び熱伝導・電気絶縁板2と電極冷却板1との間の微少な空間がなくなり、熱伝導性を悪化させる微少な空間をなくすことができ、高圧電極3と電極冷却板1との間の熱伝導性が良くなり、放電空隙6の冷却効率が高められ、放電空隙6の温度が良好に下げられ、オゾン発生効率が向上する。また、熱伝導シート17は伸縮性を有するので、両面から所定の圧力をかけて押圧することで優れたガスシールドとなる効果もある。
【0101】
尚、熱伝導シート17はシリコンゴムに限らず、伸縮性に優れさらに熱伝導率の高い材料であれば所定の効果を得ることができる。
【0102】
実施の形態14.
図21はこの発明の実施の形態14のオゾン発生器を示す熱伝導シート17を上から見た場合と横から見た場合の図である。本実施の形態の熱伝導シート17は、両主面に全面にわたってセラミックパウダ18が塗布されている。その他の構成は実施の形態13と同様である。
【0103】
熱伝導シート17に用いる材料としては、伸縮性、熱伝導性に優れ、加えて工作性に優れた材料であることが必要である。これに最適な材料としてシリコンゲルがある。シリコンゲルは粘着性が高く、高圧電極3、熱伝導・電気絶縁板2及び電極冷却板1との間に貼り付ける場合、その接合面に気泡(微少な空間)が混入する工作上の問題がある。隙間が生じると前述したように冷却効率が悪化する。この問題を解決するために、本実施の形態では、熱伝導シート17にセラミックパウダ18を塗布する。セラミックパウダ18を、粘着性のあるシートに軽く吹き付けると、シートの粘着性が無くなる。これより、熱伝導シート17を気泡を生じることなく容易に貼ることができる。
【0104】
このようなことから本実施の形態においては、実施の形態13の熱伝導シート17として表面にセラミックパウダ18を塗付したシリコンゲルを使用したので、熱伝導シート17の粘着性が抑えられ、熱伝導シート17と高圧電極3、熱伝導・電気絶縁板2及び電極冷却板1間との気泡を容易に無くすことができ、熱伝導シート13の取付けが容易になり、安価なオゾン発生器を提供することができる。
【0105】
実施の形態15.
図22はこの発明の実施の形態15のオゾン発生器を示すオゾン発生器電極の詳細断面図である。本実施の形態においては、高圧電極3と電極冷却板1との間に、伸縮性に優れ熱伝導率が高く電気絶縁性の高い材料、例えばシリコンゴム等で作製された熱伝導・電気絶縁シート19が挟まれている。すなわち、実施の形態1の熱伝導・電気絶縁板2に替わって、高圧電極3と電極冷却板1との間に、熱伝導・電気絶縁シート19が挟まれている。
【0106】
高圧電極3と電極冷却板1との間の材料に求められる機能は、高電圧の電気を絶縁できる絶縁機能及び熱を効率よく伝える熱伝導機能である。本実施の形態の熱伝導・電気絶縁シート19は、この2つの特性に加えて伸縮性に優れている。高圧電極3と電極冷却板1との間で隙間を無くすことができ、高圧電極3の発熱を電極冷却板1に伝えることができ、高圧電極3の温度を良好に下げることができる。加えて、実施の形態1の熱伝導・電気絶縁板2を省略することができ、部品点数の削減、小型化及び低コスト化を図ることができる。
【0107】
すなわち、本実施の形態においては、実施の形態1のオゾン発生器において、熱伝導・電気絶縁板2の代わりに、絶縁機能と熱伝導機能を有し伸縮性に優れた熱伝導・電気絶縁シート19を、高圧電極3と電極冷却板1との間に挟み込む構造としたので、熱伝導シート13、熱伝導・電気絶縁板2、及び熱伝導シート13の3個の部品を1個の部品に削減でき、装置を安価とすることができる。
【0108】
実施の形態16.
図23はこの発明の実施の形態16のオゾン発生器を示すマニホールドブロック23の断面図である。マニホールドブロック23は、積層方向に2つの部材、すなわち、上側マニホールドブロック23aと下側マニホールドブロック23bとに分かれている。両者には、オゾンガス通路8及び冷却水通路9が積層方向に貫通して形成されている。これらのオゾンガス通路8及び冷却水通路9は、低圧電極7及び電極冷却板1に設けられたオゾンガス通路8及び冷却水通路9に連通する。
【0109】
下側マニホールドブロック23bには、オゾンガス通路8及び冷却水通路9を囲うようにして設けられた図の上方に向かって立設する円筒部が形成されている。一方、上側マニホールドブロック23aは、この円筒部が挿入される凹部を有している。この凹部の中央には、オゾンガス通路8及び冷却水通路9が形成されている。この円筒部と凹部とは、積層方向に摺動可能な間隙をもってシリンダとピストンの関係のように係合している。そして、この円筒部と凹部との間には、気密性を保つためにOリング23cが配設されている。また、上側マニホールドブロック23aと下側マニホールドブロック23bとの間には、積層方向に弾性を有するように皿ばね23dが配設されている。本実施の形態のマニホールドブロック23は、このような構造であるので、低圧電極7及び電極冷却板1に設けられたオゾンガス通路8及び冷却水通路9に連通する積層方向に延びる通路を有するとともに、電極の積層方向に伸縮する。
【0110】
実施の形態1でも述べたように、オゾン発生効率を良くするには、放電空隙6の精度を上げる必要がある。そのため、放電空隙6形成用スペーサの高さ精度を上げ、更に電極全体を電極押え板22と締め付けボルト21で基台24に締め付けることで放電空隙6の精度を向上させている。しかしながら、低圧電極7及び電極冷却板1はマニホールドブロック23に隣接して設けられており、マニホールドブロック23との結合力が強いと電極締め付けに悪影響が働き、放電空隙6の精度が保てなくなる恐れがある。
【0111】
