[go: up one dir, main page]

JP3600754B2 - Iron oxide particle powder - Google Patents

Iron oxide particle powder Download PDF

Info

Publication number
JP3600754B2
JP3600754B2 JP12504299A JP12504299A JP3600754B2 JP 3600754 B2 JP3600754 B2 JP 3600754B2 JP 12504299 A JP12504299 A JP 12504299A JP 12504299 A JP12504299 A JP 12504299A JP 3600754 B2 JP3600754 B2 JP 3600754B2
Authority
JP
Japan
Prior art keywords
iron oxide
particles
octahedral
oxide particles
magnetite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12504299A
Other languages
Japanese (ja)
Other versions
JP2000319022A (en
Inventor
武志 宮園
克彦 吉丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP12504299A priority Critical patent/JP3600754B2/en
Publication of JP2000319022A publication Critical patent/JP2000319022A/en
Application granted granted Critical
Publication of JP3600754B2 publication Critical patent/JP3600754B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Paints Or Removers (AREA)
  • Developing Agents For Electrophotography (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、酸化鉄粒子粉末に関し、詳しくは異形状である球状酸化鉄粒子と八面体酸化鉄粒子とを混在させることにより、流動性、分散性、ハンドリング性等の諸特性をバランスよく向上させた、特に静電複写磁性トナー用材料粉、静電潜像現像用キャリア用材料粉、塗料用黒色顔料粉等の用途に主に用いられる酸化鉄粒子粉末に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
最近、電子写真複写機、プリンター等の磁性トナー用材料として、水溶液反応による酸化鉄粒子が広く利用されている。
【0003】
磁性トナーとしては各種の一般的現像特性が要求されるが、近年、電子写真技術の発達により、特にデジタル技術を用いた複写機、プリンターが急速に発達し、要求特性がより高度になってきた。
【0004】
すなわち、従来の文字以外にもグラフィックや写真等の出力も要求されており、特にプリンターの中には1インチ当たり1200ドット以上の能力のものも現れ、感光体上の潜像はより緻密になってきている。そのため、現像での細線再現性の高さが強く要求されている。
【0005】
また、それに伴うトナーも小粒径化されており、より一層の酸化鉄粒子の樹脂への分散が要求されている。
【0006】
一般的に、トナー、キャリア、顔料を製造する際に、酸化鉄粒子と樹脂の計量、混合、混練を行う。その中で、分散性をよくするためには、計量時又は混合後の混練機への供給性、比重の低い樹脂との混合性をよくする必要がある。一方、高解像度化が進み、残留磁化の低いものが好まれており、またトナーの小粒径化に伴い、それに使用される酸化鉄粒子も小粒径化が必要である。
【0007】
酸化鉄粒子の比重は、樹脂より重く混合時に分離する可能性があるので、振動があっても嵩密度の低いものであれば、比重の低いものとの混合性を向上することができ、ひいては混練後の分散性を向上することができる。また、そういうものは輸送時にも粉体がしまりにくく、取り扱い性も良好である。
【0008】
