JP3603826B2 - スパイラル線路集合体素子、共振器、フィルタ、デュプレクサおよび高周波回路装置 - Google Patents
スパイラル線路集合体素子、共振器、フィルタ、デュプレクサおよび高周波回路装置 Download PDFInfo
- Publication number
- JP3603826B2 JP3603826B2 JP2001281943A JP2001281943A JP3603826B2 JP 3603826 B2 JP3603826 B2 JP 3603826B2 JP 2001281943 A JP2001281943 A JP 2001281943A JP 2001281943 A JP2001281943 A JP 2001281943A JP 3603826 B2 JP3603826 B2 JP 3603826B2
- Authority
- JP
- Japan
- Prior art keywords
- resonator
- line
- spiral
- lines
- spiral line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P7/00—Resonators of the waveguide type
- H01P7/08—Strip line resonators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/20—Frequency-selective devices, e.g. filters
- H01P1/201—Filters for transverse electromagnetic waves
- H01P1/203—Strip line filters
- H01P1/2039—Galvanic coupling between Input/Output
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/20—Frequency-selective devices, e.g. filters
- H01P1/213—Frequency-selective devices, e.g. filters combining or separating two or more different frequencies
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P7/00—Resonators of the waveguide type
- H01P7/08—Strip line resonators
- H01P7/082—Microstripline resonators
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
Description
【発明の属する技術分野】
この発明は、無線通信や電磁波の送受信に利用される、例えばマイクロ波帯やミリ波帯における回路素子、共振器、フィルタ、デュプレクサ、および高周波回路装置に関するものである。
【0002】
【従来の技術】
従来、マイクロ波帯やミリ波帯で用いられる平面回路型の共振器は、誘電体基板上にマイクロストリップラインなどの平面回路により構成するものが一般的であった。
【0003】
このような平面回路型の共振器を小型化したものとして、次の文献が開示されている。
【0004】
(1)粟井郁雄「マイクロ波平面フィルタ」MWE2000 Microwave Workshop Digest,pp.445−454,2000.
(2)佐川守一 牧本三夫「インピーダンス・ステップを有するマイクロ波共振器の構成とその基本特性」, 信学技報SAT95−76,MW95−118(1995−12),pp.25−30,1995.
【0005】
【発明が解決しようとする課題】
上記文献に示されている共振器は、共振器を構成する線路の開放端側を低インピーダンス、短絡端側を高インピーダンスとなるように、線路幅をステップ形状にして、いわゆるステップインピーダンス共振器を構成したものであった。すなわち、共振線路の開放端側を低インピーダンス、短絡端側を高インピーダンスとし、そのインピーダンス比を大きくする程、波長短縮効果が大きくなることを利用して、全体に小型化を図るものであった。
【0006】
ここで、上記波長短縮効果について図18を参照して説明する。
図18において、(A1)はステップ構造を持たない共振器の線路パターン、(A2)はステップインピーダンス構造の共振器の線路パターンの例を示している。また、(A3)は、後に示す実施形態による共振器の例を示している。(B)は、(A1),(A2)に示した共振器の等価回路図である。(C)は開放端側のインピーダンスZ1と短絡端側のインピーダンスZ2との比と、規格化線路長(波長短縮率)との関係を示している。
【0007】
(B)において、Z1は開放端側のインピーダンス、Z2は短絡端側のインピーダンス、θ1は開放端側の電気長、θ2は短絡端側の電気長である。
【0008】
例えば、θ1:θ2=5:5にし、すなわち短絡端側の長さと開放端側の長さとを等分したステップ構造にし、Z1/Z2=0.5とすれば、規格化線路長kr=0.784となる。すなわち、この場合、(A)に示したステップインピーダンス構造の共振器を構成する共振線路の線路長は、ステップインピーダンス構造でない共振器の共振線路の線路長の約0.78倍に短縮化される。
【0009】
上記波長短縮効果は、θ1:θ2=5:5、すなわち等分ステップにした場合に最も効果がある。
【0010】
ところが、このようなステップインピーダンス共振器によって大きな波長短縮効果を得るためには、インピーダンス比を大きくすることになるが、誘電体基板上の限られた占有面積では、低インピーダンス部分の線幅をあまり大きくできず、その結果、高インピーダンス部分の線幅は相対的に非常に細くなる。この線幅の細い部分が電流分布の腹となって共振器が動作するため、導体損失が大きくなり、共振器のQが低下するという問題が生じる。