すなわち、例えば実施の形態2に図2において、図2の右側には、高圧電極3及び低圧電極7を始め多くの部材が積層されて締め付けボルト21で基台24に締め付けられている。そして、この積層物の中に放電空隙6形成用スペーサによって放電空隙6が形成されている。一方、この積層物においては、多くの部材が積層されているために各々の部材の寸法誤差が積算されて縦方向に或る程度の誤差が発生してしまう。そして、電極冷却板1及び低圧電極7は、例えばステンレス等で作製された剛体である。そのため、電極冷却板1と低圧電極7との間に挟まれるブロックを如何に精度良く作製しても、積層物の縦方向の誤差のために、電極冷却板1と低圧電極7はゆがんでしまう。このゆがみが生じると、放電空隙6を精度良く形成することができない。これに対して、本実施の形態のマニホールドブロック23は、電極の積層方向に弾性を有するための構造を有する。そのため、積層物の縦方向の誤差を吸収することができ、放電空隙6を精度良く形成することができる。
【0112】
このようなことから本実施の形態においては、それぞれの電極に設けられた冷却水通路9を相互につなげる冷却水通路9、或いはオゾンガス通路8につながるオゾンガス通路8が形成されたマニホールドブロック23を設けたので、冷却水用の配管を設けるスペースやオゾンガスを取出すための配管を設けるスペースを削減でき、装置の小型化、軽量化、及び部品点数の削減、装置の品質向上を図ることができる。
【0113】
また、マニホールドブロック23は、電極の積層方向に弾性機能を有する弾性構造を有する。そのため、マニホールドブロック23の締め付けによる放電空隙の空隙長への悪影響を無くすことができ、放電空隙の精度を向上させることができる。
【0114】
実施の形態17.
図24はこの発明の実施の形態17のオゾン発生器を示す低圧電極7の上面図である。図25は図24のI−I線に沿う矢視断面図である。本実施の形態は、放電空隙6を形成する放電空隙用スペーサ7cの配置に関するものである。2枚の電極7a,7bの片側主面にはあらかじめにはエッチングもしくは機械加工によって深さ数mmの溝が形刻されている。そして、この溝が向き合わされてオゾンガス通路8及び冷却水通路9が形成されている。隣り合う溝と溝の間には、通路を隔てるリブ7dが設けられている。そして、本実施の形態の放電空隙用スペーサ7cは、リブ7dと対向する位置に配置されている。すなわち、放電空隙用スペーサ7cは、低圧電極7の放電空隙6に対向する面において、リブ7dを積層方向に透過した位置上に配置されている。
【0115】
低圧電極7の内部には、全面にわたって冷却水通路9が形成されている。そして、この冷却水通路9の面積を少しでも大きくするために、通路を隔てるリブ7dは厚さが出来るだけ薄くされている。一方、放電空隙6を形成する放電空隙用スペーサ7cは、放電空隙6を大きくするために、直径が出来るだけ小さい方が望ましい。低圧電極7はステンレス等で作製され全体として薄い剛体をなしているが、積層方向に力が加わった場合、リブ7dのある部分は変形に対して強いが、リブ7dのない場所は変形に対して弱い。すなわち、へこんでしまう。本実施の形態の放電空隙用スペーサ7cはリブ7dと対向する位置に配置されているので、これにより、低圧電極7が変形することすることはほとんどない。結果として、放電空隙6の変形が抑制され、精度の高い放電空隙6を形成することができる。
【0116】
このようなことから本実施の形態においては、スペーサ7cは、低圧電極7の冷却水通路9を形成するリブ7dに対向する位置に配置されている。そのため、低圧電極7が変形することがなくなり、電極締め付けによる放電空隙6への悪影響をなくすことができ、オゾン発生効率を高めることができる。
【0117】
実施の形態18.
図26はこの発明の実施の形態18のオゾン発生器を示すオゾン発生器電極の詳細断面図である。本実施の形態においては、低圧電極7の放電空隙6に対向する放電面全体を無機材でなる誘電体膜13にて覆う実施の形態5の構成、誘電体5の高圧電極3側の主面を全面にわたって導電膜14にて覆う実施の形態8の構成、電極冷却板1、熱伝導・電気絶縁板2及び高圧電極3のそれぞれの間に熱伝導シート17を挟み込む実施の形態13の構成をすべて有している。
【0118】
そのため、金属コンタミネーションを生じないクリーンなオゾンを生成する放電空隙6を形成することができるとともに、放電空隙6の冷却性を向上させることができる。
【0119】
実施の形態19.
本実施の形態を図1と図2を用いて説明する。本実施の形態のオゾン発生器電極101は、図2に示される、平板状の低圧電極7と、低圧電極7の両主面のそれぞれに対向して設けられた平板状の第1、第2の高圧電極3(3−1),3(3−2)と、低圧電極7と第1の高圧電極3(3−1)との間に設けられた平板状の第1の誘電体5(5−1)及び積層方向に厚さの薄い第1の放電空隙6(6−1)を形成するための図示しない第1のスペーサと、低圧電極7と第2の高圧電極3(3−2)との間に設けられた平板状の第2の誘電体5(5−2)及び積層方向に厚さの薄い第2の放電空隙6(6−2)を形成するための図示しない第2のスペーサと、第1の高圧電極3(3−1)の第1の放電空隙6(6−1)と反対側の主面に対向して設けられ第1の高圧電極3(3−1)を冷却する第1の電極冷却板1(1−1)と、第2の高圧電極3(3−2)の第2の放電空隙6(6−2)と反対側の主面に対向して設けられ第2の高圧電極3(3−2)を冷却する第2の電極冷却板1(1−2)と、第1の高圧電極3(3−1)と第1の電極冷却板1(1−1)の間に挟まれた第1の熱伝導・電気絶縁板2(2−1)と、第2の高圧電極3(3−2)と第2の電極冷却板1(1−2)の間に挟まれた第2の熱伝導・電気絶縁板2(2−2)とを有する電極モジュール102が、図1中、N−1、N−2、N−3、・・・、N−7、N−8で示されるように全部で8個積層されている。