しかし、一般的に球状酸化鉄粒子が低残留磁化であることが広く知られているが、球状品は通常最密充填を取りやすく嵩密度が高くなる傾向があり、流動性の面でも問題があった。流動性の改良については従来から種々の提案が試みられているが、その結果として粉体の流動性は向上するが、嵩密度がさらに高くなる傾向にあった。
【0009】
また、酸化鉄粒子の代表的な形状として八面体がある。八面体の酸化鉄粒子は、嵩密度が一般的に低いが、その形状より残留磁化が高く、細線再現性に問題があった。
【0010】
このように、流動性が高く、かつ充填密度が低く、しかも磁気特性に優れた酸化鉄粒子は未だ提供されていない。
【0011】
従って、本発明の目的は、流動性が高く、かつ充填密度が低く、しかも磁気特性に優れた酸化鉄粒子粉末を提供することにある。
【0012】
【課題を解決するための手段】
本発明者らは、検討の結果、球状と八面体の酸化鉄粒子を混在させることによって、上記目的が達成し得ることを知見した。
【0013】
本発明は、上記知見に基づきなされたもので、球状酸化鉄粒子と八面体酸化鉄粒子が混在する酸化鉄粒子粉末であって、
個数平均粒径が0.15〜0.5μm、かつ全個数に対する八面体酸化鉄粒子の存在個数率[八面体酸化鉄粒子個数/(球状酸化鉄粒子個数+八面体酸化鉄粒子個数)×100]が5〜90%で、その中の球状酸化鉄粒子の平均粒径をXμm、八面体酸化鉄粒子の平均粒径をYμm、八面体酸化鉄粒子の存在個数率Z(%)とした時、下記式(1)を満足することを特徴とする酸化鉄粒子粉末を提供するものである。
10≦(5.2/6×πY 3 Z/100)/[(5.2/6×πY 3 Z/100)+(5.2/6×πX 3 (100−Z)/100]×100・・・・・(1)
【0014】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。
本発明でいう酸化鉄粒子とは、好ましくはマグネタイトを主成分とするものであり、ケイ素、アルミニウム、チタン等の各種有効元素含有するもの、あるいはこれら有効元素で被覆されたものも含まれる。以下の説明では、酸化鉄粒子としてその代表的なものであるマグネタイト粒子について説明する。また、酸化鉄粒子又はマグネタイト粒子というときには、その内容によって個々の粒子又はその集合のいずれも意味する。また、酸化鉄粒子粉末又はマグネタイト粒子粉末とは、形状、粒径の異なる酸化鉄粒子又はマグネタイト粒子が混在したものをいう。
【0015】
本発明のマグネタイト粒子粉末は、球状マグネタイト粒子と八面体マグネタイト粒子が混在したものである。ここで球状とは、走査型電子顕微鏡で観察したときに、角や辺がなく、長軸/短軸の比率が1〜1.2のものをいう。また、八面体とは、走査型電子顕微鏡で観察したときに、角と辺を持ち、一つの角に辺を4つ持つものをいう。この球状又は八面体のマグネタイト粒子は、水酸化第一鉄スラリーを酸化する際のpHを制御することにより得られる。
【0016】
本発明のマグネタイト粒子粉末は、個数平均粒径が0.15〜0.5μmである。また、全個数に対する八面体マグネタイト粒子の存在個数率[八面体マグネタイト粒子個数/(球状マグネタイト粒子個数+八面体マグネタイト粒子個数)×100]が5〜90%で、その中の球状マグネタイト粒子の平均粒径をXμm、八面体マグネタイト粒子の平均粒径をYμm、八面体マグネタイト粒子の存在個数率Z(%)とした時、下記式(1)を満足する。
10≦(5.2/6×πY3/100)/[(5.2/6×πY3/100)+(5.2/6×πX3100−Z)/100]×100・・・・・(1)
【0017】
八面マグネタイト粒子の存在個数率は、5〜90%、好ましくは16〜80%である。この存在個数率が5%未満、又は90%を超える場合、流動性の改善効果が少ない。
【0018】
何故、異形状粒子が混在すると流動性が改善されるかについては定かではないが、活性点の異なる粒子の混在により、コロの原理が作用していることが推測される。
【0019】
また、上記式(1)は、マグネタイト粒子粉末中の粒子すべてを球状粒子と考えた場合に、体積と真比重よりマグネタイト粒子粉末中の八面体粒子の重量比を計算したものである。この式(1)を満たさない場合、すなわち八面体マグネタイト粒子の重量存在率が10重量%未満の場合、タップ密度が高くなり、輸送中の粉体にしまりが生じ、以降の取扱い性が悪くなる上、樹脂との混合性が不良となる。
【0020】
本発明のマグネタイト粒子粉末は、タップ密度が1.4g/cm3以下であることが必要である。タップ密度が1.4g/cm3を超えると充填密度の上昇を抑えることができない。また、残留磁化(σr)は、磁気凝集による流動性への影響を考慮すると8Am 2 /kg(emu/g以下が好ましい。