【0011】
また、上記Qの低下の問題は共振器に限らず、その他の高周波回路素子、例えばコンデンサなどの素子、についても同様に改善されるべき事柄であった。さらに、これらの素子を、低損失化を図った線路に接続して回路を構成する際、接続の適合性を高めることも重要であった。
【0012】
この発明の目的は、小面積で低損失な、線路による素子、およびそれを備えた共振器、フィルタ、デュプレクサ、高周波回路装置を提供することにある。
【0013】
【課題を解決するための手段】
この発明のスパイラル線路集合体素子は、それぞれ極座標を(r,θ)とし、
【数10】
(roは最小半径)
によって表される等幅スパイラル状の複数の線路の集合体による素子であって、前記複数の線路を、互いに交差しないように、基板上の所定点を中心とする略回転対称位置にそれぞれ配置するとともに、これらの複数の線路の集合体の複数本分の各線路について、該線路に略直交する略直線位置で、前記複数本分の線路の外周端を揃えた形状にすることにより構成する。
【0014】
この構造により、或る1つのスパイラル状の線路に隣接して略同形状のスパイラル状の線路が隣接配置されることにより、線路間に間隙が設けられることになり、誘電体基板に対して垂直方向の磁界が上記間隙を通る。そのため、磁界の疎密分布が電極の縁端部で密とならず、磁界の疎密が緩和されるため、各スパイラル状線路の縁端効果が緩和され、各スパイラル状線路の縁端部における電流集中が低くなる。その結果、全体の導体損失が低下して低損失化が図れる。
【0015】
さらに、複数の線路に略直交する略直線位置で線路外周端を揃えた形状としているので、例えば略直線状で互いに略平行な複数の線路による直線線路集合体を容易に接続することができ、その接続部における損失も最小限なものとすることができる。
【0016】
この発明の共振器は、それぞれ略直線状で互いに略平行な複数の線路により、直線線路集合体素子を構成するとともに、該直線線路集合体素子の両端に上記スパイラル線路集合体素子をそれぞれ設けることにより構成する。
上記スパイラル線路集合体素子は、電荷を蓄積する小面積・低損失な容量素子として作用し、上記直線線路集合体素子は、小面積・低損失な誘導素子として作用する。これにより、全体に小面積・低損失な共振器が実現できる。
【0017】
また、この発明の共振器は、直線線路集合体素子の両端に配置するスパイラル線路集合体素子の各線路の旋回方向を互いに逆の関係として、線対称形の共振器を構成するとともに、該共振器を2組設け、且つ、それぞれの直線線路集合体素子同士を近接させて、4つのスパイラル線路集合体素子を上下左右が略対称となるように配置することにより構成する。
【0018】
この構造により、上記直線線路集合体素子での導体損失が低減され、全体にさらにQを高めることができる。
【0019】
この発明のフィルタは、上記共振器に信号入出力部を設けて構成する。これにより、小型で低挿入損失のフィルタが得られる。
【0020】
また、この発明のデュプレクサは、上記フィルタを2組備えるとともに、その信号入出力部として、送信信号入力端子、送受信共用入出力端子、および受信信号出力端子を設けて構成する。これにより小型で低挿入損失のデュプレクサが得られる。
【0021】
この発明の高周波回路装置は、上記スパイラル線路集合体素子、共振器、フィルタ、またはデュプレクサを備えて構成する。これにより、小型で低損失な高周波回路が構成でき、それを用いた通信装置の雑音特性および伝送速度などの通信品質を向上させることができる。
【0022】
【発明の実施の形態】
第1の実施形態に係るスパイラル線路集合体素子の構成を図1〜図5を参照して説明する。
図2は、誘電体基板上に形成したスパイラル状線路の集合体を示している。この集合体は、後述するように、各スパイラル線路の外周端を揃えて、スパイラル状線路集合体素子を構成する際の基となる原型である。但し、同図においては、作図上の便宜上から、各スパイラル状線路の形状を多角形で表わしている。もちろん、このような多角形であっても、各線路は全体的には略スパイラル状と見なせるので、実際に各線路が多角形状をなしていてもよい。この例では、各スパイラル状線路2の最小半径をro、内半径をra、外半径をrbとし、16本の合同のスパイラル状線路2を、上記各半径の中心を回転中心として、各スパイラル状線路が互いに交差しないように、回転対称位置に等角度間隔で配置している。
【0023】
図1は、スパイラル線路集合体素子の構成を示す上面図である。図において2は、誘電体基板上に形成したスパイラル状線路である。図1は、図2に示した原型において、各スパイラル線路2に直交する1つの直線C−C部分で、すべてのスパイラル状線路2の外周端が揃うように、各線路2のパターンを形成したものである。上記直線C−Cは、図2に示した原型の各線路を、その直線の位置で切断して、各線路の外周端を強制的に設けたような直線であるので、その意味で以下「切断線」という。この切断線路C−Cは図2に示した最小半径roの円に接する直線である。スパイラル状線路と切断線との関係を表す式などについては後述する。
【0024】
この例では、16本のスパイラル線路2のすべての外周端を切断線C−C部分に揃えている。従って、すべてのスパイラル状線路2が合同というわけではないが、或るスパイラル線路に隣接して他のスパイラル線路が存在する構成は図2に示した原型と同じである。
【0025】
以上に示したスパイラル線路集合体素子は単極素子として作用する。すなわち、後述するように、例えばこの単極素子を2組設け、その間を誘導性の素子で接続すれば、2組の単極素子間に電荷を蓄積する容量素子として作用する。
【0026】
複数のスパイラル状線路の集合体を形成しないで、すなわち多線化しないで、所定の広がりを持つ連続した電極(ベタ電極)を形成した場合に比べて、この実施形態に係る単極素子としてのスパイラル線路集合体素子は、次に挙げる効果を奏する。
【0027】