【0120】
このように本実施の形態においては、電極モジュール102が、複数個積層されているので、容量を増大させるとともにコンパクトな装置とすることができる。
尚、本実施の形態においては、電極モジュール102が8個積層されているが、8個に限らず複数個積層されていれば同様の効果を得ることができる。
【0121】
【発明の効果】
この発明に係るオゾン発生器においては、平板状の低圧電極と、低圧電極の両主面のそれぞれに対向して設けられた平板状の第1の高圧電極、第2の高圧電極と、低圧電極と第1の高圧電極との間に設けられた平板状の第1の誘電体及び積層方向に厚さの薄い第1の放電空隙を形成するための第1のスペーサと、低圧電極と第2の高圧電極との間に設けられた平板状の第2の誘電体及び積層方向に厚さの薄い第2の放電空隙を形成するための第2のスペーサと、第1の高圧電極の第1の放電空隙と反対側の主面に対向して設けられ第1の高圧電極を冷却する第1の電極冷却板と、第2の高圧電極の第2の放電空隙と反対側の主面に対向して設けられ第2の高圧電極を冷却する第2の電極冷却板と、第1の高圧電極と第1の電極冷却板の間に挟まれた第1の熱伝導・電気絶縁板と、第2の高圧電極と第2の電極冷却板の間に挟まれた第2の熱伝導・電気絶縁板とを備え、低圧電極と第1の高圧電極との間、低圧電極と第2の高圧電極との間にそれぞれ交流電圧を印加され、酸素ガスが注入された第1の放電空隙及び第2の放電空隙に放電を生じさせオゾンガスを発生させる。そのため、放電空隙の冷却効率を向上させ、また放電空隙の温度を良好に下げることができる。これにより、オゾン発生効率を低下させずに電力密度を上げることができ、電極モジュール数の減少が可能となり装置の小型化及び低価格化を図ることができる。さらに、高圧電極を熱伝導・電気絶縁板を介して冷却するため、冷却水として電気伝導率の小さいイオン交換水等を使用せずに済み、一般の水道水程度の冷却水を用いることができる。そのため、電気伝導度の監視装置やイオン交換水の循環設備等が不要となり、装置構成点数の削減による低価格化や、維持費用の低減を図ることができる。
【0122】
また、低圧電極は、主面に溝が形成された2枚以上の金属製の平板が溝を向き合うようにして貼り合わせて作製されることにより内部にオゾンガス通路と冷却水通路が形成されている。そのため、低圧電極の厚みを薄くすることができ、装置の小型化が行える。また、冷却水及びオゾンガス取出し用配管が不要となるため、組立て、分解が簡単に行え、安価なオゾン発生器を提供することができる。
【0123】
また、第1の電極冷却板及び第2の電極冷却板は、主面に溝が形成された2枚以上の金属製の平板が溝を向き合うようにして貼り合わせて作製されることにより内部に冷却水通路が形成されている。そのため、電極冷却板の厚みを薄くすることができ、装置の小型化が行える。また、冷却水及びオゾンガス取出し用配管が不要となるため、組立て、分解が簡単に行え、安価なオゾン発生器を提供することができる。
【0124】
また、金属製の平板は、加熱と加圧のみで貼り合わせられている。そのため、オゾンによる接合剤の腐食が生じることがなく、寿命が長く信頼性の高いオゾン発生器とすることができる。
【0125】
また、低圧電極の第1の放電空隙及び第2の放電空隙に対向する両主面が、無機物でなる誘電体膜で被われている。そのため、放電空隙が全て無機物で挟まれる構成となり、放電による金属スパッタによる金属コンタミネーションが抑えられ、クリーンなオゾンガスを発生するオゾン発生器を提供することができる。
【0126】
また、誘電体膜は、セラミック材で作製されている。そのため、溶射方式により容易に形成することができ、また数μmの厚さに膜厚制御することができる。さらにこの溶射方式では、セラミック誘電体放電空隙用スペーサも同時に形成することができる。
【0127】
また、誘電体膜は、ガラス材で作製されている。そのため、石英材質のガラス板を接着剤にて低圧電極に貼ることで容易に誘電体膜を形成することができる。また、このガラス板を低圧電極に貼る前に、マスクを利用してショトブラスト処理することにより凸型のガラス誘電体放電空隙用スペーサを容易に形成することができる。
【0128】
また、第1の誘電体の第1の高圧電極に対向する主面が、導電性を有する導電膜で被われ、導電膜が第1の高圧電極に接触しており、第2の誘電体の第2の高圧電極に対向する主面が、導電性を有する導電膜で被われ、導電膜が第2の高圧電極に接触している。そのため、誘電体の片面を導電膜で被い、この導電膜で被った面と高圧電極とを密着させる構造とすれば、高圧電極と誘電体との間に隙間が存在しても、高圧電極の電位が導電膜と同じ電位になり、局所放電を無くすことができ、金属コンタミネーションの発生を防止することができる。また、高圧電極と誘電体を簡易な圧接のみで接合することができるため、容易に組立・分解ができ、部品の再生もできる効果を有する。
【0129】
また、第1の誘電体と第1の高圧電極、及び第2の誘電体と第2の高圧電極は、それぞれ導電性接着剤で貼り合わせられている。そのため、誘電体と高圧電極との間の隙間を無くし局部放電を防止することができ、金属コンタミネーションの発生を防止することができる。
【0130】
また、導電膜の外周エッジ部が、無機物でなる絶縁保護膜で被覆されている。そのため、導電膜の外周エッジ部で生じる不正コロナ放電を抑制することができ、金属コンタミネーションの発生を防止することができる。
【0131】