【0021】
本発明のマグネタイト粒子粉末は、流動性の向上という観点から、安息角が好ましくは42°以下、さらに好ましくは40°以下である。
【0022】
【実施例】
以下、実施例等に基づき本発明を具体的に説明する。なお、本発明は八面体粒子と球状粒子が混在していることが重要であり、かかる事例に限定されるものではない。
【0023】
〔比較例1〕
Fe2+2.0mol/リットルを含む硫酸第一鉄水溶液50リットルと、5.0mol/リットルの水酸化ナトリウム水溶液36リットルを混合撹拌した。この時のpHは6.5であった。そのスラリーを85℃に維持しながら30リットル/minの空気を吹き込み、pHを5〜9に維持して反応を終了させた。得られた生成粒子は、通常の濾過、洗浄、乾燥、粉砕工程により処理し、球状マグネタイト粒子を得た。
【0024】
〔比較例2及び3〕
比較例1と同様の反応において、空気吹き込み量を50リットル/min(比較例2)、70リットル/min(比較例3)とし、所望の粒径の生成粒子を得た。得られた生成粒子は通常の濾過、洗浄、乾燥、粉砕工程により処理し、球状マグネタイト粒子を得た。
【0025】
〔比較例4〕
Fe2+2.0mol/リットルを含む硫酸第一鉄水溶液50リットルと、5.2mol/リットルの水酸化ナトリウム水溶液40リットルを混合撹拌した。この時のpHは11であった。そのスラリーを85℃に維持しながら30リットル/minの空気を吹き込み、pHを10以上にて反応を終了させた。得られた生成粒子は、通常の濾過、洗浄、乾燥、粉砕工程により処理し、八面体マグネタイト粒子を得た。
【0026】
〔比較例5及び6〕
比較例4と同様の反応において、空気吹き込み量を40リットル/min(比較例2)、50リットル/min(比較例3)とし、所望の粒径の生成粒子を得た。得られた生成粒子は通常の濾過、洗浄、乾燥、粉砕工程により処理し、八面体マグネタイト粒子を得た。
【0027】
〔実施例1〕
比較例1の球状マグネタイト粒子700g、比較例4の八面体マグネタイト粒子300gをV型ブレンダーを用い、20分間混合して球状マグネタイト粒子と八面体マグネタイト粒子の混在するマグネタイト粒子粉末を得た。
【0028】
〔実施例2〜26
表2〜3に示すマグネタイト粒子粉末となるように、比較例1〜6のマグネタイト粒子を用い、総重量10kgのマグネタイト粒子を実施例1と同様にV型ブレンダーで混合し、マグネタイト粒子粉末を得た。
【0029】
〔実施例27
比較例1の反応終了後のスラリー7リットルと比較例4の反応終了後のスラリー3リットルを混合し、通常の濾過、洗浄、乾燥、粉砕工程により処理し、マグネタイト粒子粉末を得た。
【0030】
このようにして得られた比較例1〜6のマグネタイト粒子又は実施例1〜27のマグネタイト粒子粉末について、下記の評価(平均粒径、全個数に対する八面体マグネタイト粒子の存在個数率、式(1)による八面体マグネタイト粒子の重量存在率、磁気特性、タップ密度、安息角)を行った。結果を表1〜3に示す。
【0031】
<評価方法>
(1)平均粒径
走査型電子顕微鏡にて3万倍の写真を撮影し、200個測定し、フィレ径にてマグネタイト粒子粉末の個数平均を求めた。その時に八面体マグネタイト粒子、球状マグネタイト粒子の個数もチェックした。また、各形状の平均粒径はそれぞれの形状の測定を100個測定し、各形状の個数平均粒径を求めた。
(2)全個数に対する八面体マグネタイト粒子の存在個数率
上記(1)にてマグネタイト粒子粉末の平均粒径測定時にチェックした各形状の個数を用い、八面体マグネタイト粒子個数/(球状マグネタイト粒子個数+八面体マグネタイト粒子個数)×100で求めた。
(3)式(1)による八面体マグネタイト粒子の重量存在率
球状マグネタイト粒子の平均粒径をXμm、八面体マグネタイト粒子の平均粒径をYμm、八面体マグネタイト粒子の存在個数率Z(%)とした時、下記式(1)の値を求めた。
A=(5.2/6×πY3/100)/[(5.2/6×πY3/100)+(5.2/6×πX3100−Z)/100]×100・・・・・(1)
(4)磁気特性
東英工業製振動型磁力計VSM−P7を用い、外部磁場79.6kA/m(=1kOe398kA/m(=5kOeにて測定した。
(5)タップ密度、安息角
Hosokawa Micron社製、「Powder Tester TypePT−E」(商品名)を用いて、タップ密度、安息角を求めた。
【0032】
【表1】