まず、複数のスパイラル状線路2の間に間隙を設けたため、誘電体基板に対して垂直方向の磁界は上記間隙を通る。そのため、各スパイラル状線路2の縁端効果が緩和され、各スパイラル状線路の縁端部における電流集中が低くなる。その結果、全体の導体損失が低下して低損失化が図れる。
【0028】
また、このように複数のスパイラル状線路2を集合させたことにより、隣接するスパイラル状線路2の線路長が異なることに起因して、線路間に位相差が生じる。このことで、隣接するスパイラル状線路の線路間に、静電容量(以下、単に「容量」という。)が生じる。この線間の容量で、上記容量素子としての容量を稼ぐことができる。この線路間隔は、例えば1μmから数μm程度の極めて微小な間隔にすることができ、且つスパイラル状線路の線幅も細くすることができる。そのため、誘電体基板上の限られた面積内に多数のスパイラル状線路の集合体を配置することができ、線路間の対向面積を全体に非常に大きくとることできる。その結果、誘電体基板上の面積当たりの線間容量値を大きく確保することができる。
【0029】
また、スパイラル線路集合体を構成する複数のスパイラル状線路の外周端を切断線で揃えたことによって、後述するように、直線状の互いに平行な複数の線路の集合体に接続可能な多端子回路素子として利用できる。しかも、その接続部は、各々の線路を連続的なものとすることができ、インピーダンス不整合が生じることもなく、低損失特性を保つことができる。
また、各スパイラル状線路の線路長を短くすることによって、自己共振周波数を容易に高周波に設計することができる。
【0030】
なお、この誘電体基板の下面には、これらの複数のスパイラル状線路の集合体形成部分に対向する位置に、グランド電極を形成していない。誘電体基板下面のグランド電極は特に必要ない。但し、誘電体基板を厚み方向に挟んで、各スパイラル線路とグランド電極との間に静電容量が生じるので、その容量成分も利用する場合には、誘電体基板の下面にグランド電極を形成してもよい。また、シールド効果を狙ってグランド電極を形成してもよい。このグランド電極に関する事柄は、後に示す他の実施形態においても同様である。
【0031】
図3〜図5は、図1に示したものとはスパイラル線路集合体のパターンが異なった他のスパイラル線路集合体素子の例を示している。
図3に示す例では、全体に16本のスパイラル状線路のうち、切断線C−Cの線上で8本のスパイラル状線路の外周端を揃えている。このように、スパイラル線路集合体を構成する複数のスパイラル状線路のうち、一部のみを切断線で揃えても、隣接するスパイラル状線路同士は電磁界結合するので、このようにすべてのスパイラル状線路を上記直線線路集合体につながなくてもよい。
【0032】
図3に示したスパイラル線路集合体素子によれば、図1に示した場合と同様に、直線状の互いに平行な複数の線路の集合体に容易に接続することができ、且つその接続部にインピーダンス不整合が生じることもなく、低損失性を保つことができる。
【0033】
図4に示す例では、16本のスパイラル状線路のうち、8本ずつについて、C1−C1およびC2−C2で示す切断線で、それぞれの外周端を揃えている。 このスパイラル線路集合体素子は、一方の切断線C1−C1を外周端とする複数本のスパイラル状線路の集合体と、他方の切断線C2−C2を外周端とする複数本のスパイラル状線路の集合体とを対として考えることができ、一方の集合体にプラス、他方の集合体にマイナスの電荷を蓄積する容量素子として作用する。したがって、この図4に示したスパイラル線路集合体素子に、図中矢印で示す方向にそれぞれ直線線路集合体を接続することによって、2つの直線線路集合体間に容量素子が接続されたように作用する。
【0034】
複数のスパイラル状線路の集合体を形成しないで、すなわち多線化しないで、それぞれ太い幅を持つ2本のスパイラル状線路を配置した場合に比べて、この実施形態に係る容量素子としてのスパイラル線路集合体素子は、次に挙げる効果を奏する。
【0035】
まず、複数のスパイラル状線路2の間に間隙を設けたため、誘電体基板に対して垂直方向の磁界は上記間隙を通る。そのため、各スパイラル状線路2の縁端効果が緩和され、各スパイラル状線路の縁端部における電流集中が低くなる。その結果、全体の導体損失が低下して低損失化が図れる。
【0036】
また、このように複数のスパイラル状線路2を集合させたことにより、第1の実施形態の場合と同様に、隣接するスパイラル状線路の線路間に容量が生じる。この線間の容量で、容量素子としての容量を稼ぐことができる。
【0037】
図5に示す例では、16本のスパイラル状線路のうち、4本ずつについて、C1−C1,C2−C2,C3−C3,C4−C4の4つの切断線で、それぞれの外周端を揃えている。
【0038】
このスパイラル線路集合体素子によれば、図中矢印で示す4つの方向に直線線路集合体をそれぞれ引き出すように接続することができる。従って、4つの直線線路集合体間にそれぞれキャパシタが接続されたように作用する。
【0039】
多線化しないで、それぞれ太い幅を持つ4本のスパイラル状線路を配置した場合に比べて、この実施形態に係る容量素子としてのスパイラル線路集合体素子は、図4に示した素子の場合と同様に低損失化および小面積化が図れる。
【0040】
次に、以上の各実施形態で示したスパイラル状線路と切断線との関係について示す。
まず、線幅一定のスパイラル線路(以下、単に「等幅スパイラル」という。)のイメージを図19に示す。
【0041】
図19において、等幅スパイラルと動径方向(r 方向)とのなす角をαとおき、等幅スパイラルに直交する曲線と動径方向(r 方向)とのなす角をβとおくと、両者の間には次の関係式が成り立つ。
【0042】
【数1】
【0043】
したがって、等幅スパイラルに直交する曲線が極座標において満たす微分方程式は次のように導出することができる。
【0044】
【数2】
【0045】
上式を極座標変数(r,θ)に関して分離する形式で整理すると次の(3)式を得る。
【0046】
【数3】
【0047】