また、導電性接着剤の外周エッジ部が、無機物でなる絶縁保護膜で被覆されている。そのため、導電性接着剤の外周エッジ部で生じる不正コロナ放電を抑制することができ、金属コンタミネーションの発生を防止することができる。
【0132】
また、第1の高圧電極及び第2の高圧電極の外径は、誘電体の外径よりも小さい。そのため、不正コロナ放電を無くし金属コンタミネーションの発生を防ぐことができる。また、誘電体の損傷を抑制することができ、誘電体の寿命が長い信頼性の高いオゾン発生器を提供することができる。
【0133】
また、第1の高圧電極及び第2の高圧電極の外径は、誘電体を被う導電膜の外径よりも小さい。そのため、不正コロナ放電をさらに無くし金属コンタミネーションの発生を防ぐことができる。また、誘電体の損傷をさらに抑制することができ、誘電体の寿命が長い信頼性の高いオゾン発生器を提供することができる。
【0134】
また、第1の高圧電極と第1の熱伝導・電気絶縁板との間、及び第1の熱伝導・電気絶縁板と第1の電極冷却板との間にそれぞれ両者に接触させて伸縮性を有する熱伝導シートが挟み込まれ、第2の高圧電極と第2の熱伝導・電気絶縁板との間、及び第2の熱伝導・電気絶縁板と第2の電極冷却板との間にそれぞれ両者に接触させて伸縮性を有する熱伝導シートが挟み込まれている。そのため、高圧電極と熱伝導・電気絶縁板との間、及び熱伝導・電気絶縁板と電極冷却板との間の微少な空間がなくなり、熱伝導性を悪化させる微少な空間をなくすことができ、高圧電極と電極冷却板との間の熱伝導性が良くなり、放電空隙の冷却効率が高められ、放電空隙の温度が良好に下げられ、オゾン発生効率が向上する。また、熱伝導シートは伸縮性を有するので、両面から所定の圧力をかけて押圧することで優れたガスシールドとなる効果もある。
【0135】
また、熱伝導シートは、シリコンで作製され、熱伝導シートの両主面にセラミックパウダが塗付されている。そのため、熱伝導シートの粘着性が抑えられ、熱伝導シートと高圧電極との間、熱伝導・電気絶縁板と電極冷却板と間の微少な空間を容易に無くすことができ、また熱伝導シートの取付けが容易になり、安価なオゾン発生器を提供することができる。
【0136】
また、この発明に係るオゾン発生器においては、平板状の低圧電極と、低圧電極の両主面のそれぞれに対向して設けられた平板状の第1の高圧電極、第2の高圧電極と、低圧電極と第1の高圧電極との間に設けられた平板状の第1の誘電体及び積層方向に厚さの薄い第1の放電空隙を形成するための第1のスペーサと、低圧電極と第2の高圧電極との間に設けられた平板状の第2の誘電体及び積層方向に厚さの薄い第2の放電空隙を形成するための第2のスペーサと、第1の高圧電極の第1の放電空隙と反対側の主面に対向して設けられ第1の高圧電極を冷却する第1の電極冷却板と、第2の高圧電極の第2の放電空隙と反対側の主面に対向して設けられ第2の高圧電極を冷却する第2の電極冷却板と、第1の高圧電極と第1の電極冷却板の間に挟まれた伸縮性を有する第1の熱伝導・電気絶縁シートと、第2の高圧電極と第2の電極冷却板の間に挟まれた伸縮性を有する第2の熱伝導・電気絶縁シートとを備え、低圧電極と第1の高圧電極との間、低圧電極と第2の高圧電極との間にそれぞれ交流電圧を印加され、酸素ガスが注入された第1の放電空隙及び第2の放電空隙に放電を生じさせオゾンガスを発生させる。そのため、放電空隙の冷却効率を向上させ、また放電空隙の温度を良好に下げることができる。これにより、オゾン発生効率を低下させずに電力密度を上げることができ、電極モジュール数の減少が可能となり装置の小型化及び低価格化を図ることができる。さらに、高圧電極を熱伝導・電気絶縁板を介して冷却するため、冷却水として電気伝導率の小さいイオン交換水等を使用せずに済み、一般の水道水程度の冷却水を用いることができる。そのため、電気伝導度の監視装置やイオン交換水の循環設備等が不要となり、装置構成点数の削減による低価格化や、維持費用の低減を図ることができる。加えて、部品数の削減をすることができ、装置を安価とすることができる。
【0137】
また、低圧電極と第1の電極冷却板との間、及び低圧電極と第2の電極冷却板との間にそれぞれ設けられ、低圧電極、第1の電極冷却板、第2の電極冷却板にそれぞれ設けられた冷却水通路を相互につなげる冷却水通路、或いは低圧電極に設けられたオゾンガス通路につながるオゾンガス通路が形成されたマニホールドブロックを備えている。そのため、冷却水用の配管を設けるスペースやオゾンガスを取出すための配管を設けるスペースを削減でき、装置の小型化、軽量化、及び部品点数の削減、装置の品質向上を図ることができる。
【0138】
また、マニホールドブロックは、低圧電極、第1の高圧電極及び第2の高圧電極の積層方向に弾性機能を有する弾性構造を有する。そのため、マニホールドブロックの締め付けによる放電空隙の空隙長への悪影響を無くすことができ、放電空隙の精度を向上させることができる。
【0139】
また、スペーサは、低圧電極の冷却水通路を形成するリブに対向する位置に配置されている。そのため、低圧電極が変形することすることがなくなり、結果として、放電空隙の変形が抑制され、精度の高い放電空隙を形成することができる。
【0140】