Figure 0003600754
【0033】
【表2】
Figure 0003600754
【0034】
【表3】
Figure 0003600754
【0035】
表1に示されるように、比較例1〜3の球状マグネタイト粒子は、タップ密度が高く、安息角が大きい。また、比較例4〜6の八面体マグネタイト粒子は、残留磁化が高く、安息角も大きい。
【0036】
これに対して、実施例1〜27のマグネタイト粒子粉末は、タップ密度が低く、安息角が小さく、しかも残留磁化も低い。
【0037】
【発明の効果】
以上説明したように、本発明の酸化鉄粒子粉末は、流動性が高く、かつ充填密度が低く、しかも磁気特性に優れる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to iron oxide particle powder, in particular, by mixing spherical iron oxide particles and octahedral iron oxide particles having different shapes, to improve various properties such as fluidity, dispersibility, and handling properties in a well-balanced manner. In particular, the present invention relates to iron oxide particle powder mainly used for applications such as material powder for electrostatic copying magnetic toner, carrier material powder for electrostatic latent image development, and black pigment powder for paint.
[0002]
Problems to be solved by the prior art and the invention
2. Description of the Related Art Recently, iron oxide particles formed by an aqueous solution reaction have been widely used as a material for magnetic toners in electrophotographic copying machines, printers, and the like.
[0003]
Various general development characteristics are required for magnetic toners, but in recent years, with the development of electrophotography technology, especially copiers and printers using digital technology have been rapidly developed, and the required characteristics have become more sophisticated. .
[0004]
In other words, in addition to the conventional characters, output of graphics and photographs is also required. In particular, some printers having a capacity of 1200 dots per inch or more appear, and the latent image on the photoconductor becomes more dense. Is coming. Therefore, high reproducibility of fine lines in development is strongly required.
[0005]
In addition, the toner particles have been reduced in particle size, and it is required to further disperse the iron oxide particles in the resin.
[0006]
Generally, when producing a toner, a carrier, and a pigment, the iron oxide particles and the resin are measured, mixed, and kneaded. Among them, in order to improve the dispersibility, it is necessary to improve the supply to a kneader at the time of measurement or after mixing, and the mixing with a resin having a low specific gravity. On the other hand, higher resolution has been promoted, and those having low remanence have been preferred. In addition, as the particle size of the toner has been reduced, the iron oxide particles used therein also need to be reduced in particle size.
[0007]
Since the specific gravity of the iron oxide particles is heavier than the resin and may be separated at the time of mixing, even if there is vibration, if the bulk density is low, the mixing property with the low specific gravity can be improved, and Dispersibility after kneading can be improved. In addition, such a material is hardly compacted during transportation and has good handleability.
[0008]
However, it is widely known that spherical iron oxide particles generally have low remanent magnetization, but spherical products usually have a tendency to easily take close-packing and tend to have a high bulk density. there were. Various proposals have been made for improving the fluidity, but as a result, the fluidity of the powder is improved, but the bulk density tends to be further increased.
[0009]
An octahedron is a typical shape of the iron oxide particles. Octahedral iron oxide particles generally have a low bulk density, but have a higher remanent magnetization than their shapes, and have a problem in fine line reproducibility.
[0010]
Thus, iron oxide particles having high fluidity, low packing density, and excellent magnetic properties have not yet been provided.
[0011]
Accordingly, an object of the present invention is to provide an iron oxide particle powder having high fluidity, low packing density, and excellent magnetic properties.
[0012]
[Means for Solving the Problems]
As a result of the study, the present inventors have found that the above object can be achieved by mixing spherical and octahedral iron oxide particles.
[0013]
The present invention has been made based on the above findings, the spherical iron oxide particles and octahedral iron oxide particles is an acid iron particles you mixed,
The number average particle diameter is 0.15 to 0.5 μm, and the abundance ratio of octahedral iron oxide particles to the total number [octahedral iron oxide particle number / (spherical iron oxide particle number + octahedral iron oxide particle number) × 100] When the average particle size of the spherical iron oxide particles is X μm, the average particle size of the octahedral iron oxide particles is Y μm, and the abundance ratio of octahedral iron oxide particles is Z (%). And an iron oxide particle powder characterized by satisfying the following formula (1) .