等幅スパイラルに直交する曲線の微分方程式である(3)式の解法を以下に示す。
【0048】
はじめに無次元の中間変数として
【0049】
【数4】
【0050】
とおくと、極座標変数(r,θ)との微分関係として次式が成り立つ。
【0051】
【数5】
【0052】
【数6】
【0053】
上記(6)式は解析的に初等関数を用いて積分可能であり、次式を得る。
【0054】
【数7】
【0055】
ただし、(4)式の関係式を用いた。逆にr に関して解くと次のようになる。
【0056】
【数8】
【0057】
さらに極座標変数(r,θ)から直交座標変数(x, y)を用いて表現すると次式のようになる。
【0058】
【数9】
【0059】
すなわち、等幅スパイラルに直交する曲線は最小半径r0の円に関する接線となることがわかる。
【0060】
次に、第2の実施形態に係る共振器の構成を図6および図7を参照して説明する。
図6は、誘電体基板上に形成した共振器の構成を示す図である。ここで21a,21bは、図1に示したスパイラル線路集合体素子と同様の構成からなるスパイラル線路集合体素子である。すなわち、それぞれスパイラル状をなす複数のスパイラル状線路2の集合体からなり、切断線C−C部分で各スパイラル状線路2の外周端を揃えたものである。
【0061】
図中22で示す部分は、複数の直線状線路2’による集合体からなる直線線路集合体素子である。これらの直線状線路2’は、一方端をスパイラル線路集合体素子21aの接続部となる、複数のスパイラル状線路の外周端に接続している。この直線線路集合体素子22部分は、多線化したストリップ線路である。この直線線路集合体素子22は、電流経路として、すなわち誘導素子として作用する。
従って、図6に示した共振器23は、集中定数回路と見れば、誘導素子と容量素子とが並列に接続された共振器として作用する。
【0062】
また、上記スパイラル線路集合体素子21a,21bの内周端付近は電圧の腹、直線線路集合体素子22の中央が電圧の節となり、逆に直線線路集合体素子22の中央が電流の腹、スパイラル線路集合体素子21a,21bの内周端付近が電流の節となるので、スパイラル線路集合体素子21a,21bの一方がプラスの電荷、他方がマイナスの電荷を蓄積する。すなわち、変位電流が、誘電体基板表面または誘電体基板内部を、誘電体基板の面方向を通って、スパイラル線路集合体素子21a−21b間に流れる。一方、実電流は直線線路集合体素子22を通って流れる。
従って、図6に示した共振器は、全体に線路の両端が開放端である半波長共振器として動作する。
【0063】
上記誘導素子としての直線線路集合体素子22は多線構造によって低損失動作する。しかも、各線路の線幅、膜厚などの最適化によって、容量素子としてのスパイラル線路集合体素子21a,21bとは独立して特性改善が可能である。
【0064】
図7は、誘電体基板上に形成した他の共振器の構成例を示す図である。図6の例では、線対称の関係にある2つのスパイラル線路集合体素子21a,21b同士を直線線路集合体素子22を介して接続したが、この図7に示す例では、点対称の関係となるように、2つのスパイラル線路集合体素子21a,21bの外周端同士を直接接続したようなパターンにしている。
【0065】
このように直線線路集合体素子部分がなくても、2つのスパイラル線路集合体素子21a,21bの接続部を含む前後の領域が誘導素子として作用するので、全体に共振器として作用する。すなわち、スパイラル線路集合体素子21a,21bの内周端付近は電圧の腹、上記接続部付近が電圧の節となり、逆に接続部付近が電流の腹、スパイラル線路集合体素子の内周端付近が電流の節となるので、スパイラル線路集合体素子21a,21bの一方がプラスの電荷、他方がマイナスの電荷を蓄積することにより、上述したものと同様に変位電流と実電流が流れて、全体に共振器として作用する。
なお、もちろん、図7に示した2つのスパイラル線路集合体素子の間に、所定長の直線線路集合体素子を配置してもよい。
【0066】
次に、第3の実施形態に係る共振器の構成を図8〜図10を参照して説明する。
図8は誘電体基板上に形成した共振器の構成を示す図である。この共振器は、図6に示した、いわば双極構造の共振器を2組設けた、4極構造の共振器である。すなわち、スパイラル線路集合体素子21a,21b、および直線線路集合体素子22abによって1組の共振器を構成し、スパイラル線路集合体素子21c,21d、および直線線路集合体素子22cdによって、もう1組の共振器を構成している。また、この2つの直線線路集合体素子22ab,22cd同士を平行に近接配置している。これにより、4つのスパイラル線路集合体素子21a〜21dが上下左右対称の関係にある4極の共振器24を構成している。
【0067】
このような構造により、誘導素子としての直線線路集合体素子22ab,22cdが、それらの幅方向に対して対称構造となるため、電流分布の幅方向での偏りが緩和され、全体としての導体損失がさらに低減される。
【0068】
図18の(A3)に示したパターンは、図8に示した構造の共振器で、同一の共振周波数特性を得ようとした場合の寸法の例を示したものである。このように、従来のステップインピーダンス共振器に比べて、低損失化を図るとともに非常に小型化できる。
【0069】
図9は、他の4極構造の共振器の構成を示す図である。図8に示した共振器では、2つの直線線路集合体素子同士を、その全長に亘って近接配置したが、この図9に示す例では、線路の延びる方向に所定距離だけずらして、2つの直線線路集合体素子22ab,22cdの一部同士を近接させている。このような構造により、直線線路集合体素子22ab−22cd間の電界結合と磁界結合のバランスを制御することができ、スパイラル線路集合体素子21a,21bを含む共振器と、スパイラル線路集合体素子21c,21dを含むもう1つの共振器とを所定の結合度で結合させることができる。
【0070】