また、この発明に係るオゾン発生器においては、平板状の低圧電極と、低圧電極の両主面のそれぞれに対向して設けられた平板状の第1の高圧電極、第2の高圧電極と、低圧電極と第1の高圧電極との間に設けられた平板状の第1の誘電体及び積層方向に厚さの薄い第1の放電空隙を形成するための第1のスペーサと、低圧電極と第2の高圧電極との間に設けられた平板状の第2の誘電体及び積層方向に厚さの薄い第2の放電空隙を形成するための第2のスペーサと、第1の高圧電極の第1の放電空隙と反対側の主面に対向して設けられ第1の高圧電極を冷却する第1の電極冷却板と、第2の高圧電極の第2の放電空隙と反対側の主面に対向して設けられ第2の高圧電極を冷却する第2の電極冷却板と、第1の高圧電極と第1の電極冷却板の間に挟まれた第1の熱伝導・電気絶縁板と、第2の高圧電極と第2の電極冷却板の間に挟まれた第2の熱伝導・電気絶縁板と、低圧電極と第1の電極冷却板との間、及び低圧電極と第2の電極冷却板との間にそれぞれ設けられ、低圧電極、第1の電極冷却板、第2の電極冷却板にそれぞれ設けられた冷却水通路を相互につなげる冷却水通路、或いは低圧電極に設けられたオゾンガス通路につながるオゾンガス通路が形成されたマニホールドブロックとを備え、低圧電極の第1の放電空隙及び第2の放電空隙に対向する両主面が、無機物でなる誘電体膜で被われ、第1の誘電体の第1の高圧電極に対向する主面が、導電性を有する導電膜で被われ、導電膜が第1の高圧電極に接触しており、第2の誘電体の第2の高圧電極に対向する主面が、導電性を有する導電膜で被われ、導電膜が第2の高圧電極に接触しており、第1の高圧電極と第1の熱伝導・電気絶縁板との間、及び第1の熱伝導・電気絶縁板と第1の電極冷却板との間にそれぞれ両者に接触させて伸縮性を有する熱伝導シートが挟み込まれ、第2の高圧電極と第2の熱伝導・電気絶縁板との間、及び第2の熱伝導・電気絶縁板と第2の電極冷却板との間にそれぞれ両者に接触させて伸縮性を有する熱伝導シートが挟み込まれ、低圧電極と第1の高圧電極との間、低圧電極と第2の高圧電極との間にそれぞれ交流電圧を印加され、酸素ガスが注入された第1の放電空隙及び第2の放電空隙に放電を生じさせオゾンガスを発生させる。そのため、金属コンタミネーションを生じないクリーンなオゾンを生成する放電空隙を形成することができるとともに、放電空隙の冷却性を向上させることができる。
【0141】
また、低圧電極、第1、第2の高圧電極、第1、第2の誘電体、第1、第2のスペーサ、第1、第2の電極冷却板及び第1、第2の熱伝導・電気絶縁板を有する電極モジュールが、複数個積層されている。そのため、装置の容量を電極モジュールの積層数により変化させることができ、容易に容量の増大を図ることができ、一方、容量を増大してもコンパクトな装置とすることができる。
【図面の簡単な説明】
【図1】この発明のオゾン発生器を説明する模式的な説明図である。
【図2】この発明の実施の形態1のオゾン発生器を示すオゾン発生器電極の模式的な詳細断面図である。
【図3】この発明の実施の形態2のオゾン発生器を示す低圧電極7の上面図である。
【図4】図3のA−A線に沿う矢視断面図である。
【図5】図3のB−B線に沿う矢視断面図である。
【図6】この発明の実施の形態3のオゾン発生器を示す電極冷却板1の上面図である。
【図7】図6のC−C線に沿う矢視断面図である。
【図8】図6のD−D線に沿う矢視断面図である。
【図9】この発明の実施の形態5のオゾン発生器を示すオゾン発生器電極の詳細断面図である。
【図10】この発明の実施の形態6のオゾン発生器を示す低圧電極7の上面図である。
【図11】図10のE−E線に沿う矢視断面図である。
【図12】図10のF−F線に沿う矢視断面図である。
【図13】この発明の実施の形態7のオゾン発生器を示す低圧電極7の上面図である。
【図14】図13のG−G線に沿う矢視断面図である。
【図15】図13のH−H線に沿う矢視断面図である。
【図16】この発明の実施の形態8のオゾン発生器を示すオゾン発生器電極の詳細断面図である。
【図17】この発明の実施の形態9のオゾン発生器を示す高圧電極3と誘電体5の側面図である。
【図18】この発明の実施の形態10のオゾン発生器を示す誘電体5を上から見た場合と横から見た場合の図である。
【図19】この発明の実施の形態11のオゾン発生器を示す高圧電極3と誘電体5の側面図である。
【図20】この発明の実施の形態13のオゾン発生器を示すオゾン発生器電極の詳細断面図である。
【図21】この発明の実施の形態14のオゾン発生器を示す熱伝導シート17を上から見た場合と横から見た場合の図である。
【図22】この発明の実施の形態15のオゾン発生器を示すオゾン発生器電極の詳細断面図である。
【図23】この発明の実施の形態16のオゾン発生器を示すマニホールドブロック23の断面図である。
【図24】この発明の実施の形態17のオゾン発生器を示す低圧電極7の上面図である。
【図25】図24のI−I線に沿う矢視断面図である。
【図26】この発明の実施の形態18のオゾン発生器を示すオゾン発生器電極の詳細断面図である。
【図27】従来のオゾン発生器の断面図である。
【符号の説明】
1 電極冷却板、1−1 第1の電極冷却板、1−2 第2の電極冷却板、2熱伝導・電気絶縁板、2−1 第1の熱伝導・電気絶縁板、2−2 第2の熱伝導・電気絶縁板、3 高圧電極、3−1 第1の高圧電極、3−2 第2の高圧電極、5 誘電体、5−1 第1の誘電体、5−2 第2の誘電体、6 放電空隙、6−1 第1の放電空隙、6−2 第2の放電空隙、7 低圧電極、8 オゾンガス通路、9 冷却水通路、11 オゾンガス出口、12 冷却水出入口、13 誘電体膜、13a セラミック誘電体膜、13a1 セラミック誘電体放電空隙用スペーサ、13b ガラス誘電体膜、13b1 ガラス誘電体放電空隙用スペーサ、13b2 接着剤、14 導電膜、15 導電性接着剤、16 絶縁保護膜、17 熱伝導シート、18 セラミックパウダ、19 熱伝導・電気絶縁シート、23 マニホールドブロック、23a 上側マニホールドブロック、23b 下側マニホールドブロック、23c Oリング、23d 皿バネ、100 オゾン発生器、101 オゾン発生器電極、102 電極モジュール。