10 ≦ (5.2 / 6 × πY 3 Z / 100) / [(5.2 / 6 × πY 3 Z / 100) + (5.2 / 6 × πX 3 (100−Z) / 100] × 100・ ・ ・ ・ ・ (1)
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
The iron oxide particles referred to in the present invention are preferably composed mainly of magnetite, and include those containing various effective elements such as silicon, aluminum and titanium, or those coated with these effective elements. In the following description, magnetite particles, which are typical iron oxide particles, will be described. Further, when referring to iron oxide particles or magnetite particles, it means either individual particles or their aggregates depending on the content. In addition, the iron oxide particles or the magnetite particles mean a mixture of iron oxide particles or magnetite particles having different shapes and particle diameters.
[0015]
The magnetite particle powder of the present invention is a mixture of spherical magnetite particles and octahedral magnetite particles. Here, the term “spherical” refers to those having no corners or sides and a ratio of major axis / minor axis of 1 to 1.2 when observed with a scanning electron microscope. An octahedron has a corner and a side when observed with a scanning electron microscope, and has four sides at one corner. The spherical or octahedral magnetite particles can be obtained by controlling the pH when oxidizing the ferrous hydroxide slurry.
[0016]
The magnetite particle powder of the present invention has a number average particle size of 0.15 to 0.5 μm. The ratio of the number of octahedral magnetite particles to the total number [octahedral magnetite particle number / (number of spherical magnetite particles + number of octahedral magnetite particles) × 100] is 5 to 90%, and the average of spherical magnetite particles therein is Xμm particle size, Ymyuemu an average particle size of octahedral magnetite particles when was the presence number ratio of octahedral magnetite particles Z (%), you satisfy the following formula (1).
10 ≦ (5.2 / 6 × πY 3 Z / 100 ) / [(5.2 / 6 × πY 3 Z / 100 ) + (5.2 / 6 × πX 3 ( 100− Z) / 100 ] × 100・ ・ ・ ・ ・ (1)
[0017]
Presence number ratio of the octahedral body magnetite particles, 5 to 90%, good Mashiku is 16-80%. When the abundance ratio is less than 5% or more than 90%, the effect of improving fluidity is small.
[0018]
It is not clear why the mixture of irregularly shaped particles improves the fluidity, but it is presumed that the mixture of particles having different active points has an effect of the roller principle.
[0019]
The above formula (1) is obtained by calculating the weight ratio of the octahedral particles in the magnetite particle powder from the volume and the true specific gravity when all the particles in the magnetite particle powder are considered to be spherical particles. If this formula (1) is not satisfied, that is, if the weight percentage of the octahedral magnetite particles is less than 10% by weight, the tap density becomes high, the powder being transported becomes tight, and subsequent handling becomes poor. In addition, the mixing property with the resin becomes poor.
[0020]
The magnetite particle powder of the present invention needs to have a tap density of 1.4 g / cm 3 or less. If the tap density exceeds 1.4 g / cm 3 , an increase in the packing density cannot be suppressed. The residual magnetization (σr) is preferably 8 Am 2 / kg ( emu / g ) or less in consideration of the influence of magnetic aggregation on fluidity.
[0021]
The magnetite particle powder of the present invention has a repose angle of preferably 42 ° or less, more preferably 40 ° or less, from the viewpoint of improving fluidity.
[0022]
【Example】
Hereinafter, the present invention will be specifically described based on examples and the like. In the present invention, it is important that octahedral particles and spherical particles coexist, and the present invention is not limited to such a case.
[0023]
[Comparative Example 1]
50 L of an aqueous ferrous sulfate solution containing 2.0 mol / L of Fe 2+ and 36 L of a 5.0 mol / L aqueous sodium hydroxide solution were mixed and stirred. The pH at this time was 6.5. While maintaining the slurry at 85 ° C., air at 30 liter / min was blown, and the pH was maintained at 5 to 9 to terminate the reaction. The obtained product particles were subjected to ordinary filtration, washing, drying and pulverization steps to obtain spherical magnetite particles.
[0024]
[Comparative Examples 2 and 3]
In the same reaction as in Comparative Example 1, the air blowing rate was set to 50 L / min (Comparative Example 2) and 70 L / min (Comparative Example 3) to obtain formed particles having a desired particle size. The resulting product particles were subjected to ordinary filtration, washing, drying and pulverization steps to obtain spherical magnetite particles.