図10は、他の4極構造の共振器の構成を示す図である。図8に示した例では、4つのスパイラル線路集合体素子21a〜21dのそれぞれを構成をする複数のスパイラル状線路のすべての外周端を直線線路集合体素子に接続(連続)させたが、この図10に示す例では、4つのスパイラル線路集合体素子21a〜21dを構成する複数のスパイラル状線路のうち、所定の本数だけについて、それらの外周端を直線線路集合体素子22ab,22cdに接続している。このような構造であっても、図8に示した共振器と同様の作用効果を奏する。
【0071】
また、直線線路集合体素子22ab,22cdを構成する線路の数が少ない分、直線線路集合体素子の誘導成分を増大させることができる。そのため、スパイラル線路集合体素子21a〜21d部分のキャパシタンス成分を減少させることなく、所定の共振周波数の共振器を得るための誘電体基板上の占有面積を縮小化することができる。
【0072】
次に、第4の実施形態に係るフィルタの構成を図11〜図15を参照して説明する。
図11はフィルタを構成した誘電体基板の平面図であり、(A)は上面図、(B)下面図である。誘電体基板1の上面には、2つの共振器24,26を形成している。また、誘電体基板1の下面には共振器25を形成している。共振器24は、図8に示したものと同様の4極構造の共振器である。共振器25,26は図2に示したものと同様の、複数のスパイラル状線路の集合体からなる共振器である。但し、線数は100本以上であり、線幅および線間は数μmであるので、全体に黒く潰れて見える。
【0073】
誘電体基板1の下面には、グランド電極3、結合電極12,13,14,15、端子16,17をそれぞれ形成している。結合電極14は、誘電体基板1上面の共振器24と結合し、結合電極12は共振器25に結合する。結合電極13も共振器25に結合する。結合電極15は、誘電体基板1上面の共振器26と結合する。また、共振器24と共振器25とは直接は結合せず、共振器25と共振器26とが誘電体基板1を挟んで上下間で結合する。
【0074】
図12は、図11に示したフィルタの等価回路図である。ここで、3つの共振器24,25,16は、LCRの並列共振回路として表わしている。また、Qe01、Qe02,Qe24,Qe34は、それぞれ結合電極14,12,13,15による結合回路である。さらに、k23は2段目と3段目の共振器間の結合回路を表わしている。このように、共振器24はトラップ共振器として作用し、共振器25,26は2段の結合した共振器として作用する。
【0075】
図13は、上記フィルタの通過特性S[1,1]、および反射特性S[2,1]の例を示している。ここで回路定数は以下のとおりである。
【0076】
f01 = 2115.525 MHz
f02 = 1922.397 MHz
f03 = 1901.024 MHz
Qe01= 9.66
Qe02= 16.4
k23 = 7.198%
Qe34= 17.0
Qe24= 173
このように、上記トラップ共振器による減衰領域を有する帯域通過特性が得られる。
【0077】
ここで、単一の誘電体基板中に複数の共振器を構成した場合の、共振器間の結合の仕方について、図14および図15を参照して説明する。
図14は、4極構造の共振器と、複数のスパイラル状線路の集合体からなる共振器とを、誘電体基板1の上下面に形成した場合について示している。(A)は誘電体基板1の上面図、(B)はその下面図である。上面に形成した4極の共振器に関して電荷の符号を反転させる操作を考える。この操作は、共振器構造の対称性から、z軸に関して180°回転させる操作と等価である。
【0078】
誘電体基板1の上面に形成した共振器と、下面に形成した共振器をそれぞれ180°回転させたときの電磁界モードは、蓄積エネルギー、周波数共に元の電磁界モードと同一である。従って、誘電体基板上下面の2つの共振器のモードは縮退モードとなる。すなわち、この上下面の2つの共振器同士は結合しない。
【0079】
このことにより、図11に示した共振器24と共振器25とは直接結合しない。但し、図11に示した例では、上面の共振器24と下面の共振器25とが少しずれた位置にあるため、全く結合しないわけではないが、強く結合することはない。
【0080】
図15は、それぞれ4極構造である2つの共振器を、誘電体基板1の上下面に形成した場合について示している。(A)は誘電体基板1の上面図、(B)はその下面図である。上面に形成した4極の共振器に関して、電荷の符号(電流の向き)を反転させる操作を考える。この操作は、共振器構造の対称性から、yz面に関する空間の鏡像反転操作と等価である。
【0081】
上記鏡像反転の電磁界モードは、蓄積エネルギー、周波数共に元の電磁界モードと同一である。従って、誘電体基板上下面の2つの共振器のモードは縮退モードとなり、この上下面の2つの共振器同士は結合しない。
【0082】
次に、第5の実施形態としてデュプレクサの構成例を図16を参照して説明する。
ここで、送信フィルタと受信フィルタは、いずれも、図11等に示した構造のフィルタである。但し、トラップ共振器による減衰領域は、相手側の通過帯域(送信フィルタから見れば受信帯域、受信フィルタから見れば送信帯域)に隣接する位置となるように、フィルタ特性を定めておく。
【0083】
送信フィルタの出力ポートと受信フィルタの入力ポートとの間は、送信信号が受信フィルタ側へ回り込まないように、また、受信信号が送信フィルタ側へ回り込まないように、位相調整を行っている。
【0084】
次に、第6の実施形態に係る通信装置の構成を図17に示す。
ここで、デュプレクサは、図16に示した構成のデュプレクサである。このデュプレクサの送信端子には送信回路を、受信端子には受信回路をそれぞれ接続している。また、アンテナ端子にはアンテナを接続している。
【0085】
【発明の効果】
この発明によれば、それぞれ等幅スパイラル状の複数の線路を、互いに交差しないように、基板上の所定点を中心とする略回転対称位置にそれぞれ配置したため、複数のスパイラル状線路の各線路間に間隙が設けられ、誘電体基板に対して垂直方向の磁界がその間隙を通る。そのため、各スパイラル状線路の縁端効果が緩和され、各スパイラル状線路の縁端部における電流集中が低くなる。その結果、全体の導体損失が低下して低損失化が図れる。