Claims (22)

  1. 内部にオゾンガス通路と冷却水通路が形成されている平板状の低圧電極と、
    上記低圧電極の両主面のそれぞれに対向して設けられた平板状の第1の高圧電極、第2の高圧電極と、
    上記低圧電極と上記第1の高圧電極との間に設けられた平板状の第1の誘電体及び積層方向に厚さの薄い第1の放電空隙を形成するための第1のスペーサと、
    上記低圧電極と上記第2の高圧電極との間に設けられた平板状の第2の誘電体及び積層方向に厚さの薄い第2の放電空隙を形成するための第2のスペーサと、
    上記第1の高圧電極の上記第1の放電空隙と反対側の主面に対向して設けられ内部に該第1の高圧電極を冷却する冷却水通路が形成されている第1の電極冷却板と、
    上記第2の高圧電極の上記第2の放電空隙と反対側の主面に対向して設けられ内部に該第2の高圧電極を冷却する冷却水通路が形成されている第2の電極冷却板と、
    上記第1の高圧電極と上記第1の電極冷却板の間に挟まれた第1の熱伝導・電気絶縁板と、
    上記第2の高圧電極と上記第2の電極冷却板の間に挟まれた第2の熱伝導・電気絶縁板と、
    を含み、
    上記低圧電極と上記第1の高圧電極との間、上記低圧電極と上記第2の高圧電極との間にそれぞれ交流電圧を印加され、酸素ガスを含む原料ガスが注入された上記第1の放電空隙及び上記第2の放電空隙に放電を生じさせオゾンガスを発生させる電極モジュールと、
    上記電極モジュールの片側の、上記低圧電極と上記第1の電極冷却板との間、及び上記低圧電極と上記第2の電極冷却板との間にそれぞれ設けられ、該低圧電極、該第1の電極冷却板、該第2の電極冷却板にそれぞれ設けられた冷却水通路を相互につなげる冷却水通路或いは該低圧電極に設けられたオゾンガス通路につながるオゾンガス通路が形成されたマニホールドブロックと、
    を備えたことを特徴とするオゾン発生器。
  2. 上記電極モジュール及びマニホールドブロックが上記酸素ガスを含む原料ガスが充満された発生器カバー内に収納され、上記酸素ガスを含む原料ガスが上記放電空隙へ周囲から侵入し発生したオゾンガスが上記低圧電極の中心部の孔から上記オゾンガス通路に導かれることを特徴とする請求項1に記載のオゾン発生器。
  3. 上記マニホールドブロックは、上記低圧電極、上記第1の高圧電極及び上記第2の高圧電極の積層方向に弾性機能を有する弾性構造を有することを特徴とする請求項1または2に記載のオゾン発生器。
  4. 上記各マニホールドブロックは、積層方向に2つの部材に分かれており、上記部材間に上記弾性構造が設けられ、上記部材間の上記冷却水通路と上記オゾンガス通路は、それぞれ該通路が形成された円筒部とこれを受け入れる凹部およびこれらの間に気密性を保つために配設されたOリングで接続されていることを特徴とする請求項3に記載のオゾン発生器。
  5. 上記低圧電極、第1及び第2の高圧電極、誘電体、スペーサ、電極冷却板及び熱伝導・電気絶縁板が積層された部分と、上記低圧電極、第1及び第2の電極冷却板及びマニホールドブロックが積層された部分とが別々の挟持機構で挟持固定され、上記低圧電極の上記双方の部分の間にくびれ部を設けたことを特徴とする請求項1ないし4のいずれか1項に記載のオゾン発生器。
  6. 上記低圧電極は、主面に溝が形成された2枚以上の金属製の平板が該溝を向き合うようにして貼り合わせて作製されることにより内部に上記オゾンガス通路と冷却水通路が形成されていることを特徴とする請求項1ないし5のいずれか1項に記載のオゾン発生器。
  7. 上記第1の電極冷却板及び上記第2の電極冷却板は、主面に溝が形成された2枚以上の金属製の平板が該溝を向き合うようにして貼り合わせて作製されることにより内部に上記冷却水通路が形成されていることを特徴とする請求項1ないし6のいずれか1項に記載のオゾン発生器。
  8. 上記金属製の平板は、加熱と加圧のみで貼り合わせられていることを特徴とする請求項6または7に記載のオゾン発生器。
  9. 上記第1及び第2の誘電体が上記第1及び第2の高圧電極側にそれぞれ設けられ、上記低圧電極の上記第1の放電空隙及び上記第2の放電空隙に対向する両主面が、無機物でなる誘電体膜で被われていることを特徴とする請求項1ないし8のいずれか1項に記載のオゾン発生器。
  10. 上記誘電体膜は、セラミック材又はガラス材で作製されていることを特徴とする請求項9に記載のオゾン発生器。
  11. 上記第1の誘電体の上記第1の高圧電極に対向する主面が、導電性を有する導電膜で被われ、該導電膜が該第1の高圧電極に接触しており、上記第2の誘電体の上記第2の高圧電極に対向する主面が、導電性を有する導電膜で被われ、該導電膜が該第2の高圧電極に接触していることを特徴とする請求項1に記載のオゾン発生器。
  12. 上記第1の誘電体と上記第1の高圧電極、及び上記第2の誘電体と上記第2の高圧電極は、それぞれ導電性接着剤で貼り合わせられていることを特徴とする請求項1に記載のオゾン発生器。
  13. 上記導電膜の外周エッジ部が、無機物でなる絶縁保護膜で被覆されていることを特徴とする請求項11に記載のオゾン発生器。
  14. 上記導電性接着剤の外周エッジ部が、無機物でなる絶縁保護膜で被覆されていることを特徴とする請求項12に記載のオゾン発生器。
  15. 上記第1の高圧電極及び上記第2の高圧電極の外径は、上記誘電体の外径よりも小さいことを特徴とする請求項1に記載のオゾン発生器。
  16. 上記第1の高圧電極及び上記第2の高圧電極の外径は、上記誘電体を被う上記導電膜の外径よりも小さいことを特徴とする請求項11に記載のオゾン発生器。
  17. 上記第1の高圧電極と上記第1の熱伝導・電気絶縁板との間、及び上記第1の熱伝導・電気絶縁板と上記第1の電極冷却板との間にそれぞれ両者に接触させて伸縮性を有する熱伝導シートが挟み込まれ、
    上記第2の高圧電極と上記第2の熱伝導・電気絶縁板との間、及び上記第2の熱伝導・電気絶縁板と上記第2の電極冷却板との間にそれぞれ両者に接触させて伸縮性を有する熱伝導シートが挟み込まれていることを特徴とする請求項1に記載のオゾン発生器。