[0025]
[Comparative Example 4]
50 L of an aqueous ferrous sulfate solution containing 2.0 mol / L of Fe 2+ and 40 L of a 5.2 mol / L aqueous sodium hydroxide solution were mixed and stirred. The pH at this time was 11. While maintaining the slurry at 85 ° C., air was blown at 30 liter / min to terminate the reaction at a pH of 10 or more. The obtained product particles were subjected to ordinary filtration, washing, drying and pulverization steps to obtain octahedral magnetite particles.
[0026]
[Comparative Examples 5 and 6]
In the same reaction as in Comparative Example 4, the air blowing rate was set to 40 L / min (Comparative Example 2) and 50 L / min (Comparative Example 3) to obtain formed particles having a desired particle size. The resulting product particles were subjected to usual filtration, washing, drying and pulverization steps to obtain octahedral magnetite particles.
[0027]
[Example 1]
700 g of the spherical magnetite particles of Comparative Example 1 and 300 g of the octahedral magnetite particles of Comparative Example 4 were mixed for 20 minutes using a V-type blender to obtain magnetite particle powder in which spherical magnetite particles and octahedral magnetite particles were mixed.
[0028]
[Examples 2 to 26 ]
The magnetite particles of Comparative Examples 1 to 6 were mixed using the magnetite particles having a total weight of 10 kg by a V-type blender in the same manner as in Example 1 so as to obtain the magnetite particle powders shown in Tables 2 and 3 to obtain magnetite particle powder. Was.
[0029]
[Example 27 ]
7 liters of the slurry after the reaction of Comparative Example 1 and 3 liters of the slurry after the reaction of Comparative Example 4 were mixed and processed by the usual filtration, washing, drying and pulverization steps to obtain magnetite particle powder.
[0030]
With respect to the magnetite particles of Comparative Examples 1 to 6 or the magnetite particle powders of Examples 1 to 27 obtained as described above, the following evaluation (average particle diameter, the ratio of the number of octahedral magnetite particles to the total number, the formula (1) ), The abundance of octahedral magnetite particles, magnetic properties, tap density, angle of repose). The results are shown in Tables 1 to 3.
[0031]
<Evaluation method>
(1) Photographs of 30,000 times were taken with a scanning electron microscope having an average particle diameter, 200 pieces were measured, and the number average of the magnetite particle powder was determined based on the fillet diameter. At that time, the number of octahedral magnetite particles and spherical magnetite particles was also checked. The average particle size of each shape was determined by measuring 100 shapes and measuring the number average particle size of each shape.
(2) Percentage of octahedral magnetite particles present relative to the total number Using the number of each shape checked at the time of measuring the average particle diameter of the magnetite particle powder in (1) above, the number of octahedral magnetite particles / (the number of spherical magnetite particles + The number of octahedral magnetite particles) × 100.
(3) The weight abundance of octahedral magnetite particles according to equation (1) The average particle size of spherical magnetite particles is X μm, the average particle size of octahedral magnetite particles is Y μm, and the abundance ratio Z (%) of octahedral magnetite particles is Then, the value of the following equation (1) was obtained.
A = (5.2 / 6 × πY 3 Z / 100 ) / [(5.2 / 6 × πY 3 Z / 100 ) + (5.2 / 6 × πX 3 ( 100− Z) / 100 ] × 100・ ・ ・ ・ ・ (1)
(4) using a magnetic property Toei Kogyo vibration magnetometer VSM-P7, was measured at an external magnetic field 79.6kA / m (= 1kOe), 398kA / m (= 5kOe).
(5) Tap Density and Angle of Repose Tap density and angle of repose were determined using “Powder Tester TypePT-E” (trade name) manufactured by Hosokawa Micron.
[0032]
[Table 1]
Figure 0003600754
[0033]
[Table 2]
Figure 0003600754
[0034]
[Table 3]
Figure 0003600754
[0035]
As shown in Table 1, the spherical magnetite particles of Comparative Examples 1 to 3 have a high tap density and a large angle of repose. In addition, the octahedral magnetite particles of Comparative Examples 4 to 6 have high residual magnetization and a large angle of repose.
[0036]
On the other hand, the magnetite particle powders of Examples 1 to 27 have a low tap density, a small angle of repose, and a low residual magnetization.
[0037]
【The invention's effect】
As described above, the iron oxide particle powder of the present invention has high fluidity, low packing density, and excellent magnetic properties.