【0086】
また、複数のスパイラル状線路の集合体の複数本分の各線路について、該線路に略直交する略直線位置で、前記複数本分の線路の外周端を揃えたことにより、例えば略直線状で互いに略平行な複数の線路がスパイラル状線路に交わることもなく、直線線路集合体を容易に接続することができ、その接続部における損失も最小限なものとすることができる。
【0087】
この発明によれば、それぞれ略直線状で互いに略平行な複数の線路により、直線線路集合体素子を構成するとともに、該直線線路集合体素子の両端に上記スパイラル線路集合体素子をそれぞれ設けて共振器を構成したことにより、上記スパイラル線路集合体素子は、電荷を蓄積する小面積・低損失な容量素子として作用し、上記直線線路集合体素子は、小面積・低損失な誘導素子として作用する。これにより、全体に小面積・低損失な共振器が実現できる。
【0088】
また、この発明によれば、直線線路集合体素子の両端に配置するスパイラル線路集合体素子の各線路の旋回方向を互いに逆の関係として、線対称形の共振器を構成するとともに、該共振器を2組設け、且つ、それぞれの直線線路集合体素子同士を近接させて、4つのスパイラル線路集合体素子を上下左右が略対称となるように配置して共振器を構成することにより、上記直線線路集合体素子での導体損失が低減され、全体にさらにQを高めることができる。
【0089】
この発明によれば、上記共振器に信号入出力部を設けてフィルタを構成することにより、小型で低挿入損失なフィルタが得られる。
【0090】
また、この発明によれば、上記フィルタを2組備えるとともに、その信号入出力部として、送信信号入力端子、共用入出力端子、および受信信号出力端子を設けてデュプレクサを構成することにより、小型で低挿入損失なデュプレクサが得られる。
【0091】
この発明によれば、上記スパイラル線路集合体素子、共振器、フィルタ、またはデュプレクサを備えて高周波回路装置を構成することにより、小型で低損失な高周波回路が構成でき、それを用いた通信装置の雑音特性および伝送速度などの通信品質を向上させることができる。
【図面の簡単な説明】
【図1】第1の実施形態に係るスパイラル線路集合体素子の構成を示す図
【図2】同スパイラル線路集合体素子の基になる原型のスパイラル線路集合体の構造を示す図
【図3】スパイラル線路集合体素子の他の例を示す図
【図4】スパイラル線路集合体素子の他の例を示す図
【図5】スパイラル線路集合体素子の他の例を示す図
【図6】第2の実施形態に係る共振器の構成を示す図
【図7】共振器の他の構成例を示す図
【図8】第3の実施形態に係る共振器の構成を示す図
【図9】他の構造からなる共振器の構成を示す図
【図10】他の構造からなる共振器の構成を示す図
【図11】第4の実施形態に係るフィルタの構成を示す図
【図12】同フィルタの等価回路図
【図13】同フィルタの特性例を示す図
【図14】共振器間の結合関係について示す図
【図15】共振器間の結合関係について示す図
【図16】第5の実施形態に係るデュプレクサの構成を示す図
【図17】第6の実施形態に係る通信装置の構成を示すブロック図
【図18】従来の共振器の構成、等価回路、および波長短縮効果の特性を示す図
【図19】線幅一定のスパイラル線路のイメージを示す図
【符号の説明】
1−誘電体基板
2−スパイラル状線路
2’−直線状線路
3−グランド電極
12〜15−結合電極
16,17−端子
21−スパイラル線路集合体素子
21’−スパイラル線路集合体素子の原型
22−直線線路集合体素子
23〜26−共振器
Claims (6)
- それぞれ略直線状で互いに略平行な複数の線路により、直線線路集合体素子を構成するとともに、該直線線路集合体素子の両端に、請求項1に記載のスパイラル線路集合体素子をそれぞれ設けて成る共振器。
- 請求項2に記載の直線線路集合体素子の両端に配置するスパイラル線路集合体素子の各線路の旋回方向を互いに逆の関係として、線対称形の共振器を構成するとともに、該共振器を2組設け、且つ、それぞれの直線線路集合体素子同士を近接させて、4つのスパイラル線路集合体素子を上下左右が略対称となるように配置して成る共振器。
- 請求項2または3に記載の共振器に信号入出力部を設けたフィルタ。
- 請求項4に記載のフィルタを2組備えるとともに、前記信号入出力部として、送信信号入力端子、送受信共用入出力端子、および受信信号出力端子を設けて成るデュプレクサ。
- 請求項1に記載のスパイラル線路集合体素子、請求項2または3に記載の共振器、請求項4に記載のフィルタ、もしくは請求項5に記載のデュプレクサを備えた高周波回路装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001281943A JP3603826B2 (ja) | 2001-09-17 | 2001-09-17 | スパイラル線路集合体素子、共振器、フィルタ、デュプレクサおよび高周波回路装置 |
EP02020676A EP1294041A3 (en) | 2001-09-17 | 2002-09-13 | Multi-spiral element, resonator, filter, duplexer, and high-frequency circuit device |
US10/243,929 US6828882B2 (en) | 2001-09-17 | 2002-09-16 | Multi-spiral element, resonator, filter, duplexer, and high-frequency circuit device |
KR10-2002-0056122A KR100515817B1 (ko) | 2001-09-17 | 2002-09-16 | 스파이럴 선로 집합체 소자, 공진기, 필터, 듀플렉서 및고주파 회로 장치 |