  18. 上記熱伝導シートは、シリコンで作製され、該熱伝導シートの両主面にセラミックパウダが塗付されていることを特徴とする請求項17に記載のオゾン発生器。
  19. 平板状の低圧電極と、
    上記低圧電極の両主面のそれぞれに対向して設けられた平板状の第1の高圧電極、第2の高圧電極と、
    上記低圧電極と上記第1の高圧電極との間に設けられた平板状の第1の誘電体及び積層方向に厚さの薄い第1の放電空隙を形成するための第1のスペーサと、
    上記低圧電極と上記第2の高圧電極との間に設けられた平板状の第2の誘電体及び積層方向に厚さの薄い第2の放電空隙を形成するための第2のスペーサと、
    上記第1の高圧電極の上記第1の放電空隙と反対側の主面に対向して設けられ該第1の高圧電極を冷却する第1の電極冷却板と、
    上記第2の高圧電極の上記第2の放電空隙と反対側の主面に対向して設けられ該第2の高圧電極を冷却する第2の電極冷却板と、
    上記第1の高圧電極と上記第1の電極冷却板の間に挟まれた伸縮性を有する第1の熱伝導・電気絶縁シートと、
    上記第2の高圧電極と上記第2の電極冷却板の間に挟まれた伸縮性を有する第2の熱伝導・電気絶縁シートと
    を備え、
    上記低圧電極と上記第1の高圧電極との間、上記低圧電極と上記第2の高圧電極との間にそれぞれ交流電圧を印加され、酸素ガスを含む原料ガスが注入された上記第1の放電空隙及び上記第2の放電空隙に放電を生じさせオゾンガスを発生させることを特徴とするオゾン発生器。
  20. 上記スペーサは、上記低圧電極の上記冷却水通路を形成するリブに対向する位置に配置されていることを特徴とする請求項6に記載のオゾン発生器。
  21. 平板状の低圧電極と、
    上記低圧電極の両主面のそれぞれに対向して設けられた平板状の第1の高圧電極、第2の高圧電極と、
    上記低圧電極と上記第1の高圧電極との間に設けられた平板状の第1の誘電体及び積層方向に厚さの薄い第1の放電空隙を形成するための第1のスペーサと、
    上記低圧電極と上記第2の高圧電極との間に設けられた平板状の第2の誘電体及び積層方向に厚さの薄い第2の放電空隙を形成するための第2のスペーサと、
    上記第1の高圧電極の上記第1の放電空隙と反対側の主面に対向して設けられ該第1の高圧電極を冷却する第1の電極冷却板と、
    上記第2の高圧電極の上記第2の放電空隙と反対側の主面に対向して設けられ該第2の高圧電極を冷却する第2の電極冷却板と、
    上記第1の高圧電極と上記第1の電極冷却板の間に挟まれた第1の熱伝導・電気絶縁板と、
    上記第2の高圧電極と上記第2の電極冷却板の間に挟まれた第2の熱伝導・電気絶縁板と、
    上記低圧電極と上記第1の電極冷却板との間、及び上記低圧電極と上記第2の電極冷却板との間にそれぞれ設けられ、該低圧電極、該第1の電極冷却板、該第2の電極冷却板にそれぞれ設けられた冷却水通路を相互につなげる冷却水通路、或いは該低圧電極に設けられたオゾンガス通路につながるオゾンガス通路が形成されたマニホールドブロックと
    を備え、
    上記低圧電極の上記第1の放電空隙及び上記第2の放電空隙に対向する両主面が、無機物でなる誘電体膜で被われ、
    上記第1の誘電体の上記第1の高圧電極に対向する主面が、導電性を有する導電膜で被われ、該導電膜が該第1の高圧電極に接触しており、
    上記第2の誘電体の上記第2の高圧電極に対向する主面が、導電性を有する導電膜で被われ、該導電膜が該第2の高圧電極に接触しており、
    上記第1の高圧電極と上記第1の熱伝導・電気絶縁板との間、及び上記第1の熱伝導・電気絶縁板と上記第1の電極冷却板との間にそれぞれ両者に接触させて伸縮性を有する熱伝導シートが挟み込まれ、
    上記第2の高圧電極と上記第2の熱伝導・電気絶縁板との間、及び上記第2の熱伝導・電気絶縁板と上記第2の電極冷却板との間にそれぞれ両者に接触させて伸縮性を有する熱伝導シートが挟み込まれ、
    上記低圧電極と上記第1の高圧電極との間、上記低圧電極と上記第2の高圧電極との間にそれぞれ交流電圧を印加され、酸素ガスを含む原料ガスが注入された上記第1の放電空隙及び上記第2の放電空隙に放電を生じさせオゾンガスを発生させることを特徴とするオゾン発生器。
  22. 上記低圧電極、上記第1、第2の高圧電極、上記第1、第2の誘電体、上記第1、第2のスペーサ、上記第1、第2の電極冷却板、上記第1、第2の熱伝導・電気絶縁板及びマニホールドブロックからなる構成が複数個積層されていることを特徴とする請求項1または21に記載のオゾン発生器。
JP2001357860A 2001-11-22 2001-11-22 オゾン発生器 Expired - Lifetime JP3607890B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001357860A JP3607890B2 (ja) 2001-11-22 2001-11-22 オゾン発生器
TW91111251A TW575519B (en) 2001-11-22 2002-05-28 Ozonizer
US10/156,031 US7108836B2 (en) 2001-11-22 2002-05-29 Ozonizer
DE60206350T DE60206350T2 (de) 2001-11-22 2002-07-05 Ozonisator
EP02014891A EP1314691B1 (en) 2001-11-22 2002-07-05 Ozonizer
CNB021271364A CN100411973C (zh) 2001-11-22 2002-07-26 臭氧发生器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001357860A JP3607890B2 (ja) 2001-11-22 2001-11-22 オゾン発生器