Claims (4)

球状酸化鉄粒子と八面体酸化鉄粒子が混在する酸化鉄粒子粉末であって、
個数平均粒径が0.15〜0.5μm、かつ全個数に対する八面体酸化鉄粒子の存在個数率[八面体酸化鉄粒子個数/(球状酸化鉄粒子個数+八面体酸化鉄粒子個数)×100]が5〜90%で、その中の球状酸化鉄粒子の平均粒径をXμm、八面体酸化鉄粒子の平均粒径をYμm、八面体酸化鉄粒子の存在個数率Z(%)とした時、下記式(1)を満足することを特徴とする酸化鉄粒子粉末
10≦(5.2/6×πY 3 Z/100)/[(5.2/6×πY 3 Z/100)+(5.2/6×πX 3 (100−Z)/100]×100・・・・・(1)
Spherical iron oxide particles and octahedral iron oxide particles is an acid iron particles you mixed,
The number average particle diameter is 0.15 to 0.5 μm, and the abundance ratio of octahedral iron oxide particles to the total number [octahedral iron oxide particle number / (spherical iron oxide particle number + octahedral iron oxide particle number) × 100] When the average particle size of the spherical iron oxide particles is X μm, the average particle size of the octahedral iron oxide particles is Y μm, and the abundance ratio of octahedral iron oxide particles is Z (%). And iron oxide particles satisfying the following formula (1) .
10 ≦ (5.2 / 6 × πY 3 Z / 100) / [(5.2 / 6 × πY 3 Z / 100) + (5.2 / 6 × πX 3 (100−Z) / 100] × 100・ ・ ・ ・ ・ (1)
球状酸化鉄粒子の個数平均粒径が0.20〜0.40μmであり、八面体酸化鉄粒子の個数平均粒径が0.15〜0.50μmである請求項1に記載の酸化鉄粒子粉末。 The iron oxide particle powder according to claim 1, wherein the number average particle diameter of the spherical iron oxide particles is 0.20 to 0.40 µm, and the number average particle diameter of the octahedral iron oxide particles is 0.15 to 0.50 µm. . 外部磁場398kA/m(5kOe又は79.6kA/m(1kOeにおける残留磁化が8Am 2 /kg(emu/g以下で、タップ密度1.4g/cm3以下である請求項1又は2記載の酸化鉄粒子粉末。External magnetic field 398kA / m (5kOe) or 79.6 kA / m residual magnetization in (1 kOe) is at 8 Am 2 / kg (emu / g) or less, a tap density of 1.4 g / cm 3 or less is claim 1 or 2 The iron oxide particles according to the above. 安息角が42°以下である請求項1、2又は3に記載の酸化鉄粒子粉末。The iron oxide particle powder according to claim 1, wherein the angle of repose is 42 ° or less.
JP12504299A 1999-04-30 1999-04-30 Iron oxide particle powder Expired - Lifetime JP3600754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12504299A JP3600754B2 (en) 1999-04-30 1999-04-30 Iron oxide particle powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12504299A JP3600754B2 (en) 1999-04-30 1999-04-30 Iron oxide particle powder