CNB021427968A CN1215598C (zh) | 2001-09-17 | 2002-09-17 | 螺旋线路集合体元件、谐振器、滤波器、双工器及高频电路装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001281943A JP3603826B2 (ja) | 2001-09-17 | 2001-09-17 | スパイラル線路集合体素子、共振器、フィルタ、デュプレクサおよび高周波回路装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003092502A JP2003092502A (ja) | 2003-03-28 |
JP3603826B2 true JP3603826B2 (ja) | 2004-12-22 |
Family
ID=19105670
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001281943A Expired - Fee Related JP3603826B2 (ja) | 2001-09-17 | 2001-09-17 | スパイラル線路集合体素子、共振器、フィルタ、デュプレクサおよび高周波回路装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US6828882B2 (ja) |
EP (1) | EP1294041A3 (ja) |
JP (1) | JP3603826B2 (ja) |
KR (1) | KR100515817B1 (ja) |
CN (1) | CN1215598C (ja) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005347511A (ja) * | 2004-06-03 | 2005-12-15 | Matsushita Electric Ind Co Ltd | 半導体装置及びその製造方法 |
JP4525750B2 (ja) | 2005-04-11 | 2010-08-18 | 株式会社村田製作所 | 平面回路、高周波回路装置および送受信装置 |
CN1921301B (zh) * | 2005-08-26 | 2010-09-29 | 鸿富锦精密工业(深圳)有限公司 | 表面声波元件 |
CN100574004C (zh) * | 2005-11-11 | 2009-12-23 | 中国科学院上海微系统与信息技术研究所 | 补偿型螺旋微带谐振单元及其构成的环形耦合器 |
KR102028057B1 (ko) * | 2013-01-22 | 2019-10-04 | 삼성전자주식회사 | 격리도가 향상된 공진기 |
CN112563699B (zh) * | 2021-02-25 | 2021-05-11 | 成都频岢微电子有限公司 | 基于多层pcb结构的小型化螺旋形可表面贴装带通滤波器 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4757285A (en) * | 1986-07-29 | 1988-07-12 | Siemens Aktiengesellschaft | Filter for short electromagnetic waves formed as a comb line or interdigital line filters |
US4981838A (en) * | 1988-03-17 | 1991-01-01 | The University Of British Columbia | Superconducting alternating winding capacitor electromagnetic resonator |
JPH0832320A (ja) * | 1994-07-15 | 1996-02-02 | Kokusai Electric Co Ltd | 周波数可変フィルタ |
JP3125691B2 (ja) * | 1995-11-16 | 2001-01-22 | 株式会社村田製作所 | 結合線路素子 |
JP3823440B2 (ja) * | 1997-05-13 | 2006-09-20 | 株式会社村田製作所 | サーミスタの製造方法 |
US6108569A (en) * | 1998-05-15 | 2000-08-22 | E. I. Du Pont De Nemours And Company | High temperature superconductor mini-filters and mini-multiplexers with self-resonant spiral resonators |
JP3788051B2 (ja) * | 1998-07-28 | 2006-06-21 | 株式会社村田製作所 | 共振器、フィルタ、デュプレクサ及び通信機装置 |
JP3402252B2 (ja) * | 1998-12-22 | 2003-05-06 | 株式会社村田製作所 | 共振器、フィルタ、デュプレクサおよび通信装置 |
JP3440909B2 (ja) * | 1999-02-23 | 2003-08-25 | 株式会社村田製作所 | 誘電体共振器、インダクタ、キャパシタ、誘電体フィルタ、発振器、誘電体デュプレクサおよび通信装置 |
JP3452006B2 (ja) * | 1999-12-07 | 2003-09-29 | 株式会社村田製作所 | フィルタ、デュプレクサおよび通信装置 |
-
2001
- 2001-09-17 JP JP2001281943A patent/JP3603826B2/ja not_active Expired - Fee Related
-
2002
- 2002-09-13 EP EP02020676A patent/EP1294041A3/en not_active Withdrawn
- 2002-09-16 KR KR10-2002-0056122A patent/KR100515817B1/ko not_active IP Right Cessation