Publications (2)

Publication Number Publication Date
JP2003160309A JP2003160309A (ja) 2003-06-03
JP3607890B2 true JP3607890B2 (ja) 2005-01-05

Family

ID=19169140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001357860A Expired - Lifetime JP3607890B2 (ja) 2001-11-22 2001-11-22 オゾン発生器

Country Status (6)

Country Link
US (1) US7108836B2 (ja)
EP (1) EP1314691B1 (ja)
JP (1) JP3607890B2 (ja)
CN (1) CN100411973C (ja)
DE (1) DE60206350T2 (ja)
TW (1) TW575519B (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009069204A1 (ja) * 2007-11-28 2009-06-04 Toshiba Mitsubishi-Electric Industrial Systems Corporation 誘電体バリア放電装置
KR101106688B1 (ko) * 2009-10-29 2012-01-18 (주) 예스티 오존 발생 장치

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5545776B2 (ja) * 2005-11-29 2014-07-09 住友精密工業株式会社 オゾン発生装置用放電セル
JP5008170B2 (ja) * 2005-11-29 2012-08-22 住友精密工業株式会社 オゾン発生装置用放電セル
DE112007003640B4 (de) * 2007-08-31 2013-01-17 Toshiba Mitsubishi-Electric Industrial Systems Corporation Vorrichtung zur Erzeugung eines Plasmas mittels einer dielektrischen Barrierenentladung
KR101230513B1 (ko) * 2010-12-27 2013-02-06 (주)엘오티베큠 배기 유체 처리 장치
US9039985B2 (en) 2011-06-06 2015-05-26 Mks Instruments, Inc. Ozone generator
RU2499765C1 (ru) * 2012-03-16 2013-11-27 Общество с ограниченной ответственностью "Истра-Озон" Устройство для генерирования озона
CN103159185A (zh) * 2012-06-18 2013-06-19 上海理工大学 多重臭氧发生设备

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3973133A (en) 1974-03-13 1976-08-03 Aerojet-General Corporation Ozone generator
US5417936A (en) * 1992-06-08 1995-05-23 Nippon Ozone Co., Ltd. Plate-type ozone generator
CN2143616Y (zh) * 1992-12-12 1993-10-13 甘小杰 臭氧发生器的多层板式放电室
JP2983153B2 (ja) 1994-04-28 1999-11-29 三菱電機株式会社 オゾン発生装置
US5637279A (en) * 1994-08-31 1997-06-10 Applied Science & Technology, Inc. Ozone and other reactive gas generator cell and system
EP0982267A1 (en) * 1998-08-21 2000-03-01 Kabushiki Kaisha Toshiba Ozonizing unit, ozone generator and ozone-processing system
EP1052221A4 (en) 1998-12-01 2001-03-28 Mitsubishi Electric Corp OZONE GENERATOR
JP3113885B2 (ja) 1999-01-29 2000-12-04 住友精密工業株式会社 オゾン発生装置用放電セル
CA2381343A1 (en) 2000-06-09 2001-12-13 Hiroshi Orishima Discharge cell for ozone generator
JP4095758B2 (ja) 2000-06-29 2008-06-04 株式会社荏原製作所 オゾン発生装置
JP3641608B2 (ja) 2001-11-22 2005-04-27 東芝三菱電機産業システム株式会社 オゾン発生器
JP3672252B2 (ja) 2001-11-22 2005-07-20 東芝三菱電機産業システム株式会社 オゾン発生器
JP3513134B2 (ja) 2001-11-22 2004-03-31 三菱電機株式会社 オゾン発生器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009069204A1 (ja) * 2007-11-28 2009-06-04 Toshiba Mitsubishi-Electric Industrial Systems Corporation 誘電体バリア放電装置
JP5088375B2 (ja) * 2007-11-28 2012-12-05 東芝三菱電機産業システム株式会社 誘電体バリア放電装置
KR101106688B1 (ko) * 2009-10-29 2012-01-18 (주) 예스티 오존 발생 장치

Also Published As

Publication number Publication date
US7108836B2 (en) 2006-09-19
CN100411973C (zh) 2008-08-20
DE60206350D1 (de) 2005-11-03
JP2003160309A (ja) 2003-06-03
EP1314691A3 (en) 2003-11-26
EP1314691B1 (en) 2005-09-28
DE60206350T2 (de) 2006-06-22
TW575519B (en) 2004-02-11
US20030095899A1 (en) 2003-05-22
CN1421382A (zh) 2003-06-04
EP1314691A2 (en) 2003-05-28

Similar Documents

Publication Publication Date Title
JP3641608B2 (ja) オゾン発生器
JP3672252B2 (ja) オゾン発生器
JP3607905B2 (ja) オゾン発生器
JP3607890B2 (ja) オゾン発生器
WO2001094257A1 (fr) Cellule de decharge pour generateur d'ozone
US6869575B2 (en) Ozonizer
JP4158913B2 (ja) オゾン発生器
JP3113885B2 (ja) オゾン発生装置用放電セル
JP4094111B2 (ja) 誘電体バリヤ放電装置
JP2007197318A (ja) オゾン発生装置用放電セル
JP3900662B2 (ja) オゾン発生装置
JP2005162611A (ja) オゾン発生装置用放電セル及びその放電セルを使用したオゾン発生装置
JP3761819B2 (ja) オゾン発生装置用放電セル
JP2009179556A (ja) オゾン発生装置用放電セル及びその放電セルを使用したオゾン発生装置
JP3292471B2 (ja) オゾン発生装置用放電セル
JP2004224695A (ja) オゾン発生装置用放電セル
JP3278662B2 (ja) オゾン発生装置用放電セル
JP2001097703A (ja) オゾン発生装置用放電セル及びその放電セルを使用したオゾン発生装置
JPH10245206A (ja) オゾン発生装置用放電セル
JP2006169110A (ja) オゾン発生装置用放電セル

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040308

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041008

R150 Certificate of patent or registration of utility model

Ref document number: 3607890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term