Publications (2)

Publication Number Publication Date
JP2000319022A JP2000319022A (en) 2000-11-21
JP3600754B2 true JP3600754B2 (en) 2004-12-15

Family

ID=14900409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12504299A Expired - Lifetime JP3600754B2 (en) 1999-04-30 1999-04-30 Iron oxide particle powder

Country Status (1)

Country Link
JP (1) JP3600754B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010207760A (en) 2009-03-11 2010-09-24 Toshiba Corp Oil adsorbent and oil recovery method
EP2884339A1 (en) * 2012-08-08 2015-06-17 Canon Kabushiki Kaisha Magnetic carrier and two-component developer
JP7346613B2 (en) * 2021-01-29 2023-09-19 キヤノン株式会社 magnetic toner

Also Published As

Publication number Publication date
JP2000319022A (en) 2000-11-21

Similar Documents

Publication Publication Date Title
US5874019A (en) Magnetic particles for magnetic toner and process for producing the same
JP4026982B2 (en) Magnetite particles and method for producing the same
US20030073016A1 (en) Black magnetic toner
JP3600754B2 (en) Iron oxide particle powder
JP3551204B2 (en) Black magnetic iron oxide particle powder
JP3224774B2 (en) Magnetite particles and method for producing the same
JPH0825747B2 (en) Magnetite particles and method for producing the same
US6485877B2 (en) Magnetic particles and magnetic carrier for electrophotographic developer
JP3544513B2 (en) Magnetite particles and method for producing the same
JPH0922143A (en) Magnetite particles and its production
JPH10171157A (en) Powdery magnetic iron oxide particles for magnetic toner and magnetic toner using same
JP3544317B2 (en) Magnetite particles and method for producing the same
JP4259830B2 (en) Magnetite particles
JP4121273B2 (en) Iron oxide particles
JP2004161551A (en) Iron oxide particle and its production method
JP3544316B2 (en) Magnetite particles and method for producing the same
JP4183497B2 (en) Black complex oxide particles and method for producing the same
JP4632184B2 (en) Magnetite particles and method for producing the same
JP3594513B2 (en) Magnetite particles
JP3958901B2 (en) Method for producing iron oxide particles
JP3648126B2 (en) Iron oxide particles
JP3499189B2 (en) Magnetite particles
JP5310994B2 (en) Magnetic iron oxide particle powder for magnetic toner and method for producing the same
JP2001089154A (en) Iron oxide particle and its production
JP4328928B2 (en) Black composite magnetic particle powder for black magnetic toner and black magnetic toner using the black composite magnetic particle powder

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040917

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140924

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term