- 2002-09-16 US US10/243,929 patent/US6828882B2/en not_active Expired - Fee Related
- 2002-09-17 CN CNB021427968A patent/CN1215598C/zh not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN1405923A (zh) | 2003-03-26 |
KR100515817B1 (ko) | 2005-09-21 |
CN1215598C (zh) | 2005-08-17 |
JP2003092502A (ja) | 2003-03-28 |
EP1294041A3 (en) | 2003-10-15 |
KR20030024608A (ko) | 2003-03-26 |
US6828882B2 (en) | 2004-12-07 |
US20030056977A1 (en) | 2003-03-27 |
EP1294041A2 (en) | 2003-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9373876B2 (en) | Multiple-mode filter for radio frequency integrated circuits | |
US20030048158A1 (en) | Resonator, filter, duplexer, and communication device | |
JPH0372701A (ja) | 並列多段型帯域通過フィルタ | |
CN113381141B (zh) | 采用双层圆形贴片的双通带平衡功分滤波器 | |
US7764147B2 (en) | Coplanar resonator and filter using the same | |
US6486754B1 (en) | Resonator, filter, duplexer, and communication device | |
JP3861806B2 (ja) | 共振器、フィルタ、デュプレクサ、および通信装置 | |
CN115425375B (zh) | 一种带通滤波器及其小型化cq拓扑结构 | |
JP3603826B2 (ja) | スパイラル線路集合体素子、共振器、フィルタ、デュプレクサおよび高周波回路装置 | |
US7978027B2 (en) | Coplanar waveguide resonator and coplanar waveguide filter using the same | |
JP3723284B2 (ja) | 高周波フィルタ | |
US7274273B2 (en) | Dielectric resonator device, dielectric filter, duplexer, and high-frequency communication apparatus | |
US12027742B2 (en) | Distributed constant filter, distributed constant line resonator, and multiplexer | |
US6828880B2 (en) | Bandpass filter | |
JP2005012457A (ja) | 共振器、フィルタおよび通信装置 | |
CN116435731A (zh) | 一种n阶四分之一波长高带外抑制滤波器结构及滤波器 | |
JP2718984B2 (ja) | 共振器及びその共振器を用いたフィルタ | |
CN220474866U (zh) | 一种n阶四分之一波长高带外抑制滤波器结构及滤波器 | |
EP1564834A1 (en) | Microwave filter | |
JP2002232209A (ja) | バンドパスフィルタ | |
EP1335447A1 (en) | Dielectric resonator device, dielectric filter, dielectric duplexer, and communication apparatus | |
JP3928531B2 (ja) | 誘電体共振器、フィルタ、デュプレクサおよび高周波回路装置 | |
EP0920069A1 (en) | Comb-line filter including distributed constant line | |
JP2001144504A (ja) | 誘電体フィルタ、誘電体デュプレクサ及び通信機装置 | |
JP2001257503A (ja) | Temモード誘電体共振器を用いたバンドパスフィルタ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040713 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040729 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040907 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040920 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071008 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081008 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091008 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101008 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |